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Abstract. In this paper we present a macroscopic phase transition model
with a local point constraint on the flow. Its motivation is, for instance, the
modelling of the evolution of vehicular traffic along a road with pointlike in-
homogeneities characterized by limited capacity, such as speed bumps, traffic
lights, construction sites, toll booths, etc. The model accounts for two differ-
ent phases, according to whether the traffic is low or heavy. Away from the
inhomogeneities of the road the traffic is described by a first order model in the
free-flow phase and by a second order model in the congested phase. To model
the effects of the inhomogeneities we propose two Riemann solvers satisfying
the point constraints on the flow.

1. Introduction. The paper deals with a phase transition model (PT model for
short) that takes into account the presence along a unidirectional road of obstacles
that hinder the flow of vehicles, such as speed bumps, traffic lights, construction
sites, toll booths, etc. More precisely, the traffic away from these inhomogeneities of
the road is described by the PT model introduced in [9], whereas the effects of these
inhomogeneities are described by considering one of the two constrained Riemann
solvers introduced in Section 3.

Traffic models based on differential equations can mainly be divided in three
classes: microscopic, mesoscopic and macroscopic. The present PT model belongs
to the class of macroscopic traffic models. We defer to the surveys [8, 36, 39] and
to the books [27, 29, 42] as general references on macroscopic models for vehicular
traffic. Among these models, two of most noticeable importance are the LWR model
by Lighthill, Whitham [35] and Richards [40]

ρt + (v ρ)x = 0, v = V (ρ),

and the ARZ model by Aw, Rascle [7] and Zhang [43]

ρt + (v ρ)x = 0, [ρ (v + p(ρ)]t + [v ρ (v + p(ρ)]x = 0.
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Theses two models aim to predict the evolution in time t of the density ρ and of
the (average) speed v of vehicles moving along a homogeneous road with no entries
or exits and parametrized by the coordinate x ∈ R.

Both of these models have their drawbacks. In fact, the LWR model assumes
that the velocity is a function of the density alone. However empirical studies show
that the density-flux diagram can be approximated by a curve only at low densities,
whereas at high densities it has a multivalued structure. Hence, it is more reasonable
to describe the traffic in a congested phase by a second order model, such as the
ARZ model. On the other hand the ARZ model is not well-posed near the vacuum:
in general the solution does not depend continuously on the initial data when the
density is close to zero.

This motivated the introduction in [32] of a PT model that couples LWR and
ARZ models to describe the free-flow and the congested phases, respectively. The
coupling is achieved via phase transitions, namely discontinuities that separate two
states belonging to different phases and satisfying the first of the Rankine-Hugoniot
conditions (RH) corresponding to the conservation of the number of vehicles. The
resulting model has the advantage of correcting the aforementioned drawbacks of
the LWR and ARZ models taken separately.

We recall that the macroscopic two-phase approach was first introduced by
Colombo in [17, 18], where the free-flow phase is governed by the LWR model
and the congested phase by a 2× 2 system of conservation laws expressing the con-
servation of both the number of vehicles and of the linearized momentum. From the
analytical point of view, in [21] this model is proved to be globally well posed for
any initial datum with bounded total variation; in [13, 14] a new version of Godunov
scheme is proposed in order to compute numerically its solutions. In [16, 20, 33]
this model has been generalized to the case of a network.

The macroscopic two-phase approach was then exploited and investigated by
other authors in subsequent papers, see for instance [9, 10, 23, 24, 30, 31, 37, 38]
and the references therein.

A couple of mathematical difficulties have to be highlighted. First, one difficulty
is that the curves in the (t, x)-plane dividing two regimes are not given a priori. The
model cannot be reduced therefore into solving two different systems in two distinct
regions with prescribed boundary conditions. Another difficulty is the possibility
that two phase transitions may interact with each other and cancel themselves. In
fact, for instance, it is perfectly reasonable to consider a traffic characterized by a
single congested region C, with vehicles emerging at the front end of C and moving
into a free-flow phase region with a velocity higher than the tail of the queue at
the back end of C, so that after a certain time the congested region disappears and
the whole traffic is in a free-flow phase. For this reason a global approach for the
study of the corresponding Cauchy problem can not be applied, as it would require
a priori knowledge of the phase transition curves; it is instead preferable to apply
the wave-front tracking algorithm [11, 34], as it allows to track the positions of the
phase transitions.

The present article deals with the constrained version of the PT model introduced
in [9], that can be regarded as a generalization of the one given in [32]. We aim to
study the PT model introduced in [9] equipped with a local point constraint on the
flow, so that at the interface x = 0 the flow of the solution must be lower than a
given constant quantity Q0. This models, for instance, the presence of a toll gate
across which the flow of the vehicles cannot exceed its capacity Q0. The additional
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difficulty that this adds to the mathematical modelling of the problem is that this
time one can start with a traffic that is initially completely in the free-flow phase,
but congested phases arise in a finite time in the upstream of x = 0, as it is perfectly
reasonable in the case of a toll gate with a very limited capacity. We establish two
constrained Riemann solvers for this model and study their properties. These two
Riemann solvers may be used in a wave-front tracking scheme to study the resulting
Cauchy problem.

Before concluding this introduction, let us briefly summarize the literature on
conservation laws with point constraint on the flow recalling that:

• the LWR model with a local point constraint is studied analytically in [19, 41]
and numerically in [5, 12, 15, 22];

• the LWR model with a non-local point constraint is studied analytically in [1, 3]
and numerically in [2];

• the ARZ model with a local point constraint is studied analytically in [4, 25, 26]
and numerically in [6].

To the best of our knowledge, the present model is the first PT model with a point
constraint.

The paper is organized as follows. In Section 2 we state carefully the model
and introduce the needed notations and assumptions. In Section 3 we define four
Riemann solvers. More precisely, beside the Riemann solver already presented in
[9] and here denoted by R1, we propose a further Riemann solver R2. We then
construct the two constrained Riemann solvers Rc

1 and Rc
2 corresponding to R1

and R2, respectively. In Section 4 we study their basic properties. Finally, in the
last section we apply these Riemann solvers to simulate an heterogeneous traffic in
the upstream of a toll booth.

2. The phase transition model. In this section, we briefly recall the PT model
treated in [9].

2.1. Notations and main assumptions. In this subsection we collect some useful
notations, see Figure 1, and the main assumptions on parameters and functions used
throughout the paper. First, at any time t ≥ 0 and in any position x ∈ R along the
road, the traffic is described by the vector

u(t, x)
.
=

(

ρ(t, x), v(t, x)
)

,

where ρ is the density and v is the (average) speed. The vector u belongs to

Ω
.
= Ωf ∪ Ωc,

where Ωf and Ωc are respectively the domains of free-flow and congested phases,
whose rigorous definitions are given below after the introduction of necessary pa-
rameters and functions. First, we fix two threshold densities R+

f > R−
f > 0. Let

V ∈ C2([0, R+
f ];R+) be the speed map and p ∈ C2([R−

f ,∞);R) be the pressure
map such that

V ′(ρ) < 0, V (ρ) + ρ V ′(ρ) > 0, 2V ′(ρ) + ρ V ′′(ρ) ≤ 0, ρ ∈ [0, R+
f ], (H1)

p′(ρ) > 0, 2p′(ρ) + ρ p′′(ρ) > 0, ρ ∈ [R−
f ,∞), (H2)

V ′(ρ) + p′(ρ) > 0, V (ρ) < ρp′(ρ), ρ ∈ [R−
f , R

+
f ], (H3)
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where the prime stands for the derivative with respect to the density ρ. A typical
choice for V and p is

V (ρ)
.
= V +

f

[

1 −
ρ

R

]

, p(ρ)
.
=















vref
γ

[

ρ

ρmax

]γ

, γ > 0,

vref log

[

ρ

ρmax

]

, γ = 0,

where R, γ, vref and ρmax are strictly positive parameters, that can be chosen so
that (H1), (H2) and (H3) are satisfied, see [9] for the details.

We then introduce also the following constants:

V +
f

.
= V (0), W+

c
.
= p(R+

f ) + V (R+
f ), R+

c
.
= p−1(W+

c ),

V −
f

.
= V (R+

f ), W−
c

.
= p(R−

f ) + V (R−
f ), R−

c
.
= p−1(W−

c ).

By (H2) the map p−1 : [W−
c − V (R−

f ),W+
c ] → [R−

f , R
+
c ] is increasing and

R+
c > R+

f > 0, R−
c > R−

f > 0, W+
c > W−

c .

The above constants have the following physical meaning: V +
f and V −

f are the max-
imal and minimal speeds in the free-flow phase, respectively, W+

c and W−
c are the

maximal and minimal Lagrangian markers in the congested phase, respectively, so
that 1/R+

c and 1/R−
c are the minimal and maximal length of a vehicle, respectively.

Finally, denoted by Vc ∈ (0, V −
f ) the maximal velocity in the congested phase,

we can define the free-flow and congested domains

Ωf
.
=

{

u ∈ [0, R+
f ] × [V −

f , V +
f ] : v = V (ρ)

}

,

Ωc
.
=

{

u ∈ [R−
f , R

+
c ] × [0, Vc] : W

−
c ≤ v + p(ρ) ≤ W+

c

}

,

respectively. Observe that Ωf and Ωc are invariant domains for the LWR and the
ARZ models, respectively. Let us also introduce

Q−
c

.
= p−1(W−

c − Vc)Vc, Q+
c

.
= p−1(W+

c − Vc)Vc, Qf
.
= R+

f V −
f .

Clearly, Q−
c is the flow of the state in Ωc with lowest density, Q+

c is the maximal
flow in Ωc and Qf is the maximal flow in Ωf (hence in Ω).

2.2. The phase transition model and its main properties. The traffic is
governed by the PT model [9, 32]

Free-flow










u ∈ Ωf ,

ρt + Q(u)x = 0,

v = V (ρ),

Congested-flow










u ∈ Ωc,

ρt + Q(u)x = 0,

[ρW (u)]t + [Q(u)W (u)]x = 0,

(1)

where the flux map Q : Ω → [0, Qf ] and the Lagrangian marker map W : Ω →
[W−

c ,W+
c ] (extended to Ωf) are defined by

Q(u)
.
= ρ v, W (u)

.
=

{

v + p(ρ) if u ∈ Ωc ∪ Ω+
f ,

W−
c if u ∈ Ω−

f ,
(2)

with

Ω−
f

.
=

{

u ∈ Ωf : ρ ∈ [0, R−
f )

}

, Ω+
f

.
=

{

u ∈ Ωf : ρ ∈ [R−
f , R

+
f ]
}

.

In the free-flow phase the characteristic speed is λf(u)
.
= V (ρ) + ρ V ′(ρ). In the
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ρR+
cR+

fR−
cR−

f

Qf

Q

Q+
c

Q−
c

V +
f V −

f

Vc

Ωc

Ω+
f

Ω−
f

Figure 1. Geometrical meaning of the notations used through the
paper. In particular, Ωf = Ω−

f ∪ Ω+
f and Ωc are the free-flow and

congested domains, respectively; V +
f and V −

f are the maximal and
minimal speeds in the free-flow phase, respectively, and Vc is the
maximal speed in the congested phase.

following table we collect the informations on the system governing the congested
phase:

r1(u)
.
=

(

ρ, ρ(v + p(ρ))
)

, r2(u)
.
=

(

1, v + p(ρ) + ρ p′(ρ)
)

,

λ1(u)
.
= v − ρ p′(ρ), λ2(u)

.
= v,

∇λ1 · r1(u) = −ρ
(

2p′(ρ) + ρ p′′(ρ)
)

, ∇λ2 · r2(u) = 0,

L1(ρ;u0)
.
= W (u0) − p(ρ), L2(ρ;u0)

.
= v0.

Above ri is the i-th right eigenvector, λi is the corresponding eigenvalue and the
graph of the map Li( · ;u0) gives the i-Lax curve passing through u0. By the
assumptions (H1) and (H2) the characteristic speeds are bounded by the velocity,
i.e. λf(u) ≤ v and λ1(u) ≤ λ2(u) = v, λ1 is genuinely non-linear, i.e. ∇λ1 ·r1(u) 6= 0,
and λ2 is linearly degenerate, i.e. ∇λ2 · r2(u) = 0.

In the subsequent definitions of the Riemann solvers we make use of the functions

uc :
[

W−
c ,W+

c

]

→ Ωc, uf : [W−
c ,W+

c ] → Ω+
f ,

defined as follows

uc(w)
.
=

(

ρc(w), Vc

)

, with ρc(w)
.
= p−1(w − Vc),

uf(w)
.
=

(

ρf(w), vf (w)
)

, with vf(w) = V (ρf(w)) = w − p(ρf(w)).

These maps have a clear geometrical interpretation; indeed, roughly speaking, uc(w)
and uf(w) are the intersections of the 1-Lax curve {u ∈ Ω: W (u) = w} with the
line {u ∈ Ω: v = Vc} and with Ωf , respectively. Obviously R±

f = ρf(W
±
c ).

3. The Riemann solvers. In this section we propose two Riemann solvers R1,
R2 for the Riemann problem of the PT model (1), namely for the Cauchy problem
of (1) with an initial datum of the form

u(0, x) =

{

uℓ if x < 0,

ur if x > 0,
(3)

where uℓ, ur ∈ Ω are given constants. We then construct two constrained Riemann
solvers Rc

1, Rc
2 for the Riemann problem (1), (3) coupled with a pointwise constraint
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on the flux

Q(u(t, 0±)) ≤ Q0, (4)

where Q0 ∈ (0, Qf) is a fixed constant.
For notational simplicity we let

qℓ
.
= Q(uℓ), wℓ

.
= W (uℓ), qr

.
= Q(ur), wr

.
= W (ur).

Furthermore, for any u−, u+ ∈ Ω with ρ− 6= ρ+ we let

σ(u−, u+)
.
=

Q(u+) −Q(u−)

ρ+ − ρ−
(5)

to be the speed of propagation of any discontinuity between u− and u+. Observe
that the first Rankine-Hugoniot condition (RH) is satisfied with s = σ(u−, u+),
therefore the number of vehicles is conserved across any discontinuity.

In the following we denote by RLWR and RARZ the Riemann solvers for LWR
and ARZ models, respectively.

3.1. The Riemann solvers R1 and Rc
1. In this subsection we first recall the

Riemann solver for (1), (3) introduced in [9], here denoted by R1, and then construct
the corresponding constrained Riemann solver Rc

1 for (1), (3), (4).

Definition 3.1. The Riemann solver R1 : Ω2 → L∞(R; Ω) is defined as follows:

(R1.a) If uℓ, ur ∈ Ωf , then R1[uℓ, ur]
.
= RLWR[uℓ, ur].

(R1.b) If uℓ, ur ∈ Ωc, then R1[uℓ, ur]
.
= RARZ[uℓ, ur].

(R1.c) If (uℓ, ur) ∈ Ωf × Ωc, then we let um
.
= (p−1(wℓ − vr), vr) ∈ Ωc and

R1[uℓ, ur](ν)
.
=

{

uℓ if ν < σ(uℓ, um),

RARZ[um, ur](ν) if ν > σ(uℓ, um).

(R1.d) If (uℓ, ur) ∈ Ωc × Ωf , then

R1[uℓ, ur](ν)
.
=

{

RARZ[uℓ, uc(wℓ)](ν) if ν < σ(uc(wℓ), uf(wℓ)),

RLWR[uf(wℓ), ur](ν) if ν > σ(uc(wℓ), uf(wℓ)).

In general, [(t, x) 7→ R1[uℓ, ur](x/t)] does not satisfy the point constraint (4).
For this reason we introduce the sets

C1
.
=

{

(uℓ, ur) ∈ Ω2 : Q(R1[uℓ, ur](0
±)) ≤ Q0

}

,

N1
.
=

{

(uℓ, ur) ∈ Ω2 : Q(R1[uℓ, ur](0
±)) > Q0

}

,

and for any (uℓ, ur) ∈ N1, we replace the self-similar weak solution [(t, x) 7→
R1[uℓ, ur](x/t)] by a self-similar map [(t, x) 7→ Rc

1[uℓ, ur](x/t)] satisfying (3), (4)
and obtained by juxtaposing maps constructed by means of R1. It is easy to see
that

C1 = Cf,f ∪ Cc,c ∪ Cc,f ∪ Cf,c
1 , N1 = N f,f ∪ N c,c ∪ N c,f ∪ N f,c

1 ,

where

Cf,f .
=

{

(uℓ, ur) ∈ Ω2
f : qℓ ≤ Q0

}

,

Cc,c .
=

{

(uℓ, ur) ∈ Ω2
c : p−1(wℓ − vr) vr ≤ Q0

}

,

Cc,f .
= {(uℓ, ur) ∈ Ωc × Ωf : Q(uf (wℓ)) ≤ Q0} ,

Cf,c
1

.
=

{

(uℓ, ur) ∈ Ωf × Ωc : min
{

qℓ, p
−1(wℓ − vr) vr

}

≤ Q0

}

,
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and

N f,f .
= Ω2

f \ C
f,f , N c,f .

= (Ωc × Ωf) \ C
c,f ,

N c,c .
= Ω2

c \ C
c,c, N f,c

1
.
= (Ωf × Ωc) \ C

f,c
1 .

Definition 3.2. The constrained Riemann solver Rc
1 : Ω2 → L∞(R; Ω) is defined

as follows:

(Rc
1a) If (uℓ, ur) ∈ C1, then we let Rc

1[uℓ, ur]
.
= R1[uℓ, ur].

(Rc
1b) If (uℓ, ur) ∈ N1, then we let

Rc
1[uℓ, ur](ν)

.
=

{

R1[uℓ, û1](ν) if ν < 0,

R1[ǔ1, ur](ν) if ν > 0,
(6)

where û1 = û1(wℓ, Q0) ∈ Ωc and ǔ1 = ǔ1(wℓ, vr, Q0) ∈ Ω satisfy

û1 ∈ Ω̂
.
=

{

u ∈ Ωc : Q(u) ≤ Q0, W (u) = wℓ

}

, Q(û1) = max
{

Q(u) : u ∈ Ω̂
}

, (7)

Q(ǔ1) = Q(û1), v̌1 =

{

vr if ur ∈ Ωc and Q0 ≥ p−1(W−
c − vr) vr,

V (ρ̌1) otherwise.
(8)

Observe that according to the second condition in (8) we have that ǔ1 ∈ Ωc if
and only if ur ∈ Ωc and Q0 ≥ p−1(W−

c − vr) vr, otherwise ǔ1 ∈ Ωf .
In the following proposition we show that Rc

1 is well defined, namely that for any
(uℓ, ur) ∈ N1 there exists a unique couple in (û1, ǔ1) in Ω2 satisfying (7), (8). For
notational simplicity we let

q̂1
.
= Q(û1), q̌1

.
= Q(ǔ1), ŵ1

.
= W (û1).

Proposition 1. For any (uℓ, ur) ∈ N1, we have that (û1, ǔ1) ∈ Ωc × Ω is uniquely
selected by (7), (8) as follows:

(T 1
1 ) If (uℓ, ur) ∈ N f,f ∪ N c,f , then we distinguish the following cases:

(T 1
1 a) If Q0 > Q(uc(wℓ)), then û1 = uc(wℓ), q̌1 = q̂1 and ǔ1 ∈ Ωf .

(T 1
1 b) If Q0 ≤ Q(uc(wℓ)), then ŵ1 = wℓ, q̂1 = q̌1 = Q0 and ǔ1 ∈ Ωf .

(T 2
1 ) If (uℓ, ur) ∈ N c,c ∪ N f,c

1 , then we distinguish the following cases:
(T 2

1 a) If Q0 ≥ p−1(W−
c − vr) vr, then ŵ1 = wℓ, q̂1 = q̌1 = Q0 and v̌ = vr.

(T 2
1 b) If Q0 < p−1(W−

c − vr) vr, then ŵ1 = wℓ, q̂1 = q̌1 = Q0 and ǔ1 ∈ Ω−
f .

In particular, Rc
1 is well defined in Ω2.

The proof of the above proposition is straightforward and is therefore omit-
ted, see Figure 2 and Figure 3. Let us just underline that if (uℓ, ur) ∈ N1,
then û1 and ǔ1 must be distinct otherwise, by the consistency of R1 proved in
[9, Proposition 4.2], we would have that Rc

1[uℓ, ur] coincides with R1[uℓ, ur], and
this gives a contradiction. Moreover, if (uℓ, ur) ∈ N1, then (7), (8) imply that
R1[uℓ, û1] contains only waves with negative speeds and R1[ǔ1, ur] contains only
waves with positive speeds; consequently Rc

1[uℓ, ur](0−) = û1, Rc
1[uℓ, ur](0

+) = ǔ1

and [(t, x) 7→ Rc
1[uℓ, ur](x/t)] satisfies (4) because Q(ǔ1) = Q(û1) ≤ Q0.

3.2. The Riemann solvers R2 and Rc
2. Differently from any other constrained

Riemann solver available in the literature, see [1, 3, 4, 19, 24, 25, 26], it may well
happen that (uℓ, ur) ∈ N1 but Q(Rc

1[uℓ, ur](0
±)) 6= Q0, see the case (T 1

1 a) described
in Proposition 1. Moreover, for any fixed (uℓ, ur) ∈ N1, among the self-similar maps
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ρ

uℓ

ur

Q

û1

ǔ1

Q0

ρ

uℓ

ur

Q

û1

ǔ1

Q0

ρ

u′

ℓ

ur

Q

û1

ǔ1

Q0

u′′

ℓ

ρ

u′

ℓ

ur

Q

û1

ǔ1

Q0

u′′

ℓ

(T 1
1 a), uℓ ∈ Ω−

f (T 1
1 b), uℓ ∈ Ω−

f (T 1
1 a), u′

ℓ ∈ Ω+
f , (T 1

1 b), u
′
ℓ ∈ Ω+

f ,
u′′
ℓ ∈ Ωc u′′

ℓ ∈ Ωc

Figure 2. Geometrical meaning of the cases (T 1
1 a) and (T 1

1 b).
Above u′

ℓ and u′′
ℓ are uℓ in two different cases.

ρ

u′

ℓ

ur

Q

û1

ǔ1
Q0

u′′

ℓ

ρ

u′

ℓ

ur

Q

û1
ǔ1

Q0

u′′

ℓ

ρ

uℓ

ur

Q

û1ǔ1

Q0

(T 2
1 a), u′

ℓ ∈ Ω+
f , (T 2

1 b), u
′
ℓ ∈ Ω+

f , (T 2
1 b), uℓ ∈ Ω+

f

u′′
ℓ ∈ Ωc u′′

ℓ ∈ Ωc

Figure 3. Geometrical meaning of the cases (T 2
1 a) and (T 2

1 b).
Above u′

ℓ and u′′
ℓ are uℓ in two different cases.

u of the form (6), namely

u(ν)
.
=

{

R1[uℓ, û](ν) if ν < 0,

R1[ǔ, ur](ν) if ν > 0,

with (û, ǔ) ∈ Ω2 eventually distinct from (û1, ǔ1) but satisfying the minimal re-
quirements

R1[uℓ, û](0−) = û1, R1[ǔ, ur](0+) = ǔ1, Q(û) = Q(ǔ) ≤ Q0,

Rc
1[uℓ, ur] is the only one that maximizes the flow through x = 0, namely

Q
(

u(0±)
)

≤ Q
(

Rc
1[uℓ, ur](0

±)
)

,

with the equality holding if and only if u = Rc
1[uℓ, ur]. For these reasons in this

subsection we introduce a further Riemann solver R2 for (1), (3), that allows
to construct a second constrained Riemann solver Rc

2 for (1), (3), (4) such that
Q(Rc

2[uℓ, ur](0
±)) = Q0 for all (uℓ, ur) ∈ N1, at least in the case Q0 ≤ Q+

c .

Definition 3.3. The Riemann solver R2 : Ω2 → L1

loc
(R; Ω) is defined by letting

R2[uℓ, ur](ν)
.
=

{

uℓ if ν < σ(uℓ, ur),

ur if ν > σ(uℓ, ur),

for any (uℓ, ur) ∈ Ωf × Ωc with ρℓ 6= 0 and wℓ < wr, and by letting R2[uℓ, ur]
.
=

R1[uℓ, ur] in all the remaining cases.
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In analogy to the previous subsection we introduce the sets

C2
.
=

{

(uℓ, ur) ∈ Ω2 : Q(R2[uℓ, ur](0
±)) ≤ Q0

}

,

N2
.
=

{

(uℓ, ur) ∈ Ω2 : Q(R2[uℓ, ur](0
±)) > Q0

}

,

and for any (uℓ, ur) ∈ N2, we replace [(t, x) 7→ R2[uℓ, ur](x/t)] by a self-similar
map [(t, x) 7→ Rc

2[uℓ, ur](x/t)] satisfying (3), (4) and obtained by juxtaposing maps
constructed by means of R2. It is easy to see that

C2 = Cf,f ∪ Cc,c ∪ Cc,f ∪ Cf,c
2 , N2 = N f,f ∪ N c,c ∪ N c,f ∪ N f,c

2 ,

where

Cf,c
2

.
=

{

(uℓ, ur) ∈ Ωf × Ωc :
wℓ ≤ wr and min {qℓ, qr} ≤ Q0, or
wℓ > wr and p−1(wℓ − vr) vr ≤ Q0

}

,

N f,c
2

.
= (Ωf × Ωc) \ C

f,c
2 .

Definition 3.4. The Riemann solver Rc
2 : Ω2 → L∞(R; Ω) is defined as follows:

(R2a) If (uℓ, ur) ∈ C2, then we let Rc
2[uℓ, ur]

.
= R2[uℓ, ur].

(R2b) If (uℓ, ur) ∈ N c,f and Q0 > Q(uc(wℓ)), then we let

Rc
2[uℓ, ur](ν)

.
=











R2[uℓ, uf(wℓ)](ν) if ν < σ(uf(wℓ), û2),

û2 if σ(uf(wℓ), û2) < ν < 0,

R2[ǔ2, ur](ν) if ν > 0.

(R2c) If (uℓ, ur) ∈ N c,f and Q0 ≤ Q(uc(wℓ)) or (uℓ, ur) ∈ N2 \ N c,f , then we let

Rc
2[uℓ, ur](ν)

.
=

{

R2[uℓ, û2](ν) if ν < 0,

R2[ǔ2, ur](ν) if ν > 0.

In both cases (R2b) and (R2c), û2 = û2(wℓ, vr, Q0) and ǔ2 = ǔ2(vr , Q0) are implic-
itly defined by
{

û2 ∈ Ω̂
.
=

{

u ∈ Ωc : Q(u) = min{Q0, Q
+
c }, W (u) ≥ wℓ, v ≤ vr

}

,

W (û2) = min
{

W (u) : u ∈ Ω̂
}

,
(9)

Q(ǔ2) = min
{

Q0, Q
+
c

}

, v̌2 =

{

vr if ur ∈ Ωc andQ0 ≥ p−1(W−
c − vr)vr,

V (ρ̌2) otherwise.
(10)

Observe that according to the second condition in (10) we have that ǔ2 ∈ Ωc if
and only if ur ∈ Ωc and Q0 ≥ p−1(W−

c − vr) vr, otherwise ǔ2 ∈ Ωf .
In the following proposition we show that Rc

2 is well defined. For notational
simplicity we let

q̂2
.
= Q(û2), q̌2

.
= Q(ǔ2), ŵ2

.
= W (û2).

Proposition 2. For any (uℓ, ur) ∈ N2, (û2, ǔ2) ∈ Ωc × Ω is uniquely selected by
(9), (10) as follows:

(T 1
2 ) If (uℓ, ur) ∈ N f,f ∪ N c,f , then we distinguish the following cases:

(T 1
2 a) If Q0 > Q+

c , then q̂2 = q̌2 = Q+
c and ǔ2 ∈ Ωf .

(T 1
2 b) If Q0 ≤ Q+

c , then ŵ2 = max {wℓ, Vc + p (Q0/Vc)}, q̂2 = q̌2 = Q0 and
ǔ2 ∈ Ωf .

(T 2
2 ) If (uℓ, ur) ∈ N c,c ∪ N f,c

2 , then we distinguish the following cases:
(T 2

2 a) If Q0 ≥ p−1(W−
c − vr) vr, then ŵ2 = max{wℓ, vr + p(Q0/vr)}, q̂2 =

q̌2 = Q0 and v̌ = vr.



306 MOHAMED BENYAHIA AND MASSIMILIANO D. ROSINI

(T 2
2 b) If Q0 < p−1(W−

c − vr) vr, then ŵ2 = wℓ, q̂2 = q̌2 = Q0 and ǔ2 ∈ Ω−
f .

In particular, Rc
2 is well defined in Ω2.

The proof of the above proposition is straightforward and is therefore omitted,
see Figure 4. Let us just underline that, despite (T 2

2 a) and (T 2
2 b) are apparently the

ρ

u′
ℓ

ur

Q

û2
ǔ2

Q0

u′′
ℓ

ρ

u′
ℓ

ur

Q

û2ǔ2
Q0

u′′
ℓ

ρ

uℓ

ur

Q

û2

ǔ2
Q0

ρ

uℓ

ur

Q

û2= ǔ2

Q0

(T 1
2 a), u′

ℓ ∈ Ω+
f , (T 1

2 b), u′
ℓ ∈ Ω+

f , (T 1
2 b), uℓ ∈ Ω+

f (T 2
2 a), uℓ ∈ Ωf ,

u′′
ℓ ∈ Ωc u′′

ℓ ∈ Ωc wℓ ≤ vr + p(Q0/vr)

Figure 4. Geometrical meaning of the cases (T 1
2 a), (T 1

2 b) and
(T 2

2 a). Above u′
ℓ and u′′

ℓ are uℓ in two different cases.

same as (T 2
1 a) and (T 2

1 b), respectively, they differ because N f,c
1 6= N f,c

2 as shown in
the following Example 1. Let us also underline that û1 6= ǔ1 for all (uℓ, ur) ∈ N1,
whereas in the case (T 2

2 a) with wℓ ≤ vr + p(Q0/vr) we have û2 = ǔ2, see the last
picture in Figure 4; this occurs because R1 is consistent whereas R2 is not, see
Proposition 5. Clearly the map [(t, x) 7→ Rc

2[uℓ, ur](x/t)] satisfies (4).

Example 1. Fix (uℓ, ur) ∈ Ω+
f × Ωc with wℓ < wr and p−1(wℓ − vr) vr < Q0 <

qr < qℓ, see Figure 5. In this case Q(R1[uℓ, ur](0)) = Q(um) < Q0, where

ρ

Q

Q0

uℓ

ur

û2
um

x

ρ

ρℓ

ρr

ρm

ρ̂2

ρ1
ρ2

x

v
vℓ

vr

v1
v2

Figure 5. (ρ1, v1)
.
= Rc

1[uℓ, ur] and (ρ2, v2)
.
= Rc

2[uℓ, ur] in the
case considered in Example 1.

um
.
= (p−1(wℓ − vr), vr), and therefore (uℓ, ur) ∈ Cf,c

1 . As a consequence Rc
1[uℓ, ur]

coincides with R1[uℓ, ur] and performs a phase transition from uℓ to um, followed
by a contact discontinuity from um to ur. On the other hand, Q(R2[uℓ, ur](0

±)) =

qr > Q0 and therefore (uℓ, ur) ∈ N f,c
2 . By (T 2

2 a) we have that û2 = ǔ2 =
(p−1(Q0/vr), vr). Hence Rc

2[uℓ, ur] performs a phase transition from uℓ to û2, fol-
lowed by a contact discontinuity from û2 to ur.
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4. Main properties of the Riemann solvers. In this section we expose the
main properties of the Riemann solvers constructed in the previous sections. This
study may be useful to compare the difficulty of applying one of these Riemann
solvers in a wave-front tracking scheme [11, 34]. In particular, we introduce their
invariant domains and discuss their consistency and L1

loc
-continuity. In this regard,

we recall the following definition.

Definition 4.1. Let S : Ω2 → L∞(R; Ω) be a Riemann solver.

• I ⊆ Ω is an invariant domain for S if S[I, I](R) ⊆ I.
• S is L1

loc
-continuous in D ⊆ Ω if for any ν1, ν2 ∈ R and for any sequences

un
ℓ , u

n
r ⊂ D converging to uℓ, ur ∈ D:

lim
n→∞

∫ ν2

ν1

|S[un
ℓ , u

n
r ](ν) − S[uℓ, ur](ν)| dν = 0.

• S is consistent in an invariant domain I ⊆ Ω if for any uℓ, um, ur ∈ I and ν ∈ R:

S[uℓ, ur](ν) = um ⇒























S[uℓ, um](ν) =

{

S[uℓ, ur](ν) if ν < ν,

um if ν ≥ ν,

S[um, ur](ν) =

{

um if ν < ν,

S[uℓ, ur](ν) if ν ≥ ν.

(I)

S[uℓ, um](ν) = um

S[um, ur](ν) = um

}

⇒ S[uℓ, ur](ν) =

{

S[uℓ, um](ν) if ν < ν,

S[um, ur](ν) if ν ≥ ν.
(II)

We recall that the consistency is a necessary condition for the well-posedness in
L1 of the Cauchy problem.

In the following proposition we show that a constrained Riemann solver cannot be
consistent in Ω because it cannot satisfy (I) of Definition 4.1 in Ω. As a consequence,
none of the constrained Riemann solvers Rc

1 and Rc
2 is consistent in Ω and in the

forthcoming propositions we consider in Ω only (II).

Proposition 3. Let S : Ω2 → L∞(R; Ω) be a Riemann solver satisfying (4). If I
is an invariant domain for S and Q0 < maxu∈I Q(u), then S does not satisfy (I)
of Definition 4.1 in I.

Proof. By assumption there exist uℓ, ur ∈ I such that qr > Q0. By the finite
speed of propagation of the waves there exists ν > 0 such that S[uℓ, ur](ν) = ur.
Let um

.
= ur. Then the property S[um, ur](ν) = um for any ν < ν required in

(I) cannot be satisfied. Indeed, if by contradiction S[um, ur](ν) = um for any
ν < ν, then Q(S[um, ur](0

±)) = qr > Q0 and this gives a contradiction because by
assumption (t, x) 7→ S[um, ur](x/t) satisfies (4).

4.1. Main properties of R1 and R2. In the following propositions we collect the
main properties of R1 and R2.

Proposition 4 (Invariant domains). For any ρmin, ρmax ∈ [0, R+
f ], vmin, vmax ∈

[0, Vc] and wmin, wmax ∈ [W−
c ,W+

c ] such that ρmin < ρmax, vmin < vmax and wmin <
wmax, we have that

{u ∈ Ωf : ρmin ≤ ρ ≤ ρmax} ,

{u ∈ Ωc : wmin ≤ W (u) ≤ wmax, vmin ≤ v ≤ vmax} ,
{

u ∈ Ω+
f : ρf(wmin) ≤ ρ ≤ ρf(wmax)

}

∪ {u ∈ Ωc : wmin ≤ W (u) ≤ wmax, v ≥ vmin} ,
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are invariant domains for both R1 and R2. If moreover ρmin < R−
f , then

{u ∈ Ωf : ρmin ≤ ρ ≤ ρf(wmax)} ∪ {u ∈ Ωc : W (u) ≤ wmax, v ≥ vmin}

is a further invariant domain for both R1 and R2.

The proof is straightforward and is therefore omitted.

Proposition 5. R1 is L1

loc
-continuous and consistent in Ω; whereas R2 is L1

loc
-

continuous but not consistent in Ω.

Proof. In [9, Proposition 4.2] we already proved that R1 is L1

loc
-continuous and

consistent. By taking uℓ, um and ur as in the Example 1, see Figure 5, we have
that R2 does not satisfy (II) of Definition 4.1, hence it is not consistent. Finally
proceeding as in [9, Proposition 4.2] it can be proved that R2 is L1

loc
-continuous.

4.2. Main properties of Rc
1. In the following propositions we collect the main

properties of Rc
1. We start by studying the invariant domains of Rc

1, see Figure 6.
Clearly, Ω is an invariant domain for both R1 and Rc

1. Moreover, Ωf and Ωc are
invariant domains for R1 but not for Rc

1. For this reason we look for minimal (with
respect to the inclusion) invariant domains for Rc

1 containing Ωf or Ωc.

ρ

Q

Q0

ρ

Q
Q0

ρ

Q
Q0

ρ

Q

Q0

(Ic1a), (Ic2a) (Ic1b) (Ic2b) (Ic1d), (Ic2d)

Figure 6. The invariant domains described in Proposition 6 and
Proposition 9.

Proposition 6 (Invariant domains of Rc
1).

(Ic1a) If Q0 < Q+
c , then Ωf∪{u ∈ Ωc : Q(u) ≤ Q0 ≤ p−1(W+

c −v) v} is the smallest
invariant domain for Rc

1 containing Ωf .
(Ic1b) If Q0 ≥ Q+

c , then Ωf ∪ {u ∈ Ωc : v = Vc} is the smallest invariant domain
for Rc

1 containing Ωf .
(Ic1c) If Q0 ≥ Q−

c , then Ωc is the smallest invariant domain for Rc
1 containing Ωc.

(Ic1d) If Q0 < Q−
c , then Ωc ∪ {u ∈ Ω−

f : Q(u) = Q0} is the smallest invariant
domain for Rc

1 containing Ωc.

Proof. (Ic1a) In order to prove that if Q0 < Q+
c , then the smallest invariant domain

containing Ωf is I0
.
= Ωf ∪ {u ∈ Ωc : Q(u) ≤ Q0 ≤ p−1(W+

c − v) v} it suffices
to observe that I0 is an invariant domain and that if I is an invariant domain
containing Ωf , then

I ⊇ Rc
1

[

Ωf ,R
c
1[N f,f ](R)

]

(R) ⊇ I0,

where the last inclusion holds because

Rc
1[N f,f ](R) ⊇ {u ∈ Ωc : Q(u) = Q0},

Rc
1[Ω+

f , {u ∈ Ωc : Q(u) = Q0}](R) ⊇ {u ∈ Ωc : Q(u) ≤ Q0 ≤ p−1(W+
c − v) v}.
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(Ic1b) In order to prove that if Q0 ≥ Q+
c , then the smallest invariant domain con-

taining Ωf is I0
.
= Ωf ∪{u ∈ Ωc : v = Vc} it suffices to observe that I0 is an invariant

domain and that if I is an invariant domain containing Ωf , then

I ⊇ Rc
1

[

Ωf ,R
c
1[N f,f ](R)

]

(R) ⊇ I0,

where the last inclusion holds because

Rc
1[N f,f ](R) ⊇ {u ∈ Ωc : v = Vc, Q(uf(W (u))) > Q0} ,

Rc
1[Ω+

f , {u ∈ Ωc : v = Vc, Q(uf(W (u))) > Q0}](R) ⊇ {u ∈ Ωc : v = Vc}.

(Ic1c) In order to prove that if Q0 ≥ Q−
c , then the smallest invariant domain contain-

ing Ωc is Ωc it suffices to prove that Ωc is an invariant domain. Since Ωc is an invari-
ant domain for RARZ we immediately have that Rc

1[Cc,c](R) = RARZ[Cc,c](R) ⊆ Ωc.
Moreover, if (uℓ, ur) ∈ N c,c, then û1, ǔ1 ∈ Ωc because Q0 ≥ Q−

c ≥ p−1(W−
c −vr) vr ,

see (T 2
1 a). As a consequence Rc

1[uℓ, ur](R) = RARZ[uℓ, û](R)∪RARZ[ǔ, ur](R) ⊆ Ωc.

(Ic1d) In order to prove that if Q0 < Q−
c , then the smallest invariant domain contain-

ing Ωc is I0
.
= Ωc ∪ {u0}, where u0 is the unique element of {u ∈ Ω−

f : Q(u) = Q0},
it suffices to observe that I0 is an invariant domain and that if I is an invariant
domain containing Ωc, then I ⊇ Rc

1[N c,c](R) ⊇ {u0}, where the last inclusion holds
because by (T 2

1 ) we have that for any (uℓ, ur) ∈ N c,c either ǔ1 ∈ Ωc or ǔ1 = u0.

Proposition 7 (Consistency of Rc
1).

(Cc
1a) Rc

1 satisfies (II) of Definition 4.1 in Ω.
(Cc

1b) Rc
1 is consistent in the invariant domain I1

.
= {u ∈ Ω: Q(u) ≤ Q0}; more-

over it is not consistent in any other invariant domain containing I1.

Proof. (Cc
1a) Since R1 satisfies (II), it suffices to consider the cases where at

least one among (uℓ, um), (um, ur) and (uℓ, ur) belongs to N1. We observe that
Rc

1[uℓ, um] cannot perform any contact discontinuity, otherwise it would not be
possible to juxtapose Rc

1[uℓ, um] and Rc
1[um, ur]. For the same reason (uℓ, um) can-

not belong to Cf,f . Moreover, (uℓ, um) cannot belong to Cc,f , because in this case
Rc

1[uℓ, um] and Rc
1[um, ur] can be juxtaposed if and only if um = uf(wℓ) ∈ Ω+

f

(hence Q(um) ≤ Q0 because (uℓ, um) ∈ Cc,f) and ur ∈ Ωf , but then also (uℓ, ur)
and (um, ur) belong to C1. We are then left to consider the following cases.

• Let (uℓ, um) ∈ N f,f and um = ǔ1(wℓ, vm, Q0), namely qℓ > Q0 ≥ Q(um). We
have then that either ur ∈ Ωc and p−1(W−

c − vr) vr > Q0 or ur ∈ Ωf .
• Let uℓ, um ∈ Ωc. In this case, we have either (uℓ, um) ∈ N c,c or (uℓ, um) ∈ Cc,c

and wℓ = W (um). In the first case, whether um = ǔ1(wℓ, vm, Q0) ∈ Ωc and
W (um) < wℓ or ǔ1(wℓ, vm, Q0) ∈ Ωf and Q(um) > Q0, we have that vr = vm. In
the latter case, we have Q(um) = Q0, vr > vm and (um, ur) ∈ N c,f ∪ N c,c.

• Let (uℓ, um) ∈ N c,f and um = ǔ1(wℓ, vm, Q0). Then either ur ∈ Ωc satisfies
p−1(W−

c − vr) vr > Q0 or ur ∈ Ωf .
• Let (uℓ, um) ∈ Ω−

f ×Ωc. In this case, we have W (um) = W−
c and either Q(um) =

Q0 < qℓ and vr > vm or Q(um) > Q0 and vr = vm.
• Let (uℓ, um) ∈ Ω+

f × Ωc. In this case, we have Q(um) = Q0 < qℓ and either
v̂1(uℓ, Q0) < vm = vr or v̂1(uℓ, Q0) = vm ≤ vr.

For each of the above cases it is easy to conclude.

(Cc
1b) By (Cc

1a) it is sufficient to prove that Rc
1 satisfies (I) in I1. Fix uℓ, um, ur ∈

I1 and ν ∈ R such that Rc
1[uℓ, ur](ν) = um. If (uℓ, ur) ∈ C1 ∩ I2

1 , then also
(uℓ, um), (um, ur) ∈ C1 and (I) comes from the consistency of R1. On the other
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hand, if (uℓ, ur) ∈ N1 ∩ I2
1 ⊆ N c,c ∪ N c,f and ν ≤ 0 (the case ν ≥ 0 is analogous),

then um = Rc
1[uℓ, ur](ν) = R1[uℓ, û1(wℓ, Q0)](ν), W (um) = wℓ and by exploiting

the consistency of R1 we have

Rc
1[uℓ, um](ν) = R1[uℓ, um](ν) =

{

R1[uℓ, û1(wℓ, Q0)](ν) if ν < ν

um if ν ≥ ν

=

{

Rc
1[uℓ, ur](ν) if ν < ν,

um if ν ≥ ν,

and

Rc
1[um, ur](ν) =

{

R1[um, û1(wℓ, Q0)](ν) if ν < 0

R1[ǔ1(wℓ, vr, Q0), ur](ν) if ν ≥ 0

=















um if ν < ν

R1[uℓ, û1(wℓ, Q0)](ν) if ν ≤ ν < 0

R1[ǔ1(wℓ, vr, Q0), ur](ν) if ν ≥ 0

=

{

um if ν < ν,

Rc
1[uℓ, ur](ν) if ν ≥ ν.

We conclude the proof by observing that the maximality of I1 follows directly from
Proposition 3.

Proposition 8 (Continuity of Rc
1).

(Lc
1a) Rc

1 is L1

loc
-continuous in Ω2 if and only if Q0 ≤ Q−

c .

(Lc
1b) If Q0 > Q−

c , then Rc
1 is L1

loc
-continuous in Ω2 \ (C1 ∩ N f,f) and is not

L1

loc
-continuous in any point of C1 ∩ N f,f .

Proof. Assume that Q0 > Q−
c and take (uℓ, ur) ∈ C1∩N f,f , namely uℓ, ur ∈ Ωf with

Q(uℓ) = Q0. Let un
ℓ ∈ Ωf with Q(un

ℓ ) = Q0 + 1/n. Then un
ℓ converges to uℓ but

Rc
1[un

ℓ , ur] does not converge to Rc
1[uℓ, ur] in L1

loc
(R; Ω). Indeed, Rc

1[uℓ, ur] ≡ uℓ in
R− and by (T 1

1 a) the restriction of Rc
1[un

ℓ , ur] to R− converges to
{

uℓ if x < σ(uℓ, uc(wℓ)),

uc(wℓ) if σ(uℓ, uc(wℓ)) < x < 0.

It remains to prove that if Q0 > Q−
c and (uℓ, ur) ∈ Ω2 \ (C1 ∩ N f,f) or Q0 ≤ Q−

c

and (uℓ, ur) ∈ Ω2, then Rc
1[un

ℓ , u
n
r ] converges to Rc

1[uℓ, ur] in L1

loc
(R; Ω) for all

(un
ℓ , u

n
r ) ∈ Ω2 converging to (uℓ, ur). Since we already know that R1 is L1

loc
-

continuous in Ω2, we can assume that (un
ℓ , u

n
r ) ∈ N1. Thus, by Definition 3.2,

completing the proof is a matter of showing that R1[un
ℓ , û1(wn

ℓ , Q0)] → Rc
1[uℓ, ur]

pointwise in {x < 0}, R1[ǔ1(wn
ℓ , v

n
r , Q0), un

r ] → Rc
1[uℓ, ur] pointwise in {x > 0},

and applying the dominated convergence theorem of Lebesgue. For this, it suffices
to observe that either û1(wn

ℓ , Q0) → R1[uℓ, ur](0
−) and the result follows then by

the L1

loc
-continuity of R1, or σ(un

ℓ , û1(wn
ℓ , Q0)) → 0, R1[uℓ, ur] ≡ uℓ in {x < 0} and

therefore R1[un
ℓ , û1(wn

ℓ , Q0)] → R1[uℓ, ur] pointwise in {x < 0}. A similar analysis
proves that R1[ǔ1(wn

ℓ , v
n
r , Q0), un

r ] → R1[uℓ, ur] pointwise in {x > 0}.

4.3. Main properties of Rc
2. The following proposition deals with the minimal

invariant domains for Rc
2 containing Ωf or Ωc, see Figure 6; its proof is analogous

to that of Proposition 6 and is therefore omitted.
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Proposition 9 (Invariant domains for Rc
2).

(Ic2a) If Q0 < Q+
c , then Ωf∪{u ∈ Ωc : Q(u) ≤ Q0 ≤ p−1(W+

c −v) v} is the smallest
invariant domain for Rc

2 containing Ωf .
(Ic2b) If Q+

c ≤ Q0, then Ωf ∪ {(Vc,W
+
c )} is the smallest invariant domain for Rc

2

containing Ωf .
(Ic2c) If Q0 ≥ Q−

c , then Ωc is the smallest invariant domain for Rc
2 containing Ωc.

(Ic2d) If Q0 < Q−
c , then Ωc ∪ {u ∈ Ω−

f : Q(u) = Q0} is the smallest invariant
domain for Rc

2 containing Ωc.

Concerning Rc
2, in general no significant positive result for consistency can be

expected because R2 is not consistent, see Proposition 5.

Proposition 10 (Consistency of Rc
2).

(Cc
2a) Rc

2 does not satisfy (II) of Definition 4.1 in Ω.
(Cc

2b) Rc
2 does not satisfy (II) of Definition 4.1 in any invariant domain containing

I1
.
= {u ∈ Ω: Q(u) ≤ Q0}.

Proof. (Cc
2a) Clearly, (II) is not satisfied by Rc

2 because we already know by Propo-
sition 5 that it is not satisfied by R2.
(Cc

2b) It is easy to see that I1 is an invariant domain if and only if Q0 ≤ Q−
c . In

any case, by taking ν < 0 sufficiently close to zero, uℓ as the unique element of
{u ∈ Ωf : Q(u) = Q0} and um, ur ∈ Ωc such that vm = 0 = vr, W (um) = wℓ and
wr = W+

c , we have that uℓ, um, ur ∈ I1 but Rc
2 does not satisfy (II).

Proposition 11 (Continuity of Rc
2). Rc

2 is L1

loc
-continuous in Ω2.

Proof. • If uℓ, ur ∈ Ωf , then the L1

loc
-continuity of Rc

2 follows from the continuity
of σ(uℓ, û), σ(ǔ, ur) with respect to (uℓ, ur) and from the continuity of RLWR.

• If uℓ, ur ∈ Ωc or (uℓ, ur) ∈ Ωc × Ωf and Q(uc(wℓ)) > Q0, then Rc
2[uℓ, ur] =

Rc
1[uℓ, ur] and the continuity follows from Proposition 8.

• If (uℓ, ur) ∈ Ωc × Ωf and Q(uc(wℓ)) < Q0, then the continuity follows from the
continuity of uc(wℓ), uf(wℓ), σ(uf(wℓ), û) with respect to uℓ and Proposition 8.

• If (uℓ, ur) ∈ Ωc × Ωf and Q(uc(wℓ)) = Q0, then it suffices to consider for n
sufficiently large un

ℓ defined by vnℓ
.
= vℓ and wn

ℓ

.
= wℓ − 1/n. Clearly un

ℓ → uℓ

and Q(uc(w
n
ℓ )) < Q0. Moreover, Rc

2[un
ℓ , ur] has two phase transitions, one from

uc(w
n
ℓ ) to uf(w

n
ℓ ) and one from uf(w

n
ℓ ) to û, that are not performed by Rc

2[uℓ, ur].
Since both σ(uc(w

n
ℓ ), uf(w

n
ℓ )) and σ(uf(w

n
ℓ ), û) converge to σ(uf(wℓ), û), also in

this case we have that Rc
2[un

ℓ , ur] → Rc
2[uℓ, ur] in L1

loc
.

• If (uℓ, ur) ∈ Ωf × Ωc, then the continuity comes from the continuity of σ(uℓ, ur),
σ(uℓ, û), σ(ǔ, ur) and Rc

1 with respect to (uℓ, ur).

4.4. Total variation estimates. In this subsection we consider the total variation
of the two constrained Riemann solvers in the Riemann invariant coordinates (v, w).
We provide two examples showing that in general the comparison of their total
variations can go in both ways. This suggests that the total variation is not a
relevant selection criteria for choosing a wave-front tracking algorithm based on one
or the other constrained Riemann solver.

Example 2. With reference to Figure 7, let Q0 ∈
(

Q−
c , Q

+
c

)

and u0 ∈ Ω+
f with

Q(u0) ∈ (Q0, Qf) be such that there exist ǔ1, ǔ2 ∈ Ωf and û1, û2 ∈ Ωc satisfying

V (û1) = V (û2) = Vc, Q(ǔ2) = Q(û2) = Q0,

W (û1) = W (u0), Q(ǔ1) = Q(û1) < Q0.
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ρ

Q

Q0

u0
û2

û1ǔ1

ǔ2

x

v

v0v0

Vc

v̌2

v̌1

x

w

w0

w0

ŵ2

w̌2

w̌1

Figure 7. u1
.
= Rc

1[u0, u0] and u2
.
= Rc

2[u0, u0] in the case consid-
ered in Example 2. Above û1, ǔ1 are given by (T 1

1 b) and û2, ǔ2 by
(T 1

2 b); we let w0 = W (u0), v̌i = V (ǔi), ŵ2 = W (û2), w̌i = W (ǔi).

Then TV(V ◦Rc
1[u0, u0]) = 2[V (ǔ1)− Vc] > TV(V ◦Rc

2[u0, u0]) = 2[V (ǔ2)− Vc]. If
we further assume that

W (u0) −W (ǔ1) > W (û2) −W (ǔ2),

then TV(W ◦ Rc
1[u0, u0]) = 2[W (u0) −W (ǔ1)] > TV(W ◦ Rc

2[u0, u0]) = 2[W (û2) −
W (ǔ2)].

Example 3. If there exist (uℓ, ur) ∈ Ωc × Ωf and Q0 such that vℓ = Vc and
qℓ = qr < Q0 < Q(uf(wℓ)), then TV(V ◦Rc

1[uℓ, ur]) = vr−Vc < TV(V ◦Rc
2[uℓ, ur]) =

vr + 2V (uf(wℓ)) − 3Vc and TV(W ◦ Rc
1[uℓ, ur]) = wℓ −wr < TV(W ◦Rc

2[uℓ, ur]) =
2ŵ2 − wℓ − wr, where ŵ2

.
= Vc + p (Q0/Vc).

4.5. Conservativeness. For any fixed uℓ, ur ∈ Ω, let us consider ui
.
= Ri[uℓ, ur],

i = 1, 2. Since both R1 and R2 coincide with RARZ in Ω2
c , all the possible discon-

tinuities of u1 and u2 in Ωc satisfy the Rankine-Hugoniot conditions. This means
that if u1 or u2 performs a discontinuity from u− ∈ Ωc to u+ ∈ Ωc with speed of
propagation s ∈ R, then ρ− 6= ρ+ and

{

Q(u+) −Q(u−) = s
(

ρ+ − ρ−
)

,

Q(u+)W (u+) −Q(u−)W (u−) = s
(

ρ+ W (u+) − ρ− W (u−)
)

.
(RH)

By the first condition in (RH) we immediately have that s = σ(u−, u+), with σ
defined in (5). We recall that the first and second conditions in (RH) express the
conservation across the discontinuity of the number of vehicles and the linearized
momentum, respectively. As a consequence, both the number of vehicles and the
linearized momentum are conserved across discontinuities in Ωc performed by u1 or
u2.

By the assumption (H3), the 1-Lax curves defined in Ωc can be extended in a
natural way up to reach Ω+

f . Any point of the curve Ω+
f is reached by exactly one

extended 1-Lax curve. Hence, since the Lagrangian marker is constant along the
1-Lax curves, there is a natural way to define the Lagrangian marker in Ω+

f , see
the definition of W given in (2). It is then easy to see that also all the possible
phase transitions between Ω+

f and Ωc performed by u1 satisfy (RH), whereas those
performed by u2 satisfy in general only the first condition in (RH). In fact, this
is the case if u2 performs a phase transition from u− ∈ Ω+

f to u+ ∈ Ωc with
W (u−) < W (u+).
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The extension to Ω−
f of the Lagrangian marker given in (2) ensures that any

phase transition away from the vacuum performed by u1 satisfies (RH). Now, since
the extended Lagrangian marker is defined in Ωf , we can question whether the
shocks between states in Ωf satisfy (RH) or not. It is easy to see that the answer is
positive if and only if V −

f = V +
f , however this contradicts our assumption (H1).

In conclusion, we have that both R1 and R2 conserve the number of vehicles but
not the (extended) linearized momentum; consequently also Rc

1 and Rc
2 do so. This

is in the same spirit of the Riemann solvers introduced for traffic through locations
with reduced capacity in [24, 25, 26] and for traffic at junctions in [28].

Let us finally underline that, even if we generalize our model to the case V −
f = V +

f

as done in [24] and consider only solutions away from the vacuum so that R1

conserves also the linearized momentum, the corresponding constrained Riemann
solver Rc

1 would not conserve it.

5. Numerical example. In this section we apply the Riemann solvers introduced
in Section 3 to simulate the traffic across a toll gate placed in x = 0 and with
capacity Q0 ∈ (Q+

c , Q(uf(W
−
c ))), see Figure 8. We consider two types of vehicles:

the 1-vehicles and the 2-vehicles. Fix x1 < x2 < 0 and assume that initially the
1-vehicles and the 2-vehicles are stopped in (x1, x2) and (x2, 0), respectively, and
have Lagrangian markers W−

c and W+
c , respectively. Then we are led to consider

the Cauchy problem for (1) with initial datum

u(0, x)
.
=











u1 if x ∈ (x1, x2),

u2 if x ∈ (x2, 0),

u0 otherwise,

(11)

where u0
.
= (0, V (0)) belongs to Ωf and u1

.
= (R−

c , 0), u2
.
= (R+

c , 0) belong to Ωc.
In subsections 5.1 and 5.2 we construct the solutions obtained by applying the

wave-front tracking method [11, 34] based on the Riemann solvers R1, Rc
1 and

R2, Rc
2, respectively. The simulations presented in Figure 9 are obtained by the

explicit analysis of the wave-fronts interactions with computer-assisted computation
of the interaction times and front slopes and correspond to the following choice of
the parameters

W+
c

.
= 3, W−

c
.
= 2, V (ρ)

.
= 1 −

ρ

10
, p(ρ)

.
= ρ2, Vc

.
=

1

2
.

We use in this section the following notation

ρu1 u2

u0

ǔ−

ǔ+

u−
f

û+

û−

Q

Q0

Figure 8. Notations used in Section 5.

u−
f

.
= uf(W

−
c ), û−

.
= uc(W

−
c ), ǔ−

.
= ǔ1(W−

c , V (0), Q0),
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û+
.
= uc(W

+
c ), ǔ+

.
= ǔ1(W+

c , V (0), Q0) = ǔ2(V (0), Q0).

Observe that by definition we have û− = û1(W−
c , Q0) and û+ = û1(W−

c , Q0) =
û2(W

−
c , V (0), Q0) = û2(W+

c , V (0), Q0), see Figure 8.

5.1. The numerical solution corresponding to R1 and Rc
1. In this subsection

we apply the Riemann solver R1 away from x = 0 and the constrained Riemann
solver Rc

1 at x = 0 to construct the solution to the Cauchy problem (1), (11).
The first step consists in solving the Riemann problems at the points (x, t) =
(x1, 0), (x2, 0), (0, 0).

• The Riemann problem at (x1, 0) is solved by a stationary phase transition PT1

from u0 to u1.
• The Riemann problem at (x2, 0) is solved by a stationary contact discontinuity
C1 from u1 to u2.

• The Riemann problem at (0, 0) is solved by a rarefaction R1 from u2 to û+,
followed by a stationary undercompressive phase transition U1 from û+ to ǔ+

and then by another rarefaction R2 from ǔ+ to u0.

x

t

x1 x2

i1
i3

i2

i5

i4

i6

u0

u1 u2

û+

ǔ+

u0

û−

ǔ−

x

t

x1 x2

i1
i3

i2
i4

u0

u1 u2

û+

û+

ǔ+

u0

û−

i5

i7

i8
i9

u
−

f

Figure 9. The solutions constructed in Subsection 5.1 on the left
and in Subsection 5.2 on the right represented in the (x, t)-plane.
The red thick curves are phase transitions. In particular, those
along x = 0 are stationary undercompressive phase transitions.

To prolong then the solution we have to consider the Riemann problems arising at
each interaction i∗ ∈ [x1, 0] × (0,∞) as follows.

• First, C1 starts to interact with R1 at i1. The result of this interaction is a contact
discontinuity C2, which accelerates during its interaction with R1. C2 stops to
interact with R1 once it reaches i2. Then, a contact discontinuity C3 from û− to
û+ starts from i2.

• The result of the interaction between C3 and U1 at i5 is a stationary undercom-
pressive phase transition U2 from û− to ǔ− followed by a shock S1 from ǔ− to
ǔ+.

• Each point of C2 is the center of a rarefaction appearing on its left. Let R3 be
the juxtaposition of these rarefactions. Then PT1 starts to interact with R3 at i3.
The result of this interaction is a phase transition PT2, which accelerates during
its interaction with R3. PT2 stops to interact with R3 once it reaches i4. Then,
a phase transition PT3 from u0 to û− starts from i4.
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Figure 10. Quantitative representation of density, on the left, and
velocity, on the right, corresponding to the solutions constructed
in Subsection 5.1 and Subsection 5.2. Recall that the two solutions
coincide up to the interaction i5.

• Finally, the result of the interaction between PT3 and U2 at i6 is a shock S2 from
u0 to ǔ−.

The constructed solution is qualitatively represented in Figure 9, left, see also Fig-
ure 10 for a quantitative representation.

5.2. The numerical solution corresponding to R2 and Rc
2. In this subsection

we apply the Riemann solver R2 away from x = 0 and the constrained Riemann
solver Rc

2 at x = 0 to construct the solution to the Cauchy problem (1), (11). The
solution coincides with that constructed in Subsection 5.1 up to the interaction i5.
The result of the interaction at i5 is now a phase transition PT4 from û− to u−

f ,

followed by another phase transition PT5 from u−
f to û+ and then by a stationary

undercompressive phase transition U3 from û+ to ǔ+. To prolong then the solution

Figure 11. Quantitative representation of density, on the left, and
velocity, on the right, corresponding to the solution constructed in
Subsection 5.2.

it is sufficient to observe that:

• the result of the interaction at i7 between PT3 and PT4 is a shock S3 from u0

and u−
f ;
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• the result of the interaction at i8 between S3 and PT5 is a phase transition PT6

from u0 and û+;
• the result of the interaction at i9 between PT6 and U3 is a shock S3 from u0 and
ǔ+.

The constructed solution is qualitatively represented in Figure 9, right, see also
Figure 10 and Figure 11 for a quantitative representation.
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