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ABSTRACT. We consider the initial boundary value problem for the phase tran-
sition traffic model introduced in [9], which is a macroscopic model based on a
2 x 2 system of conservation laws. We prove existence of solutions by means of
the wave-front tracking technique, provided the initial data and the boundary
conditions have finite total variation.

1. Introduction. This paper deals with the initial boundary value problem for the
phase transition model introduced in [9], consisting of the following 2 x 2 system of
conservation laws:

Op+ 0z (pu(p,m) =0
{ 9+ 0z (nv(p,m)) =0 (1.1)

)

where p is the traffic density, 7 is a generalized momentum and v = v(p,n) is the
speed. This system is non-smooth since v(p,n) = min {Vmax, %w(p) is not a C*

function; Viyax is a uniform bound on the speed and % is a decreasing function.

The system in belongs to the class of macroscopic second order traffic
models, see [3, 23], and it is characterized by two different phases: the Free one
and the Congested one. A peculiarity of 2—phases models is the existence of a
free regime where the single density characterizes the state of the system, while in
congested regime it is necessary the use of two variables. Thus, in the free phase
the model reduces to a single conservation law, the classical Lighthill-Whitham [20]
and Richards [22] (LWR) model, where the speed is constantly equal to Viax, while
in the congested phase the model is a strictly hyperbolic system of two conservation
laws, see Section 2] In 2002, Colombo proposed the first second order model with
two phases, see [0 [7]. For other 2—phases and phase transition models see [4} [8]
17, 19} [21].

In this paper we consider an initial boundary value problem for the model in
and we prove existence of solutions, provided the initial data and the boundary
conditions have finite total variation. More precisely, we fix a,b € R with a < b and
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we consider the following problem:

Op+ 0y (pu(p,m) =0 .
{ am + 0. (nv(p.m) = 0 if z € (a,b),t >0,
(p,n) (t,a) = (pa(t),ma(t))  if ¢ >0, (1.2)
(p,)( b) = (pp(t),m(t))  ift >0,
(p;m) (0,2) = (po(z )770( ) ifz € (ab).

The initial datum is (po,7n0) : (a,b) — F U C and the boundary conditions are
(Pasqa) : (0,400) = FUC and (pp,qp) : (0,400) = FUC. The sets F' and C,
respectively the free and the congested phase, will be defined in the next section.

In [12] Garavello considered an IBVP for the phase transition model introduced
in [4]. We remark here that the model in [J], considered in this paper, and that
one in [], although similar, are different. Indeed Riemann problems for the two
systems are solved, in general, in a different way and with a different number of
waves. Another difference relies in the derivation: the model in [4] is based on the
two phases, the free and the congested, while in [9] the two phases are a consequence
of the model by imposing the speed limit Vi,.x, see Remark

In this paper we use the wave front tracking technique, that is we explicitly
construct a piecewise constant approximate solution, we prove that there exists an
uniform bound on a functional measuring the strength of the waves and then, we
conclude with the existence of a solution obtained by a compactness argument. We
remark that, as in [I2], the phase transition system with boundary considered in this
paper is characteristic, since there are phase transitions waves with zero speed. In
general, as usual in conservation laws, imposing characteristic boundary conditions
is a delicate topic, see [T} 2, [1T] and Remark

The paper is organized as follows: in the next section we briefly recall the phase
transition traffic model introduced in [9]. In Section [3| following the approach
n [I2], we state and prove the main result concerning the boundary value problem;
the proof is divided into three different subsections.

2. Description of the phase transition model. We recall at first the phase
transition model introduced in [9]. This model has been derived as an extension of
the LWR model, given by the following single conservation law:

Bip+ 0y (pV) =0, (2.1)

where p is the traffic density and V = V (¢, x, p) is a general speed. We assume that
V = w(p), where 9 is a decreasing function and w = w(¢, x) is the maximal speed
of each driver. Moreover, introducing a uniform bound V., on the speed, we get
the following system:

Op + 0z (pv) =0
{ drw+vd,w=0, (2.2)

where v = min {Viyax, w(p)}. Note that the maximal speed w is a peculiar char-
acteristic of , being a specific feature of every single driver. With the change
of variable n = pw we get the system in , where the conserved variables are p
and 7.

As in [9, [T4], we recall the following assumptions:

(H-1): R, W, W, Vipax are positive constants, with Vi < w0 < .

(H-2): ¢ € C2([0, R];[0,1]) is such that ¥ (0) = 1, ¥»(R) = 0, and, for every

p € [0,R], ¥'(p) <0, 5 (p1(p)) <0
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FIGURE 1. The free phase F' and the congested phase C resulting
from (1.1)) in the coordinates, from left to right, (p,n) and (p, pv).

(H-3): n9/(p) + 1(p) < 0, for every (p,n) € C.
Here, R is the maximal possible density, typically R = 1; w, respectively, w, is
the minimum, respectively, maximum, of the maximal speeds of each vehicle. The
latter condition means that waves of the first family in the congested phase C' have
negative speed.

In , the two phases, free and congested, are described by the sets

Fo= {(p,w) € [0, R] x [w,@]: v(p, pw) = Vinax} (2.3)

C = Alp,w) €[0,R] x [w,w]: v(p, pw) = wp(p)} , (2.4)

represented in Figure Note that F' and C are closed sets and F N C # . Note

also that F' is a one-dimensional manifold in the (p, pv) plane of the fundamental
diagram, while it is a two-dimensional manifold in the (p,7n) coordinates.

We remark that, in the free phase F, the model (|1.1)) reduces to the degenerate
linear system

atp + aﬁv (P Vmax) =0
{ 8tn + 81, (anax) - 07 (25)
while, in the congested phase C, it is given by
Op+ 0z (np(p)) =0
2 (2.6)
om+ 0, (L 6(p)) =0.

We recall also the eigenvalues, right eigenvectors, and Lax curves n = L;(p; po, o)

in C:

Ai(p,n) = nv{'(p) +v(p,n), A2(p,m) = v(p,m),
(o.1) [‘p] (o.1) [ ' ]

ri\p,n) = ) ro(p,n) = 1 w/() 9
_2’7 N (E ) )
d

VAL = —dfpg[Pw(P)]a Vg 19 =0,

U 0 o
L1(p; po,No) = nopﬁ, Lo(p; po,No) = pf/ip)n)7 po < R.

When p, = R, the 2-Lax curve through (p,,7,) is the segment p = R, n € [Rw, Ri].
Finally, we list the waves and the notations that we will use in the present paper.
e First family wave: a wave connecting a left state (p;,7;) € C with a right

state (p,,n,) € C such that % = %
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e Second family wave: a wave connecting a left state (p;, ;) € C with a right
state (pr,nr) € C such that v (o1, m) = v (pr, nr)-

e Linear wave: a wave connecting two states in the free phase.

e Phase transition wave: a wave connecting a left state (p;,n;) € F with a right

state (pr,n-) € C satisfying % = %

Remark 1. We remark hare that model 7 considered in this paper, and that
one in [4], although similar, are different.

Both models are described by two intersecting phases: the free phase and the
two-dimensional congested phase. Note however that, in the model the free
phase is two-dimensional in the conserved quantity coordinates (p, 7).

The main diffference lies in the solution of the Riemann problem, in particular
when the left state belongs to the free phase and the right state to the congested
one. In this case the Riemann problem for model is solved with at most two
waves, while the Riemann problem for the model considered in [4] is solved with at
most three waves. See [I3, Proposition 3.1, Proposition 3.2].

Also the derivation of the two models is completely different: the construction
of the model in [4] is done imposing a priori two phases, the free and the congested

one, while in [9] the two phases are obtained as a consequence of the speed limit
‘/ﬂ'laX'

3. Main result. Before stating the main result, we introduce the definition of
solution to the initial boundary value problem (1.2]).

Definition 3.1. The function
(p*,n") € C° ([0, +00[; L*((a,b); FUC))

is a solution to (1.2) if
1. the function (p*,n*) is a weak solution to (1.1), for (¢,z) € (0,400) x (a,b);
2. for a.e. t > 0, the function x — (p*(t, z),n* (¢, x)) has bounded total variation;
3. for a.e. t > 0, the Riemann problem

{ O+ 0y (pu(p,m) =0
9+ 9z (nv(p,n)) =0

(pasna) (t) ifex<a
(psm) (0, ) :{ (g*,;’*)(t,aﬂ if 2> a

if r>0,7€R,

admits a self similar solution (p,#) such that, for a.e. 7 > 0,

(A1) (1 a+) = (p7,07) (¢, at).
4. for a.e. t > 0, the Riemann problem

{ 9p+ 0z (pv(p,m) =0
on + 0z (nv(p,m)) =0

(") (t.b=)  ifx <b
(p,m) (0,:1:){ (,ﬁb’Zb) (t) ifr>b

admits a self similar solution (p,7) such that, for a.e. 7> 0,
(ﬁ? 77) (7—7 b_) = (P*» 77*) (t’ b_)'
5. (p*(0,2),7*(0,z)) = (po(x),no(x)), for a.e. x € (a,b).

if >0,z €R,
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Remark 2. The boundaries treated in this paper are characteristic, since there are
phase transition waves with zero speed. Conditions 3 and 4 of Definition are
exactly the same as the boundary condition in the characteristic case in [IJ.

We can now state the main result of the paper:

Theorem 3.2. Let assumptions (H-1), (H-2) and (H-3) hold. Fix the initial
condition (pg,m0) € BV((a,b); F U C) and the boundary data (pa,na), (Po, M) €
(BVNLY) ((0,+00); FUC). Assume that po(x) > C a.e. = € (a,b) and py(t) >
C,pp(t) > C ae. t >0 for some C > 0. Then there exists (p*,n*), a solution
to in the sense of Definition ,

The proof is contained in the following subsections.

3.1. Wave-front tracking approximate solution. In this subsection we con-
struct piecewise constant approximations via the wave-front tracking algoritm, which
is a set of techniques to obtain approximate solutions to hyperbolic conservation
laws in one space dimension. These tools were first introduced by Dafermos [10],
see also [B], 18] for the general theory. We show that every limit point is indeed
a solution of the differential problem. The key estimate for compactness of the
approximated solutions is a uniform bound of a functional measuring the strength
of waves.

At first, we give the following definition of an e-approximate wave-front tracking

solution to (1.2).

Definition 3.3. Given € > 0, the map 4. = (pe, 77 ) is an e-approximate wave-front
tracking solution to if there exist Ug.c = (PaesTa,e) a0d Upe = (Pb,e, Tp,e) Such
that the following conditions hold.
1. 4. € C°((0,400); L*((a,b); FUC)) and @, Up,e € L ((0,+00); F UC).
2. (pe,7Me) is picewise constant, with discontinuities along finitely many straight
lines in (0, 400) X (a,b). Moreover the jumps can be of the first family, of the
second family, linear waves or phase transition waves.

3. Ugq, and 1 are piecewise constant with a finite number of discontinuities.
4. It holds that

[[(P=(0, ), 7=(0,-)) = (po()s o (Dl (apy < €
1(Pa,es Ta,e) = (Pas Ma) I (0,4 00) < €
| (Pb,es Tb,c) — (Pbmb)HLl(o o) €

TV (p=(0,-),7:(0,-)) < TV (po(-),m0(-))
TV (Pa,e; Nae) < TV (pa,ma)

v (Pb s Mo, s) <TV (pb, ’I]b) .

5. It holds that, for a.e. £ > 0, the Riemann problem with initial condition
(pa,sv na,s) (t) ifz<a
(ﬁaﬁe) (t7a+) ifz>a

is solved with waves with negative speed.
6. It holds that, for a.e. ¢t > 0, the Riemann problem with initial condition

(ﬁeaﬁa) (t, b—) ifxz<b
(Poesmpe) (1) ifz>b
is solved with waves with positive speed.
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We consider now three sequences (00,1, 70.), (Pa,v, Ma,r) and (pp.,mp,.) of piece-
wise constant functions with a finite number of discontinuities such that the follow-
ing conditions hold.

L. (pow,mo.w) : (a,0) = FUC and (pa,v;sNaw)s (Pow,Mow) : (0,+00) = FUC;

2. the following limits hold

lim (po,,70,0) = (Po,70) in L*((a,b); FUC)

v—+o00

m (pa,wsMaw) = (Pas7a) in L((0, +00); FUC)
v—4o00

Um (ppusmew) = (po,m)  in LY((0,400); FUC);
v——4o00

3. the following inequalities hold

TV (po,usm0,0) < TV(po,n0)
TV(pa,Naw) < TV(pasna)
TV (o, M,0) < TV (6, ).

Next, for every v € N\ {0}, we proceed with the following method. At time
t = 0, we solve all the Riemann problems for z € (a,b) and the boundary Riemann
problems at x = a and at x = b. At every interaction between two waves, we solve
the corresponding Riemann problem and at every discontinuity time for (pq.., qa,v)
or for (pp.., b, ), we solve the corresponding Riemann problem at z = a or = = b.
Finally, when a wave interacts with the boundary z = a or x = b, we solve the
corresponding boundary Riemann problem.

Remark 3. We may assume that, at every positive time ¢, at most one of the
following possibilities happens:

1. two waves interact together at a point x € (a, b);

2. a wave interacts with the boundary x = a or with the boundary x = b;

3. ¢ is a point of discontinuity either for (pq..,74,.) or for (ppu, M. )-

Given an e-approximate wave-front tracking solution @. = (pe, 77 ) with boundary
data tge = (Pa,e;Ma,e) and Upe = (Pb.e, Tp,e) in the union of the free phase F' and
the congested phase C, define, for a.e. t > 0, the following functionals

fw(t) = Z |w (ae(t7x+)) -—w (ae(tw%'_))' (3'1)

zel;
Fa(t) = 3 10 (@e(t,a+) = 0 e, 2-)] (32)
xz€el;
Fa(t) = |w (te(t, at)) — w (ta,e ()] + [0 (ue(t, at)) = 0 (Uac (1)) (3.3)
Fo(t) = |w (ue(t,0=)) — w (Up,e(t))] + |0 (e (t, b)) — U (U, (1))] (3.4
‘F(t):fw(t)+Fﬁ(t)+}—a(t)+]:b(t)v (35)
where, we denote by ¥ the function o(p,n) = %ﬁw). Note that the previous func-

tionals may vary only at times at which the boundary datum changes or at times ¢
when two waves interact or a wave reaches the boundary.

The functional F(t) is composed by 4 terms. The first term measures the strength
of waves of second family. The second term measures the strength of waves of first
family and of phase transition waves. Moreover both of the first two terms measure
the strength of linear waves. Finally, the last two terms measure the distance of the
boundary term from the trace at the boundary of the approximate solution.
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FIGURE 2. Wave interactions in a road. Above, from left to right,
the cases 2-1/1-2 and LW-PT /PT-2. Below, from left to right,
the cases 1-1/1 and PT-1/PT.

3.2. Interaction estimates. Next we consider interactions estimates of waves.
We describe wave interactions by the nature of the involved waves, see [15] [16]. For
example, if a wave of the second family hits a wave of the first family producing a
phase-transition wave, we write 2-1/ PT. Here the symbol “/” divides the waves
before and after the interaction.

Lemma 3.4. Assume that the wave ((p',n'), (p™,n™)) interacts with the wave
((p™,n™), (p",n")) at the point (t,z) with t > 0 and T € (a,b). Then F(t+) <
F(t—). The possible interactions are: 2-1/1-2, LW-PT /PT-2,1-1/1, PT-1/PT.
Proof. For simplicity, we define

l m

v = 6(/)[) 77l>7 v = ,6(pm’77m)7 v = f}(pT7 77T)7 (36)

wl — w(pl7’l]l), w™ = w(pmﬂ?m)’ w" = w(pT777T)-

We have four different cases.

1. The case 2-1/1-2. In this case, a wave ((p',7'), (o™,7™)) of the second family
interacts with a wave ((p™,n™), (p",n")) of the first family producing a wave
(P, nY), (p*, 1)) of the first family and a wave ((p,7°), (p",n")) of the second
family. The only possible case is that all the states (p',7'), (0™, n™), (p",n")

and (p’,n') are in the congested phase C, see Figure [2| above, left. For the
functional (3.1) we have

Fu(t+) — Fu(t—) = ‘wl _ wz‘ + ’wz _ wr‘ _ ’wl _ wm‘ — ™ —w.

Now w! = w’ since (p',n') and (p’,n") belong to the Lax curve of the first
family. Analogously w™ = w”. Thus

Fu(t+) = Fut=) = Jw' —w"| — |w' —w"| =0.
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. The case LW-PT /PT-2. In this case, a linear wave (
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Analogously for the functional , we have that
Fo(t+) — Fo(t—) = |vl — 0|+ vt =" - ‘vl =" = o™ ="
and since v' = v" and v! = v™, because the states (p’,7°), (p",n") and the
states (p',n'), (p™, n™) respectively belong to the same Lax curve of the second
family,
Fo(t+) — Fo(t—) = !vl - vr‘ - |vl —v"|=0.
Since AF,(t) = AF,(t) = 0, we have that AF(t) = 0.

(pl’ 77l)7 (pm’ Wm)) in-
teracts with a phase transition wave ((p™,n™), (p",n")) producing a phase
transition wave ((p',n'), (p’,7%)) and a wave ((p?, 1), (p",n")) of the second
family. The only possible case is that the states (p!,7), (p™,n™) are in the
free phase F and the states (p’,n%), (p",n") are in the congested phase C, see
Figure [2| above, right. For the functional we have

Fo(t+) = Fot=) = [u' —w'| + |o' —w"| — | —w™] — [w™ — w"|.

I'= w' and w™ = w". Thus

Similarly as before, w
Folt+) — Fo(t—) = |wl —w'| - |wl —w"|=0.
For the functional , we have that
Folt+) = Fot=) = [o! —v'| + [v" — o[ = ! —v™| = [ = v"].
Since v’ = v", and by the triangular inequality:
Fo(t+) — Fo(t—) = ‘vl — v’“‘ — ’vl — vm| — o™ ="
= }vl+vm7vm7vr| — lfvm| — o™ ="
< 0.

Since AF,(t) = AF,(t) = 0, we have that AF(t) < 0.

v

. The case 1-1/1. In this case, a wave ((p',n'), (p™,n™)) of the first family

interacts with another wave ((p™,n™), (p",n")) of the first family producing
again a wave ((p',n'), (p",n")) of the first family. The only possible case is
that all the states (p',7'), (p™,n™), (p",n") are in the congested phase C, see
Figure [2| below, left. For the functional we have

Fu(t+) — Fu(t—) = |wl —w'"| - |wl —w™| = ™ —w"| =0,
since w! = w™ = w". For the functional 7 by the triangular inequality we
have that
Folt+) = Fot=) = [t —v"| = [o! =™ = p™ =" 0.
Since AF,(t) = AF(t) = 0, we have that AF(t) < 0.

. The case PT-1/PT. A phase transition wave ((p',n'),(p™,n™)) interacts

with a wave ((p™,n™), (p",n")) of the first family producing a phase transition
wave ((p',n'),(p",n")). The only possible case is that the state (p',n') is in
the free phase F' and the states (p™,n™), (p",n") are in the congested phase
C, see Figure [2] below, right. For the functional (3.1]) we have

Fu(t+) — Fut—) = |wl - wr| - ’wl - wm| —|w™ —w"| =0.
since w! = w™ = w". For the functional (3.2)), by the triangular inequality we
have that

Folt+) — Fot=) = [t —v"| = [t = 0™ = p™ =" 0.
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Since AF,(t) = AF,(t) = 0, we have that AF(t) < 0.
The proof is thus completed. O

Lemma 3.5. Assume that the wave ((p',q'), (p",n")) interacts with the boundary
at the point (t,a), witht > 0. Then F(t+) < F(t—). The only possible interaction,

producing one wave, is 1/PT.

Proof. First note that AF,(t) = 0, since the interaction happens at x = a. More-
over, since the boundary Riemann problem does not generate waves, then the states
(PaesTla,c)(t) and (p',n') are connected through waves with negative speed. For sim-
plicity, we use the notations in , moreover we define

VY =0 (Uge(t), w® =w(Uge(t)) . (3.7)
We have the following cases.

1. The case (Pa.c,Nae)(t) = (p',0).

Since the wave ((p',n'), (p",n")) has negative speed, then, at time %, it is
absorbed and no other wave is generated. If ((p!,n'), (p",n")) is a wave of the
first family or a phase transition wave with negative speed, anyway we have
AF,(t) =0, AF3(t) = —|v' —v"| and AF,(f) = v —v"|. Consequentely

AF(t) = AF, (1) + AF3(1) + AF. (1) + AF () = 0.

2. The case when the states (pa.c,7a.c)(f) and (p',n!) are connected by a wave
of the first family.
In this situation both the states (pa.c,7a.c)(f) and (p!,n') are in the con-
gested phase C and so the interacting wave also is of the first family; at time
t, it is absorbed and no other wave is generated.
Thus we have AF, () = 0, AF;(t) = —|v! — v"| and AF,(F) = [v™ — v"|—
pE l ’ .

—v'|. Then, by the triangular inequality

AF(t) = [ =o' — [v™° — vl‘
— ‘vl —vT| <0.

3. The case when the states (pa.c,Ma.)(f) and (p',n') are connected by a phase-
transition wave with negtive speed.

In this situation the state (pa.c,flac)(f) is in the free phase F' and (p!,n')
is in the congested phase C' and so the interacting wave is of the first family.
The only possible cases are that no wave is produced at time # or a phase
transition wave is produced at time ¢.

In the case no wave is produced at time ¢, the situation is analogous to the
previous case.

In the case a phase transition wave with positive speed, connecting the
states (Da.e,ac)(t) to (p",n"), is produced at time ¢, then (pg.c,7a.c) () is
in the free phase F and (p",n") is in the congested phase C. Thus we have
that AF, () =0, AF;(t) = [v@° —v"| = [o! = v"| and AF,(f) = —|v™* —o'|.
Then

AF (L) = [v» =" = |vf =07
— |va’E —vl| <0.

The proof is thus completed. O
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Lemma 3.6. Assume that the wave ((p',n'), (p",n")) interacts with the boundary
at the point (t,b), with t > 0. Then F(t+) < F(t—). The only possible interaction,
producing one wave, is LW /PT.

Proof. First note that AF, () = 0, since the interaction happens at z = b. More-
over, since the boundary Riemann problem does not generate waves, then the states
(PaesTlac)(t) and (p', n') are connected through waves with positive speed. For sim-
plicity, we use the notations in , . We have the following cases.
L. The case (p",1") = (Db, b,=) (t)-
Since the wave ((p',7'), (p",n")) has positive speed, then, at time £, it is
absorbed and no other wave is generated.
If (0, 1", (p",n")) is a wave of the second family, we have AF;(#) = 0,
AF,(t) = —|w' — w"| and AF,(f) = |w' — w"|. Consequentely

AF (@) = AF,(F) + AF(t) + AF,(t) + AF(t) =0.

If (P, mh), (p",m")) is a phase transition wave with positive speed, we have
Fu(t) =0, AF5(t) = —|v! —v"| and AF,(f) = |v! — v"|. Consequentely

AF(t) =0.
2. The case when the states (p",n") and (ppe, 7, )(t) are connected by a wave
of the second family.

In this situation both the states (p",n") and (pp.c, 7lp.)(t) are in the con-
gested phase C' and the interacting wave could be a wave of the second family
or a phase transition with positive speed.

If the interacting wave is of the second family, then no wave is generated
at time t. Thus we have AF5(t) = 0, AF,(t) = —|w' —w"| and AF, () =

wlfwb5|f|w | Then,

AF(t) <0.

If the interacting wave is a phase transition wave with positive speed,
then no wave is generated at time t. Thus we have AF, (t) = 0, AF;(t) =
—|v! = v"| and AF(F) = o' — "] + |w" — wP€| — |w" — w"<|. Then,

AF(E) =0.

3. The case when the states (p",n") and (pp.c, 7o) () are connected by a phase
transition wave with positive speed.

In this situation the state (p",n") is in the free phase F' and the state
(Pb,esTb,e)(t) is in the congested phase C' and so, the interacting wave is a
linear wave.

In this case a phase transition wave with negative speed between the states
(p',n') and (pp e, 7y, ) (), possibly followed by a wave of the second family be-
tween the states (pp.c/, M) (t) and (P, T )(f), are generated at time ¢. Fol-
lowing the usual notations, define v = ¥ (i, o/ (t)) and we = w (g o (1)).

Then AF,(t) = —|w' —w"|, AF;() = ‘v — | — ol —v"| and AF(f) =

’w CRy G |vb’5 — UT|. Since w! = wb*s/, w” = wb and v = v% we
have
A‘F(E) — "Ul _ ,Ub,e’ _ ”Ul _ Ur| _ |wl _ wr| + ‘wb,s _ wb,s’ _ |Ub,s —"

— |’Ul _,Ub,€| _ |’Ul —’UT| _ |Ub’E _,Ur| S 0.
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4. The case when the states (p",n") and (pp.c, 7o) (¢) are connected by a linear
wave.
In this situation both the states (p”,n") and (pp.c, T )(f) are in the free
phase F' and so, the interacting wave is also a linear wave.
In this case no wave is generated at time f, then AF, () = —|w!’ —w"|,
AF3(t) = —[vt —v"| and AF(F) = |v' — "] + Jw! — wh| — [v" —0"<| -
|w7" - wbvf‘. Then, by applying twice the triangular inequality,

A]:(E) — |’Ul _,Ub,a" + ‘wl _wb,s} _ |’UT _,Ub,s‘ _ |,wr _wb,5|

—’ l—v"’—‘wl—uﬂ"go.

The proof is thus completed. O

Lemma 3.7. Assume that t is a point of discontinuity for the boundary datum at
xz =a. Then,

A]‘—(t—) < |w ((aa,e) (t"_)) -—w ((ﬂa,s) (t_))| + ‘f) ((ﬂa,s) (t+)) -0 ((ﬂa,s) (t_))| :
Proof. In general, at time ¢, a wave with positive speed emerges from the boundary
x = a. We denote with u” = (p”,n") the trace of the approximate solution before

time ¢ at © = a+ and we solve the Riemann problem at time ¢ between the states
Ug,(t+) and u". For simplicity, we define

o = 0 ((@ae) (1), v =0 ((Ga) (t-), o™ = B(u™), o =d(u"),
wh = w () (1), W = w (@) (1)) 0™ = w(™), W = w(u),

where u™ = (p™,n™) is a middle state in the solution of the Riemann problem
between the states @, - (t+) and u”. We have the following cases.

1. The states Ug(t+) and @g (t—) are both in the congested phase C.

If u" belongs to the curve of the first family passing through @, - (t—), then
the Riemann problem produces a wave of the first family between a4, . (t+)
and v and a wave of the second family between v and u”. Consequentely
AF,(t) = [w™ —w"|, AF;(t) = 0 and AF,(t) = |[vt —v™|—|v™ —v"|. Then,
since w™ = wt,w" = w~,v"” = v™ and by the triangular inequality,

AF(E) = [w™ —w"| + [vT = 0™ = JvT = 07|
= o — o] = o o
< |u)+ —w_’ + |v+ —v_{.

If u" = g (t—), then the Riemann problem between @, - (t+) and @, . (t—)
produces a wave of the first family between %, . (t4) and ©™ and a wave of the
second family between ™ and g - (t—). Consequentely AF,,(t) = |[w™ —w™|,
AF;(t) =0 and AF,(t) = [vt —v™]|. Then, since w™ = wt,v™ = vt

AF(E) = |wt —w™ |+ vt =07 |.
2. The states @4 (t+) and 1, (t—) are both in the free phase F.

If u” belongs to the phase transition passing through %, . (t—), then «” is in
the congested phase C. The Riemann problem produces a phase transition,
with positive or negative speed, between @, - (t+) and 4™ (which is in C') and
a wave of the second family between v and u”. Thus AF,(f) = |[w™ — w"|
and AF;(t) + AF,(t) = [vt —v™] — v~ —v"|. Then, since w™ = wt,w" =
w™,v" =v™ and by the triangular inequality,

AFE) < |wt —w™ |+ JoF —ov7|.
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If u" = @4, (t—), then the Riemann problem between @, . (t+) and @, - (t—)
produces a linear wave between g .(t+) and 4q(t—). Thus AF,(f) =
lwt —w™|, AF;(t) = [vt — v~ | and AF,(t) = 0. Then,

AFE) = |wt —w™ |+ JoF —v7|.

3. The state (@q,) (t—) is in the free phase F' and the state (&4, ) (t+) is in the
congested phase C.

If u” belongs to the phase transition passing through i, .(t—), then u” is
in the congested phase C. The Riemann problem produces a wave of the first
family between @, (t+) and v™ and a wave of the second family between u™
and u”. Thus AF,(f) = |w™ —w"|, AF,(t) = 0 and AF,(t) = vt —ov™| —
|[v™ — v"|. Then, since w™ = wt, w" = w™,v" = V™,

AF(E) < |wt —w™ |+ ot —o7|.

If " = @4 (t—), then the Riemann problem between @, - (t+) and @,  (t—)
produces a wave of the first family between @, (t+) and «™ (which is in FNC)
and a linear wave between u™ and 4, (t—). Thus AF, () = |[w™ —w™|,
AF;(t) = [v™ — v~ | and AF,(t) = |[vt —v™|. Then, since w™ = w™* and by
the triangualar inequality,

AFE) < Jwt —w™ |+ JoF —v7|.

4. The state (Zq,:) (t—) is in the congested phase C' and the state (q..) (t+) is
in the free phase F.

If u” belongs to the curve of the first family passing through i, . (t—), then
the Riemann problem produces a phase transition, with positive or negative
speed, between %, (t+) and v™ (which is in C) and a wave of the second
family between u™ and u”. Thus AF,,(f) = |w™ — w"| and AF;(1)+AF,(T) =
|vt — ™| — Jv~ —v"|. Then, as before,

AF(E) < |wh —w™ |+ ot =07 |.

If u" = g o (t—), then the Riemann problem between g, . (t+) and g . (t—)
produces a phase transition between %, . (t+) and u™ and a wave of the second
family between u™ and @, (t—). Thus AF,(t) = |[w™ —w™|, AFs(t) +
AF,(t) = |vt —v™|. Then, since w™ = wt and v™ = v,

AF(E) = |wt —w™ |+ vt —v7|.
The proof is so concluded. O

Lemma 3.8. Assume that t is a point of discontinuity for the boundary datum at
x =10b. Then,

AF(t) < |w ((ta,e) (t+) = w ((U,e) (E=) + 12 ((Up.e) (t+)) = 0 ((tha,e) (=) -

Proof. In general, at time #, a wave with negative speed emerges from the boundary
r = b. We denote with u! = (p',n!) the trace of the approximate solution before
time ¢ at = b— and we solve the Riemann problem at time ¢ between the states
u! and 1y . (t+). For simplicity, we define

v =0 ((we) (), 0T =0 ((e) (), ™ =0™), o' =),
wh =w (@) (t+), w™ =w((we) (=), w™ = w™), w' =w),

where u™ = (p™,n™) is a middle state in the solution of the Riemann problem
between the states u! and . (t+). We have the following cases.
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1. The states @p(t+) and @ - (t—) are both in the congested phase C.

If u! belongs to the curve of the second family passing through i . (t—),
then we have a wave of the first family between u! and «™ and a wave of
the second family between u™ and . (t+). Consequentely AF,(t) = 0,
AF3(f) = vt —v™| and AF(f) = |[w™ — wt| — |w' — w~|. Then, since w! =
w™,v' = v~ ,v™ = vt and by the triangular inequality,

AF () = |w™ —wh| = Jw' —w™ |+ o' —v™|
— o™ — ] = fum =+ o =0
< |w+ —w_‘ + |v+ —v_‘.

If u! belongs to the phase transition passing through Up,e(t—), then ul is in
the free phase F. We have a phase transition between u! and u™ and a wave
of the second family between u™ and 1 (t+). Consequentely AF,(t) = 0,
AF5(E) + AF(T) = |v! = v™| 4+ Jw™ — wT| - |vo! — v™|. Then, since w™ = w™
and v™ = o™,

F(l) =™ —wt| = o' o7 | + o' — o™
= wt = ol o+ o o]
< |w+ —w_’ + ‘v+ —v_’.

If u! = @y (t—), the Riemann problem between i, . (t—) and . (t+) pro-
duces a wave of the first family between @ .(t—) and v™ and a wave of
the second family between u™ and 1. (t+). Consequentely AF,(t) = 0,
AF;(t) = [v- —v™] and AF,(t) = |w™ —w™|. Then, since w™ = w~ and
™ =0T,

AF(E) = |wt —w™ |+ ot —v7|.
2. The states @y (t+) and 4 (t—) are both in the free phase F.

If u! belongs to the phase transition passing through i, . (t—), then u! is in
the congested phase C'. The Riemann problem produces a wave of the first
family between u! and u™ (which is in ' N C) and a linear wave between
u™ and Uy (t+). Thus AF,(f) = 0 and AF;(f) = o' —v™| and AF,(f) =
[v™ — v + [w™ — wH| — [o! —v~|. Then, since v™ = v~ and W™ = w™,

AF(E) = |wt —w™ |+

v+—v_|.

If u! belongs to the linear wave passing through Up,e(t—), then the Riemann
problem produces a linear wave between u! and @ . (t+). Thus AF, (£) = 0
and AF;(t) = 0 and AF,(f) = [o! — vt |+ [w —wt| =o' — 07| = |w' —w~|.
Then,

AF(t) < ‘w"’ — w_‘ + ’v+ —v_|.

If u! = 2y, (t—), then the Riemann problem between @ o (t—) and - (t+)
produces a linear wave between iy (t+) and @, (t—). Thus AF,(t) = 0,
AF;(t) =0 and AF,(t) = |wt —w™ |+ [vT — v~ |. Then,

AF(E) = |wt —w™ |+ vt —v7|.
3. The state () (t—) is in the free phase F' and the state (@) (t+) is in the
congested phase C.

If u! belongs to the phase transition passing through Upe(t—), then ul is
in the congested phase C'. The Riemann problem produces a wave of the
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first family between u! and ™ and a wave of the second family between
u™ and (pe) (t4). Thus AF, () = 0, AF,(t) = |[v' —v™| and AF, () =

jw™ —w*| — |[v! — v~ |. Then, since w™ = w™ and v™ = v,

AFE) < |wt —w™ |+ JoF —ov7|.

If u! belongs to the linear wave passing through iy . (t—), then the Riemann
problem produces a phase transition between u! and u™ and a wave of the
second family between u™ and (iup.) (t4). Thus AF,(t) = 0, AF,(f) +
AFy(t) = [v! — v™|+|w™ — wt|—|v! — v~ |—|w" — w™|. Then, since w™ = w'
and v™ =T,

AF(t) < ‘w"’ — w_‘ + ’v+ —v_|.

If u! = @y (t—), the Riemann problem between 1, . (t—) and ¢ (t+) pro-
duces a phase transition between 1 .(t—) and u™ and wave of the second
family between u™ and @p(t+). Thus AF, () = 0, AF:(t) + AFR(t) =
[o™ — v~ | + Jwt — w™|. Then, since w™ = w* and v™ = v,

AFE) = |wt —w™ |+ JoF —0v7|.

. The state () (t—) is in the congested phase C' and the state (@) (t+) is

in the free phase F.

If u! belongs to the curve of the second family passing through 4y, . (t—)
then the Riemann problem produces a wave of the first family between u
and ™ (which is in F'N C) and a linear wave between ™ and () (t+).
Consequentely AF,(f) = 0, AF;() = [v! —v™| and AF,(f) = [v™ —vF| +
1

)
l

jw™ — wt| — |w' — w™|. Then, since w' = w™ and v' = v,

AFE) < Jwt —w™ |+ JoF —v7|.

If u! belongs to the phase transition passing through @, (t—), then u' is
in the free phase F. The Riemann problem produces a linear wave between
ul and (tp ) (t+). Consequentely AF, (f) = 0, AF;(£) = 0 and AF(f) =
’vl - v+’ + ‘wl - w+’ — ‘Ul — v~ |. Then, since w' = w™,

AF(E) < |wt —w™ |+ ot =07 |.

If u! = @ (t—), the Riemann problem between . (t—) and o (t+)
produces a wave of the first family between @, .(t—) and u™ and a linear
wave between u™ and g (t+). Thus AF,(t) = 0, AF;(t) = [v~ — ™| and
AFy(t) = |[w™ — wF| + [v™ — vT|. Then, since w™ = w™,

AFE) < Jwt —w™ |+ JoF —0v7|.

The proof is so concluded. 0

Proposition 1. The following estimate holds

Ft)<M, ae t>0, (3.8)

where M = F(0) + TV (pa,Na) + TV (o, mp)-
Proof. This is a consequence of the previous Lemmas and O
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3.3. Existence of solutions. Next we aim to bound the number of waves and of
interactions. The following result holds.

Proposition 2. The construction in Subsection [53.1] can be done for every positive
time and, for every v € N\ {0}, it produces a %—approximate wave-front tracking

solution to .

Proof. We consider the construction in Subsectionand the function v, = (p,, 1)
there built, for » € N\ {0}. It is sufficient to prove that the number of waves and
interactions generated is finite. We define the functional N, (t), which counts the
number of discontinuities of (p,,7n,). Note that the functional N, (t) is piecewise
constant and can vary at interaction times in the following way.

1. If at time ¢ > 0 two waves interact at Z € (a,b), then AN, (f) < 0. More
precisely, AN, () = 0 if and only if the interaction is either 2-1/1-2 or LWV-
PT /PT-2; see Lemma

2. If at time ¢ > 0 a wave interacts with the boundary at = a, then AN, (f) < 0.
In the case AN, (t) = 0 the interaction is 1/PT; see Lemma

3. If at time ¢ > 0 a wave interacts with the boundary at = b, then AN, (¢) < 0.
In the case AN, (f) =0 the interaction is LW/PT; see Lemma [3.6]

4. If the time ¢ > 0 is a point of discontinuity for the boundary value (pq, v, 7a,.),
then AN, (f) < 2; see Lemma [3.7]

5. If the time ¢ > 0 is a point of discontinuity for the boundary value (pp.., 7.1 ),
then AN, (f) < 2; see Lemma [3.§

The number of waves can increase only in the cases 4., and 5. By construction,
theese cases happen at most a finite number of times.

The interactions inside the domain (a,b), 1-1/1 and PT-1/PT, can happen at
most a finite number of times, since we have a uniform bound on the number of
waves.

To prove that the number of interactions is finite, we have to consider and to
bound the number of interactions of the following types:

1. Inside the domain: 2-1/1-2 and LW-PT /PT-2.
2. Left boundary: 1/PT.
3. Right boundary: LW/PT.

Consider first the interaction LW /PT that can happen a finite number of times,
since the interacting wave is a linear wave and it is not generated in any other in-
teraction. Then, we consider the interactions 2-1/1-2 and 1/P7. The combination
of theese interactions can not happen an infinite number of times. Indeed 2-1/1-2
can not happen an infinite number of times since one of the interacting waves, the
wave of the first family, is not generated in any other interaction; consequentely also
1/PT can happen a finite number of times. Finally, it remains to consider only
the interaction LW-PT /PT-2, that can happen a finite number of times, since no
other interaction produces a linear wave. The proof is so concluded. O

We can next conclude the proof of the Theorem [3.2]

Proof of Theorem . Fix an e-approximate wave-front tracking solution . to ,
in the sense of Definition [3.3] By Proposition [I} we deduce that there exists a con-
stant M > 0, depending on the total variation of the flux of the initial datum, such
that, for a.e. ¢t > 0,

]:'T)"_]:wSM
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The above inequality states that the functional TV ((pe, ) (¢, -)) is uniformly bounded
for a.e. ¢t > 0. Hence, up to a subsequence, it converges to a function (p,7), which
is a solution to (|1.2]) in the sense of Definition The proof is so concluded. [
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