
NETWORKS AND HETEROGENEOUS MEDIA doi:10.3934/nhm.2017014
c©American Institute of Mathematical Sciences
Volume 12, Number 2, June 2017 pp. 319–337

EXACT AND POSITIVE CONTROLLABILITY

OF BOUNDARY CONTROL SYSTEMS

Klaus-Jochen Engel

University of L’Aquila, Department of Information Engineering

Computer Science and Mathematics

Via Vetoio, Coppito, I-67100 L’Aquila (AQ), Italy

Marjeta Kramar Fijavž∗
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Abstract. We characterize the space of all exactly reachable states of an
abstract boundary control system using a semigroup approach. Moreover, we

study the case when the controls of the system are constrained to be positive.
The abstract results are then applied to study flows in networks with static as

well as dynamic boundary conditions.

1. Introduction. This paper is a continuation of [16, 17] where we introduced a
semigroup approach to boundary control problems and applied it to the control
of flows in networks. While in these previous works we concentrated on maximal
approximate controllability, we now focus on the exact- and positive controllability
spaces.

There is a vast literature on abstract boundary control problems as well as on
the application of the abstract theory to various concrete boundary control systems
on Euclidean spaces. For an overview and related references on that topic we refer
to [17, Sec. 1].

As a simple motivation for our study, we consider as in [16] a transport process
along the edges of a finite network. This system is subject to some transmission
conditions in the vertices of the network (imposing, for example, conservation of the
mass) which span the “boundary space” for our problem. We then like to control
the behavior of this system by acting upon a single vertex only. In this context it
is reasonable to ask the following questions.

• Can we reach all possible states in finite time? The answer to this question
is in general negative since we are limited by the network structure, see, e.g.,
[16, Sec. 5]. Therefore, we only ask: Can we describe the maximal possible
set of reachable states in some finite time?
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• Does controllability depend on the particular choice of the control node? Here
the answer is affirmative, which is again demonstrated by some examples in
[16, Sec. 5]. However, to our knowledge there is no simple characterization for
nodes yielding maximal exact control.

• Which states can be reached if only positive controls are allowed? This ques-
tion is very important since in many applications only positive controls are
meaningful and one expects that the state of the system remains positive for
all times.

In recent decades, the study of different partial differential equations on networks
and similar structures gained a lot of interest. Here we restrict ourself to first order
equations that model transport problems (or flows) in networks and are motivated
by many real-life applications. In fact, such systems can be used to model, to
control, and to optimize road traffic [24, 23, 9, 21, 19], water supply [27, 28], gas
flow [5, 22] or supply chains [11], to mention just the most frequent applications.
Moreover, we refer to [8] for a survey of related results in the context of nonlinear
hyperbolic systems.

In the present work we will, however, only consider linear models and make
heavy use of the theory of semigroups of linear operators in the spirit of [18]. The
application of semigroup theory to flows in networks was initiated in [26, 30], see
also the survey paper [13] and the detailed accounts in the monographs [6, Ch. 18]
and [29]. For an example of an application of this approach to population models
in biology we refer to [4]. The stability and control problems of linear flows in
networks using semigroup approach were investigated in [16, 17, 25, 7]. Our aim
here is to further generalize and refine these latter results.

This paper is organized as follows. In Section 2 we first recall our abstract
framework from [17] as well as some basic results concerning boundary control
systems. In Section 3 we then characterize boundary admissible control operators
and describe the corresponding exact reachability space. In Section 4 we turn
our attention to positive boundary control systems on Banach lattices. Finally, in
Section 5 we apply our abstract results and explicitly compute the exact (positive)
reachability spaces in three different examples of transport equations controlled at
the boundary: in Cm, in a network, and in a network with dynamic boundary
conditions. Moreover, we return to the motivating questions stated above.

2. The abstract framework. We start by recalling our setting from [17].

Abstract Framework 2.1. We consider

(i) three Banach spaces X, ∂X and U , called state, boundary and control space,
respectively;

(ii) a closed, densely defined system operator Am : D(Am) ⊆ X → X;
(iii) a boundary operator Q ∈ L([D(Am)], ∂X);
(iv) a control operator B ∈ L(U, ∂X).

For these operators and spaces and a control function u ∈ L1
loc(R+, U) we then

consider the abstract Cauchy problem with boundary control1
ẋ(t) = Amx(t), t ≥ 0,

Qx(t) = Bu(t), t ≥ 0,

x(0) = x0 ∈ X.
(1)

1We denote by ẋ(t) the derivative of x with respect to the “time” variable t.
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A function x(·) = x(·, x0, u) ∈ C1(R+, X) with x(t) ∈ D(Am) for all t ≥ 0 satisfying
(1) is called a classical solution. Moreover, we denote the abstract boundary control
system associated to (1) by ΣBC(Am, B,Q).

In order to investigate (1) we make the following standing assumptions which
in particular ensure that the uncontrolled abstract Cauchy problem, i.e., (1) with
B = 0, is well-posed.

Main Assumptions 2.2. (i) The restriction A ⊂ Am with domain D(A) :=
kerQ generates a strongly continuous semigroup (T (t))t≥0 on X;

(ii) the boundary operator Q : D(Am)→ ∂X is surjective.

Under these assumptions the following has been shown in [20, Lem. 1.2].

Lemma 2.3. Let Assumptions 2.2 be satisfied. Then the following assertions are
true for all λ, µ ∈ ρ(A).

(i) D(Am) = D(A)⊕ ker(λ−Am);
(ii) Q|ker(λ−Am) is invertible and the operator

Qλ :=
(
Q|ker(λ−Am)

)−1
: ∂X → ker(λ−Am) ⊆ X (2)

is bounded;
(iii) R(µ,A)Qλ = R(λ,A)Qµ.

The following operators are essential to obtain explicit representations of the
solutions of the boundary control problem (1).

Definition 2.4. For λ ∈ ρ(A) we call the operator Qλ introduced in (2) abstract
Dirichlet operator and define

Bλ := QλB ∈ L
(
U, ker(λ−Am)

)
⊂ L(U,X).

By [17, Prop. 2.7] the solutions of (1) can be represented by the following ex-
trapolated version of the variation of parameters formula. Here we use the standard
notation for the extrapolated spaces and operators: X−1 denotes the completion of
X with respect to the norm

‖x‖−1 := ‖R(λ0, A)x‖, x ∈ X
for some fixed λ0 ∈ ρ(A), T−1(t) ∈ L(X−1) is the unique bounded extension of
the operator T (t) to X−1, and A−1 is the generator of the extrapolated semigroup
(T−1(t))t≥0 with domain D(A−1) = X, cf. [18, Sect. II.5.a].

Proposition 2.5. Let x0 ∈ X, u ∈ L1
loc(R+, U) and λ ∈ ρ(A). If x(·) = x(·, x0, u)

is a classical solution of (1), then it is given by the variation of parameters formula

x(t) = T (t)x0 + (λ−A−1)

∫ t

0

T (t− s)Bλu(s) ds, t ≥ 0. (3)

Our aim in the sequel is to investigate which states in X can be exactly reached
from x0 = 0 by solutions of (1). To this end we have to impose an additional
assumption which, by (3), ensures that solutions for Lp-controls remain in X.

Definition 2.6. Let 1 ≤ p ≤ +∞. Then the control operator B ∈ L(U, ∂X) is
called p-boundary admissible if there exist t > 0 and λ ∈ ρ(A) such that∫ t

0

T (t− s)Bλu(s) ds ∈ D(A) for all u ∈ Lp
(
[0, t], U

)
. (4)
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Remark 2.7. From Lemma 2.3.(iii) it follows that (λ − A−1)Qλ ∈ L(∂X,X−1),
hence also

BA := (λ−A−1)Bλ ∈ L(U,X−1),

are independent of λ ∈ ρ(A). Then B ∈ L(U, ∂X) is p-boundary admissible if and
only if BA is p-admissible in the usual sense, cf. [31, Def. 4.1]. This implies that if
(4) is satisfied for some t > 0 then it is satisfied for every t > 0. Moreover, we note
that by [17, Lem. A.3], B is 1-boundary admissible if ker(λ−Am) ⊂ FA1 , the Favard
class of A (see [17, Def. A.1] and references there). Finally, since Lp

(
[0, t], U

)
⊂

L1([0, t], U) it follows that 1-boundary admissibility implies p-boundary admissibil-
ity for all p > 1.

Now assume that B ∈ L(U, ∂X) is p-boundary admissible. Then for fixed λ ∈
ρ(A) and t > 0 the operators BBC

t : Lp
(
[0, t], U

)
→ X given by

BBC
t u := (λ−A)

∫ t

0

T (t− s)Bλu(s) ds =

∫ t

0

T−1(t− s)BAu(s) ds (5)

are called the controllability maps of the system ΣBC(Am, B,Q), where the second
integral initially is taken in the extrapolation space X−1. Note that by the closed
graph theorem BBC

t ∈ L(Lp
(
[0, t], U

)
, X). Hence, this definition is independent of

the particular choice of λ ∈ ρ(A) and gives the (unique) classical solution of (1) for
given u ∈W2,1([0, t], U) and x0 = 0. This motivates the following definition.

Definition 2.8. (a) The exact reachability space in time t ≥ 0 of ΣBC(Am, B,Q)
is defined by2

eRBC
t := rg(BBC

t ).

Moreover, we define the exact reachability space (in arbitrary time) by

eRBC :=
⋃
t≥0

rg(BBC
t )

and call ΣBC(Am, B,Q) exactly controllable (in arbitrary time) if eRBC = X.
(b) The approximate reachability space in time t ≥ 0 of ΣBC(Am, B,Q) is defined

by

aRBC
t := eRBC

t .

Moreover, we define the approximate reachability space (in arbitrary time) by

aRBC :=
⋃
t≥0

aRBC
t

and call ΣBC(Am, B,Q) approximately controllable if aRBC = X.

From [17, Thm. 2.12 & Cor. 2.13] we obtain the following properties and repre-
sentations of the approximate reachability space.

Proposition 2.9. Assume that B ∈ L(U, ∂X) is p-boundary admissible. Then the
following holds.

(i) aRBC is a closed linear subspace of X which is invariant under (T (t))t≥0 and
R(λ,A) for λ > ω0(A).

(ii) aRBC = span
⋃
λ>ω rg(Bλ) for every ω > ω0(A).

(iii) aRBC ⊆ span
⋃
λ>ω0(A) ker(λ−Am).

2By rg(T ) we denote the range TX ⊆ Y of an operator T : X → Y .
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Part (iii) shows that there is an upper bound for the reachability space depending
on the eigenvectors of Am only, independent of the control operator B. This justifies
the following notion.

Definition 2.10. The maximal reachability space of ΣBC(Am, B,Q) is defined by

RBC
max := span

⋃
λ>ω0(A)

ker(λ−Am).

The system ΣBC(Am, B,Q) is called maximally controllable if eRBC = RBC
max.

We stress again that RBC
max 6= X may happen (cf. [16, Sec. 5] for an example),

hence the relevant question about exact or approximate controllability for boundary
systems is indeed to compare eRBC or aRBC to the spaceRBC

max and not to the whole
space X, as it is usually done in the classical situation in systems theory (see [10]).

After this short summary on boundary control systems ΣBC(Am, B,Q) taken
mainly from [17] in the context of approximate controllability, we now turn our
attention to the case of exact controllability.

3. Exact controllability. We start this section by giving two characterizations of
p-boundary admissibility for a control operator B which frequently also simplifies
the explicit computation of the associated controllability map BBC

t . Here for λ ∈ C
we introduce the function ελ : R → C by ελ(s) := eλs. Moreover, for f ∈ Lp[0, t]
and u ∈ U we define

f ⊗ u ∈ Lp
(
[0, t], U

)
by (f ⊗ u)(s) := f(s) · u.

Finally, we denote by 1[α,β] the characteristic function of the interval [α, β] ⊂ [0, t].

Proposition 3.1. For a control operator B ∈ L(U, ∂X) the following are equivalent.

(a) B is p-boundary admissible.
(b) There exist λ ∈ ρ(A), t > 0 and M ∈ L

(
Lp
(
[0, t], U

)
, X
)

such that for all
0 ≤ α ≤ β ≤ t and v ∈ U(

eλβ T (t− β)− eλα T (t− α)
)
Bλv = M(ελ · 1[α,β] ⊗ v). (6)

(c) There exist t > 0, λ0 > ω0(A) and M ∈ L
(
Lp
(
[0, t], U

)
, X
)

such that for all
λ ≥ λ0 and v ∈ U (

eλt − T (t)
)
Bλv = M(ελ ⊗ v). (7)

Moreover, in this case the controllability map is given by BBC
t = M .

Proof. Let u = ελ · 1[α,β] ⊗ v for some λ ∈ ρ(A), 0 ≤ α ≤ β ≤ t and v ∈ U . Then∫ t

0

T (t− s)Bλu(s) ds = eλt
∫ β

α

e−λ(t−s) T (t− s)Bλv ds

= eλt
∫ t−α

t−β
e−λs T (s)Bλv ds

= R(λ,A) ·
(
eλβ T (t− β)− eλα T (t− α)

)
Bλv. (8)

(a)⇒(b). Since by assumption B is p-boundary admissible we have BBC
t ∈

L(Lp
(
[0, t], U

)
, X). Hence, (5) and (8) imply (6) for M = BBC

t .
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(b)⇒(a). We start by proving (4). The idea is to show this first for functions of
the type u = ελ · 1[α,β] ⊗ v. Then by linearity it also holds for linear combinations

of such functions and a density argument implies (4) for arbitrary u ∈ Lp
(
[0, t], U

)
.

To this end let u = ελ · 1[α,β] ⊗ v for [α, β] ⊂ [0, t] and v ∈ U . Then (6) and (8)
imply ∫ t

0

T (t− s)Bλu(s) ds = R(λ,A) ·M(ελ · 1[α,β] ⊗ v)

= R(λ,A) ·Mu. (9)

Note that the multiplication operator Mλ ∈ L
(
Lp
(
[0, t], U

))
defined by Mλu :=

ελ · u is an isomorphism (with bounded inverse M−λ). Hence, it maps dense sets
of Lp

(
[0, t], U

)
into dense sets. Since the step functions are dense in Lp

(
[0, t], U

)
(see [3, p.14]), the linear combinations of functions of the type ελ · 1[α,β] ⊗ v for

[α, β] ⊂ [0, t] and v ∈ U form a dense subspace of Lp
(
[0, t], U

)
. Thus, we conclude

that (9) holds for all u ∈ Lp
(
[0, t], U

)
. Clearly this implies that B is p-boundary

admissible and BBC
t = M .

Recall that BA = (λ − A−1)Bλ is independent of λ ∈ ρ(A). Hence, (a) ⇐⇒ (c)
follows as before by replacing the total set {ελ · 1[α,β] ⊗ v : 0 ≤ α < β ≤ t, v ∈ U}
by the set {ελ ⊗ v : λ ≥ λ0, v ∈ U} which by the Stone–Weierstraß theorem is total
as well in Lp

(
[0, t], U

)
for all λ0 > ω0(A).

We note that by linearity it would suffice that Part (b) of Proposition 3.1 is
satisfied for α = 0 and all 0 ≤ β ≤ t (or for all 0 ≤ α ≤ t and β = t).

Corollary 3.2. Let3 n ∈ N1 and assume that B is p-boundary admissible. Then
for all u ∈ Lp

(
[0, nt], U

)
BBC
nt u =

n−1∑
k=0

T (t)kMuk (10)

where uk ∈ Lp
(
[0, t], U

)
is defined by

uk(s) = u
(
(n− k − 1)t+ s

)
(11)

and M ∈ L
(
Lp
(
[0, t], U

)
, X
)

is the operator introduced in Proposition 3.1.

Proof. Let u ∈ Lp
(
[0, nt], U

)
. Then by (5)

BBC
nt u = (λ−A)

∫ nt

0

T (nt− s)Bλ u(s) ds

= (λ−A)

n∑
k=1

T
(
(n− k)t

) ∫ kt

(k−1)t

T (kt− s)Bλ u(s) ds

=

n∑
k=1

T
(
(n− k)t

)
· (λ−A)

∫ t

0

T (t− s)Bλ un−k(s) ds

=

n−1∑
k=0

T (t)k BBC
t uk.

3We use the notation Nl := {l, l+ 1, l+ 2, . . .} for the set of natural numbers starting at l ∈ N.



EXACT AND POSITIVE CONTROLLABILITY 325

In Section 5 we will see that (6), (7), and (10) allow us to easily compute the
controllability map in the situations studied in [16, Sect. 4] and [17, Sect. 3] dealing
with the control of flows in networks.

Corollary 3.3. If B is p-boundary admissible, then the exact reachability space in
time nt for n ∈ N1 is given by

eRBC
nt =

{
n−1∑
k=0

T (t)kMuk : uk ∈ Lp
(
[0, t], U

)
, 1 ≤ k ≤ n− 1

}
,

where M ∈ L
(
Lp
(
[0, t], U

)
, X
)

is the operator from Proposition 3.1.

4. Positive controllability. In this section we are interested in positive control
functions yielding positive states. To this end we will make the following

Additional Assumption 4.1. The spaces X and U are Banach lattices.

Moreover, by Y + := {y ∈ Y : Y ≥ 0} we denote the positive cone in a Banach
lattice Y . For a detailed account of the theory of semigroups of positive linear
operators we refer to [2, 6].

Note that in the sequel we do not make any positivity assumptions on (T (t))t≥0,
B or Qλ if not stated otherwise.

Definition 4.2. (a) The exact positive reachability space in time t ≥ 0 of system
ΣBC(Am, B,Q) is defined by

e+RBC
t :=

{
BBC
t u : u ∈ Lp

(
[0, t], U+

)}
.

Moreover, we define the exact positive reachability space (in arbitrary time) by

e+RBC :=
⋃
t≥0

e+RBC
t

and call ΣBC(Am, B,Q) exactly positive controllable (in arbitrary time) if
e+RBC = X+.

(b) The approximate positive reachability space in time t ≥ 0 of ΣBC(Am, B,Q) is
defined by

a+RBC
t := e+RBC

t .

Moreover, we define the approximate positive reachability space (in arbitrary
time) by

a+RBC :=
⋃
t≥0

a+RBC
t

and call ΣBC(Am, B,Q) approximately positive controllable if a+RBC = X+.

First we give necessary and sufficient conditions implying that starting from the
initial state x0 = 0 positive controls result in positive states.

Proposition 4.3. Assume that B ∈ L(U, ∂X) is p-boundary admissible. Then

e+RBC
t ⊂ X+ (12)

if and only if
a+RBC

t ⊂ X+ (13)

if and only if there exists λ ∈ R ∩ ρ(A) such that(
eλβ T (t− β)− eλα T (t− α)

)
Bλ ≥ 0 for all 0 ≤ α ≤ β ≤ t. (14)
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Moreover, if (T (t))t≥0 is positive, then the above assertions are satisfied if and only
if

e+RBC ⊂ X+ (15)

if and only if

a+RBC ⊂ X+ (16)

if and only if there exists λ > ω0(A) and t > 0 such that(
eλs − T (s)

)
Bλ ≥ 0 for all 0 ≤ s ≤ t (17)

if and only if there exists λ0 > ω0(A) such that

Bλ ≥ 0 for all λ ≥ λ0. (18)

Proof. The equivalence of (12) and (13) follows from the closedness of X+. To show
the equivalence of (12) and (14) recall that by [3, p.14] the step functions are dense
in Lp

(
[0, t], U

)
. Since the map u 7→ u+ on Lp

(
[0, t], U

)
is continuous, we conclude

that the positive step functions are dense in Lp
(
[0, t], U+

)
. The claim then follows

from (the proof of) Proposition 3.1 using the boundedness of the controllability map
BBC
t .
Now assume that (T (t))t≥0 is positive. Then the equivalences of (12), (13) with

(15), (16) follow from Corollary 3.3 using the fact that the reachability spaces are
growing in time. In particular, this implies that if (14) holds for some t > 0 it holds
for arbitrary t > 0 and choosing β = t and α = 0 we obtain (17) for arbitrary t > 0.

To show the remaining assertions we fix some λ > ω0(A) and define on X :=
X ×X the operator matrix

A :=

(
A− λ 0

0 0

)
, D(A) :=

{(
x
y

)
∈ D(Am)× ∂X : Qx = By

}
.

Then by [14, Cor. 3.4] the matrix A generates a C0-semigroup (T (t))t≥0 given by

T (s) =

(
e−λsT (s)

(
I − e−λsT (s)

)
Bλ

0 I

)
, s ≥ 0.

Moreover, by [14, Lem. 3.1] we have (0,+∞) ⊂ ρ(A) and

R(µ,A) =

(
R(µ+ λ,A) 1

µBµ+λ

0 1
µ

)
for µ > 0. (19)

Now, if (17) holds then T (s) ≥ 0 for all 0 ≤ s ≤ t which implies that (T (t))t≥0 is
positive which is equivalent to the fact that A is resolvent positive. However, by
(19) the latter is the case if and only if (18) is satisfied which shows the equivalence
of (17) and (18). Finally, if (17) holds, then(

eλβ T (t− β)− eλα T (t− α)
)
Bλ = eλβ T (t− β) ·

(
I − e−λ(β−α) T (β − α)

)
Bλ

≥ 0

for all 0 ≤ α ≤ β ≤ t. This proves (14) and completes the proof.

In the sequel we use the notation coM and coM to indicate the convex hull and
the closed convex hull of a set M ⊂ X, respectively.

Proposition 4.4. Assume that B ∈ L(U, ∂X) is p-boundary admissible and that
e+RBC

t ⊂ X+. Then the following holds.

(i) a+RBC is a closed convex cone, invariant under (T (t))t≥0 and R(λ,A) for
λ > ω0(A).
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(ii) a+RBC = co
{(
eλβT (t− β)− eλαT (t− α)

)
Bλv : 0 ≤ α ≤ β ≤ t, v ∈ U+

}
for

all λ > ω0(A).
(iii) a+RBC = co {T (t)Bλv : t ≥ 0, λ > w, v ∈ U+} for all w > ω0(A).
(iv) a+RBC = co {R(λ,A)nBλv : n ∈ N0, λ > w, v ∈ U+} for some (and hence

for all) w > ω0(A).

Proof. (i). Clearly, a+RBC is a closed convex cone. Its invariance under (T (t))t≥0

and R(λ,A) for λ > ω0(A) follows from the representations in (iii) and (iv).
To show (ii) we note that by (5) and (8) the inclusion “⊇” holds. Now recall that

the positive step functions are dense in Lp
(
[0, t], U+

)
and invariant under positive

convex combinations. Hence, the boundedness of the controllability maps implies
equality of the spaces in (ii).

To obtain (iii) we note that by (5) and (8) we have(
eλβ T (t− β)− eλα T (t− α)

)
Bλv ∈ e+RBC

for all 0 ≤ α ≤ β ≤ t and v ∈ U+. Multiplying this inclusion by e−λβ > 0 and
putting s := t− β and r := t− α implies(

T (s)− eλ(s−r) T (r)
)
Bλv ∈ e+RBC

for all 0 ≤ s ≤ r and v ∈ U+. Since λ > ω0(A) we obtain

lim
r→+∞

eλ(s−r) ‖T (r)‖ = 0

and hence

T (s)Bλv ∈ a+RBC

for all s ≥ 0 and v ∈ U+. This shows the inclusion “⊇” in (iii). For the converse
inclusion in (iii) it suffices to prove that

e+RBC
t ⊂ co

{
T (s)Bµy : s ≥ 0, µ > w, y ∈ U+

}
(20)

for all t > 0 and w > ω0(A). Since B ∈ L(U, ∂X) is p-boundary admissible the
controllability map BBC

t is continuous. Moreover, the positive step functions are
dense in Lp

(
[0, t], U+

)
and co {T (s)Bµy : s ≥ 0, µ > w, y ∈ U+} is a convex cone.

Combining these facts and (8) it follows that (20) holds if(
eλβT (t− β)− eλαT (t− α)

)
Bλv ∈ co

{
T (s)Bµy : s ≥ 0, µ > w, y ∈ U+

}
(21)

for all 0 ≤ α ≤ β ≤ t, k ∈ N0 and v ∈ X+. Since (T (t))t≥0 is strongly continuous
the following integral is the limit of Riemann sums, hence for ν > max{0, w} we
obtain using Lemma 2.3.(iii)

co
{
T (s)Bµy : s ≥ 0, µ > w, y ∈ U+

}
3 ν

∫ t−α

t−β
eλ(t−r)T (r)Bνv dr

=
(
eλβ T (t− β)− eλα T (t− α)

)
νR(λ,A)Bνv

=
(
eλβ T (t− β)− eλα T (t− α)

)
νR(ν,A)Bλv

→
(
eλβ T (t− β)− eλα T (t− α)

)
Bλv,

as ν → +∞. This proves (21) and completes the proof of (iii).

That the right-hand-sides of the equalities in (iii) and (iv) coincide follows from
the integral representation of the resolvent (see [18, Cor. II.1.11]) and the Post–
Widder inversion formula (see [18, Cor. III.5.5]). For the details we refer to the
proof of [7, Prop. 3.3].
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Corollary 4.5. Assume that B ∈ L(U, ∂X) is p-boundary admissible and that
a+RBC ⊂ X+. Then the following are equivalent.

(a) The system ΣBC(Am, B,Q) is approximately positive controllable.
(b) There exists w > ω0(A) such that the following implication holds for all ϕ ∈ X ′〈

T (s)Bλv, ϕ
〉
≥ 0 for all v ∈ U+, s ≥ 0 and λ > w ⇒ ϕ ≥ 0.

(c) There exists w > ω0(A) such that the following implication holds for all ϕ ∈ X ′〈
R(λ,A)nBλv, ϕ

〉
≥ 0 for all v ∈ U+, n ∈ N and λ > w ⇒ ϕ ≥ 0.

Proof. This follows from the proof of [7, Thm. 3.4] by replacing [7, Prop. 3.3] with
our Proposition 4.4.

Remark 4.6. The previous two results generalize [7, Prop. 3.3 and Thm. 3.4],
respectively, where it is assumed that (T (t))t≥0, B and Qλ for all λ > λ0 are all
positive and, in particular, where the additional hypothesis

(H) There exists γ > 0 and λ0 ∈ R such that ‖Qx‖ ≥ γλ‖x‖ for all λ > λ0 and
x ∈ ker(λ−Am)

is made. We note that Hypothesis (H) is quite strong, e.g., in reflexive state spaces
X it implies that A = Am, cf. [1, Lem. A.1]. Hence, the results of [7] are not
applicable to state spaces like X = Lp([a, b], Y ) for p ∈ (1,+∞) and reflexive Y .

Combining Corollary 3.2 and Proposition 4.3 we finally obtain the following
characterization of an exact positive reachability space.

Corollary 4.7. Assume that B is p-boundary admissible, t > 0 and n ∈ N1. Then
the exact positive reachability space in time nt is given by

e+RBC
nt =

{
n−1∑
k=0

T (t)kMuk : uk ∈ Lp
(
[0, t], U+

)
, 1 ≤ k ≤ n− 1

}
,

where M ∈ L
(
Lp
(
[0, t], U+

)
, X
)

is the operator from Proposition 3.1. Moreover,

the operator M is positive if and only if a+RBC
t ⊂ X+.

5. Examples. In this section we will show how our abstract results can be applied
to a linear transport equation with boundary control and to vertex control of linear
flows in networks subject to static and dynamic boundary conditions.

5.1. Exact & positive boundary controllability of a transport equation.
In this subsection we study the controlled transport equation in Cm given by4

ẋ(t, s) = x′(t, s), s ∈ [0, 1], t ≥ 0,

x(t, 1) = Bx(t, 0) + u(t) · b, t ≥ 0,

x(0, s) = 0, s ∈ [0, 1].

(22)

Here x : R+ × [0, 1] → Cm (i.e., x(t) = (xj(t, s))
m
j=1), B ∈ Mm(C) implements the

boundary conditions for the functions xj(t, s), u : R+ → C is a control function, and
b ∈ Cm is the vector that assigns the control. Roughly spoken, B determines how
the material (flowing on the s-interval [0, 1] from right to left) leaving the system
at the left end point s = 0 is again fed into the system at the right end point s = 1.

4We denote by x′(t, s) the derivative of x(t, s) with respect to the “space” variable s.
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We note that by our approach one can also deal with other boundary conditions
and controls. However, the above choice is useful for studying the network example
in Section 5.2.

In order to fit the system (22) in our general framework we choose

• the state space X := Lp
(
[0, 1],Cm

)
for some 1 ≤ p < +∞,

• the boundary space ∂X := Cm,
• the control space U := C,
• the control operator B := b ∈ Cm ' L(U, ∂X) = L(C,Cm),
• the system operator

Am := diag
(
d
ds

)
m×m with domain D(Am) := W1,p

(
[0, 1],Cm

)
,

• the boundary operator Q : W1,p
(
[0, 1],Cm

)
→ Cm, Qf := f(1)− Bf(0),

• the operator A ⊂ Am with domain D(A) = kerQ,
• the state trajectory x : R+ → Lp

(
[0, 1],Cm

)
, x(t) := x(t, ·).

For these choices the controlled transport equation (22) can be reformulated as an
abstract Cauchy problem with boundary control of the form (1). Clearly, the above
boundary operator Q is surjective.

Observe that the operator A is a difference operator as considered in [12, 25, 15,
6]. By [6, Cor. 18.4] we know that for λ ∈ C and A = Am|ker(Q) as above we have

λ ∈ ρ(A) ⇐⇒ eλ ∈ ρ(B).

Moreover, by [6, Prop. 18.7] the operator A generates a strongly continuous semi-
group given by(

T (t)f
)
(s) = Bkf(t+ s− k) if t+ s ∈ [k, k + 1) for k ∈ N0, (23)

where B0 := Id. This shows that the Assumptions 2.2 are satisfied. To proceed we
have to compute the associated Dirichlet operator.

Lemma 5.1. For λ ∈ ρ(A) the Dirichlet operator Qλ ∈ L
(
Cm,Lp

(
[0, 1],Cm

))
is

given by

Qλ = ελ ⊗R(eλ,B). (24)

Proof. By Lemma 2.3.(ii) we know that Q : ker(λ−Am)→ ∂X is invertible. More-
over, for d ∈ Cm = ∂X we have

Q
(
ελ ⊗R(eλ,B) d

)
= eλ ·R(eλ,B) d− B ·R(eλ,B) d = d

which proves (24).

In order to apply Proposition 3.1 to the present situation we need the following.

Lemma 5.2. Let λ ∈ ρ(A). Then for all 0 ≤ α ≤ 1

(
eλα · T (1− α)Bλ

)
(s) =

{
ελ(1 + s) ·R(eλ,B) b if 0 ≤ s < α,

ελ(1 + s) ·R(eλ,B) b− ελ(s) · b if α ≤ s ≤ 1.

Hence, (6) is satisfied for

M = b ∈ L
(
Lp[0, 1],Lp

(
[0, 1],Cm

))
, (Mu)(s) = u(s) · b.
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Proof. The claim follows from (24) and (23) by the following simple computation.(
eλα · T (1− α)Bλ

)
(s) = eλα ·

(
T (1− α)

(
ελ ⊗R(eλ,B) b

))
(s)

= eλα ·

{
ελ(1− α+ s) ·R(eλ,B) b if 0 ≤ s < α,

ελ(s− α) · BR(eλ,B) b if α ≤ s ≤ 1,

=

{
ελ(1 + s) ·R(eλ,B) b if 0 ≤ s < α,

ελ(1 + s) ·R(eλ,B) b− ελ(s) · b if α ≤ s ≤ 1.

Thus, by Proposition 3.1 the operator B is p-boundary admissible. Next we
compute the appropriate reachability space.

Corollary 5.3. If t ≥ m then the exact reachability space of the controlled transport
equation (22) is given by

eRBC
t = eRBC = Lp[0, 1]⊗ span

{
b,Bb, . . . ,Bm−1b

}
.

Proof. Note that by (23) we have T (1)f = Bf . Hence, for t = m the assertion
follows immediately from Corollary 3.3 and Lemma 5.2. Clearly, eRBC

t increases
in time t ≥ 0. However, by the Cayley–Hamilton theorem span{b,Bb, . . . ,Blb} =
span{b,Bb, . . . ,Bm−1b} for all l ≥ m− 1 and the claim follows.

Remark 5.4. Let l ≤ m be the degree of the minimal polynomial of B. Then the
previous proof shows that for all t ≥ l we even have

eRBC
t = eRBC = Lp[0, 1]⊗ span

{
b,Bb, . . . ,Bl−1b

}
.

Corollary 5.5. The following assertions are equivalent.

(a) Equation (22) is exactly boundary controllable in time t ≥ m, i.e., eRBC
t = X.

(b) Equation (22) is maximally controllable in time t ≥ m, i.e., eRBC
t = RBC

max .
(c) span

{
b,Bb, . . . ,Bm−1b

}
= Cm.

Proof. Note that ker(λ−Am) = ελ ⊗ Cm. Since by the Stone–Weierstraß theorem
we have

span
⋃

λ>ω0(A)

{ελ} = Lp[0, 1],

the maximal reachability space equals

RBC
max = Lp[0, 1]⊗ Cm = X

and the assertions follow immediately from Corollary 5.3.

Remark 5.6. The previous result characterizes the exact maximal boundary con-
trollability by a one-dimensional control in terms of a Kalman-type condition which
is well-known in control theory.

Combining Remark 5.4 and Corollary 5.5 we furthermore obtain the following

Corollary 5.7. Let l ∈ N be the degree of the minimal polynomial of B. If l < m,
the transport equation (22) is not maximally controllable, i.e., eRBC ( RBC

max.

Finally, we investigate positive controllability and consider

• the positive cone X+ := Lp
(
[0, 1],Rm+

)
in the state space X,

• the positive cone U+ := R+ in the control space U ,
• a positive matrix B ∈ Mm(R+),
• a positive control operator B := b ∈ Rm+ .
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Then by (23)–(24) the operators T (t) ∈ L(X) for t ≥ 0 and Bλ ∈ L(U,X) for λ >
ω0(A) are positive. Thus arguing as above using Proposition 4.3 and Corollary 4.7
we obtain the following.

Corollary 5.8. The exact positive reachability space of the controlled transport
equation (22) is given by

e+RBC = Lp
(
[0, 1],R+

)
⊗ co

{
Bkb : k ∈ N0

}
.

Hence, the problem is exactly positive controllable if and only if

co
{
Bkb : k ∈ N0

}
= Rm+ .

5.2. Vertex control of flows in networks. The previous example can be easily
adapted to cover a transport problem on a network controlled in a single vertex.
More precisely, consider a network consisting of n vertices {v1, . . . , vn} and m edges
{e1, . . . , em}. As shown in [6, Sec. 18.1], its structure can be described by either
the transposed weighted adjacency matrix A ∈ Mn(C) given by

Aij :=

{
wjk if vj

ek−→ vi,

0 otherwise,

or by the transposed weighted adjacency matrix of the line graph B ∈ Mm(C) where

Bij :=

{
wki if

ej−→ vk
ei−→ ,

0 otherwise.

We also need the transposed weighted outgoing incidence matrix (Φ−w)> =: Ψ ∈
Mm×n(C) defined by

Ψij :=

{
wij if vj

ei−→ ,

0 otherwise

and the corresponding unweighted outgoing incidence matrix denoted by Φ− ∈
Mn×m(C). For the weights we assume 0 ≤ wij ≤ 1, thus all these matrices are
positive. Moreover, we assume that Ψ is column stochastic, i.e., the weights on all
outgoing edges from a given vertex sum up to 1. This implies that B is column
stochastic as well. For a detailed account of the various graph matrices we refer to
[6, Sec. 18.1]. Here we only mention the following relations

ΨA = BΨ, ΨR(λ,A) = R(λ,B)Ψ, and Φ−Ψ = IdCn (25)

which we will need in the sequel.

We then consider a transport equation on the m edges, which are all parametrized
on the interval [0, 1], imposing n boundary conditions in the vertices, controlled in
a single vertex vi, i.e.,

ẋ(t, s) = x′(t, s), s ∈ [0, 1], t ≥ 0,

x(t, 1) = Bx(t, 0) + u(t) ·Ψv, t ≥ 0,

x(0, s) = 0, s ∈ [0, 1].

(26)

Here x : R+ × [0, 1] → Cm, that is, x(t) = (xj(t, ·))mj=1 consists of functions on
the parametrized edges, and u : R+ → C is a control function acting on the vertex
v = vi, which is represented by the i-th canonical basis vector in Cn. The matrix
Ψ applied to v then takes the control with the appropriate weights to the outgoing
edges. Moreover, the boundary conditions are encoded into the matrix B. Note
that by applying this adjacency matrix we “glue” together the relevant values of
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the functions xj(t) at the endpoints s = 0 and s = 1 of the edges that share a
common vertex. Since B is column stochastic, this also implements conservation of
mass in every vertex (the so-called Kirchhoff’s condition).

To rewrite equation (26) in our abstract form we take as in Section 5.1 the
state space X := Lp

(
[0, 1],Cm

)
, the control space U := C and the boundary space

∂X := Cm. Adapting the domain of Am as

D(Am) :=
{
f ∈W1,p

(
[0, 1],Cm

)
: f(1) ∈ rg Ψ

}
and choosing the control operator B = b := Ψv ∈ Cm we are in the situation
considered in [16] and [7], see also [6, Sec. 18.4].

Then the approximate controllability space for the network flow problem com-
puted in [16, Cor. 4.3] by Corollary 5.3 above indeed coincides with the exact con-
trollability space.

Corollary 5.9. If t ≥ min{m,n} =: l then the exact reachability space of the
controlled transport in network problem (26) equals

eRBC
t = eRBC = Lp[0, 1]⊗ span

{
Ψv,BΨv, . . . ,Bl−1Ψv

}
= Lp[0, 1]⊗Ψ span

{
v,Av, . . . ,Al−1v

}
.

Note that in big connected networks one usually has n ≤ m, hence the latter
space is more relevant for applications.

Positive control for this problem was already studied in [7] and the approximate
positive reachability space was computed. However, our approach even yields in
this context the exact reachability space.

Corollary 5.10. The exact positive reachability space of the controlled transport in
network problem (26) is given by

e+RBC = Lp
(
[0, 1],R+

)
⊗ co

{
BkΨv : k ∈ N0

}
= Lp

(
[0, 1],R+

)
⊗Ψ co

{
Akv : k ∈ N0

}
.

Remark 5.11. Let us revisit the motivating questions from the introduction. We
have answered the first and the third one by giving explicit descriptions of the
appropriate reachability spaces. From these descriptions one can also see that the
choice of the vertex v where the control acts is important. This answers also the
second question. For concrete examples we refer to [16, Sec. 5]. A characterization
of a vertex yielding maximal control remains open.

Finally, we note that by adding more vertices where the control takes place the
reachability space increases since the appropriate span or convex hull in Corollaries
5.9 and 5.10, respectively, obtain additional terms in the added vertex. Hence, in
this way it is easier to achieve maximal controllability.

5.3. Exact & positive boundary controllability of flows in networks with
dynamical boundary conditions. In this subsection we investigate exact and
positive controllability in the situation of [17, Sect. 3]. Without going much into
details we only introduce the necessary facts to state the problem and to compute
the corresponding reachability spaces.

We start from the transport problem on the network introduced in the previous
example, but now change the transmission process in the vertices allowing for dy-
namical boundary conditions. To encode the structure of the underlying network
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and the imposed boundary conditions we use the incidence matrices introduced
above as well as the weighted incoming incidence matrix Φ+

w given by(
Φ+
w

)
ij

:=

{
w+
ij if

ej−→ vi ,

0 otherwise,

for some 0 ≤ w+
ij ≤ 1. Defining

A := Φ+
wΨ and B := ΨΦ+

w (27)

we obtain the adjacency matrices as above (with different nonzero weights). We
mention that the relations (25) remain valid also in this case.

We are then interested in the network transport problem with dynamical bound-
ary conditions in s = 1 considered already in [30] and [17, Sect. 3], i.e.,

ẋ(t, s) = x′(t, s), s ∈ [0, 1], t ≥ 0,

ẋ(t, 1) = Bx(t, 0) + u(t) ·Ψv, t ≥ 0,

x(0, s) = 0, s ∈ [0, 1],

Φ−x(1, 0) = 0.

(28)

To embed this example in our setting we introduce

• the state space X := Lp
(
[0, 1],Cm

)
× Cn where 1 ≤ p < +∞,

• the boundary space ∂X := Cm,
• the control space U := C,
• the control operator B := Ψv ∈ Cm ' L(U, ∂X) = L(C,Cm) where v = vi

denotes the i-th canonical basis vector of Cn meaning that the control acts in
the i-th vertex of the network,

• the system operator5

Am : =

(
diag

(
d
ds

)
m×m 0

Φ+
wδ0 0

)
with domain

D(Am) : =
{(

f
d

)
∈W1,p

(
[0, 1],Cm

)
× Cn : f(1) ∈ rg Ψ

}
,

• the boundary operator Q : D(Am)× Cn → Cm, Q
(
f
d

)
:= Φ−f(1)− d,

• the operator A ⊂ Am with domain D(A) = kerQ.

As is shown in [17, Prop. 3.4] these spaces and operators satisfy all assumptions
of Section 2. To proceed we first need to compute the associated Dirichlet operator
Qλ and an explicit representation of the semigroup operators T (t) for t ∈ [0, 1].

Lemma 5.12. (i) For each 0 6= λ ∈ ρ(A), the Dirichlet operator Qλ ∈ L(Cn, X)
is given by

Qλ =

(
λελ ⊗ΨR(λeλ,A)

AR(λeλ,A)

)
.

(ii) The semigroup (T (t))t≥0 generated by A is given by6[
T (t)

(
f
d

)]
1

(s) =

{
f(t+ s) if 0 ≤ t < 1− s,
BVt+s−1f + Ψd if 1− s ≤ t ≤ 1,

(29)[
T (t)

(
f
d

)]
2

= Φ+
w Vtf + d for 0 ≤ t ≤ 1, (30)

5By δs we denote the point evaluation in s ∈ [0, 1], i.e., δs(f) = f(s).
6We use the notations

[(f
d

)]
1

:= f and
[(f

d

)]
2

:= d for the canonical projections of
(f
d

)
∈ X.
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where

Vsf :=

∫ s

0

f(r) dr for f ∈ Lp
(
[0, 1],Cm

)
. (31)

Proof. Assertion (i) is proved in [17, Prop. 3.8]. Equation (30) is shown in the proof
of [17, Prop. 3.4.(iii)]. The statement (29) for the first coordinate then follows from
[30, Lem. 6.1].

Next we apply Proposition 3.1 to the present situation.

Lemma 5.13. Let λ ∈ ρ(A). Then for all 0 ≤ α ≤ 1[
eλα · T (1− α)Bλ

]
1
(s) =

{
λελ(1 + s) ·ΨR(λeλ,A) v if 0 ≤ s < α,

λελ(1 + s) ·ΨR(λeλ,A) v − ελ(s) ·Ψv if α ≤ s ≤ 1.[
eλα · T (1− α)Bλ

]
2

= eλAR(λeλ,A) v

Hence the equality in (6) is satisfied for

M =

(
Ψv

0

)
∈ L

(
Lp[0, 1],Lp

(
[0, 1],Cm

)
× Cn

)
, (Mu)(s) =

(
u(s) ·Ψv

0

)
.

Proof. Using the explicit representations of Qλ and T (t) given in Lemma 5.12 and
the relations (25) we obtain[
eλα·T (1− α)Bλ

]
1
(s) =

= eλα ·

{
λελ(1− α+ s) ·ΨR(λeλ,A) v if 0 ≤ s < α,

λBVs−α ελ ·ΨR(λeλ,A) v + ΨAR(λeλ,A)v if α ≤ s ≤ 1,

= eλα ·

{
λελ(1− α+ s) ·ΨR(λeλ,A) v if 0 ≤ s < α,(
ελ(s− α)− 1

)
·ΨAR(λeλ,A) v + ΨAR(λeλ,A)v if α ≤ s ≤ 1,

=

{
λελ(1 + s) ·ΨR(λeλ,A) v if 0 ≤ s < α,

ελ(s) ·Ψ
(
λeλR(λeλ,A)− Id

)
v if α ≤ s ≤ 1.

=

{
λελ(1 + s) ·ΨR(λeλ,A) v if 0 ≤ s < α,

λελ(1 + s) ·ΨR(λeλ,A) v − ελ(s) ·Ψv if α ≤ s ≤ 1.

Similarly, for the second coordinate we have[
eλα · T (1− α)Bλ

]
2

= eλα
(
λΦ+

w V1−α ελ ·ΨR(λeλ,A) v + AR(λeλ,A) v
)

= eλα
((
ελ(1− α)− 1

)
· AR(λeλ,A) v + AR(λeλ,A) v

)
= eλAR(λeλ,A) v,

where we used (27).

We note that by [17, Prop. 3.5] the states of the controlled flow at time t ≥ 0
are given by the first coordinate of the states in our “extended” state space X =
Lp
(
[0, 1],Cm

)
×Cn. For this reason we also need to compute the first coordinate of

T (1)k
(

Ψg
0

)
.

Lemma 5.14. We have(
T (1)

(
f
d

))
(s) =

(
Ψ Φ+

w Vs Ψ
Φ+
w V1 Id

)(
f

d

)
=

(
BVsf + Ψd

Φ+
w V1f + d

)
,
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where the operator Vs ∈ L
(
Lp
(
[0, 1],Cm

)
,W1,p

(
[0, 1],Cm

))
is defined in (31). More-

over, for k ∈ N1 we have[
T (1)k

(
Ψg
0

)]
1

(s) = Ψ(AVs + δ1)k−1AVsg = (BVs + δ1)k−1BΨVsg. (32)

Proof. The formula for T (1) follows immediately from Lemma 5.12.(ii). Since ΨA =
BΨ, it suffices to show the second equality in (32). Obviously this equation holds
for k = 1. To verify it for k > 1 we note that by (25) the matrix Ψ is left invertible
with left inverse Φ−. Hence, we obtain[

T (1)
(
f
d

)]
2

= Φ−δ1

[
T (1)

(
f
d

)]
1
.

If
(
f
d

)
∈ rg T (1) we can write f = Ψh and the previous equation implies[

T (1)
(
f
d

)]
1

(s) =
[
T (1)

(
Ψh
δ1h

)]
1

(s) = BVsΨh+ Ψδ1h = (BVs + δ1)f.

Now assume that (32) holds for some k ≥ 1. Then for
(
f
d

)
= T (1)k

(
Ψg
0

)
∈ rg T (1)

we conclude [
T (1)k+1

(
Ψg
0

)]
1

(s) =
[
T (1) · T (1)k

(
Ψg
0

)]
(s)

= (BVs + δ1) · (BVs + δ1)k−1 BΨVsg

= (BVs + δ1)k BΨVsg.

The previous two lemmas together with Corollary 3.2 imply the following result.

Corollary 5.15. For l ∈ N2 and u ∈ Lp[0, l] we have

[
BBC
l u

]
1
(s) = Ψ

(
u0 ⊗ v +

l−1∑
k=1

(
AVs + δ1

)k−1
Vs(uk ⊗ Av)

)

= u0 ⊗Ψv +

l−1∑
k=1

(
BVs + δ1

)k−1
Vs(uk ⊗ BΨ v) (33)

where uk ∈ Lp[0, 1] is defined as in (11).

Using this explicit representation of the controllability map we now compute the
exact reachability space for the control problem given in (28).

Corollary 5.16. If t ≥ min{m,n} =: l then the exact reachability space of the
controlled flow with dynamic boundary conditions (28) is given by7

[
eRBC

t

]
1
⊆

{
Ψ

l∑
k=0

(
uk ⊗ Ak v

)
: uk ∈Wk,p[0, 1] for 0 ≤ k ≤ l

}

=

{
l∑

k=0

(
uk ⊗ BkΨ v

)
: uk ∈Wk,p[0, 1] for 0 ≤ k ≤ l

}
.

Proof. The equality of the two sets on the right-hand-side follows immediately from
(25). To show the inclusion in the second set we combine Corollaries 3.3 and 5.15.
First observe, that for the operators B, Vs, and δ1 we have

BVsf = VsBf, Bδ1f = δ1Bf, δ1Vsf = V1f

7Here we define W0,p[0, 1] := Lp[0, 1].
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for every f ∈ Lp
(
[0, 1],Cm

)
while

δk1f = δ1f = f(1) for k ≥ 1.

So, when expanding (BVs + δ1)k−1Vs we can rearrange the terms to obtain expres-
sions of the form

αiBiVs1 · · ·Vsi+1
, 0 ≤ i ≤ k − 1,

where αi are scalar coefficients and sj ∈ {s, 1}, 1 ≤ j ≤ i + 1. Next, for arbitrary
u ∈ Lp[0, 1] and 0 ≤ k ≤ l we have

Vs1 · · ·Vsku ∈Wk,p[0, 1], sj ∈ {s, 1}, 1 ≤ j ≤ k.
Combining these facts we obtain the desired result by considering (33) for all u ∈
Lp[0, l].

By the previous Corollary we immediately obtain the following result which im-
proves [17, Thm. 3.10] and shows that

[
aRBC

t

]
1

is constant for t ≥ min{m,n} =: l.

Corollary 5.17. If t ≥ min{m,n} =: l then the approximate controllability space
of the controlled flow with dynamic boundary conditions (28) is given by[

aRBC
t

]
1

= Lp[0, 1]⊗ span
{

Ψv,BΨv, . . . ,Bl−1Ψv
}

= Lp[0, 1]⊗Ψ span
{
v,Av, . . . ,Al−1v

}
.

In the same manner as before we also obtain the following result on positive
controllability.

Corollary 5.18. The approximate positive controllability space of the controlled
flow with dynamic boundary conditions (28) is given by[

a+RBC
]
1

= Lp[0, 1]⊗ co
{
BkΨv : k ∈ N0

}
= Lp[0, 1]⊗Ψ co

{
Akv : k ∈ N0

}
.

Conclusion. Using a new characterization of admissible boundary control opera-
tors (see Proposition 3.1) we are able to describe explicitly the exact reachability
space of the abstract boundary control system ΣBC(Am, B,Q), cf. (1). Moreover,
this approach allows also to determine the positive reachability space obtained con-
sidering only positive control functions. Our results generalize and improve the ones
obtained in the former works [7, 16, 17] where only approximate controllability or
positive controllability under quite restrictive assumptions are studied.
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