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Abstract. In this paper we investigate a time-optimal control problem in the

space of positive and finite Borel measures on Rd, motivated by applications
in multi-agent systems. We provide a definition of admissible trajectory in the

space of Borel measures in a particular non-isolated context, inspired by the

so called optimal logistic problem, where the aim is to assign an initial amount
of resources to a mass of agents, depending only on their initial position, in

such a way that they can reach the given target with this minimum amount of
supplies. We provide some approximation results connecting the microscopical

description with the macroscopical one in the mass-preserving setting, we con-

struct an optimal trajectory in the non isolated case and finally we are able to
provide a Dynamic Programming Principle.

1. Introduction. To include uncertainty features in control problems, researchers
used a set of different approaches, such as deterministic [16], random [23] and sto-
chastic [4, 25], and applied to different domains as finance [18] and quantum control
[6].

In particular, in stochastic approaches the state is represented by a random
variable or, alternatively, a probability distribution. The evolution is then given by
an equation involving Brownian motion and solution is interpreted in the sense of
the Itô or Stratonovich integral [17]. However, in many applications the Brownian
motion is not necessarily the correct way of representing uncertainty evolution. For
instance uncertainties may be naturally bounded. Even the generalization to other
stochastic processes [18] share similar limitations.

An alternative approach is provided by the evolution of probability measures
according to transport equations as in optimal transport theory [24].
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A time-optimal control problem in the space of probability measures endowed
with the topology induced by the Wasserstein metric has been introduced in [9,
10, 11, 12], where the dynamics is given by a controlled continuity equation in
the space of probability measures, which naturally arises as an infinite-dimensional
counterpart of a finite-dimensional differential inclusion.

In particular, in [11] the initial state is described by a Borel probability measure
µ0 ∈ P(Rd) and its evolution in time for 0 < t ≤ T is given by a continuity
equation, {

∂tµt + div(vtµt) = 0,

µt=0 = µ0,

where vt(·) is a Borel selection of a given set-valued map F : Rd ⇒ Rd.
The resulting admissible mass-preserving trajectories µ := {µt}t∈[0,T ], µ|t=0 =

µ0, are time-depending Borel probability measures on Rd. Under mild assumptions
on the selection vt and the set-valued map F , the Superposition Principle (Theorem
8.2.1 in [2]) allows to represent µ as a superposition of integral solutions of the
following characteristic system{

γ̇(t) ∈ F (γ(t)), for L 1-a.e. t ∈ (0, T ),

γ(0) = x ∈ Rd,

where the initial data are weighted according to the initial state. This gives a
natural link between the underlying classical control problem in Rd and the problem
in P(Rd).

The main application we have in mind is the so-called multi-agent systems [21].
In the framework of crowd dynamics, one of the key challenge is that of the evac-
uation problem, where the objective is to drive a crowd of people outside of an
environment space in the minimum amount of time. Then the evolving total mass
of pedestrians may be not conserved in time, since pedestrians are removed from the
system once they get outside the modeled area. Thus the evolving mass solves a con-
tinuity equation with sink. To treat cases of transport equation with source/sinks,
and more precisely to compare measures with different total masses, the classical
Wasserstein distance between probability measures cannot be used, thus in [19, 20]
a generalized Wasserstein distance between positive finite Borel measures is intro-
duced. A measure theoretic approach for transportation problems can be found also
in [22] where the modeling approach relies on the concept of discrete-time evolving
measures and in [8] in which authors focus mainly on concentration and congestion
effects. A very recent survey on this topic is the monograph [14], providing a new
and unified multiscale description based on measure theory for the modeling of the
crowd dynamics, which usually follows two main points of view, a microscopic and a
macroscopic one, in order to analyze the relations between individual and collective
behaviours, respectively.

In this paper we move from the framework presented in [11], but with a different
formulation of the time-optimal problem and allowing the loss of mass during the
evolution, which turns out to be closer to applications in pedestrian dynamics or
general multi-agent systems. More precisely, given an initial state µ0 ∈P(Rd), we
consider an admissible mass-preserving trajectory µ ⊆ P(Rd), starting from µ0,
coupled with a density ft which decreases linearly in time working as a countdown.
The initial density f0 = f|t=0 : Rd → [0,+∞], called clock-function, represents the

time needed by the particles in the support of µ0 to reach the given target S ⊆ Rd
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following the trajectory µ. In [11] the authors consider the final time for which all
the mass is inside the target, while here we are interested in an averaged time. In
particular, the aim is to minimize the average of f0 w.r.t. the initial distribution of
agents, µ0, among all the Borel functions keeping nonnegative the density associated
to µ along all the evolution. Notice that we ask the target set S to be strongly
invariant for F in order to remove the agents once they have achieved their own
task. From a macroscopic point of view, this formulation gives us the possibility
to study a new class of trajectories in the space of positive Borel measures that we
call admissible clock-trajectory for the initial measure µ0.

Another possible interpretation of this problem can be given in terms of optimal
logistic/equipment. Indeed, the clock-function f0 can be seen as the initial amount
of supplies (e.g. fuel, energy) that has to be assigned to each agent in the support
of µ0, and which depends only on its initial position. In the particular case in which
the initial provided quantity is the time, then we recover the previous description
of the problem. Considering the case in which we have a time-linear consumption
of the provided supplies, the aim is to find the minimum amount of goods that
has to be assigned at the beginning to each agent together with the associated
optimal mass-preserving trajectory µ which allows µ0 to reach the target set S
with this minimum amount of supplies f0. The minimum of the cost function we
are interested in, i.e.

∫
Rd f0(x) dµ0(x), has to been taken among all the admissible

couples (f0,µ) keeping nonnegative the evolving density.
We precise that in this paper we are dealing with the case of non renewable

resources and non-interacting particles (see Example 1 for a physic application to
a fluid depuration problem). We leave these nontrivial considerations to further
improvements of the present work which is also connected with possible applications
to the so called irrigation (Gilbert-Steiner) problem [3, 5].

We will show also that the best clock-function can be interpreted as the minimum
amount of time/goods that has to be assigned at the beginning to each agent in order
to reach the target and we will construct the associated macroscopic description µ
of the trajectories of the agents. In this sense the optimal vector field for the
problem in the space of measures can be seen as a measurable feedback strategy for
the underlying finite-dimensional control problem.

In the paper [13], the same problem is addressed aiming to focus more on reg-
ularity results of the value function and to provide an Hamilton-Jacobi-Bellman
equation solved by the value function in some suitable viscosity sense.

The paper is structured as follows: Section 2 recalls some preliminary results
and notation; in Section 3 we define the clock-admissible trajectories involved in
our study and prove some approximation results on the mass-preserving trajectories
on which our objects are built; finally, in Section 4 we state the time-minimization
problem, in Theorem 4.4 we prove the existence of an optimal clock-trajectory
constructing it by approximation techniques, and we conclude by stating a dynamic
programming principle.

2. Preliminaries and notation. We refer the reader to Chapter 5 in [2] for pre-
liminaries on measure theory.

Let X be a separable metric space. With P(X) we denote the set of Borel
probability measures on X endowed with narrow convergence, with M +(X) the set
of positive and finite Radon measures on X and with M (X;Rd) the set of vector-
valued Radon measures on X. We recall that we can identify P(X) with a convex
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subset of the unitary ball of the dual space (C0
b (X))′, and narrow convergence is

induced by the weak∗-topology on (C0
b (X))′.

We denote with |ν| the total variation of ν ∈ M (Rd;Rd) and we adopt the
notation σ � µ to say that σ is absolutely continuous w.r.t. µ, for a pair of
measures σ, µ on Rd.

We recall that, if X,Y are separable metric spaces, the push-forward of a measure
µ ∈ P(X) through a Borel map r : X → Y is defined by r]µ(B) := µ(r−1(B)) ∈
P(Y ), for all Borel sets B ⊆ Y , or equivalently it is defined by∫

X

f(r(x)) dµ(x) =

∫
Y

f(y) dr]µ(y),

for every bounded (or r]µ-integrable) Borel function f : Y → R.
Given µ ∈P(Rd), p ≥ 1, we say that µ has finite p-moment if

mp(µ) :=

∫
Rd
|x|p dµ(x) < +∞,

and we denote with Pp(Rd) the subset of P(Rd) made of measures with finite
p-moment.

Definition 2.1 (Wasserstein distance). Given µ1, µ2 ∈ P(Rd), p ≥ 1, we define
the p-Wasserstein distance between µ1 and µ2 by setting

Wp(µ1, µ2) :=

(
inf

{∫∫
Rd×Rd

|x1 − x2|p dπ(x1, x2) : π ∈ Π(µ1, µ2)

})1/p

,

where the set of admissible transport plans Π(µ1, µ2) is defined by

Π(µ1, µ2) :=

{
π ∈P(Rd × Rd) :

π(A1 × Rd) = µ1(A1),
π(Rd ×A2) = µ2(A2),

for all µi-measurable sets Ai, i = 1, 2

}
.

Proposition 1. Pp(Rd) endowed with the p-Wasserstein metric Wp(·, ·) is a com-
plete separable metric space. Moreover, given a sequence {µn}n∈N ⊆ Pp(Rd) and
µ ∈Pp(Rd), we have that the following are equivalent

1. lim
n→∞

Wp(µn, µ) = 0,

2. µn ⇀
∗ µ and {µn}n∈N has uniformly integrable p-moments.

Proof. See Proposition 7.1.5 in [2].

We recall now some basic definitions about the classical control problem with
dynamics represented as a differential inclusion in Rd.

Definition 2.2 (Standing Assumptions). We will say that a set-valued function
F : Rd ⇒ Rd satisfies the assumption (Fj), j = 0, 1 if the following hold true

(F0) F (x) 6= ∅ is compact and convex for every x ∈ Rd, moreover F (·) is continuous
with respect to the Hausdorff metric, i.e. given x ∈ X, for every ε > 0
there exists δ > 0 such that |y − x| ≤ δ implies F (y) ⊆ F (x) + B(0, ε) and
F (x) ⊆ F (y) +B(0, ε).

(F1) F (·) has linear growth, i.e. there exists a constant C > 0 such that F (x) ⊆
B(0, C(|x|+ 1)) for every x ∈ Rd.
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A curve γ : [0, T ] → Rd is called an admissible trajectory of the differential
inclusion

ẋ(t) ∈ F (x(t)), (1)

if γ(·) is an absolutely continuous function satisfying 1 for a.e. 0 < t ≤ T . Given
a target set S ⊆ Rd closed and nonempty, and recalling the definition of classical
minimum time function T : Rd → [0,+∞], an admissible trajectory γ̄ is called
optimal for x ∈ Rd if γ̄(0) = x, γ̄(T (x)) ∈ S.

A target set S ⊆ Rd is said to be strongly invariant for a set valued map F : Rd ⇒
Rd if for any admissible trajectory γ such that there exists t > 0 with γ(t) ∈ S, we
have also that γ(s) ∈ S for all s ≥ t.

Given T ∈ [0,+∞[, we set

ΓT := C0([0, T ];Rd), ΓxT := {γ ∈ ΓT : γ(0) = x},

that we endow with the usual sup-norm, recalling that ΓT is a complete separable
metric space for every 0 < T < +∞. We call evaluation operator the map et :
Rd × ΓT → Rd, et(x, γ) = γ(t) for all 0 ≤ t ≤ T .

Given a set X, A ⊆ X, we call indicator function of A the function IA : X →
{0,+∞}, defined as IA(x) = 0 for all x ∈ A and IA(x) = +∞ for all x /∈ A. We call
characteristic function of A the function χA : X → {0, 1} defined as χA(x) = 1 for
all x ∈ A and χA(x) = 0 for all x /∈ A.

3. Statement of the problem and preliminary results. We define now the
objects considered in the present study, recalling the definition of admissible mass-
preserving trajectory stated in [9, 10, 11, 12].

Definition 3.1. Let F : Rd ⇒ Rd be a set-valued map, µ̄ ∈P(Rd).
1. Let T > 0. We say that µ = {µt}t∈[0,T ] ⊆ P(Rd) is an admissible mass-

preserving trajectory defined on [0, T ] and starting from µ̄ if there exists ν =
{νt}t∈[0,T ] ⊆ M (Rd;Rd) such that |νt| � µt for a.e. t ∈ [0, T ], µ0 = µ̄,

∂tµt + div νt = 0 in the sense of distributions and vt(x) :=
νt
µt

(x) ∈ F (x) for

a.e. t ∈ [0, T ] and µt-a.e. x ∈ Rd. In this case, we will say also that the
admissible mass-preserving trajectory µ is driven by ν.

2. Let T > 0, µ be an admissible mass-preserving trajectory defined on [0, T ]
starting from µ̄ and driven by ν = {νt}t∈[0,T ]. We will say that µ is represented

by η ∈P(Rd×ΓT ) if we have et]η = µt for all t ∈ [0, T ] and η is concentrated
on the pairs (x, γ) ∈ Rd × ΓT where γ is an absolutely continuous solution of
the underlying characteristic system{

γ̇(t) = vt(γ(t)), for a.e. 0 < t ≤ T
γ(0) = x,

where vt(x) :=
νt
µt

(x).

Remark 1. Definition 3.1(1) is equivalent to say that µ is an admissible mass-
preserving trajectory starting from µ̄ if it solves an homogeneous (parametrized)
continuity equation, ∂tµt + div(vtµt) = 0, in the distributional sense with Borel
velocity field vt ranging among L1

µt-selections of the given multifunction F : Rd ⇒
Rd for L 1-a.e. t, where F is driving the underlying differential inclusion in finite
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dimension. The vector-valued measure νt represents the averaged Eulerian velocity
field vt of the particles/agents weighted w.r.t. the evolving mass. We point out
that assuming no regularity on the vector field vt leads to the lack of uniqueness
both of the finite-dimensional characteristic system and of the continuity equation.
Anyway as precised in the following remark, under mild integrability assumptions,
it is still possible to construct a probabilistic representation for µ, which is not
unique for the same reason, but still it is concentrated on characteristics driven by
the same vector field as µ. On the other side, under mild assumptions, we can
build a measure η ∈ P(Rd × ΓT ) concentrated on the Caratheodory solutions of
γ̇(t) ∈ F (γ(t)) for a.e. 0 < t < T and starting by points in the support of µ̄. Then,
from η we can recover the associated admissible trajectory µ which turns out to
be driven by an appropriate averaged vector field as we will see for example in the
proofs of Propositions 2, 3 and Theorem 4.4. The convexity of F (·) ensures that
this average vector field is still an admissible velocity.

Remark 2. We notice that if the time-dependent vector field vt(x) :=
νt
µt

(x) sat-

isfies the integrability assumption of the Superposition Principle (see for example
Theorem 8.2.1 in [2]) then there exists η ∈P(Rd × ΓT ) representing µ.

We now define the concept of clock-trajectory pair, where the first, called f0 is
representing the time left to reach the target or, in an optimal equipment inter-
pretation of the problem, it represents more typically a general amount of supplies
(not necessarily the time) given at the beginning to each agent in the support of
the initial state µ̄ in order to reach the target. The fact that the clock is ticking
downward is recapitulated by condition 4 of the following definition, where we as-
sume that the provided amount of supplies decreases linearly in time during the
evolution. Notice that the average time to reach the target, that is the cost we are
interested in, is given by

∫
Rd f0(x) dµ0(x).

Since we want to define a trajectory defined on a possibly unbounded time in-
terval, and recalling that ΓT is a separable metric space only if T is finite, in order
to use results related to separability (such as certain compactness results, or the
probabilistic representation η) we will construct a trajectory defined on [0,+∞[ by
mean of successive prolongations of mass-preserving trajectories defined on bounded
time intervals, as done in item 3 of the following definition.

Definition 3.2. Let F : Rd ⇒ Rd be a set-valued map, S ⊆ Rd be closed, nonempty
and strongly invariant for F , µ̄ ∈P(Rd) with supp(µ̄) ⊆ Rd \ S.

A Borel family of positive and finite measures µ̃ = {µ̃t}t∈[0,+∞[ ⊆ M +(Rd)
is an admissible clock-trajectory (curve) for µ̄ with target S if there exist a Borel
map f0 : Rd → [0,+∞] called clock-function, and sequences {Tn}n∈N ⊆ [0,+∞[,
{µn}n∈N, {νn}n∈N, and {ηn}n∈N such that

1. Tn → +∞;
2. for any n ∈ N we have that µn = {µnt }t∈[0,Tn] is an admissible mass-preserving

trajectory defined on [0, Tn], starting from µ̄, driven by νn := {νnt }t∈[0,Tn],
and represented by ηn;

3. given n1, n2 ∈ N with Tn1
≤ Tn2

, we have (IdRd × rn2,n1
)]ηn2

= ηn1
, where

rn2,n1 : ΓTn2
→ ΓTn1

is the linear and continuous operator defined by setting

rn2,n1
γ(t) = γ(t) for all t ∈ [0, Tn1

]. Clearly, rn2,n1
γ ∈ ΓTn1

for all γ ∈ ΓTn2
.

In particular, this implies µn1
t = µn2

t for all t ∈ [0, Tn1
].
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4. for any n ∈ N, t ∈ [0, Tn], ϕ ∈ C0
C(Rd), we have∫

Rd
ϕ(x) dµ̃t =

∫∫
Rd×ΓTn

ϕ(γ(t))χSc(γ(t))(f0(x)− t) dηn(x, γ)

In this case we will say that µ̃ follows the family of mass-preserving trajectories
{µn}n∈N. Notice that, since we ask µ̃0(Rd) < +∞, then we can identify f0 with
µ̃0

µ̄
∈ L1

µ0
.

Remark 3. Definition 3.2 forces an admissible clock-function f0(·) to be bounded
below by the classical minimum time function T (·) of the underlying finite-dimensio-
nal differential inclusion with target S ⊆ Rd, in particular f0(x) ≥ T (x) for µ̄-a.e.
x ∈ Rd. This is necessary in order to keep nonnegative the measure µ̃t for all t ≥ 0.

Remark 4. By disintegration techniques we can prove that Definition 3.2 is well-
posed in the sense that item 4 defines a Radon measure µ̃t for all t ≥ 0.

Moreover, let µ̃ = {µ̃t}t∈[0,+∞[ ⊆ M +(Rd) be an admissible clock-trajectory
with clock-function f0, and let us call with {µn}n∈N := {{µnt }t∈[0,Tn]}n the family
of mass-preserving trajectories followed by µ̃. Then for all n ∈ N we have µ̃t � µnt
for all t ∈ [0, Tn] .

In the following example we provide a motivation for the study of our non-
interacting particles problem, describing an application in a recent interest research
topic among engineers and physicists communities.

Example 1. Let us consider a purifier filter, with cylindrical shape for simplicity,
with a polluted fluid flowing inside, without turbulence, in the direction of the axis
of the cylinder. Usually such kind of filters are constructed by overlapping of many
circular thin layers of different materials.

The initial measure µ0 represents the initial concentration of polluting substances
of the fluid on the first section of the filter. The multifunction F : R3 ⇒ R3

evaluated at a point x ∈ R3 of the filter is defined to be a ball with radius smoothly
dependent on x and it describes the filter’s action on any polluting particle crossing
position x.

This implies that the filter has a possibly non-homogeneous absorption power.
We stress that this action affects only contaminating particles of the fluid, which
are assumed to be unpolarized, small enough and with low concentration, thus -
with a good approximation - there are no interactions between them.

We associate also to the initial condition a function f0 : R3 → [0,+∞[, such
that f0(x) expresses the polluting power of the particles occupying the point x at
the beginning of the evolution. We assume the decreasing of the pollution power
to be linear w.r.t. time, thus the regions where the radius of the ball is smaller,
i.e., the regions where the polluting particles move slower, are the regions where the
absorption power is highest.

The aim is then to find the maximum initial level of polluting power (which is
the optimal clock-function f0) of the contaminating substances in the fluid to grant
that all the contaminating agents will be completely neutralized by the filter when
the fluid exits the cylinder. Notice that the worst case occurs when all the pollut-
ing particles follows a time-optimal trajectory for the underlying finite-dimensional
problem ruled by F (·), where the target set is the last section of the filter.
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3.1. Some results in a mass-preserving setting. In order to study the prob-
lem with mass loss, we will first discuss some approximation results for the mass-
preserving trajectories defined in Definition 3.1 on which our objects are built. For
later use we state the following technical lemma, whose proof can be found in [9].

Lemma 3.3 (Basic estimates). Assume (F0) and (F1), and let C be the constant as
in (F1). Let T > 0, p ≥ 1, µ0 ∈Pp(Rd) and µ = {µt}t∈[0,T ] be an admissible mass-

preserving trajectory driven by ν = {νt}t∈[0,T ] and represented by η ∈P(Rd×ΓT ).
Then we have:

(i) |et(x, γ)| ≤ (|e0(x, γ)|+CT ) eCT for all t ∈ [0, T ] and η-a.e. (x, γ) ∈ Rd×ΓT ;
(ii) et ∈ Lpη(Rd × ΓT ;Rd) for all t ∈ [0, T ];

(iii) there exists D > 0 depending only on C, T, p such that for all t ∈ [0, T ] we
have ∥∥∥∥et − e0

t

∥∥∥∥p
Lpη

≤ D (mp(µ0) + 1) ;

(iv) there exist D′, D′′ > 0 depending only on C, T, p such that for all t ∈ [0, T ] we
have

mp(µt) ≤ D′(mp(µ0) + 1),

mp(|νt|) ≤ D′′(mp+1(µ0) + 1).

In particular, we have µ = {µt}t∈[0,T ] ⊆Pp(Rd).

We get immediately the following result.

Corollary 1 (Uniform p-integrability). Assume hypothesis (F0), (F1). Let µ =
{µt}t∈[0,T ] be an admissible mass-preserving trajectory driven by ν = {νt}t∈[0,T ],

p > 1, and set vt(x) =
νt
µt

(x). Assume that mp(µ0) < +∞, then

∫ T

0

∫
Rd
|vt(x)|p dµt dt < +∞,

hence the assumptions of the Superposition Principle (see for example Theorem
8.2.1 in [2]) are satisfied.

Given N ∈ N, N > 0, consider a set of N agents moving along admissible
trajectories γi(·), i = 1, . . . , N of the differential inclusion ẋ(t) ∈ F (x(t)). We
want to associate to the evolution of such a system an admissible mass-preserving
trajectory keeping in mind that we are dealing with non-interacting particles/agents.

Proposition 2 (Finite embedding of classical admissible trajectories). Assume
hypothesis (F0). Let N ∈ N \ {0}, and consider a set of N admissible trajectories
{γi(·), i = 1, . . . , N} ⊆ ΓT of the differential inclusion ẋ(t) ∈ F (x(t)). For any
t ∈ [0, T ], we define the empirical measures

ηN (x, γ) =
1

N

N∑
i=1

δγi(0) ⊗ δγi ∈P(Rd × ΓT ),

µNt = et]η
N =

1

N

N∑
i=1

δγi(t) ∈P(Rd).



OPTIMAL SYNCHRONIZATION PROBLEM 285

Then µN = {µNt }t∈[0,T ] is an admissible mass-preserving trajectory driven by νN =

{νNt }t∈[0,T ] and represented by ηN for every N ∈ N, where νNt ∈ M (Rd;Rd) is
defined for a.e. t ∈ [0, T ] by

νNt =
1

N

N∑
i=1

γ̇i(t)δγi(t) ∈M (Rd;Rd).

Proof. For any ϕ ∈ C∞C (Rd) and for a.e. t ∈ [0, T ] we have

d

dt

∫
Rd
ϕ(x) dµNt =

1

N

N∑
i=1

d

dt
ϕ(γi(t)) =

1

N

N∑
i=1

〈∇ϕ(γi(t)), γ̇i(t)〉

=

∫
Rd
∇ϕ(x) d

(
1

N

N∑
i=1

γ̇i(t)δγi(t)

)
,

since the set in which γ̇i(t) exists for all i = 1, . . . , N has full measure in [0, T ].
Defining

νNt =
1

N

N∑
i=1

γ̇i(t)δγi(t) ∈M (Rd;Rd),

we obtain that µN = {µNt }t∈[0,T ] and νN = {νNt }t∈[0,T ] satisfy the continuity
equation

∂tµt + div νt = 0,

and |νNt | � µNt for a.e. t ∈ [0, T ]. We adopt now an Eulerian point of view: for
any Borel set B we are interested in the average speed of the agents which at time
t are inside B, i.e., for a.e. t ∈ [0, T ] we set

INB,t := {i ∈ {1, . . . , N} : γi(t) ∈ B},

and so if INB,t 6= ∅, we have

νNt (B)

µNt (B)
=

1

N

∑
i∈INB,t

γ̇i(t)

1

N

∑
i∈INB,t

1
=

1

|INB,t|
∑
i∈INB,t

γ̇i(t).

Fix now x ∈ Rd and ε > 0. Recalling that the set-valued map F is convex valued
and upper semicontinuous, there exists δ > 0 such that F (y) ⊆ F (x) + εB(0, 1) for
all y ∈ B(x, δ). In particular, if INB(x,δ),t 6= ∅

νNt (B(x, δ))

µNt (B(x, δ))
=

1

|INB(x,δ),t|
∑

i∈IN
B(x,δ),t

γ̇i(t) ∈ F (x) + εB(0, 1).

We have that INB(x,δ),t 6= ∅ for all δ > 0 if and only if x ∈ {γi(t) : i = 1, . . . , N}, i.e.,

if and only if x ∈ suppµNt . So for any x ∈ suppµNt , by taking the limit for δ → 0+

and then letting ε→ 0+, we have

νNt
µNt

(x) = lim
δ→0+

νNt (B(x, δ))

µNt (B(x, δ))
∈ F (x).

We thus obtain that µN = {µNt }t∈[0,T ] is an admissible mass-preserving trajectory

driven by νN = {νNt }t∈[0,T ] and represented by ηN for every N ∈ N.
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We consider now the limit of the above construction as N → +∞ in the case
p > 1.

Proposition 3 (Mean Field Limit). Assume hypothesis (F0) and (F1). Let {γi}i∈N
⊆ ΓT be a sequence of admissible trajectories of the differential inclusion ẋ(t) ∈
F (x(t)), p > 1. For any N ∈ N \ {0}, we define

ηN =
1

N

N∑
i=1

δγi(0) ⊗ δγi ∈P(Rd × ΓT ),

µNt = et]η
N =

1

N

N∑
i=1

δγi(t) ∈P(Rd) for all t ∈ [0, T ],

νNt =
1

N

N∑
i=1

γ̇(t)δγi(t) ∈M (Rd;Rd) for a.e. t ∈ [0, T ].

Assume that there exists C1 > 0 such that

lim
N→+∞

mp(µ
N
0 ) = sup

N→+∞
mp(µ

N
0 ) < C1.

Then there exist a sequence {Nk}k∈N such that Nk → +∞, η∞ ∈ P(Rd × ΓT ),
µ∞ = {µ∞t }t∈[0,T ] ⊆Pp(Rd), ν∞ = {ν∞t }t∈[0,T ], such that

a. ηNk ⇀∗ η∞;
b. Wp(µ

Nk
t , µ∞t )→ 0 for all t ∈ [0, T ];

c. νNkt ⇀∗ ν∞t for a.e. t ∈ [0, T ];
d. µ∞ is an admissible trajectory driven by ν∞ and represented by η∞;
e. for any closed set K ⊆ ΓT such that {γi}i∈N ⊆ K, we have that

suppη∞ ⊆ {(γ(0), γ) ∈ Rd × ΓT : γ ∈ K}.
We will say also that µ∞ is a mean field limit associated to {γi}i∈N ⊆ ΓT .

Proof. Thanks to Proposition 2, we can apply Lemma 3.3 to µN = {µNt }t∈[0,T ] and

νN = {νNt }t∈[0,T ], and we have that there exist D′, D′′ > 0 such that

mp(µ
N
t ) ≤ D′(mp(µ

N
0 ) + 1) ≤ D′(C1 + 1),

mp−1(|νNt |) ≤ D′′(C1 + 1).
(2)

Claim 1. The sequence {ηN}N∈N is tight, thus there exists a subsequence {ηNk}k∈N
and η∞ ∈P(Rd × ΓT ) such that ηNk ⇀∗ η∞.

It is enough to prove that {rj]ηN}N∈N, j = 1, 2, are tight, where r1 : Rd ×
ΓT → Rd and r2 : Rd × ΓT → ΓT are defined by r1(x, γ) = x and r2(x, γ) = γ.
Recalling Remark 5.1.5 in [2], it is enough to prove that there are two Borel functions
ψ1 : Rd → [0,+∞] and ψ2 : ΓT → [0,+∞] with compact sublevels such that

sup
N∈N

∫
Rd
ψ1(y) d(r1]η

N )(y) < +∞, sup
N∈N

∫
ΓT

ψ2(γ) d(r2]η
N )(γ) < +∞.

We set

ψ1(y) = |y|p, ψ2(γ) =


∫ T

0

|γ̇(t)|p dt, if γ ∈ ACp([0, T ]),

+∞, otherwise.
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We have that ψ2(·) has compact sublevels if p > 1. We recall that if γ̇(t) ∈ F ◦ γ(t)
for a.e. t, then by (F1) we have

|γ(t)| ≤ |γ(0)|+
∫ t

0

|γ̇(s)| ds ≤ |γ(0)|+ Ct+ C

∫ t

0

|γ(s)| ds,

and so by Gronwall’s inequality

|γ(t)| ≤ (|γ(0)|+ Ct)eCt.

Indeed, for all N ∈ N we have∫
Rd
ψ1(y) d(r1]η

N )(y) =

∫∫
Rd×ΓT

|x|p dηN (x, γ) = mp(µ
N
0 ) ≤ C1,∫

ΓT

ψ2(γ) d(r2]η
N )(γ) ≤

∫∫
Rd×ΓT

(∫ T

0

Cp(|γ(t)|+ 1)p dt

)
dηN (x, γ)

≤ TCp
∫
Rd

((|x|+ CT )eCT + 1)p dµN0 (x)

≤ TCp(eCTm1/p
p (µN0 ) + CTeCT + 1)p

≤ TCp(eCTC1/p
1 + CTeCT + 1)p,

which proves Claim 1. �
Claim 2. Set µ∞t = et]η

∞. Then µ∞ = {µ∞t }t∈[0,T ] ⊆Pp(Rd) and Wp(µ
Nk
t , µ∞t )

→ 0 as k → +∞ for all t ∈ [0, T ]. Moreover, for a.e. t ∈ [0, T ] the sequence
{νNt }N∈N is tight, thus up to a non relabeled subsequence, it weakly∗ converges to a
measure ν∞t ∈M (Rd;Rd).

Since the map et : Rd × ΓT → Rd is continuous, we have that

µNkt = et]η
Nk ⇀∗ et]η

∞ = µ∞t , for all t ∈ [0, T ].

All the other assertions follow from the fact that the moments of µNt are uniformly
bounded for N ∈ N and t ∈ [0, T ], also the tightness of {νNt }N∈N follows from 2. �
Claim 3. µ∞ is an admissible trajectory driven by ν∞ = {ν∞t }t∈[0,T ].

Notice that the functionals

(µ,ν) 7→


∫ T

0

∫
Rd

[∣∣∣∣ νtµt (x)

∣∣∣∣p + IF (x)

(
νt
µt

(x)

)]
dµt(x) dt, if |νt| � µt for a.e. t,

+∞, otherwise,

(µ,ν) 7→ sup
ϕ∈C1

C([0,T ]×Rd)

∫ T

0

(∫
Rd
∂tϕdµt +

∫
Rd
∇ϕdνt

)
dt,

are l.s.c. w.r.t. a.e. pointwise weak∗ convergence of measures (see Lemma 2.2.3, p.
39, Theorem 3.4.1, p.115, and Corollary 3.4.2 in [7] or Theorem 2.34 in [1]). Then
we have that the equation

∂tµ
∞
t + div ν∞t = 0

holds in the sense of distributions, and for a.e. t ∈ [0, T ] we have |ν∞t | � µ∞t ,
ν∞t
µ∞t

(x) ∈ F (x) for µ∞t -a.e. x ∈ Rd with
ν∞t
µ∞t

(x) ∈ Lpµ∞t . �

Consider now the last assertion to be proved. Let (x, γ) ∈ suppη∞. By Propo-
sition 5.1.8 in [2] there exists a sequence {γ̂k}k∈N ∈ ΓT such that (γ̂k(0), γ̂k) ∈
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suppηN for all N ∈ N and ‖γ̂k − γ‖∞ → 0. By definition of ηN we have γ̂k = γjk
for an index 0 < jk ≤ N , and so {γ̂k}k∈N ⊆ K, thus γ ∈ K.

Remark 5. We notice that the tightness of {µNt }N∈N holds also in the case p = 1
by (2).

The following result provides us with the possibility to construct an admissible
mass-preserving trajectory µ := {µt}t∈[0,T ], i.e., a curve in P(Rd) that satisfies a
continuity equation with velocity field that is an Lpµt-selection of the multifunction
F , by constructing it on admissible trajectories of the finite-dimensional system of
characteristics in a consistent way.

Corollary 2. Assume hypothesis (F0) and (F1). Let p > 1, K ⊆ Rd be closed,
f ∈ C0(Rd; [0, T ]).

1. For any sequence {γi}i∈N of admissible trajectories of the differential inclusion
ẋ(t) ∈ F (x(t)) satisfying

lim
N→+∞

1

N

N∑
i=1

|γi(0)|p < +∞, γi(f(γi(0))) ∈ K for all i ∈ N,

we have that all the corresponding mean field limits µ∞ are represented by
measures η∞ such that γ is an admissible trajectory of the differential in-
clusion satisfying γ(f(γ(0))) = γ(f(x)) ∈ K and γ(0) = x, for η∞-a.e.
(x, γ) ∈ Rd × ΓT .

2. For any µ ∈ Pp(Rd) such that for µ-a.e. x ∈ Rd there exists an admissible
trajectory for the finite-dimensional system γ̇(t) ∈ F (γ(t)) satisfying γ(0) =
x and γ ◦ f(x) ∈ K, there exist µ = {µt}t∈[0,T ] and η such that µ is an
admissible mass-preserving trajectory represented by η with µ0 = µ, and γ is
an admissible trajectory of the differential inclusion satisfying γ(f(γ(0))) =
γ(f(x)) ∈ K and γ(0) = x, for η-a.e. (x, γ) ∈ Rd × ΓT .

Proof. For the first assertion is enough to notice that the set

K := {γ ∈ ΓT : γ(f(γ(0))) ∈ K}

is closed in ΓT and then apply Proposition 3. For the second assertion, we have

that there exists a sequence of compact sets {Cj}j∈N such that µ(Rd \ Cj) ≤
1

j
for

all j ∈ N \ {0}. Set

µj(B) =
1

µ(Cj)
µ(B ∩ Cj) ∈P(Rd),

clearly µj ⇀
∗ µ and mp(µj) → mp(µ) as j → +∞ by Dominated Convergence

Theorem, thus Wp(µj , µ) → 0. There exists {xi,j}i,j∈N such that xi,j ∈ Cj for all
i, j ∈ N and

µk,j0 =
1

k

k∑
i=1

δxi,j ⇀
∗ µj , as k → +∞.

Since suppµk,j0 ⊆ Cj and suppµj ⊆ Cj , we have also mp(µ
k,j
0 ) → mp(µj) as k →

+∞. For any j ∈ N, let kj ∈ N be such that

mp(µ
kj ,j
0 ) ≤ mp(µj) +

1

j
and Wp

(
µ
kj ,j
0 , µj

)
≤ 1

j
.
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In particular, we have Wp

(
µ
kj ,j
0 , µ

)
≤ 1

j
+Wp (µ, µj)→ 0+ as j → +∞, and so

sup
j∈N

mp(µ
kj ,j
0 ) < +∞.

Consider the countable set of points {xi,j : i = 1, . . . , kj , j = 1, . . . ,∞}. We can
order it by stating that (i, j) < (i′, j′) if either j < j′ or j = j′ and i < i′, thus we
obtain the sequence of points {xh}h∈N. By assumption, for each h ∈ N there exists
γh ∈ ΓT admissible trajectory of the differential inclusion satisfying γh(0) = xh and
γh ◦ f(xh) ∈ K. We then apply item 1 to this sequence to conclude the proof.

Remark 6. The assumption f ∈ C0(Rd) of the previous corollary can be weakened
by assuming that f(·) is continuous at x for µ0-a.e. x ∈ Rd or, equivalently, that
the set of discontinuities of f(·) are contained in a µ0-negligible closed set.

4. A time-optimal control problem with mass loss. We state now a time-
optimal control problem in the space of positive finite Borel measures for a non-
isolated case using the definition of clock-trajectory given in Definition 3.2.

From now on, we will consider only closed, nonempty and strongly invariant
target sets for our dynamics.

Definition 4.1 (Clock-generalized minimum time). Let F : Rd ⇒ Rd be a set-
valued function, S ⊆ Rd be a target set for F . In analogy with the classical case,
we define the clock-generalized minimum time function τ : P(Rd) → [0,+∞] by
setting

τ(µ0) := inf
{
µ̃0(Rd) : µ̃ := {µ̃t}t∈[0,+∞[ ⊆M +(Rd) is an admissible clock-

-trajectory for the measure µ0, µ̃|t=0 = µ̃0

}
,

where, by convention, inf ∅ = +∞.
Given µ0 ∈P(Rd) with τ(µ0) < +∞, an admissible clock-curve µ̃ = {µ̃t}t∈[0,+∞[

⊆M +(Rd) for µ0 is optimal for µ0 if

τ(µ0) = µ̃|t=0(Rd).
Given p ≥ 1, we define also a clock-generalized minimum time function τp :

Pp(Rd) → [0,+∞] by replacing in the above definitions P(Rd) by Pp(Rd) and
M +(Rd) by M +

p (Rd). Since M +
p (Rd) ⊆M +(Rd), it is clear that τp(µ0) ≥ τ(µ0).

The main task of this section is to prove a Dynamic Programming Principle
for our minimization problem. In Theorem 4.4, we will see how to construct an
optimal-clock trajectory by approximation techniques, in particular by using Lusin’s
theorem and Corollary 2. This result will allow us to express τ(µ) as an average of
the classical minimum-time function T (·).

The following extension lemma will be used.

Lemma 4.2 (Extension). Assume hypothesis (F0) and (F1). Let p > 1 and µ0 ∈
Pp(Rd). Let T > 0 and µ̄ = {µ̄t}t∈[0,T ] be an admissible mass-preserving trajectory

driven by ν̄ = {ν̄t}t∈[0,T ] and represented by η̄ ∈ P(Rd × ΓT ), with µ̄|t=0 = µ0.
Then there exist a sequence {Tn}n∈N ⊆ [0,+∞[, Tn ≥ T for all n ∈ N, Tn → +∞
and a family of admissible mass-preserving trajectories {µn}n∈N, µn = {µnt }t∈[0,Tn],
driven by {νn}n∈N, such that given n1, n2 ∈ N with Tn1

≤ Tn2
, we have µn1

t = µn2
t

for all t ∈ [0, Tn1 ], and there exists a sequence {ηn}n∈N such that ηn represents
{µnt }t∈[0,Tn].
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Proof. For any ε > 0, let us define by induction an increasing sequence {Tn}n∈N
such that Tn → +∞. Take T0 := T , and suppose to have defined Ti, i ≥ 0. Then
Ti+1 := Ti + ε, for all i ∈ N.

We can define by induction the family {µn}n∈N, µn := {µnt }t∈[0,Tn] and the

family {νn}n∈N, νn := {νnt }t∈[0,Tn], in the following way. We take µ0 = µ̄, ν0 = ν̄.

Let us suppose to have defined µi = {µit}t∈[0,Ti], ν
i = {νit}t∈[0,Ti], i ≥ 0. Then, for

any i ∈ N we define µi+1, νi+1 as follows. Consider a continuous selection vi+1 of
F and a solution {µ̂i+1

t }t∈[0,ε] of{
∂tµt + div vi+1µt = 0,

µ|t=0 = µiTi

By setting

µi+1
t :=


µit, for 0 ≤ t < Ti,

µ̂i+1
t−Ti , for Ti ≤ t ≤ Ti + ε = Ti+1,

νi+1
t :=


νit , for 0 ≤ t < Ti,

vi+1µ̂i+1
t−Ti , for Ti ≤ t ≤ Ti + ε = Ti+1,

then by gluing results (see Lemma 4.4 in [15]) we obtain an admissibile trajectory
µi+1 = {µi+1

t }t driven by νi+1 = {νi+1
t }t which is defined on [0, Ti+1] and agrees

with µi on [0, Ti]. The last assertion follows from the Superposition Principle (see for
example Theorem 8.2.1 in [2]) on the family of admissible trajectories {µnt }n∈N.

Lemma 4.3. Assume (F0) and (F1). Let S ⊆ Rd be a target set for F . Let p > 1,
µ0 ∈Pp(Rd), with suppµ0 ⊆ Rd \ S, be such that T̄ := ‖T (·)‖L∞µ0 < +∞. Then for

any ε > 0 there exists a compact subset Kε ⊆ suppµ0 with µ0(Rd \Kε) < ε and an

admissible clock-trajectory µ̃ε = {µ̃εt}t∈[0,+∞[ for µε0 :=
µ0|Kε

|µ0|Kε |
with target S and

with continuous clock-function which coincides with T (·) on Kε.

Proof. By Lusin’s theorem, since µ0(Rd) < +∞ and T : Rd → [0,+∞] is an
essentially bounded Borel function, for any ε > 0 there exists a compact setKε ⊆ Rd
with µ0(Rd \Kε) < ε such that T|Kε is continuous.

We can consider Kε ⊆ suppµ0 and by Tietze theorem there exists an extended
continuous function T ε : Rd → [0, T̄ ] such that T ε|Kε ≡ T|Kε .

We take f(·) = T ε(·) in Corollary 2 with T = T̄ and with K = S, obtaining an
admissible mass-preserving trajectory starting by µε0 represented by ηε ∈P(Rd ×
ΓT̄ ) satisfying γ(T ε(x)) ∈ S for ηε-a.e. (x, γ) ∈ Rd × ΓT̄ .

We can use Lemma 4.2 to construct a sequence {Tn}n∈N, Tn ≥ T̄ , Tn → +∞,
and an extended family of admissible mass-preserving trajectories represented by
{ηε,n}n∈N ⊆P(Rd × ΓTn) satisfying γ(T ε(x)) ∈ S for ηε,n-a.e. (x, γ) ∈ Rd × ΓTn .
In particular, by the strongly invariance of S, we have that if T ε(x) < t ≤ Tn then
χSc(γ(t)) = 0. Thus χSc(γ(t))(T ε(x) − t) ≥ 0 for all t ∈ [0, Tn] and ηε,n-a.e.
(x, γ) ∈ Rd × ΓTn . Then we can construct by definition an admissible clock-
trajectory following the family of admissible mass-preserving trajectories repre-
sented by {ηε,n}n∈N and with clock-function T ε(·).
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Theorem 4.4 (Existence of optimal clock-trajectories). Assume (F0) and (F1).
Let S ⊆ Rd be a target set for F . Let p > 1, µ ∈ Pp(Rd), with suppµ ⊆ Rd \ S,
be such that T̄ := ‖T‖L∞µ < +∞. Then there exists an admissible clock-trajectory

µ̃ = {µ̃t}t∈[0,+∞[ for µ with target S and with clock-function which coincides with

T (x) for µ-a.e. x ∈ Rd.

Proof. Let {Tn}n∈N ⊆ [0,+∞[, Tn ≥ T̄ for all n ∈ N, Tn → +∞. Fix ε > 0

and consider the sequence {εk}k∈N, with εk :=
ε

2k
. We define now by induction

sequences of compact sets {Kk}k∈N, of Borel sets {Bk}k∈N, of continuous functions
{T k(·)}k∈N and of probability measures {ηk,n}k,n∈N ⊆P(Rd × ΓTn) as follows.

Take K0 := Kε0 ⊆ suppµ, B0 := K0, µ0 := µε0 ∈ Pp(Rd), T 0(·) := T ε0(·) and
{η0,n := ηε0,n}n∈N ⊆P(Rd × ΓTn) as in Lemma 4.3 with ε = ε0 and µ0 = µ.

Suppose now to have defined analogously Ki ⊆ suppµ, Bi, µi ∈ Pp(Rd), T i(·)
and {ηi,n}n∈N ⊆P(Rd × ΓTn) for i = 0, . . . , k − 1.

We choose now Kk, µk, T k(·) and {ηk,n}n∈N ⊆ P(Rd × ΓTn) as in Lemma 4.3
with ε = εk and

µ0 =
µ|Rd\

⋃k−1
i=0 K

i

|µ|Rd\⋃k−1
i=0 K

i |
.

We define Bk = Kk \
⋃k−1
i=0 K

i, for k ≥ 1. Notice that {Bk}k∈N is a family of
pairwise disjoint Borel sets such that

µ

(
Rd \

+∞⋃
k=0

Bk

)
= 0.

For any k ∈ N, let {µk,n}n∈N, µk,n := {µk,nt }t∈[0,Tn], be the family of admis-

sible mass-preserving trajectories represented by {ηk,n}n∈N and vkt (·) be the cor-
respondent velocity field. For any k, n ∈ N, ηk,n is concentrated on the pairs
(x, γ) ∈ Rd × ΓTn where γ is an absolutely continuous solution of the following
characteristic system{

γ̇(t) = vkt (γ(t)), for a.e 0 < t ≤ Tn
γ(0) = x ∈ suppµk.

For any n,M ∈ N, we define

ηnM :=

M∑
k=0

µ(Bk)∑M
j=0 µ(Bj)

ηk,n ∈P(Rd × ΓTn),

µnt,M := et]η
n
M =

M∑
k=0

µ(Bk)∑M
j=0 µ(Bj)

µk,nt ∈P(Rd) for all t ∈ [0, Tn].

Claim 1. for all M ∈ N, {µnM}n∈N, µnM = {µnt,M}t∈[0,Tn], is a family of admissible

mass-preserving trajectories represented by {ηnM}n∈N.

By definition, for all n ∈ N, ηnM is concentrated on the pairs (x, γ) ∈ Rd × ΓTn
where γ is an absolutely continuous solution of the following characteristic system{

γ̇(t) = vkt (γ(t)), for a.e 0 < t ≤ Tn
γ(0) = x,

for µk-a.e. x ∈ Rd, k ∈ [0,M ].
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Let us fix M ≥ 0 and observe that the set N of (t, x, γ) ∈ [0, Tn]× Rd × ΓTn for
which γ(0) 6= x or γ̇(t) does not exists or γ̇(t) /∈ F (γ(t)) is L 1 ⊗ ηnM -negligible.
Indeed, let us call with η̃nM a convex combination of N Dirac deltas concentrated
in points belonging to suppηnM . We have that η̃nM ⇀∗ ηnM , N → +∞, hence L 1⊗
η̃nM ⇀∗ L 1⊗ηnM . By construction, L 1⊗η̃nM (N ) = 0, indeed N ∩supp

(
L 1 ⊗ η̃nM

)
is a finite union of sets with zero measure w.r.t. L 1⊗ η̃nM . Thus, L 1⊗ηnM (N ) = 0,
and by projection on the first component, we have that γ̇(t) ∈ F (γ(t)) for ηnM -a.e.
(x, γ) ∈ Rd × ΓTn and a.e. t ∈ [0, Tn]. For a.e. t ∈ [0, Tn] we disintegrate ηnM w.r.t.
et : Rd × ΓTn → Rd, obtaining ηnM = µnt,M ⊗ ηnt,y (see Theorem 5.3.1 in [2]), hence

d

dt

∫
Rd
ϕ(x) dµnt,M (x) =

∫∫
Rd×ΓTn

∇ϕ(γ(t)) · γ̇(t) dηnM (x, γ)

=

∫
Rd

∫
e−1
t (y)

∇ϕ(γ(t)) · γ̇(t) dηnt,y(x, γ) dµnt,M (y)

=

∫
Rd
∇ϕ(y) ·

∫
e−1
t (y)

γ̇(t) dηnt,y(x, γ) dµnt,M (y),

For all n ∈ N we define vnM = {vnt,M}t∈[0,Tn] by setting for a.e. t ∈ [0, Tn]

vnt,M (y) =

∫
e−1
t (y)

γ̇(t) dηnt,y(x, γ).

In order to conclude that µnM is an admissible trajectory driven by νnM := {νnt,M :=

vnt,Mµ.t,M}t∈[0,Tn], it is enough to show that∫
e−1
t (y)

γ̇(t) dηnt,y(x, γ) ∈ F (y)

for µnt,M -a.e. y ∈ Rd and a.e. t ∈ [0, Tn]. This follows from Jensen’s inequality,
since

IF (y)

(∫
e−1
t (y)

γ̇(t) dηnt,y(x, γ)

)
≤
∫
e−1
t (y)

IF (y)(γ̇(t)) dηnt,y(x, γ) = 0. �

Claim 2. For all n ∈ N, the sequence {ηnM}M∈N is tight, thus there exists a
subsequence {ηnMi

}i∈N, Mi → +∞, and ηn ∈P(Rd × ΓTn) such that ηnMi
⇀∗ ηn.

We notice that

1. for all n ∈ N, the sequence {µn0,M}M∈N, with

µn0,M =

M∑
k=0

µ(Bk)∑M
j=0 µ(Bj)

µk,n|t=0 =

M∑
k=0

µ(Bk)∑M
j=0 µ(Bj)

µk,

is tight by construction, hence by Prokhorov’s theorem it admits a limit point
µn0 ∈P(Rd) such that, up to a non relabeled subsequence, we have

µn0,M ⇀∗ µn0 =

∞∑
k=0

µ(Bk)µk, for M → +∞,

and we can write µn0 = µ.
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2. mp(µ
n
0,M ) ≤ mp(µ) for all n,M ∈ N. Indeed, for any ε > 0 it is possible to

choose the sets Bk such that
∑M
k=0 µ(Bk) > 1 − ε for all M ∈ N, hence we

have

mp(µ
n
0,M ) =

M∑
k=0

µ(Bk)∑M
j=0 µ(Bj)

∫
Rd
|x|p dµk(x)

≤ 1∑M
j=0 µ(Bj)

∞∑
k=0

µ(Bk)

∫
Rd
|x|p dµk(x) ≤ 1

1− ε
mp(µ),

by letting ε→ 0+ we obtain mp(µ
n
0,M ) ≤ mp(µ) for all n,M ∈ N.

Then the proof follows the same argument used in the proof of Claim 1 of Propo-
sition 3, with {ηN}n∈N = {ηnM}M∈N, T = Tn, µN0 = µn0,M and C1 = mp(µ). �

Claim 3. For all n ∈ N, set µnt := et]η
n. Then µn = {µnt }t∈[0,Tn] ⊆ Pp(Rd)

and there exists a sequence {Mi}i∈N, Mi → +∞, such that Wp(µ
n
t,Mi

, µnt ) → 0 as

i → +∞ for all t ∈ [0, Tn]. Moreover, for a.e. t ∈ [0, Tn] the sequence {νn,Mt }M∈N
is tight, thus up to a non relabeled subsequence, it weakly∗ converges to a measure
νnt ∈M (Rd;Rd).

We can use the same argument as the one adopted in the proof of Claim 2 of
Proposition 3, with T = Tn, µN = µnM , ηN = ηnM , νN = νnM µ∞ = µn, η∞ = ηn,
and ν∞ = νn. Notice that, thanks to Claim 1, we can apply Lemma 3.3 to µnM
and νnM and obtain the uniform estimates (2) with C1 = mp(µ). �
Claim 4. Set µn = {µnt }t∈[0,Tn] and νn = {νnt }t∈[0,Tn], then µn is an admissible
mass-preserving trajectory starting from µ, driven by νn and represented by ηn.

The proof follows the same line of the proof of Claim 3 in Proposition 3, with
the same correspondence of objects described above. �

To conclude the proof, we can define f0 : Rd → [0,+∞], by setting

f0(x) :=

+∞∑
k=0

χKk(x)T k(x),

which is a Borel function satisfying f0(x) = T (x) for µ-a.e. x ∈ Rd, and finally,
following Definition 3.2 it is possible to construct an admissible clock-trajectory for
µ with clock-function f0(·) which follows the family of admissible mass-preserving
trajectories {µn}n∈N.

Now we can deduce the following dynamic programming principle.

Corollary 3 (DPP for the clock problem). Assume hypothesis (F0) and (F1). Let
S ⊆ Rd be a target set for F . Let p > 1 and µ0 ∈ Pp(Rd), with suppµ0 ⊆ Rd \ S,
be such that ‖T (·)‖L∞µ0 < +∞. We have

τp(µ0) =

∫
Rd
T (x) dµ0(x).

Let µ̃ = {µ̃t}t∈[0,+∞[ be an admissible clock-trajectory for µ0 following a family of
admissible mass-preserving trajectories {µn}n∈N starting from µ0. For any s ≥ 0
we choose n > 0 such that µn is defined on an interval [0, Tn] containing s and it
is represented by ηn ∈P(Rd × ΓTn). Then we have

τp(µ0) =

∫∫
Rd×ΓTn

T (γ(0)) dηn ≤
∫∫

Rd×ΓTn

[T (γ(s)) + s] dηn ≤ s+ τp(µ
n
s ).
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Moreover, if ηn is concentrated on (restriction to [0, Tn] of) time-optimal trajecto-
ries, then for all s ≥ 0 such that suppµns ⊆ Rd \ S, we have

τp(µ0) = s+ τp(µ
n
s ),

and so for such s ≥ 0 we have

τp(µ0) = inf
µ
{s+ τp(µs)} ,

where the infimum is taken on admissible mass-preserving trajectories µ =
{µt}t∈[0,s] satisfying µt=0 = µ0.

The proof is a direct consequence of Theorem 4.4, of the classical Dynamic Pro-
gramming Principle for T (·) and Remark 3.

Remark 7. Under the assumptions of Theorem 4.4, if µ ∈ Pp(Rd) we have that

τp(µ) = ‖T (·)‖L1
µ
≤ ‖T (·)‖L∞µ = T̃p(µ), where with T̃p(·) we denote the generalized

minimum time function analyzed in [9, 10, 11, 12] for the mass-preserving case,
and where we are considering the special case in which the generalized target set is
S̃ = {σ ∈P(Rd) : suppσ ⊆ S}.
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