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Abstract. In this work, we study the Bloch wave homogenization for the

Stokes system with periodic viscosity coefficient. In particular, we obtain the

spectral interpretation of the homogenized tensor. The presence of the incom-
pressibility constraint in the model raises new issues linking the homogenized

tensor and the Bloch spectral data. The main difficulty is a lack of smoothness

for the bottom of the Bloch spectrum, a phenomenon which is not present in
the case of the elasticity system. This issue is solved in the present work, com-

pleting the homogenization process of the Stokes system via the Bloch wave

method.

1. Introduction and main result. We consider the Stokes system in which the
viscosity is a periodically varying function of the space variable with small period ε >
0. Many physical phenomena (boiling flows, porous media, oil reservoirs, etc.) lead
to mixture of fluids with different viscosities. For incompressible slow or creeping
flows, such a situation is modeled by the system (1) for a Stokesian fluid with
variable viscosity which is further assumed to be a periodic function. From the point
of view of application, it is difficult to realize such a periodic distribution of droplets
of one fluid in another without deforming the periodic structure, and (1) may seem
as too much of an idealized system. Therefore, we also treat another model, which
is a variant of the Stokes system and is physically more relevant. Namely, we
consider the so-called incompressible elasticity system (10) which corresponds to a
mixture of incompressible elastic phases in a composite material (this situation is
quite common for rubber or elastomers).

The first goal of this paper is to study homogenization of the above systems
via Bloch Wave Method which is based on the fact that the homogenized operator
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can be defined using differential properties of the bottom of the so-called Bloch
spectrum. The second goal of the paper is to explore this regularity issue which is
delicate for the systems under consideration because of the presence of the incom-
pressibility condition. These points are elaborated below.

Through out the paper, we will follow the usual Einstein summation convention
with respect to repeated indices. We introduce now our first model. Assuming
that the viscosity (denoted by µ in the sequel) is a periodic function, the goal is to
capture the effective viscosity of the mixture. To write down the model we start
with a 1-periodic function µ = µ(y) ∈ L∞(Td) or equivalently, a Y -periodic function
where Y =]0, 1[d which represents the viscosity of the fluids. Here Td is the unit
torus in Rd. We assume µ(y) ≥ µ0 > 0 a.e in Td. Denote by µε = µε(x) = µ

(
x
ε

)
the corresponding scaled function which is ε-periodic. With f = f(x) ∈ L2(Ω)d

representing external force, we consider the Stokes system with no-slip boundary
condition in a bounded connected nonempty open set Ω ⊂ Rd having Lipschitz
boundary, :

−∇ · (µε∇uε) +∇pε = f in Ω,

∇ · uε = 0 in Ω,

uε = 0 on ∂Ω.

 (1)

As usual, uε and pε represent respectively the velocity and pressure fields of the
fluid. Well-posedness theory of (1) is classical [15]. We recall some of its elements.
To write down the weak formulation, we introduce the spaces

V =
{
v ∈ H1

0 (Ω)d; ∇ · v = 0 in Ω
}
, (2)

Here ν denotes unit outward normal to ∂Ω. Multiplying (1) by v ∈ V gives the
following problem for uε which does not involve pε : Find uε ∈ V satisfying∫

Ω

µε∇uε · ∇v dx =

∫
Ω

f · v dx ∀v ∈ V. (3)

The classical Lax-Milgram Lemma (essentially, Riesz Representation Theorem due
to the symmetry of our bilinear form) ensures existence and uniqueness of a solution
uε ∈ V for (3). To get the pressure field one applies de Rham’s Theorem in the
following form [15]:

V ⊥ :=
{
w ∈ H−1(Ω)d; 〈w, v〉H−1(Ω)d,H1

0 (Ω)d = 0,∀v ∈ V
}

=
{
∇p; p ∈ L2(Ω)

}
,

(4)
which implies that the pressure pε in (1) belongs to L2(Ω). Since Ω is a connected
set, the pressure is defined up to an additive constant. To guarantee the uniqueness
of the pressure, we seek p in the space L2

0(Ω) = {f ∈ L2(Ω) :
∫

Ω
f dx = 0} with

L2 norm. Moreover, by using Poincaré inequality and inf-sup inequality [15], one
shows that the solution (uε, pε) ∈ (H1

0 (Ω))d × L2
0(Ω) of (1) are uniformly bounded,

namely there exists a constant C, independent of ε, such that

||uε||(H1
0 (Ω))d + ||pε||L2(Ω) ≤ C||f ||(L2(Ω))d . (5)

We are interested here in the homogenization limit of (1), that is the asymptotic
limit of the solution (uε, pε) as ε→ 0. This problem is very classical and its solution
by means of a combination of two-scale asymptotic expansions and the method of
oscillating test functions was provided in various references, including [8, 16, 20].
We recall their main results and follow the notations of [8, chapter I, section 10].
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The homogenized tensor (A∗)klαβ , which represents “effective viscosity”, is defined
by

(A∗)klαβ =

∫
Td

µ(y)∇(χkα + yαek) : ∇(χlβ + yβel) dy, (6)

in which figure the cell test functions {χkα; α, k = 1 . . . d} ∈ H1(Td)d and {Πk
α; α, k =

1 . . . d} ∈ L2(Td) solutions of the following problem in the unit torus Td:

−∇ · (µ∇(χkα + yαek)) +∇Πk
α = 0 in Td

∇ · χkα = 0 in Td

(χkα,Π
k
α) is Y − periodic.

 (7)

We impose
∫
Td χ

k
α dy =

∫
Td Πk

α dy = 0 to obtain uniqueness of the solutions. It
is easy to see that the above homogenized tensor possesses the following “simple”
symmetry, for any indices 1 ≤ α, β, k, l ≤ d,

(A∗)klαβ = (A∗)lkβα, (8)

which corresponds to the fact that the fourth-order tensor A∗ is a symmetric linear
map from the set of all matrices (or second-order tensors) into itself. Since we follow
the notations of [8], the simple symmetry (8) seems a bit awkward since it mixes
Latin and Greek indices but it is just the usual symmetry for a pair of indices (k, α)
and (l, β) in a fourth-order tensor. In other words, (8) holds for a simultaneous
permutation of k, l and α, β. It is straight-forward (see [8]) to check that the tensor
A∗ is positive-definite so that the following system (9) is well-posed.

Theorem 1.1. The homogenized limit of the problem (1) is

− ∂
∂xβ

(
(A∗)klαβ

∂uk
∂xα

)
+ ∂p

∂xl
= fl in Ω, for l = 1, 2, ..., d,

∇ · u = 0 in Ω,

u = 0 on ∂Ω.

 (9)

More precisely, we have the convergence of solutions:

(uε, pε) ⇀ (u, p) in H1
0 (Ω)d × L2

0(Ω) weak.

Note that the simple symmetry (8) does not imply that A∗ is symmetric in k, l
or in α, β. However, in the homogenized equation (9), since A∗ is constant, only its
symmetric version, obtained by symmetrizing in both k, l and α, β, plays a role.

Let us next consider the second model of incompressible elasticity :

−∇ · (µεE(uεs)) +∇pεs = f in Ω,

∇ · uεs = 0 in Ω,

uεs = 0 on ∂Ω.

 (10)

Here the strain rate tensor is given by

E(v) =
1

2

(
∇v +∇tv

)
namely Ekl(v) =

1

2

(
∂vk
∂xl

+
∂vl
∂xk

)
.
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As before, there exists a unique solution (uεs, p
ε
s) of the above problem (10) in

(H1
0 (Ω))d × L2

0(Ω) and using Korn’s inequality and the inf-sup inequality, the fol-
lowing uniform bound can be proved :

||uεs||(H1
0 (Ω))d + ||pεs||L2(Ω) ≤ C||f ||(L2(Ω))d , (11)

where the constant C does not depend on ε. Here the homogenized tensor (A∗s)
kl
αβ

is given by

(A∗s)
kl
αβ =

∫
Td

µ(y)E(χ̃kα + yαek) : E(χ̃lβ + yβel) dy (12)

where the cell test functions χ̃kα ∈ H1(Td), Π̃k
α ∈ L2(Td) are now solutions in the

torus Td of

−∇ · (µE(χ̃kα + yαek)) +∇Π̃k
α = 0 in Td

∇ · χ̃kα = 0 in Td

(χ̃kα, Π̃
k
α) is Y − periodic

 (13)

We impose
∫
Td χ̃

k
α =

∫
Td Π̃k

α = 0. It is known [10] that the above homogenized
tensor possesses the following “full” symmetry, for any indices 1 ≤ α, β, k, l ≤ d,

(A∗s)
kl
αβ = (A∗s)

αl
kβ = (A∗s)

kβ
αl = (A∗s)

lk
βα, (14)

which corresponds to the fact that the fourth-order tensor A∗s is a symmetric lin-
ear map from the set of all symmetric matrices into itself (the conditions (14) are
the usual symmetry conditions for Hooke’s laws in linearized elasticity). The ho-
mogenization limit of the problem (10) is again of the form (9) with A∗s replacing
A∗.

The first goal of this paper is to give an alternate proof of Theorem 1.1 using the
Bloch Wave Method instead of two-scale asymptotic expansions and the method
of oscillating test functions. The notion of Bloch waves is well-known in physics
and mathematics [8, 11, 19, 22]. Bloch waves are eigenfunctions of a family of
“shifted”spectral problems in the unit cell Y for the corresponding differential op-
erator. Its link with homogenization theory was first explored in [8, 13, 17]. The
key point is that the homogenized operator can be defined in terms of differential
properties of the bottom of the Bloch spectrum. The second goal of this paper is to
explore this issue which is especially delicate in the case of Stokes equations. Indeed,
it was discovered in [7] that the Bloch spectrum for the Stokes equations is not reg-
ular enough at the origin because of the incompressibility constraint. Therefore, its
differential properties are all the more intricate to establish. Here we complete the
task started in [7] and in particular we prove a conjecture of [7] on the homogeniza-
tion of the Stokes system (1). Since the treatment of the incompressible elasticity
system (10) is almost analogous to that of (1), we focus on (1) and we content
ourselves in highlighting the main differences for (10) throughout the sequel.

The Bloch wave method for scalar equations and systems without differential
constraints (like the incompressibility condition) was studied in [12, 13, 14, 21]. In
such cases, this approach gives a spectral representation of the homogenized ten-
sor A∗ = (A∗)klαβ in terms of the lowest energy Bloch waves and their behaviour

for small momenta (what we call the bottom of the spectrum). For instance, the
homogenized matrix in the scalar case was found to be equal to one - half of the
Hessian of the ground energy (or first eigenvalue) at zero momentum. For a system,
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several bottom eigenvalues play a role and they are merely directionally differen-
tiable by lack of simplicity. In the present case of the Stokes system, the situation is
more complicated. The main characteristic of the Stokes system is the presence of
the differential constraint expressing incompressibility of the fluid. One of its effects
is that the Bloch energy levels are degenerate and the corresponding eigenfunctions
are discontinuous at zero momentum. Even though energy levels are continuous at
zero momentum, the second order derivatives are not (cf. Theorem 3.1). Thus, we
cannot really make sense of the eigenvalue Hessian at zero momentum. Further, it
is not clear if the homogenized tensor can be fully recovered from the Bloch spectral
data. In fact, this issue is left open in [7]. In the non-self adjoint case treated in
[21], only the symmetric part of the homogenized matrix is determined by Bloch
spectral data and this is enough to determine the homogenized operator uniquely.
Combining all these difficulties, the homogenization of Stokes system using Bloch
waves is an interesting issue which is not a direct extension of previous results. Our
work, roughly speaking, shows that Bloch spectral data does not determine the
homogenized tensor uniquely, but determines the homogenized operator uniquely.
This is in sharp contrast with the linear elasticity system treated in [14] in which
the homogenized tensor was uniquely determined from Bloch spectral data. We
see thus the effect of differential constraints (the incompressibility condition in the
case of Stokes equations) on the homogenization process via Bloch wave method.
For further discussion on this point, see Section 4. Bloch wave method of homoge-
nization presented in Section 5 consists of localizing (1), taking its Bloch transform
and passing to the limit to get the localized version of homogenized system in the
Fourier space. Passage to the limit in the Bloch method is straight forward, though
arguments are long. We do not run into the classical difficulty of having a product
of two weakly convergent sequences. In fact, we use the Taylor approximation of
Bloch spectral elements which gives strongly convergent sequences. This is one of
the known features of the method. The required homogenized system is obtained by
making a passage to the physical space from the Fourier space. Extracting macro
constitutive relation and macro balance equation from the localized homogenized
equation in the Fourier space turns out to be not very straight forward because of
differential constraints.

Let us end this discussion with two general remarks on Bloch wave method.
First one is about the nature of convergence of the homogenization process. It
is well-known in the homogenization theory that the convergence in Theorem 1.1
is only weak and not strong. To have strong convergence, we need the so-called
correctors [8]. Within Block wave theory, correctors are discussed in [12] for the
scalar equation. We do not construct explicitly correctors for Stokes system in
this paper, even though all necessary ingredients are presented. Because of the
lack of smoothness of the bottom level Bloch spectrum, corrector issue is worth
considering separately. The second remark is about non-periodic coefficients. Bloch
wave approach to homogenization is well developed only in the case of periodic
coefficients. It is known that for some restricted class of locally-periodic/modulated
coefficients, new phenomena (like localization) may appear [2, 3, 4]. We are not
aware of a Bloch wave approach for more general coefficients.

The plan of this paper is as follows. In section 2, we recall from [7] the properties
of Bloch waves associated with the Stokes operator. It turns out that the Bloch
waves and their energies can be chosen to be directionally regular, upon modifying
the spectral cell problem at zero momentum. Bloch transform using eigenfunctions
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lying at the bottom of the spectrum is also introduced in this section. Its asymptotic
behaviour for low momenta is also described. Next, Section 3 is devoted to the
computation of directional derivatives of Bloch spectral data. Even though these
results are essentially borrowed from [7], some new ones are also included because of
their need in the sequel. In particular we derive the so-called propagation relation
linking the homogenized tensor A∗ with Bloch spectral data, and the extent to which
it determines homogenized tensor is studied in Section 4. Using this information, we
prove Theorem 1.1 in Section 5 following the Bloch wave homogenization method.

Note added in proof. At the end of the introduction we claimed that we were
not aware of a Bloch wave approach for non-periodic coefficients. We recently
learned about a new work in this direction by A. Benoit and A. Gloria, “Long-time
homogenization and asymptotic ballistic transport of classical waves”, which will
appear in Annales Scientifiques de l’Ecole Normale Supérieure.

2. Bloch waves. In this section, we introduce Bloch waves associated to the Stokes
operator following the lead of [7]. The Bloch waves are defined by considering the
shifted (or translated) eigenvalue problem in the torus Td parametrized by elements
in the dual torus which we take to be 2πTd. We denote by y the points of the original
torus and by η the points of the dual torus. The spectral Bloch problem amounts
to find λ = λ(η) ∈ R, φ = φ(η) ∈ (H1(Td))d, with φ 6= 0 and Π = Π(η) ∈ L2(Td),
satisfying

−D(η) · (µD(η)φ) +D(η)Π = λ(η)φ in Td,

D(η) · φ = 0 in Td,

(φ,Π) is Y − periodic,∫
Y

|φ|2dy = 1.


(15)

The solutions of (15) φ,Π are a priori complex valued, so all functional spaces are
complex valued too. Here, we denote

D(η) = ∇y + iη

the shifted gradient operator, with i the imaginary root
√
−1. Its action on a

vector function φ yields a matrix: (D(η)φ)kl = ∂φl
∂yk

+ iηkφl for all k, l = 1, . . . , d.

The corresponding divergence operation yields a scalar: D(η) · φ = ∂φk
∂yk

+ iηkφk.

Analogously, if φ is a matrix function then its shifted divergence D(η) ·φ is a vector
function obtained by acting D(η) on the column vectors of φ. At this stage of
discussion,spectral problem (15) is stated only formally. Rigourous versions of it
with modification will be formulated and used below. For reasons of self-adjointness,
its eigenvalues will be real and that is why, we take λ to be real, without any loss
of generality. Though we may think of eigen-solution Π as some sort of complex-
valued pressure, there is no guarantee that it represents physical pressure field of a
real fluid. Let us remark that the system (15) is only a mathematical model which
appears as an useful intermediate step in the study of a physical model.

The main feature of (15) is that the state space keeps varying with η due to the
differential constraints defined by the incompressibility of the fluid. That is why, the
standard spectral theory for elliptic operators does not apply as such; it has to be
modified. This is accomplished in [18]. Secondly, it is easily seen that when η = 0,
the corresponding eigenvalue λ(0) is equal to zero and its multiplicity is d. In fact,
we can take ek, k = 1 . . . d as eigenvectors (with corresponding eigen-pressure being
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zero). Because of this degeneracy, spectral elements of (15) are not guaranteed to
be smooth at η = 0.

As discussed in introduction, lack of regularity of the Bloch spectrum at η = 0
is an issue because the representation of the homogenized tensor in terms of Bloch
spectral elements is then not clear. This was not the case for the scalar problem,
the lack of regularity of the Bloch spectrum at η = 0 does not appear there, in fact
the Bloch spectrum is analytic near η = 0, see [13].To overcome the difficulty in the
present case, the idea is to consider directional regularity as we approach η = 0 [14].
Accommodating the directional limit at η = 0 requires a modification of the above
shifted problem with the addition of a new constraint and corresponding Lagrange
multiplier in the equation [7]. Fixing a direction e ∈ Rd, |e| = 1 and taking η = δe,
with δ > 0, we consider the modified problem: find λ(δ) ∈ R, φ(.; δ) ∈ (H1(Td))d,
q(.; δ) ∈ L2

0(Td) where L2
0(Td) = {q ∈ L2(Td);

∫
Td q = 0} and q0(δ) ∈ C satisfying

−D(δe) · (µ(y)D(δe)φ(y; δ)) +D(δe)q(y; δ) + q0(δ)e = λ(δ)φ(y; δ) in Td,

D(δe) · φ(y; δ) = 0 in Td,

e ·
∫
Td

φ(y; δ) dy = 0,

(φ, q) is Y − periodic,∫
Td

|φ(y; δ)|2 dy = 1.


(16)

Note that if δ 6= 0 then the relation e ·
∫
Td
φ(.; δ) = 0 can be easily obtained from

D(δe) · φ(.; δ) = 0 simply by integration. (However, this is not the case if δ = 0.)
Hence (16) is the same as (15) provided δ 6= 0 and η = δe. However for δ = 0,
(15) is not good because the condition e ·

∫
Td
φ(.; δ) = 0 is not included. See [7] on

the appearance of this new constraint and the corresponding Lagrange multiplier
q0(δ)e.

It is natural to consider the system (16) with δ small as a perturbation from
the following one which corresponds to δ = 0. We fix a unit vector η̂ ∈ Sd−1 and
we consider the eigenvalue problem: find ν(η̂) ∈ R, w(., η̂) ∈ (H1(Td))d, q(.; η̂) ∈
L2

0(Td) and q0(η̂) ∈ C satisfying

−∇ · (µ∇w) +∇q + q0η̂ = ν(η̂)w in Td,

∇ · w = 0 in Td,

η̂ ·
∫
Y

w dy = 0,

(w, q) is Y − periodic,∫
Y

|w|2 dy = 1.


(17)

Existence of eigenvalues and eigenvectors for either (16) or (17) is proved in
[7]. Let us recall their result, by specializing to the eigenvalue ν(η̂) = 0 of (17).
Note that ν(η̂) = 0 is clearly an eigenvalue of multiplicity (d − 1) of (17) with
corresponding eigenfunctions being constants, namely q0

m,η̂ = 0, q0
0,m,η̂ = 0 and

φ0
m,η̂(y) is a constant unit vector of Rd orthogonal to η̂ for m = 1, . . . , (d− 1), say
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{φ0
1,η̂, . . . φ

0
d−1,η̂}. Doing perturbation analysis of the above situation, the following

result was proved in [7].

Theorem 2.1. Fix η̂ ∈ Sd−1. Consider the first (d− 1) eigenvalues of (16). There
exists δ0 > 0 and exactly (d − 1) analytic functions defined in the real interval
|δ| ≤ δ0, δ 7→ (λm,η̂(δ), φm,η̂(.; δ), qm,η̂(.; δ), q0,m,η̂(δ)), for m = 1, . . . , (d − 1),
with values in R× (H1(Td))d × L2

0(Td)× C, such that

(i) λm,η̂(δ)

∣∣∣∣
δ=0

= 0, φm,η̂(.; δ)

∣∣∣∣
δ=0

= φ0
m,η̂, qm,η̂(.; δ)

∣∣∣∣
δ=0

= q0,m,η̂(δ)

∣∣∣∣
δ=0

= 0,

(ii) (λm,η̂(δ), φm,η̂(.; δ), qm,η̂(.; δ), q0,m,η̂(δ) ) satisfies (16).
(iii) The set

{
φ1,η̂(.; δ), . . . .φ(d−1),η̂(.; δ)

}
is orthonormal in (L2(Td))d.

(iv) For each interval I ⊂ R with I containing exactly the eigenvalue ν(η̂) = 0 of
(17) (and no other eigenvalue of (17) then

{
λ1,η̂(δ) . . . , λ(d−1),η̂(δ)

}
are the

only eigenvalues of (16) (counting multiplicities) lying in the interval I.

The above theorem says that there are (d − 1) smooth curves emanating out
of the zero eigenvalue as δ varies in an interval (−δ0, δ0). We call them Rellich
branches. Using them, for m = 1, . . . , (d− 1), we can define the corresponding mth

Bloch transform of g ∈
(
L2(Rd)

)d
via the expression

Bεm,η̂g(ξ) =

∫
Rd

g(x) · φm,η̂
(x
ε
, δ
)
e−ix·ξ dx, (18)

where δ = δ(ε, ξ) = ε|ξ| and η̂ = ξ/|ξ|. This is well defined provided ε is sufficiently
small so that ε|ξ| ≤ δ0. For other ξ, we define Bεm,η̂g(ξ) = 0.

For later purposes we need the Bloch transform for (H−1(Rd))d elements also.

Let us consider F ≡ (g0 +
∑d
j=1

∂
∂xj

gj) ∈ (H−1(Rd))d, where F, g0, g1, ..., gd are

valued in Cd and gj ∈ ((L2(Rd))d for j = 0, 1, ..., d. Then we define Bεm,η̂F (ξ) in

L2
loc(Rdξ) by

Bεm,η̂F (ξ) :=

∫
Rd
g0(x) · φm,η̂

(x
ε

; δ
)
e−ix·ξ dx

+

∫
Rd
i

d∑
j=1

ξjg
j(x) · φm,η̂

(x
ε

; δ
)
e−ix·ξ dx

− ε−1

∫
Rd

d∑
j=1

gj(x) · ∂φm,η̂
∂yj

(x
ε

; δ
)
e−ix·ξ dx . (19)

Definition (19) is independent of the representation used for F ∈ (H−1(Rd))d in
terms of {gj , j = 0, ..., d} and is consistent with the previous definition (18) when-
ever F ∈ (L2(Rd))d.

Remark 1. Due to the property ∇ · (eix·ξφεm,η̂) = 0 in Rd, we see from (19) that

Bεm,η̂(F +∇ψ)(ξ) = Bεm,η̂F (ξ), for all ψ ∈ L2(Rd). (20)

In fact, by considering ∇ψ = g0 +
∑d
j=1

∂
∂xj

gj ∈ (H−1(Rd))d then we can take

g0 = 0 and gj = ψej j = 1, . . . , d, in (19) to obtain (20). That is, Bloch transform of
gradient field is zero. Therefore the kernel of the Bloch transform Bεm,η̂ : L2(Rd)d 7→
L2(Rd) contains the closed subspace {∇ψ : ψ ∈ H1(Rd)} for each m = 1, . . . , d− 1.
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Roughly speaking since Bloch waves satisfy incompressibility condition the Bloch
transform on gradient field vanish. Thus we may anticipate that the pressure effects
may not be captured in the Bloch method. This impression is not correct. Indeed,
as shown Section 5, by means of localization via a cut-off function, we manage to
keep the pressure term.

Our next result is concerned with the asymptotic behavior of these Bloch trans-
forms as ε→ 0. In the physical space such convergence often modeled as two scale
convergence (or, multi scale convergence) can be found in [5, 1]. Here we will be
studying such convergence in the Fourier space. Since φm,η̂(y; 0) is a fixed unit
vector (= φ0

m,η̂) orthogonal to η̂ and independent of y (see Theorem 2.1), we have

Theorem 2.2. Let gε be a sequence in (L2(Rd))d such that its support is contained
in a fixed compact set K ⊂ Rd, independent of ε. If gε converges weakly to g in
(L2(Rd))d, then we have

χε−1Td(ξ)Bεm,η̂g
ε(ξ) ⇀ φ0

m,η̂ · ĝ(ξ), weakly in L2
loc(Rdξ) for 1 ≤ m ≤ d− 1 (21)

where ĝ denotes the Fourier transform of g and we recall that η̂ = ξ
|ξ| .

Proof. Let us remark that Bεm,η̂g
ε(ξ) is defined for ε ≤ δ0

M if |ξ| ≤M. We can write

Bεm,η̂g
ε(ξ) = χε−1Td(ξ)φ

0
m,η̂ · gε(ξ) +

∫
K

gε(x) ·
(
φm,η̂

(x
ε
; δ
)
− φm,η̂

(x
ε
; 0
))

e−ix·ξ dx .

By using Cauchy-Schwarz, the second term on the above right hand side can be
estimated by the quantity

CK‖φm,η̂(y; δ)− φm,η̂(y; 0)‖(L2(Y ))d

where CK is a constant depending on K but not on ε. Recall that δ is a function of
(ε, ξ), namely δ = ε|ξ|. This quantity is easily seen to converge to zero as ε→ 0 for
each fixed ξ because of the directional continuity of φm,η̂(., δ) 7→ φ0

m,η̂ in (L2(Td))d

as δ → 0. We merely use the continuity of the mth Rellich branch at δ = 0 with
values in (L2(Td))d. On the other hand, thanks to our normalization, the integral
on K is bounded by a constant independent of (ε, ξ). The proof is completed by a
simple application of the Dominated Convergence Theorem which guarantees that
the second term on the above right hand side converges strongly to 0 in L2

loc(Rdξ)
as ε→ 0.

Since compactly supported elements are dense in (L2(Rd))d, we have the follow-
ing:

Corollary 1. In the setting of Theorem 2.2, if gε be a sequence in (L2(Rd))d such
that its support is contained in a fixed compact set K ⊂ Rd, independent of ε and
gε → g in L2(Rd)d then we have the following strong convergence

χε−1TdB
ε
m,η̂g

ε(ξ)→ φ0
m,η̂ · ĝ, strongly in L2

loc(Rdξ) for 1 ≤ m ≤ d− 1. (22)

We recall the classical orthogonal decomposition [15] :

L2(Rd)d = {∇ψ : ψ ∈ H1(Rd)} ⊕ {φ ∈ L2(Rd)d : ∇ · φ = 0}. (23)

Let us denote

X = {∇ψ : ψ ∈ H1(Rd)}, so that, X⊥ = {φ ∈ L2(Rd)d : ∇ · φ = 0}. (24)
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By our choice, {φ0
1,η̂, . . . , φ

0
d−1,η̂, η̂} forms an orthonormal basis in Rd, and so we

can deduce the following :

Proposition 1. If g ∈ X⊥ and φ0
m,η̂ · ĝ = 0 for all m = 1, . . . , d− 1, then g = 0.

Proof. The proof is immediate, as {φ0
1,η̂, . . . , φ

0
d−1,η̂} forms an orthogonal basis in

Rd−1 and φ0
m,η̂ · ĝ = 0 for all m = 1, . . . , d − 1, so ĝ(ξ) = c(ξ)ξ for some scalar

c ∈ L2(Rd). Now if c 6= 0, it contradicts the hypothesis g ∈ X⊥. Thus c = 0.
Consequently, g = 0.

Corollary 2. In the setting of Theorem 2.2 and Proposition 1 if gε be a sequence
in X⊥ ⊂ L2(Rd)d such that its support is contained in a fixed compact set K ⊂ Rd,
independent of ε and gε ⇀ g in L2(Rd)d weak, and φ0

m,η̂ · ĝ = 0 for all m =
1, . . . , d− 1, then g = 0.

Proof. The proof simply follows as X⊥ is a closed subspace of L2(Rd)d, so the limit
g ∈ X⊥ and the result follows by applying Proposition 1.

Theorem 2.2 and its corollaries give some sufficient conditions and specify the
sense in which the first Bloch transform tends to Fourier transform, which is a sign
of homogenization on the Fourier side. We do not believe that these conditions are
sharp and exhaust all possibilities. It would be interesting to explore further in this
direction.

Remark 2. Bloch waves being incompressible are transversal. Longitudinal di-
rection is missing and it has to be added to get the full basis. Naturally, asymp-
totics of the Bloch transform contains information of the Fourier transform only
in transversal directions. It contains no information in the longitudinal direction.
Because of this feature, in the homogenization limit also, there is no information
in the longitudinal direction. This is however proved to be enough to complete the
homogenization process because the limiting velocity field is incompressible. See
Section 5.

3. Computation of derivatives. In this section, we give the expressions of the
derivatives (at δ = 0) of the Rellich branches {φm,η̂(y; δ), qm,η̂(y; δ), q0,m,η̂(δ),
λm,η̂(δ)} obtained in Theorem 2.1. These results are essentially borrowed from
[7] except for the second order derivative of q0,m,η̂(δ) which is new. We differ-
entiate, with respect to δ ∈ R, (16) or equivalently the following system, fixing

m = 1, . . . , d− 1 and η̂ = ξ
|ξ| ∈ Sd−1,

−D(δη̂) · (µ(y)D(δη̂)φm,η̂(y; δ)) + D(δη̂)qm,η̂(y; δ) + q0,m,η̂(δ)η̂

= λm,η̂(δ)φm,η̂(y; δ) in Td,

D(δη̂) · φm,η̂(y; δ) = 0 in Td,

η̂ ·
∫
Td

φm,η̂(y; δ) dy = 0,

(φm,η̂, qm,η̂) is Y − periodic.


(25)

Zeroth order derivatives : For m = 1, . . . , d − 1 and for a fixed direction
η̂ ∈ Sd−1 we have λm,η̂(0) = 0 and a corresponding eigenfunction is such that
qm,η̂(y; 0) = 0, q0,m,η̂(0) = 0 and φm,η̂(y; 0) is a constant unit vector of Rd orthogonal
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to η̂. We give a notation for this constant φm,η̂(y; 0) = φ0
m,η̂. We recall that

{φ0
1,η̂, . . . , φ

0
d−1,η̂, η̂} is such that they form an orthonormal basis for Rd.

First order derivatives : Let us differentiate (25) once with respect to δ to obtain
(prime denotes derivatives with respect to δ) :

−D(δη̂) · (µ(y)D(δη̂)φ′m,η̂(y; δ)) +D(δη̂)q′m,η̂(y; δ) + q′0,m,η̂(δ)η̂

−λm,η̂(δ)φ′m,η̂(y; δ) = f(δ) in Td,

D(δη̂) · φ′m,η̂(y; δ) = g(δ) in Td,

η̂ ·
∫
Td

φ′m,η̂(y; δ) dy = 0,

(φ′m,η̂, q
′
m,η̂) is Y − periodic


(26)

where,

f(δ) = λ′m(δ)φm,η̂(y; δ)− iqm,η̂(y; δ)η̂ + iη̂ · µ(y)D(δη̂)φm,η̂(y; δ)

+ iD(δη̂) · (µ(y)φm,η̂(y; δ)⊗ η̂),

g(δ) = −iη̂ · φm,η̂(y; δ).

We put δ = 0 in (26) and by integrating over Td, we obtain

q′0,m,η̂(0)η̂ = λ′m,η̂(0)φ0
m,η̂.

Taking scalar product with η̂, we simply get λ′m,η̂(0) = q′0,m,η̂(0) = 0 as η̂ ⊥ φ0
m,η̂.

Using the above information in (26), we find that (φ′m,η̂(y; 0), q′m,η̂(y; 0)) is a
solution of the following cell problem :

−∇ · (µ(y)∇φ′m,η̂(y; 0)) +∇q′m,η̂(y; 0) = i∇ · (µ(y)φ0
m,η̂ ⊗ η̂) in Td,

∇ · φ′m,η̂(y; 0) = 0 in Td,

η̂ ·
∫
Td

φ′m,η̂(y; 0) dy = 0,∫
Td

q′m,η̂(y; 0) dy = 0

(φ′m,η̂(y; 0), q′m,η̂(y; 0)) is Y − periodic.


(27)

Comparing this with (7), it can be seen that that φ′m,η̂(y; 0) is given by (see [7]) :

φ′m,η̂(y; 0) = iη̂αχ
r
α(y)(φ0

m,η̂)r + ζm,η̂ (28)

where ζm,η̂ ∈ Cd is a constant vector (independent of y), orthogonal to η̂. In other
words, the y-dependence of φ′m,η̂(y; 0) is completely determined by the cell test

function χrα(y), solution of problem (7).
In a similar manner, the derivative of the eigenpressure qm,η̂(y; 0) is given by (see

[7]):

q′m,η̂(y; 0) = iη̂αΠr
α(y)(φ0

m,η̂)r , (29)

That is, the y-dependence of q′m,η̂(y; 0) is completely determined by the cell test

function Πr
α(y) , solution of problem (7).
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Second order derivatives : Next we differentiate (26) with respect to δ to obtain :

−D(δη̂) · (µ(y)D(δη̂)φ′′m,η̂(y; δ)) +D(δη̂)q′′m,η̂(y; δ) + q′′0,m,η̂(δ)η̂

−λm,η̂(δ)φ′′m,η̂(y; δ) = F (δ) in Td,

D(δη̂) · φ′′m,η̂(y; δ) = G(δ) in Td

η̂ ·
∫
Td

φ′′m,η̂(y; δ) dy = 0,

(φ′′m,η̂, q
′′
m,η̂) is Y − periodic


(30)

where

F (δ)

= −2µ(y)φm,η̂(y; δ) + 2iη̂ · µ(y)D(δη̂)φ′m,η̂(y; δ) + 2iD(δη̂) · (µ(y)φ′m,η̂(y; δ)⊗ η̂)

− 2iη̂q′m,η̂(y; δ) + λ′′m,η̂(δ)φm,η̂(y; δ) + 2λ′m,η̂(δ)φ′m,η̂(y; δ),

G(δ) = −2iη̂ · φ′m,η̂(y; δ).

(31)
We consider (30) at δ = 0 and by integrating over Td, we get

q′′0,m,η̂(0)η̂k = −2

∫
Td
µ(y)(φ0

m,η̂)k dy − 2

∫
Td

[η̂βµ(y)∇yχlβ(y)(φ0
m,η̂)l]kαη̂α dy

+ λ′′m,η̂(0)(φ0
m,η̂)k

or,

−1

2

(
q′′0,m,η̂(0)η̂k − λ′′m,η̂(0)(φ0

m,η̂)k
)

(32)

=

∫
Td
µ(y)

[
δlkδαβ + (∇χlβ)kα

]
dy η̂αη̂β(φ0

m,η̂)l dy

=

∫
Td
µ(y)

[
∇(yβel) : ∇(yαek) +∇χlβ : ∇(yαek)

]
dy η̂αη̂β(φ0

m,η̂)l dy

= (A∗)klαβ η̂αη̂β(φ0
m,η̂)l.

= [(φ0
m,η̂)tM(η̂, A∗)]k = [M(η̂, A∗)(φ0

m,η̂)]k (33)

where M(η̂, A∗) is the symmetric matrix whose entries are given by

M(η̂, A∗)kl = (A∗)klαβ η̂αη̂β .

This is nothing but a contraction of the homogenized tensor A∗. As a simple
consequence of (32), we get

−1

2
q′′0,m,η̂(0) = M(η̂, A∗)φ0

m,η̂ · η̂ and
1

2
λ′′m,η̂(0) = M(η̂, A∗)φ0

m,η̂ · φ0
m,η̂.

It also follows that M(η̂, A∗)φ0
m,η̂ ⊥ φ0

m′,η̂ for all m 6= m′.
By summarizing the above computations, we have

Theorem 3.1. For m = 1, . . . , d− 1 and for a fixed direction η̂ ∈ Sd−1 we have

(i) λm,η̂(0) = 0 and a corresponding eigenfunction is such that qm,η̂(y; 0) =
0, q0,m,η̂(0) = 0 and φm,η̂(y; 0) = φ0

m,η̂ a unit vector orthogonal to η̂.
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(ii) λ′m,η̂(0) = 0 and q′0,m,η̂(0) = 0.

(iii) The derivative of the eigenfunction φm,η̂(y; δ) at δ = 0 satisfies:

φ′m,η̂(y; 0) = iη̂αχ
r
α(y)(φ0

m,η̂)r + ζm,η̂

where ζm,η̂ ∈ Cd is a constant vector (independent of y), orthogonal to η̂.
(iv) The derivative of the eigenfunction qm,η̂(y; δ) at δ = 0 satisfies:

q′m,η̂(y; 0) = iη̂αΠr
α(y)(φ0

m,η̂)r.

(v) The second derivative of the eigenvalue λm,η̂(δ) and q0,m,η̂(δ) at δ = 0 satisfy
the relation

1

2
λ′′m,η̂(0)φ0

m,η̂ =
1

2
q′′0,m,η̂(0)η̂ +M(η̂, A∗)φ0

m,η̂ (34)

where M(η̂, A∗) is the symmetric matrix whose entries are given by

M(η̂, A∗)kl = (A∗)klαβ η̂αη̂β .

Remark 3. The above matrix M(η̂, A∗) is precisely that which must be positive
definite in the Legendre-Hadamard definition of ellipticity. A relation analogous
to (34) is called “propagation relation” in [14] in the study of linearized elasticity
system and it shows how the homogenized tensor A∗ enters into the Bloch wave
analysis. The above relation (34) generalizes the relation (22) in [7].

Remark 4. In the linearized elasticity system, the propagation relation is an eigen-
value relation. Here, relation (34) can again be seen as an eigenvalue problem, posed
in the (d− 1)-dimensional subspace orthogonal to η̂. More precisely, 1/2λ′′m,η̂(0) is

an eigenvalue and φ0
m,η̂ (which is orthogonal to η̂) is an eigenvector of the restriction

of the matrix M(η̂, A∗) to the subspace η̂⊥. In (34) 1/2q′′0,m,η̂(0) is the Lagrange
multiplier corresponding to the constraint that the eigenvalue problem is posed in
the (d− 1)-dimensional subspace orthogonal to η̂.

Case of Symmetrized gradient : We recall the incompressible elasticity system (10)
with the symmetrized gradient introduced in Section 1

−∇ · (µεE(uεs)) +∇pεs = f in Ω,

∇ · uεs = 0 in Ω,

uεs = 0 on ∂Ω

 (35)

where E(v) = 1
2 (∇v +∇tv) .

We introduce Bloch waves associated to the Stokes operator defined in (35).
Find λs = λs(η) ∈ R, φs = φs(η) ∈ H1(Td)d, φs 6= 0 and Πs = Πs(η) ∈ L2(Td)

satisfying
−D(η) · (µE(η)φs) +D(η)Πs = λs(η)φs in Rd

D(η) · φs = 0 in Rd

(φs,Πs) is Y − periodic∫
Y

|φs|2 dy = 1.


(36)

As usual D(η) = ∇y + iη is the shifted gradient operator and the shifted strain rate
tensor is defined by :

2E(η)ψ = (∇+ iη)ψ + (∇+ iη)tψ,

(2E(η)ψ)kl =
(
∂ψk
∂xl

+ iηlψk

)
+
(
∂ψl
∂xk

+ iηkψl

)
.
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As earlier, we modify the spectral problem (36) as follows : Find λs(δ) ∈ R, φs(.; δ) ∈
H1(T)d, qs(.; δ) ∈ L2

0(Td) and q0,s(δ) ∈ C satisfying

−D(δe) · (µ(y)E(δe)φs(y; δ)) +D(δe)qs(y; δ)

+ q0,s(δ)e = λs(δ)φs(y; δ) in Td

D(δe) · φs(y; δ) = 0 in Td

e ·
∫
Td

φs(y; δ) dy = 0,

(φs, qs) is Y − periodic,∫
Td

|φs(y; δ)|2 dy = 1.



(37)

As before, we can compute directional derivatives of the solution of (37) and prove a
result completely analogous to Theorem 3.1. In particular, we will have the following
propagation relation : Form = 1, . . . d−1 and for fixed direction η̂ ∈ Sd−1 the second
derivative of the eigenvalue λs,m,η̂(δ) at δ = 0 satisfies the relation

1

2
λ′′s,m,η̂(0)φ0

s,m,η̂ =
1

2
q′′0,s,m,η̂(0)η̂ +M(η̂, A∗s)φ

0
s,m,η̂, (38)

where M(η̂, A∗s) is the matrix whose entries are given by

M(η̂, A∗s)jl = (A∗s)
jl
αβ η̂αη̂β .

4. Recovery of homogenized tensor from Bloch waves. In the scalar self-
adjoint case, it is known that the homogenized matrix is equal to one-half the
Hessian of the first Bloch eigenvalue at zero momentum [13]. In the general (non-
symmetric) scalar case, treated in [21], it was shown that only the symmetric part
of the homogenized matrix is determined by the Bloch spectrum and it is given
again by the same one-half of the Hessian of the first Bloch eigenvalue (which exists
by virtue of the Krein-Rutman theorem). The fact that only the symmetric part
of the homogenized matrix plays a role is not a big surprise since, the homogenized
tensor A∗ being constant, the differential operator

∇ ·A∗∇ =

d∑
k,l=1

A∗kl
∂2

∂xk∂xl

depends only on the symmetric part of A∗.
In the case of systems, another phenomenon takes place. For example, the lin-

earized elasticity system (in which there are no differential constraints) was treated
in [14] where it was recognized that not only Bloch eigenvalues but also Bloch eigen-
functions at zero momentum are needed to determine the homogenized tensor. More
precisely, this connection between Bloch eigenvalues and eigenfunctions, on the one
hand, and the homogenized tensor, on the other hand, was expressed via a rela-
tion called propagation relation in [14] which uniquely determines the homogenized
tensor.

In the case of Stokes system, a new phenomenon arises because of the presence of
a differential constraint (the incompressibility condition). Even though there is an
analogue of the propagation relation (see (34) above), it does not determine uniquely
the homogenized tensor. In fact the propagation relation (34) is unaltered if we add
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a multiple of I⊗ I (where I is the d×d identity matrix) to the homogenized tensor.
The homogenized Stokes operator clearly remains the same under such an addition
since it corresponds to adding a gradient of the velocity divergence which vanishes
because of the incompressibility constraint. The authors in [7] conjectured that the
homogenized Stokes tensor is uniquely characterized by the propagation relation up
to the addition of a term c(I⊗I) (where c is a constant). We prove this assertion in
the case of the Stokes system (10) with a symmetrized gradient. For the other Stokes
system (1), the homogenized tensor is not uniquely determined by the propagation
relation (34). In this section, we investigate this non-uniqueness. Neverheless, we
shall prove that for both Stokes systems the homogenized operators (9), and its
equivalent for the symmetric gradient case of (10), are uniquely determined.

Our concern now is the following question: to what extent do the Bloch spectral
elements determine the homogenized tensor A∗ via the propagation relation (34) ?
Since λ′′m,η̂(0), q′′0,m,η̂(0), φ0

m,η̂ are known from Bloch spectral data, it follows that

M(η̂, A∗)φ0
m,η̂ is uniquely determined via the relation (34). But it may happen that

different tensors A∗ give rise to the same matrix M(η̂, A∗). Three main results are
proved in this section and they are stated in the following three propositions.

Proposition 2. Let A∗ and B∗ be two fourth order tensors possessing the simple
symmetry (8). They satisfy the same propagation relation (34), if and only if

B∗ −A∗ = c(I ⊗ I) +N (39)

where I is the d × d identity matrix and N is a fourth order tensor satisfying, on
top of the simple symmetry (8), the following anti-symmetry property

N jl
αβ = −N jl

βα = −N lj
αβ whenever, (α, β) 6= (j, l) and (β, α) 6= (j, l)

N ii
ii = 0.

}
(40)

Proof. Let us observe that the addition of c(I ⊗ I) and N , having properties (8)
and (40), to A∗ does not alter the propagation relation (34). Indeed, we have,

M(η̂, A∗ + c(I ⊗ I) +N)jl = (A∗)
jl
αβ η̂αη̂β + cδαjδβlη̂αη̂β +N jl

αβ η̂αη̂β

= M(η̂, A∗)jl + cη̂j η̂l .

Since φ0
m,η̂ is orthogonal to η̂, we deduce

M(η̂, A∗ + c(I ⊗ I) +N)φ0
m,η̂ = M(η̂, A∗)φ0

m,η̂.

Conversely, let us assume that there are two fourth-order tensors A∗ and B∗, pos-
sessing the simple symmetry (8) and such that M(η̂, A∗)φ0

m,η̂ = M(η̂, B∗)φ0
m,η̂,

m = 1, ..., d− 1, for all η̂ ∈ Sd−1. We must then deduce (39). For convenience, the
proof is divided into five steps.

Step 1. We begin with showing the matrix M(η̂, A∗) is symmetric. By inter-
changing the dummy indices α and β and using the simple symmetry (8) of the

homogenized coefficients, (A∗)
jl
αβ = (A∗)

lj
βα, we get

M(η̂, A∗)jl = (A∗)jlαβ η̂αη̂β = (A∗)
jl
βαη̂β η̂α = (A∗)

lj
αβ η̂αη̂β = M(η̂, A∗)lj (41)

which shows the required symmetry.

Step 2. For Ñ = B∗ −A∗ define M(η̂) = M(η̂, Ñ) = M(η̂, B∗)−M(η̂, A∗). Since
A∗ and B∗ satisfy (34), it follows that M(η̂)φ0

m,η̂ = 0 for m = 1, ..., d− 1. Since the

family φ0
m,η̂ is a basis of the orthogonal space to η̂, it implies that M(η̂) = c(η̂)η̂⊗ η̂
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for some scalar c(η̂). Since M(η̂) depends quadratically on η̂, it must be that c(η̂)
is independent of η̂. Thus, for c ∈ R, we have M(η̂) = c η̂ ⊗ η̂, that is, for any
η̂ ∈ Sd−1,

Ñ jl
αβ η̂αη̂β = cη̂j η̂l 1 ≤ j, l ≤ d. (42)

Step 3. Under condition (42), we verify that

Ñ ii
ii = c ∀ i. (43)

and Ñ jl
ik + Ñ jl

ki = 0 if (i, k) 6= (j, l) and (k, i) 6= (j, l). (44)

For this purpose, let us take η̂ = ei in (42). We obtain Ñ jl
ii = cδijδil and so

Ñ ii
ii = c (45)

and Ñ jl
ii = 0 if i 6= j or i 6= l. (46)

In particular, (43) is proved. Next, choosing η̂ = ei + ek in (42), we get

Ñ jl
ii + Ñ jl

kk + Ñ jl
ik + Ñ jl

ki = c(δji + δjk)(δli + δlk). (47)

To check (44), there are several cases to consider.

(i) (i 6= j and k 6= j). In this case, (44) is a direct consequence of (46) and (47).
(ii) Similarly, for (k 6= l and i 6= l) (44) is a direct consequence of (46) and (47).

(iii) (i 6= j, k = j). In this case,

Ñ jl
jj + Ñ jl

ij + Ñ jl
ji = c(δli + δlj). (48)

Now together with i 6= l we have

Ñ jl
jj + Ñ jl

ij + Ñ jl
ji = cδlj . (49)

Then both j = l or j 6= l cases lead to verify (43) and (44) respectively.
(iv) Similarly, for (k 6= l and i = l)

Ñ ji
ii + Ñ ji

ik + Ñ ji
ki = c(δji + δjk). (50)

Together with k 6= j we have

Ñ ji
ii + Ñ ji

ik + Ñ ji
ki = cδji. (51)

Then both i = j or i 6= j cases lead to verify (43) and (44) respectively.

Step 4. Now we consider the two remaining cases not covered in (44).

(i) (i, k) = (j, l). Then from (47) we have

Ñ ik
ii + Ñ ik

kk + Ñ ik
ik + Ñ ik

ki = c(1 + δik)2.

For i 6= k it gives using (46)

Ñ ik
ik + Ñ ik

ki = c. (52)

(ii) Similarly, for (k, i) = (j, l), together with i 6= k we have

Ñki
ik + Ñki

ki = c (53)

Step 5. Let us set N = Ñ − c(I ⊗ I). Thanks to the properties (43) and (44), we
can easily check that N is an anti-symmetric tensor in the sense that it satisfies

N jl
ik = −N jl

ki = −N lj
ik. whenever, (i, k) 6= (j, l) and (k, i) 6= (j, l) (54)

From its very definition N also possesses the symmetry N jl
ik = N lj

ki. Thus N has all
the properties listed in (40).
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Next we extend Proposition 2 to the Stokes system (10), featuring a symmetric
gradient tensor. In this case the propagation relation (34) is replaced by (38) and
the homogenized tensor is denoted by A∗s.

Proposition 3. The propagation relation (38) characterizes uniquely the tensor
A∗s, up to the addition of a constant multiple of I ⊗ I. In other words, A∗s and B∗s
satisfy the same propagation relation (38) if and only if, for some c ∈ R,

B∗s −A∗s = c(I ⊗ I). (55)

Proof. The proof continues from the Step 5 of the previous proof of Proposition 2.

We defined N = Ñ − c(I ⊗ I) satisfying (54) i.e.

N jl
ik = −N jl

ki = −N lj
ik. whenever, (i, k) 6= (j, l) and (k, i) 6= (j, l)

Now as Ñ = B∗s −A∗s possess with the symmetry of coefficients of linear elasticity,
so we have

N jl
ik = N il

jk = N lj
ki = N jk

il for all i, j, k, l. (56)

This symmetry combined with the anti-symmetry established in the previous step
implies that N = 0. Note that antisymmetry property holds precisely for the inter-
change of those pairs of indices for which symmetry property does not hold.

This can be seen as follows: whenever (i, k) 6= (j, l) and (k, i) 6= (j, l)

N jl
ik = −N lj

ik = −N ij
lk = N ji

lk = N ij
kl = Nkj

il = −N jk
il = −N jl

ik (57)

Thus N jl
ik = 0. (58)

Similarly, whenever (i, k) = (j, l) or (k, i) = (j, l) together with i 6= k; from (52),
(53) we have

Ñ ik
ik + Ñ ik

ki = c = Ñki
ik + Ñki

ki .

Then using (56) and (46) we clearly have

N ik
ik = 0 = Nki

ki . (59)

Therefore (58), (59) imply that N = 0 or, Ñ = c(I ⊗ I) and hence B∗s − A∗s =
c(I ⊗ I).

Remark 5. The conclusion of the above proposition was conjectured in [7] and
it is proved here to be true whenever we are working with the system (10) with
symmetrized gradient. However, it is not true with the full gradient Stokes system
(1) as shown by Proposition 2. However, in both of these cases the propagation
relation fixes the homogenized operator (9) uniquely, as is stated in the following
proposition.

Proposition 4. If (39) is satisfied, then A∗ and B∗ give rise to the same homog-
enized operator (9).

Proof. We have to check that A∗ and B∗ define the same Stokes differential operator
for divergence-free vector fields. Indeed the Fourier symbol of the operator

u = (uk)1≤k≤d →
(
− ∂

∂xβ

(
(A∗ −B∗)klαβ

∂uk
∂xα

))
1≤l≤d

is (A∗−B∗)klαβξαξβ which, by virtue of (42), is equal to cξkξl which is precisely the

symbol of the operator u→ −c∇(∇ · u) which vanishes on the space of divergence
free functions.
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5. Homogenization result. This section is devoted to a proof of Theorem 1.1,
our main homogenization result stated in the first section. It is based on the tools
that we have introduced so far. A similar proof is given for the linear elasticity
problem in [21]. However, the presence of a pressure and a differential constraint
in the Stokes system seriously complexifies the analysis and has a non-trivial effect
in the homogenization process. Besides, we also bring some simplifications to the
proof given in [21].

We consider a sequence of solutions (uε, pε) ∈ (H1
0 (Ω))d × L2

0(Ω) solving the
Stokes system (1). It is classical to derive the following bound [8] :

||uε||(H1
0 (Ω))d + ||pε||L2(Ω) ≤ C||f ||(L2(Ω))d , (60)

where C is independent of ε. Then there exist (u, p) ∈ (H1
0 (Ω))d × L2

0(Ω) and a
subsequence (uε, pε) converging weakly to (u, p) in (H1

0 (Ω))d×L2
0(Ω). Our aim is to

show that (u, p) satisfies the homogenized Stokes system (9). Due to the uniqueness
of solutions for the system (9), it follows that the entire sequence (uε, pε) converges
to (u, p) weakly in (H1

0 (Ω))d × L2
0(Ω).

There are several steps in the proof. First, we localize the Stokes system (1) by
applying a cut-off function technique to the velocity u in order to get the equation
(61) in the whole Rd. Next, by taking the Bloch transformation Bεm,η̂ (1 ≤ m ≤
d− 1) of the equation (61) and passing to the limit, we arrive at the homogenized
equation in the Fourier space. Finally, we take the inverse Fourier transform to go
back to the physical space which gives our desired result.

Notation. in the sequel L.H.S. stands for left hand side, and R.H.S. for right hand
side.

Step 1. Localization of the velocity u : Let v ∈ D(Ω) be arbitrary. Then vuε and
pε satisfy (for l = 1, . . . , d)

− ∂

∂xα
(µε

∂

∂xα
)(vuεl ) +

∂pε

∂xl
v = vfl + gεl + hεl in Rd, (61)

where,

gεl = −2µε
∂uεl
∂xα

∂v

∂xα
− µε ∂2v

∂xα∂xα
uεl and hεl = − ∂µ

ε

∂xα

∂v

∂xα
uεl . (62)

Note that, gεl and hεl correspond to terms containing zero and first order derivatives
of µε respectively. In the sequel, we extend uε and pε by zero outside Ω and such
extensions are denoted by the same letters.

Step 2. Limit of Bεm,η̂ applied to the L.H.S. of (61) : We consider the following

ε-scaled spectral problem of (25) as follows : Let η̂ = ξ
|ξ| ∈ Sd−1, δ = ε(ξ · η̂);

φεm,η̂(x; δ) = φm,η̂(
x

ε
; ε(ξ · η̂)), and λεm,η̂(δ) = ε−2λm,η̂(ε(ξ · η̂))

qεm,η̂(x; δ) = ε−1qm,η̂(
x

ε
; ε(ξ · η̂)), and qε0,m,η̂(δ) = ε−2q0,m,η̂(ε(ξ · η̂)).

They satisfy the following system because of (25) :
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−D(δη̂) · (µε(x)D(δη̂)φεm,η̂(x; δ)) + D(δη̂)qεm,η̂(x; δ)

+ qε0,m,η̂(δ)η̂ = λεm,η̂(δ)φεm,η̂(x; δ) in Rd,

D(δη̂) · φεm,η̂(x; δ) = 0 in Rd,

η̂ ·
∫
Rd

φεm,η̂(x; δ) dx = 0,

(φεm,η̂, q
ε
m,η̂) is εY − periodic,∫

εTd

|φεm,η̂(x; δ)|2 dx = 1.



(63)

Let us first consider the L.H.S. of (61). For g ∈ H1(Rd)d with compact support
in Ω, using the definition Bloch transformation (19) and spectral equation (63), we
obtain for m = 1, . . . d− 1,

Bεm,η̂

(
− ∂

∂xα
(µε

∂

∂xα
)g

)
(ξ)

=

〈
eix·ξφεm,η̂(.; δ),− ∂

∂xα
(µε

∂

∂xα
)g

〉

=

〈
g,− ∂

∂xα
(µε

∂

∂xα
)(eix·ξφεm,η̂(.; δ))

〉
=
〈
g, λεm,η̂(δ)eix·ξφεm,η̂(.; ξ)−∇(qεm,η̂(.; δ)eix·ξ)− qε0,m,η̂(δ)η̂eix·ξ

〉
= λεm,η̂(δ)Bεm,η̂g(ξ)−

〈
g,∇(qεm,η̂(.; δ)eix·ξ)

〉
−
〈
g, qε0,m,η̂(δ)η̂eix·ξ

〉
.

In the previous equation the duality bracket is between H1
comp(Rd)d and H−1

loc (Rd)d.
Therefore, Bεm,η̂ applied to the L.H.S. of (61) (1 ≤ m ≤ d− 1) is equal to

λεm,η̂(δ)Bεm,η̂(vuε)(ξ)−
〈
vuε,∇(qεm,η̂(.; δ)eix·ξ)

〉
−
〈
vuε, qε0,m,η̂(δ)η̂eix·ξ

〉
+Bεm,η̂(v∇pε)(ξ). (64)

Below, we treat each term of (64) one by one.

1st term of (64) : By using the Taylor expansion

λεm,η̂(δ) = ε−2λm,η̂(ε(ξ · η̂)) =
1

2
λ′′m,η̂(0)(ξ · η̂)2 +O(ε(ξ · η̂)3) (65)

and then using Theorem 2.2, we get

χε−1Td(ξ)λεm,η̂(δ)Bεm,η̂(vuε)(ξ)

→ 1

2
λ′′m,η̂(0)(ξ · η̂)2φ0

m,η̂ · (̂vu)(ξ) in L2
loc(Rdξ) strongly, (66)

where we recall that φ0
m,η̂ is a constant unit vector of Rd orthogonal to η̂. Note that

λ′′m,η̂(0) is linked to A∗ via the propagation relation (34). Using this relation, the
above limit can be written as

(ξ · η̂)2

(
1

2
q′′0,m,η̂(0)η̂ +M(η̂, A∗)φ0

m,η̂

)
· (̂vu)(ξ)



544 GRÉGOIRE ALLAIRE, TUHIN GHOSH AND MUTHUSAMY VANNINATHAN

= (ξ · η̂)2 1

2
q′′0,m,η̂(0)η̂k (̂vuk) + (ξ · η̂)2(A∗)klαβ η̂αη̂β(φ0

m,η̂)l(v̂uk)(ξ). (67)

2nd term of (64) :

−
〈
vuε,∇(qεm,η̂e

ix·ξ)
〉

=
〈
∇ · (vuε), eix·ξqεm,η̂

〉
=
〈
uε · ∇v, eix·ξqεm,η̂

〉
(as ∇ · uε = 0). (68)

Using the Taylor expansion of qεm,η̂(.; δ) :

qεm,η̂(x; δ) = ε−1qm,η̂(
x

ε
; ε(ξ · η̂))

= ε−1qm,η̂(
x

ε
; 0) + (ξ · η̂)q′m,η̂(

x

ε
; 0) +O(ε(ξ · η̂)2), (69)

(prime denotes the derivative with respect to the second variable), with the prop-
erties that (cf. Theorem 2.1)

qm,η̂(
x

ε
; 0) = 0 and

q′m,η̂(
x

ε
; 0) ⇀MTd(q′m,η̂(y; 0)) = 0 weakly in L2(Rd); (as q′m,η̂(y; 0) ∈ L2

0(Td))
(70)

where, MTd(f) =
∫
Td f(y) dy.

Then by using uε → u strongly in L2(Ω)d from (68) we get

−
〈
vuε,∇(qεm,η̂e

ix·ξ)
〉
→
〈
u · ∇v, eix·ξMTd(q′m,η̂)

〉
= 0 in L2

loc(Rdξ) strongly. (71)

It is also used that, the error term O(ε(ξ · η̂)2) in the above Taylor expansion tends
to 0 in the space L2

loc(Rdξ ;L2
loc(Rd)). Thus the oscillating eigen-pressure qεm,η̂ does

not contribute to the homogenized system.

3rd term of (64) : We use the Taylor expression of qε0,m,η̂(ξ) with the property

q0,m,η̂(0) = q′0,m,η̂(0) = 0 (cf. Theorem 3.1) to have

qε0,m,η̂(δ) = ε−2q0,m,η̂(ε(ξ · η̂)) =
1

2
q′′0,m,η̂(0) +O(ε(ξ · η̂)2). (72)

So,

−
〈
vuε, qε0,m,η̂(δ)eix·ξη̂

〉
→− 〈vu, 1

2
q′′0,m,η̂(0)(ξ · η̂)2η̂eix·ξ〉 in L2

loc(Rdξ) strongly.

= −1

2
q′′0,m,η̂(0)(ξ · η̂)2(̂vu) · η̂. (73)

4th term of (64) : Finally, we consider the remaining fourth term in (64), and
doing integration by parts we get

Bεm,η̂(v∇pε)(ξ) =
〈
v∇pε, eix·ξφεm,η̂

〉
= −

〈
pε,∇v · eix·ξφεm,η̂

〉
(as ∇ · (eix·ξφεm,η̂) = 0). (74)

We use the Taylor expansion

φεm,η̂(x; ξ) = φm,η̂(
x

ε
; 0) + ε(ξ · η̂)φ′m(

x

ε
; 0) +O((ε(ξ · η̂))2)

= φ0
m,η̂ + ε(ξ · η̂)φ′m,η̂(

x

ε
; 0) +O((ε(ξ · η̂))2)

→ φ0
m,η̂ in L2

loc(Rdξ , (L2(Ω))d) strongly. (75)
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And from (60) as ||pε||L2(Ω) is uniformly bounded, so up to a subsequence we have

pε ⇀ p in L2(Ω). (76)

Thus by passing to the limit in the R.H.S. of (74), we get

−
〈
pε,∇v · eix·ξφεm,η̂

〉
→−

〈
p,∇v · eix·ξφ0

m,η̂

〉
=
〈
∇p, veix·ξφ0

m,η̂

〉
(as ∇ · (eix·ξφ0

m,η̂) = 0). (77)

Thus

χε−1TdB
ε
m,η̂(v∇pε)(ξ)→ φ0

m,η̂ · (̂v∇p)(ξ) in L2
loc(Rdξ) strongly. (78)

This property proved for H−1 elements is analogous to Theorem 2.1.

Summary so far : Combining the previous results, therefore, by taking the Bloch
transformation Bεm,η̂ of the L.H.S. of (61) (1 ≤ m ≤ d − 1) and multiplying by
χε−1Td , we see that it converges to

(A∗)
kl
αβ η̂αη̂β(ξ · η̂)2(φ0

m,η̂)l(̂vuk)(ξ) + φ0
m,η̂ · (̂v∇p)(ξ) in L2

loc(Rdξ) strongly. (79)

Step 3. Limit of Bεm,η̂ applied to the R.H.S. of (61) : Applying Bεm,η̂ to the R.H.S.

of (61) (1 ≤ m ≤ d− 1 ), we obtain

Bεm,η̂(vf)(ξ) +Bεm,η̂(gε)(ξ) +Bεm,η̂(hε)(ξ). (80)

We treat below each of these terms separately. Passing to the limit in the first term
is straightforward (cf. Corollary 1) and we obtain

χε−1Td(ξ)Bεm,η̂(vf)(ξ)→ φ0
m,η̂ · (̂vf) in L2

loc(Rdξ) strongly. (81)

Limit of Bεm,η̂(gε) : We pose σε = µε∇uε (σεlα = µε
∂uεl
∂xα

) which is a bounded

matrix in (L2(Ω))d×d and so there exists a weakly convergent subsequence in
(L2(Ω))d×d. Let σ be its limit as well as its extension by zero outside Ω. Then
via Theorem 2.2,

χε−1Td(ξ)Bεm,η̂(σεlα
∂v

∂xα
)(ξ) ⇀

̂
(σlα

∂v

∂xα
)(ξ)(φ0

m,η̂)l in L2
loc(Rdξ) weakly. (82)

Due to the strong convergence of uε in L2(Rd)d, (cf. Corollary 1) we have

χε−1Td(ξ)Bεm,η̂(µε∆v uε)(ξ) ⇀MTd(µ(y))(̂∆v u)(ξ) · φ0
m,η̂ in L2

loc(Rdξ) weakly.
(83)

Combining the above two convergence results and doing integration by parts, we
obtain

χε−1Td(ξ)Bεm,η̂(gε)(ξ)

⇀ −2(̂σ∇v)(ξ) · φ0
m,η̂ −MTd(µ(y))(̂∆v u)(ξ) · φ0

m,η̂ in L2
loc(Rdξ) weakly.

(84)

Limit of Bεm,η̂(hε) : We decompose it into two terms:

Bεm,η̂(hε) = −Bεm,η̂((∇µε · ∇v)uε)(ξ)

= −
〈
(∇µε · ∇v)uε, eix·ξφ0

m,η̂

〉
−
〈

(∇µε · ∇v)uε, eix·ξε(ξ · η̂)φ′m(
x

ε
; 0) +O((ε(ξ · η̂))2)

〉
.
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We start with the second term. By doing integration by parts, it becomes

(ξ · η̂)

∫
Rd
e−ix·ξ

(
µε∇yφ′m(

x

ε
; 0)uε

)
· ∇v dx+O(ε(ξ · η̂)). (85)

Thanks to the strong convergence of uε in L2(Rd)d, the above quantity converges
in L2

loc(Rdξ) strongly to

(ξ · η̂)

∫
Rd
e−ix·ξ

(
MTd

(
µ(y)∇yφ′m(y; 0)

)
u
)
· ∇v dx. (86)

Next, we consider the first term of the R.H.S. of (85). After doing integration by
parts, one has∫

Rd
e−ix·ξ

[
µε∆v (uε · φ0

m,η̂) +
(
(µε∇uε)φ0

m,η̂

)
· ∇v − iµε

(
(φ0
m,η̂ ⊗ ξ)uε

)
· ∇v

]
dx.

(87)

In a manner similar to the above arguments, the limit of (87) would be∫
Rd
e−ix·ξ

[
MTd(µ(y))∆v (u · φ0

m,η̂) +
(
σφ0

m,η̂

)
· ∇v

]
dx

−
∫
Rd
e−ix·ξ

[
iMTd(µ(y))

(
(φ0
m,η̂ ⊗ ξ)u

)
· ∇v

]
dx. (88)

Now combining (86) and (88) and using the fact

φ′m(y; 0)− iη̂βχlβ(y)(φ0
m,η̂)l

is a constant vector of Cd independent of y, which in turn implies that

∇yφ′m(y; 0) = iη̂β∇yχlβ(y)(φ0
m,η̂)l,

we see that χε−1TdB
ε
m,η̂(hε)(ξ) converges strongly in L2

loc(Rdξ) to

−i(ξ · η̂)
[
MTd

(
µ(y)η̂β∇yχlβ(y)(φ0

m,η̂)l
)]
kα

̂
(
∂v

∂xα
uk)(ξ)

+MTd(µ(y)) ̂(∆v uk)(ξ)(φ0
m,η̂)k +

̂
(σlβ

∂v

∂xβ
)(ξ)(φ0

m,η̂)l

− iMTd(µ(y))(φ0
m,η̂)kξα

̂
(
∂v

∂xα
uk)(ξ). (89)

Step 4. Limit of Bεm,η̂ applied to (61) : By equating the limiting identities that we
have derived in the last two steps, we obtain

(A∗)
kl
αβξαξβ (̂vuk)(ξ)(φ0

m,η̂)l +
̂

(v
∂p

∂xl
)(ξ)(φ0

m,η̂)l

= (̂vfl)(ξ)(φ
0
m,η̂)l − 2

̂
(σlβ

∂v

∂xβ
)(ξ)(φ0

m,η̂)l −MTd(µ(y)) ̂(∆v uk)(ξ)(φ0
m,η̂)k

− i
[
MTd

(
µ(y)∇yχlβ(y)

)]
kα

(φ0
m,η̂)lξβ

̂
(
∂v

∂xα
uk)(ξ) +MTd(µ(y)) ̂(∆v uk)(ξ)(φ0

m,η̂)k

+
̂

(σlβ
∂v

∂xβ
)(ξ)(φ0

m,η̂)l − iMTd(µ(y))δαβδlk(φ0
m,η̂)lξβ

̂
(
∂v

∂xα
uk)(ξ). (90)
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The above equation has to be considered as the localized homogenized equation in
the Fourier space. The conclusion of Theorem 1.1 will follow as a consequence of
this equation.

Step 5. Passage from Fourier space (ξ) to physical space (x) : We note that the
L.H.S. and the R.H.S. of (90) can be written as L(ξ) ·φ0

m,η̂ and R(ξ) ·φ0
m,η̂, respec-

tively, so that we have

[L(ξ)−R(ξ)] · φ0
m,η̂ = 0 for m = 1, .., (d− 1).

Observe that, the quantity [L(ξ)−R(ξ)] is independent ofm. Varyingm = 1, .., (d−
1) and using the fact ξ ⊥ φ0

m,η̂, ξ ∈ Rd and {φ0
1,η̂ · · ·φ0

d−1,η̂} forms a basis of Rd−1,
we get

[L(ξ)−R(ξ)] = c(ξ)ξ for some scalar c(ξ).

Therefore, for all test functions w ∈ (L2(Rd))d satisfying ξ · ŵ(ξ) = 0 (i.e. divw = 0
in Rd ) we also have

[L(ξ)−R(ξ)] · ŵ(ξ) = 0.

Now by using the Plancherel’s theorem, we have∫
Rd
F−1 [L(ξ)−R(ξ)] (x) · w(x) dx = 0, ∀w ∈ (L2(Rd))d satisfying divw = 0

(91)
where F−1 denotes the inverse Fourier transformation.

We easily compute I(x) = F−1 [L(ξ)−R(ξ)] (x) to obtain

Il(x) =

(
−(A∗)

kl
αβ

∂2(vuk)

∂xβ∂xα
+ v

∂p

∂xl

)
−
(
vfl − σl,β

∂v

∂xβ
− (A∗)

kl
αβ

∂

∂xβ
(
∂v

∂xα
uk)

)
in Rd,

which simplifies in

Il =

(
−(A∗)

kl
αβ

∂2uk
∂xβ∂xα

+
∂p

∂xl
− fl

)
v −

(
(A∗)

kl
αβ

∂uk
∂xα

− σl,β
)

∂v

∂xβ
in Rd.

We pose

F 1
l =

(
−(A∗)

kl
αβ

∂2uk
∂xβ∂xα

+
∂p

∂xl
− fl

)
and F 2

lβ = F 2
βl = −

(
(A∗)

kl
αβ

∂uk
∂xα

− σl,β
)

(92)
to write Il in the form

Il = F 1
l v + F 2

lβ

∂v

∂xβ
.

Using (91), it follows from de Rham’s theorem that I is a gradient and furthermore
this is true whatever be v ∈ D(Ω). This imposes restriction on F 1, F 2. In fact, we
show using (91) that F 2

lβ = qδlβ and F 1 = ∇q for some scalar q ∈ L2(Ω) so that

I = v∇q + q∇v = ∇(vq).



548 GRÉGOIRE ALLAIRE, TUHIN GHOSH AND MUTHUSAMY VANNINATHAN

Step 5A. To show F 2
lβ = qδlβ : Let us choose v = v0e

inx·ω, where ω is a unit vector

in Rd and v0 ∈ D(Ω) is fixed. Next, we choose w = ψζ,ω ∈ (L2(Rd))d where for any
two constant perpendicular vectors ζ and ω in Rd, ψζ,ω ∈ (L2(Rd))d solves

divψζ,ω = 0 in Rd with ψζ,ω = ζe−inx·ω in Ω, where ζ ⊥ ω. (93)

The existence of such a function ψζ,ω can be shown as follows. Let R0 > 0 be such

that Ω ⊂ B(0, R0) and consider the following boundary value problem

divψζ,ω = 0 in B(0, R0) \ Ω,
ψζ,ω = 0 on ∂B(0, R0),
ψζ,ω = ζe−inx·ω on ∂Ω.

(94)

There exists a solution of (94) (see [15, Page No. 24]) since the boundary data
satisfies the required compatibility condition (recall that we assume ζ · ω = 0)∫

∂Ω

ζe−inx·ω · ν dσ =

∫
Ω

(ζ · ω)e−inx·ω dx = 0.

Then extending ψζ,ω by 0 outside B(0, R0) and by ζe−inx·ω in Ω, clearly the ex-
tended function ψζ,ω solves (93).

Now using these v and w in (91), we have∫
Ω

F 1
l ζl v0 dx+

∫
Ω

F 2
lβ

∂v0

∂xβ
ζl dx+ n

∫
Ω

F 2
lβωβζl v0 dx = 0

and dividing by n and letting n→∞ in the above relation, we get∫
Ω

(F 2 ω · ζ)v0 dx = 0. (95)

As v0 ∈ D(Ω) is arbitrary, (95) gives F 2 ω · ζ = 0 in Ω. As F 2 is symmetric, and
further using that ω, ζ are arbitrary satisfying ω · ζ = 0, we conclude F 2

lβ = F 2
βl =

qδlβ for some scalar function q ∈ L2(Ω). This means that we have the relation :

σlβ = qδlβ + (A∗)
kl
αβ

∂uk
∂xα

. (96)

Step 5B. To show F 1 = ∇q : We choose v ∈ D(Ω) and w = ψek,0 with ψek,0 as
in (93) with ζ = ek and ω = 0. Then using these v and w in (91) and using the
conclusion from Step 5A, we have∫

Ω

(
F 1
k v + q

∂v

∂xk

)
dx = 0 for all v ∈ D(Ω),

which implies (F 1
k −

∂q
∂xk

) = 0 for k = 1, .., d or, F 1 = ∇q.

Step 5C. Using Step 5A and Step 5B in (92), and considering the relation F 1 −
∇F 2 = 0 in Ω, we get the macro balance equation :

− ∂σlβ
∂xβ

+
∂p

∂xl
= fl in Ω, l = 1, . . . , d. (97)
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Step 5D. In this step, we prove that q = 0 in Ω by using the divergence-free condi-
tion. Indeed, as ∇ · uε = 0 in Ω, we have

σεll = µε
∂uεl
∂xl

= 0 in Ω.

Passing to the limit ε→ 0, we get

σll = 0 in Ω.

Using this relation in (96) with β = l, we get

(A∗)klαl
∂uk
∂xα

+ qd = 0. (98)

On the other hand, from (6) and (7) we have

(A∗)klαl =

∫
Td

µ(y)∇(χkα + yαek) : ∇(ylel) dy =

∫
Td

µ(y)
∂

∂yl
(χkα + yαek)l dy.

Thus for fixed k, α = 1, . . . , d summing over l, since divχkα = 0 in Y , we obtain

(A∗)klαl = MTd(µ)δkα. (99)

Using (98) and (99), as div u = 0, we deduce

q = −1

d
(A∗)klαl

∂uk
∂xα

= −1

d
MTd(µ)δkα

∂uk
∂xα

= 0.

Finally, the macro constitutive law follows as a consequence from (96) :

σlβ = (A∗)
kl
αβ

∂uk
∂xα

.

Step 5E. Since q = 0, we deduce from Step 5B that F 1 = 0 and from (92) we get
the following homogenized Stokes system satisfied by u, p :

−(A∗)
kl
αβ

∂2uk
∂xα∂xβ

+
∂p

∂xl
= fl in Ω for l = 1, .., d.

div u = 0 in Ω

u = 0 on ∂Ω.

(100)

This completes the proof of Theorem 1.1.
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