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Université Côte d’Azur, Inria, CNRS, LJAD

2004, route des Lucioles - BP 93, 06902 Sophia Antipolis Cedex, France

Abstract. We study well-posedness of scalar conservation laws with moving

flux constraints. In particular, we show the Lipschitz continuous dependence

of BV solutions with respect to the initial data and the constraint trajectory.
Applications to traffic flow theory are detailed.

1. Introduction. Motivated by the modeling of moving bottlenecks in traffic flow,
which can be caused by a large, slow moving vehicle, we consider the Cauchy prob-
lem for a scalar conservation law with moving flux constraint

∂tρ+ ∂xf(ρ) = 0, (t, x) ∈ R+ × R, (1a)

ρ(0, x) = ρ0(x), x ∈ R, (1b)

f(ρ(t, y(t)))− ẏ(t)ρ(t, y(t)) ≤ F̃α(ẏ(t)), t ∈ R+, (1c)

where t 7→ y(t) is a given trajectory, starting from y(0) = y0, and

F̃α(ẏ) := Fα(ρα(ẏ)) = fα(ρα(ẏ))− ẏρα(ẏ), (2)

with ρα(ẏ) such that f ′(ρα(ẏ)/α) = ẏ. Systems of the form (1) arise in the modeling
of moving bottlenecks in vehicular traffic [12, 16]: ρ = ρ(t, x) ∈ [0, R] is the scalar
conserved quantity and represents the traffic density, whose maximum attainable
value is R. The flux function f : [0, R] → R+ is assumed to be strictly concave,
Lipschitz continuous and such that f(0) = f(R) = 0. The time-dependent variable y
denotes the constraint position. In the present paper we consider a weakly coupled
PDE-ODE system, in the sense that we assume that the constraint trajectory is
given, and it does not depend on the solution of (1a).
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Let us detail the meaning of inequality (1c). A moving flux constraint located at
x = y(t) acts as an obstacle, thus hindering the flow as expressed by the unilateral
constraint (1c). There, α ∈ ]0, 1[ is the dimensionless reduction rate of the road
capacity (the maximal allowed density) at the bottleneck position. The inequal-
ity (1c) is derived by studying the problem in the constraint reference frame, i.e.,
setting ρ̃(t, x) := ρ(t, x+ y(t)) and rewriting the conservation law (1a) as

∂tρ̃+ ∂xF (ρ̃) = 0, F (ρ̃) = f(ρ̃)− ẏρ̃. (3)

In fact, let fα : [0, αR] → R+ be the rescaled flux function describing the reduced
flow at x = y(t), defined by fα(ρ) = αf(ρ/α), and let ρα(ẏ) ∈ ]0, αR[ such that

F ′α(ρα(ẏ)) = f ′α(ρα(ẏ))− ẏ = 0 ⇔ f ′α(ρα(ẏ)) = ẏ, (4)

with Fα(ρ) = fα(ρ) − ẏρ, see Figure 1. Notice that, for (4) to have a solution
in ]0, αR[, we will need to assume that ẏ(t) < f ′(0) for t ≥ 0. Then setting

F̃α(ẏ) := Fα(ρα(ẏ)) we recover (2). Imposing that in the obstacle reference frame
the flux F is less than the maximum value of the flux of the reduced flow, one
gets (1c). Notice that the inequality (1c) is always satisfied if

ẏ(t) =
f(ρ(t, y(t)±))

ρ(t, y(t)±)
,

since its left-hand side is 0. Moreover, it is well defined even if ρ has a jump at y(t),
because of the Rankine-Hugoniot conditions.

ραR R

f

fα

0 ρ̂(ẏ)ρα(ẏ)ρ̌(ẏ)

ẏ

(a) Fixed reference frame

ρR

F̃α

f(ρ)− ẏρ

fα(ρ)− ẏρ
0 ρα(ẏ)

−ẏρ
(b) Obstacle reference frame

Figure 1. Graphical representation of the constraint action in the
fixed (left) and moving (right) reference frames.

Problem (3), (1b), (1c), can therefore be recast in the framework of conservation
laws with fix local constraint, first introduced in [10], then developed in [2, 4] for
scalar equations and extended in [3, 14, 13] to systems. Following [12, Definition
4.1] and [6, Definition 1 and 2], solutions of (1) are defined as follows.



STABILITY OF SCALAR CONSERVATION LAWS 247

Definition 1.1. Let y ∈ W1,∞(R+;R) with 0 ≤ ẏ < f ′(0) and ρ0 ∈ L1 ∩
L∞(R; [0, R]) be given. A function ρ ∈ C0

(
R+; L1(R; [0, R])

)
is a solution to (1) if

1. ρ satisfies Kružkov entropy conditions [15] on (R+ × R) \ {(t, y(t)) : t ∈ R+},
i.e. for every k ∈ [0, R] and for all ϕ ∈ C1

c (R2;R+) and ϕ(t, y(t)) = 0, t > 0,∫
R+

∫
R

(|ρ− k|∂tϕ+ sgn(ρ− k) (f(ρ)− f(k)) ∂xϕ) dx dt

+

∫
R
|ρo − k|ϕ(0, x) dx ≥ 0 ; (5a)

2. for a. e. t > 0 the left and right traces of ρ at x = y(t) satisfy

(ρ(t, y(t)−), ρ(t, y(t)+)) ∈ Gα(ẏ(t)). (5b)

Notice that the left and right traces in (5b) do exist, see [4, Section 2].
The set Gα(ẏ) in (5b) is defined as follows, see [4, 5, 6].

Definition 1.2. The admissibility germ Gα(ẏ) ⊂ [0, R]2 for (1a), (1c) is the union
Gα(ẏ) := G1(ẏ) ∪ G2(ẏ) ∪ G3(ẏ), where

G1(ẏ) :=
{

(cL, cR) ∈ [0, R]2 : cL > cR, f(cL)− ẏcL = f(cR)− ẏcR = Fα(ẏ)
}
,

G2(ẏ) :=
{

(c, c) ∈ [0, R]2 : f(c)− ẏc ≤ Fα(ẏ)
}
,

G3(ẏ) :=
{

(cL, cR) ∈ [0, R]2 : cL < cR, f(cL)− ẏcL = f(cR)− ẏcR ≤ Fα(ẏ)
}
.

We refer the reader to Figure 2 for a graphical representation of Gα(ẏ)

G1(ẏ)

G2(ẏ)

G2(ẏ)

G3(ẏ)

cLR

R
ρ∗

ρ̂(ẏ)ρ̌(ẏ)

ρ̌(ẏ)

ρ̂(ẏ)

cR

Figure 2. The set Gα(ẏ) (thick lines) in the case of a flux function
of the form f(ρ) = V ρ(1− ρ/R), as in Section 3.

The equivalence between Definition 1.1 and [12, Definition 4.1] can be proved as
in [4, Proposition 2.6].

Systems of the type (1) arise in the modeling of moving bottlenecks in traffic
flows, see [12, 16] and Section 3 below, where they are coupled with an ODE de-
pending on the downstream traffic velocity and describing the trajectory of a slow
moving vehicle (a bus or a truck) acting as a bottleneck.

This paper is a first step towards establishing well-posedness for the strongly
coupled models [12, 16]. Section 2 presents the main result, stating the L1 Lipschitz
continuous dependence of solutions of (1) from the initial data and the constraint
trajectory. Section 3 describes in details the related traffic flow model with moving
bottleneck. Technical proof details are deferred to Appendix A.
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2. Lipschitz continuous dependence of BV solutions with respect to ẏ.
Let us fix the constraint trajectory y ∈W1,∞(R+;R) with 0 ≤ ẏ < f ′(0) and the
initial datum ρ0 ∈ BV(R; [0, R]), and let ρ ∈ C0

(
R+; L1(R; [0, R])

)
be a solution of

(1) in the sense of Definition 1.1. Applying the coordinate transformation ρ̃(t, x) :=
ρ(t, x+ y(t)), ρ̃ is a weak entropy solution of the problem

∂tρ̃+ ∂xF (ρ̃) = 0, (t, x) ∈ R+ × R, (6a)

ρ̃(0, x) = ρ0(x+ y0), x ∈ R, (6b)

F (ρ̃(t, 0)) ≤ F̃α(ẏ(t)), t ∈ R+, (6c)

in the sense of [4, Proposition 2.6(A)] where we have set F (ρ̃) := f(ρ̃)− ẏ ρ̃. Exis-
tence and uniqueness for (6) are proved in [4, 10]. In particular, we have that for
every k ∈ [0, R] and for all ϕ ∈ C1

c (R2;R+) such that ϕ(t, 0) = 0, t > 0,∫
R+

∫
R

(|ρ̃− k|∂tϕ+ Φ(ẏ; ρ̃, k)∂xϕ) dx dt+

∫
R
|ρo(x+ y0)− k|ϕ(0, x) dx ≥ 0 ,

where we have set

Φ(ẏ; a, b) := sgn(a− b) (f(a)− f(b))− ẏ|a− b|, for a, b ∈ R,

and

(ρ̃(t, 0−), ρ̃(t, 0+)) ∈ Gα(ẏ(t)) for a. e. t > 0,

see [4, Proposition 2.6]. Moreover, we note that, since α < 1 and f is strictly
concave, we have

F̃α(ẏ) = fα(ρα(ẏ))− ẏρα(ẏ) < f(ρα(ẏ))− ẏρα(ẏ) = max
ρ∈[0,R]

F (ρ). (7)

Remark 1. Solution to (6) are not in BV in general (see [1, 10]), but thanks to
the strict inequality in (7) and since y ∈W1,∞(R+;R) implies ẏ ∈ BVloc(R+), we
can conclude that ρ̃(t, ·) ∈ BV(R; [0, R]) for any t > 0, as in [12].

We compare solutions of (6) corresponding to different constraint trajectories y
and z.

Theorem 2.1. Assume y, z ∈ W1,∞(R+;R), with 0 ≤ ẏ, ż < f ′(0), ρ̃0, σ̃0 ∈
L∞(R, [0, R]) and ρ̃0 − σ̃0 ∈ L1(R). Let ρ̃, σ̃ ∈ C0

(
R+; L1(R; [0, R])

)
be solu-

tions of (6) corresponding respectively to y, ρ̃0 and z, σ̃0. Moreover, let Ct =
sups∈[0,t] TV(ρ̃(s, ·)) be finite. Then we have

‖ρ̃(t, ·)− σ̃(t, ·)‖L1(R) ≤ ‖ρ̃0 − σ̃0‖L1(R) + (Ct + 2R)‖ẏ − ż‖L1([0,t]). (8)

Proof. The two solutions ρ̃, σ̃ satisfy

∂t|ρ̃− k|+ ∂xΦ(ẏ; ρ̃, k) ≤ 0, (9)

∂t|σ̃ − k|+ ∂xΦ(ż; σ̃, k) ≤ 0, (10)

in D′(R+ × R∗) (where we have noted R∗ = R \ {0}). Following the proofs of [6,
Lemma 15] and [7, Theorem 3.1] we observe that

∂t|ρ̃− k|+ ∂xΦ(ẏ; ρ̃, k) = ∂t|ρ̃− k|+ ∂xΦ(ż; ρ̃, k) + ∂xΦ(ẏ; ρ̃, k)− ∂xΦ(ż; ρ̃, k)

therefore

∂t|ρ̃− k|+ ∂xΦ(ż; ρ̃, k) ≤ ∂xΦ(ż; ρ̃, k)− ∂xΦ(ẏ; ρ̃, k)

≤ |ẏ − ż||∂xρ̃|. (11)
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Applying the classical Kružkov doubling of variables technique [15], with a test
function ψ ∈ C1

c (R2;R+) such that ψ(t, 0) = 0, we deduce the following Kato
inequality ∫

R+

∫
R

(|ρ̃− σ̃|∂tψ + Φ(ż; ρ̃, σ̃)∂xψ) dx dt

+

∫
R
|ρ̃0 − σ̃0|ψ(0, x) dx+ Ct‖ψ‖∞

∫
R+

|ẏ − ż|dt ≥ 0 ,

We now choose the test function ψ(t, x) = θε(x)ξ(t, x), where ξ ∈ C1
c (R2;R+) is an

approximation of the characteristic function of the trapezoid

{(s, x) : |x| ≤M + L(t− s), 0 ≤ s ≤ t}

(where L ≥ supρ∈[0,R],s∈[0,t] |f ′(ρ)− ż(s)| and M ∈ R, M > 0) and θε a smooth

approximation of x → min{|x|/ε, 1}. Following the proof of [10, Proposition 4.4]
and letting ε↘ 0 we get∫ M

−M
|ρ̃(t, x)− σ̃(t, x)|dx

≤
∫ M+Lt

−M−Lt
|ρ̃0(x)− σ̃0(x)|dx+ C

∫ t

0

|ẏ(s)− ż(s)|ds

+

∫ t

0

(Φ(ż; ρ̃(t, 0+), σ̃(t, 0+))− Φ(ż; ρ̃(t, 0−), σ̃(t, 0−))) ds.

By Lemma A.1, the last integrand can be bounded by∫ t

0

(Φ(ż; ρ̃(t, 0+), σ̃(t, 0+))− Φ(ż; ρ̃(t, 0−), σ̃(t, 0−))) ds ≤ 2R

∫ t

0

|ẏ(s)− ż(s)|ds.

(12)
Letting M →∞, we recover (8).

We are now able to state the well-posedness of problem (1).

Corollary 1. Assume y, z ∈ W1,∞(R+;R), with 0 ≤ ẏ, ż < f ′(0), ρ0, σ0 ∈
L∞(R, [0, R]) and ρ0 − σ0 ∈ L1(R). Let ρ, σ ∈ C0

(
R+; L1(R; [0, R])

)
be solu-

tions of (1) corresponding respectively to y, ρ0 and z, σ0. Moreover, let Ct =
sups∈[0,t] TV(ρ(s, ·)) be finite. Then we have

‖ρ(t, ·)− σ(t, ·)‖L1(R)

≤‖ρ0 − σ0‖L1(R) + 2Ct|y(0)− z(0)|+ (2Ct + 2R)‖ẏ − ż‖L1([0,t]). (13)

Proof. Setting

ρ̃(t, x) = ρ(t, x+ y(t)) and σ̃(t, x) = σ(t, x+ z(t)),

for any t > 0 we get∫
R
|ρ(t, x)− σ(t, x)|dx =

∫
R
|ρ(t, x+ z(t))− σ(t, x+ z(t))|dx

=

∫
R
|ρ(t, x+ z(t))∓ ρ(t, x+ y(t))− σ(t, x+ z(t))|dx

≤ |y(t)− z(t)|TV(ρ(t, ·)) +

∫
R
|ρ̃(t, x)− σ̃(t, x)|dx.
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Therefore, by (8), we get∫
R
|ρ(t, x)− σ(t, x)|dx

≤ Ct|y(t)− z(t)|+
∫
R
|ρ̃0(x)− σ̃0(x)|dx+ (Ct + 2R)

∫ t

0

|ẏ(s)− ż(s)|ds

≤
∫
R
|ρ0(x)− σ0(x)|dx+ |y(0)− z(0)|TV(ρ0)

+ Ct

(
|y(0)− z(0)|+

∫ t

0

|ẏ(s)− ż(s)|ds
)

+ (Ct + 2R)

∫ t

0

|ẏ(s)− ż(s)|ds

=

∫
R
|ρ0(x)− σ0(x)|dx+ 2Ct|y(0)− z(0)|+ (2Ct + 2R)

∫ t

0

|ẏ(s)− ż(s)|ds,

where we have used the estimate |y(t)− z(t)| ≤ |y(0)− z(0)|+
∫ t

0
|ẏ(s)− ż(s)|ds.

3. Application to traffic modeling. Setting

f(ρ) := ρv(ρ),

where v(ρ) = V (1 − ρ/R) is the mean traffic speed, V being the maximal velocity
allowed on the road, problem (1) can be used to describe the situation of a moving
bottleneck along a road, see [12]. In this case, we get fα(ρ) = V ρ

(
1− ρ

αR

)
and

ρα(ẏ) = αR
2

(
1− ẏ

V

)
, so that

F̃α(ẏ) =
αR

4V
(V − ẏ)2.

Let us suppose that a slow and large vehicle, like for example a bus or a truck
moves on the road. The slow vehicle, that in the following we will refer as “the
bus”, reduces the road capacity and moves with a trajectory given by the following
ODE: {

ẏ(t) = ω(ρ(t, y(t)+)), t ∈ R+,

y(0) = y0,
(14)

where the velocity of the bus is given by the following traffic density dependent
function (see Figure 3)

ω(ρ) =

{
Vb if ρ ≤ ρ∗ .= R(1− Vb/V ),
v(ρ) otherwise.

(15)

This means that if the traffic is not too congested, the bus moves at its own maximal
speed Vb < V . When the surrounding traffic density becomes too high, the bus
adapts its velocity accordingly. In particular, it is not possible for the bus to
overtake the cars.

Solutions of the coupled system (1), (14) for general initial data are defined as
follows.

Definition 3.1. A couple (ρ, y) ∈ C0
(
R+; L1(R; [0, R])

)
×W1,1(R+;R) is a solution

to (1) if
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ρRρ∗

ω(ρ)

Vb

v(ρ)

Bus speed

Cars speed

Figure 3. Bus and cars speed.

1. ρ satisfies Kružkov entropy conditions [15] on (R+ × R) \ {(t, y(t)) : t ∈ R+},
i.e. for every k ∈ [0, R] and for all ϕ ∈ C1

c (R2;R+) and ϕ(t, y(t)) = 0, t > 0,∫
R+

∫
R

(|ρ− k|∂tϕ+ sgn(ρ− k) (f(ρ)− f(k)) ∂xϕ) dx dt

+

∫
R
|ρo − k|ϕ(0, x) dx ≥ 0 ; (16a)

2. for a. e. t > 0 the one-sided traces of ρ at x = y(t) satisfy

(ρ(t, y(t)−), ρ(t, y(t)+)) ∈ Gα(ẏ(t)) ; (16b)

3. y is a Carathéodory solution of (14), i.e. for a.e. t ∈ R+

y(t) = yo +

∫ t

0

ω(ρ(s, y(s)+)) ds . (16c)

The proof of existence of solutions for the general Cauchy problem (1) strongly
coupled with the bus trajectory (14) with BV initial data can be found in [12].
For completeness, we recall the definition of the solution of a Riemann problem, as
given in [12]. Let us consider a Riemann type initial datum

ρ0(x) =

{
ρL if x < 0,
ρR if x > 0,

y0 = 0. (17)

Denote by R the standard (i.e., without the constraint (1c)) Riemann solver for
(1a)-(1b)-(17), i.e., the (right continuous) map (t, x) 7→ R(ρL, ρR)(x/t) given by
the standard weak entropy solution, see for instance [8, Chapter 5]. Moreover,
assume that ẏ is constant and let ρ̌ = ρ̌(ẏ) and ρ̂ = ρ̂(ẏ), with ρ̌ ≤ ρ̂, be the
intersection points of the flux function f(ρ) with the line fα(ρα) + ẏ(ρ − ρα) (see
Figure 1(a)):

ρ̌(ẏ) =
R

2V

(
1−
√

1− α
)

(V − ẏ),

ρ̂(ẏ) =
R

2V

(
1 +
√

1− α
)

(V − ẏ).

(18)

Definition 3.2. The constrained Riemann solver Rα : [0, R]2 → L1
loc(R; [0, R])

corresponding to (1), (14), (17) is defined as follows.

1. If f(R(ρL, ρR)(Vb)) > Fα + VbR(ρL, ρR)(Vb), then

Rα(ρL, ρR)(x/t) =

{
R(ρL, ρ̂(Vb))(x/t) if x < Vbt,
R(ρ̌(Vb), ρR)(x/t) if x ≥ Vbt,

and y(t) = Vbt.
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2. If VbR(ρL, ρR)(Vb) ≤ f(R(ρL, ρR)(Vb)) ≤ Fα + VbR(ρL, ρR)(Vb), then

Rα(ρL, ρR) = R(ρL, ρR) and y(t) = Vbt.

3. If f(R(ρL, ρR)(Vb)) < VbR(ρL, ρR)(Vb), i.e., v(R(ρL, ρR)(Vb)) < Vb then

Rα(ρL, ρR) = R(ρL, ρR) and y(t) = v(ρR)t.

Note that, when the constraint is enforced (point 1. in the above definition),
a non-classical shock arises between ρ̂(Vb) and ρ̌(Vb), which satisfies the Rankine-
Hugoniot condition but violates the Lax entropy condition, see Figure 4 for an
example.

Remark 2. Unfortunately, no result about the Lipschitz continuous dependence
of the solution y = y(t) of (14) from the solution ρ = ρ(t, x) of (1) is known at
present. Related results [9, 11] concerning uniqueness and continuous dependence
for ODEs of the form (14) hold under hypothesis on the speed function ω that are
not satisfied by (15).

Appendix A. Proof of (12).

Lemma A.1. For any (ρ−, ρ+) ∈ Gα(ẏ) and (σ−, σ+) ∈ Gα(ż), it holds

Φ(ż; ρ+, σ+)− Φ(ż; ρ−, σ−) ≤ 2R|ẏ − ż|.

Proof. First of all, let us remark that

Φ(ż; ρ+, σ+)− Φ(ż; ρ−, σ−) (19)

= sgn(ρ+ − σ+) (f(ρ+)− żρ+ − f(σ+) + żσ+)

− sgn(ρ− − σ−) (f(ρ−)− żρ− − f(σ−) + żσ−)

=(λ(ρ+, σ+)− ż)|ρ+ − σ+| − (λ(ρ−, σ−)− ż)|ρ− − σ−|, (20)

where

λ(ρ, σ) =
f(ρ)− f(σ)

ρ− σ
.

Without loss of generality, we can assume ẏ < ż. Therefore we get

Fα(ẏ)− Fα(ż) ≥ ρα(ż)(ż − ẏ) > 0. (21)

We distinguish the following cases:

1. (ρ−, ρ+) ∈ G1(ẏ): we observe that

ρ− = ρ̂, ρ+ = ρ̌ and f(ρ−)− ẏρ− = f(ρ+)− ẏρ+ = Fα(ẏ).

Depending on the values of σ−, σ+, different situations can occur as shown
in Figure 5:

1.1 (σ−, σ+) ∈ G1(ż): in this case σ− = σ̂, σ+ = σ̌, as shown in Figure 5a
and f(σ−)− żσ− = f(σ+)− żσ+ = Fα(ż), therefore

(19) = (Fα(ẏ) + ẏρ+ − żρ+ − Fα(ż))− (Fα(ẏ) + ẏρ− − żρ− − Fα(ż))

= (ρ− − ρ+)(ż − ẏ)

≤ R|ẏ − ż|.
1.2 (σ−, σ+) ∈ G2(ż): we set

σ := σ− = σ+ and f(σ)− żσ =: F (σ) ≤ Fα(ż).

The following cases can occur:
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ρα ρ
∗

1

f(ρ)

0 ρ̂αραρ̌α

Vb

ρ̄
Vb

x

t

ρ̄
ρ̂α

ρ̌α

ρ̄

(a) Example of solution corresponding to case 1. of Definition 3.2 for ρL = ρR = ρ̄,
ρ̌α < ρ̄ < ρ̂α.

ρα ρ
∗

1

f(ρ)

0 ρ̂αραρ̌α

Vb

ρL

ρR

Vb

x

t

ρL

ρR

(b) Example of solution corresponding to case 2. of Definition 3.2 for 0 < ρL < ρ̌α
and ρ̂α < ρR < ρ∗.

ρα ρ
∗

1

f(ρ)

0 ρ̂αραρ̌α

Vb

ρL

ρR

v(ρR)

x

t

ρR

ρL

(c) Example of solution corresponding to case 3. of Definition 3.2 for ρL, ρR > ρ∗.

Figure 4. Different solutions of the Riemann problem (17). Each
subfigure illustrates a point of the Definition 3.2: fundamental di-
agram representation (left) and space-time diagram (right).
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ρR

f(ρ)

σ−ρ+ σ+ ρ−

ẏ

ż

(a) Case 1.1

ρR

f(ρ)

σ̌ ρ+ σ̂ ρ− σ

ẏ

ż

(b) Case 1.2

ρR

f(ρ)

σ− σ̌ρ̌ σ̂ ρ̂σ+

ẏ

ż

(c) Case 1.3

Figure 5. Case 1

• 0 ≤ σ ≤ σ̌:

(19) = (Fα(ẏ) + ẏρ+ − żρ+ − F (σ))− (Fα(ẏ) + ẏρ− − żρ− − F (σ))

= (ρ− − ρ+)(ż − ẏ)

≤ R|ẏ − ż|.

• σ̂ ≤ σ ≤ ρ̂, see Figure 5b:

(19) = − (Fα(ẏ) + ẏρ+ − żρ+ − F (σ))− (Fα(ẏ) + ẏρ− − żρ− − F (σ))

= 2F (σ)− 2Fα(ẏ) + (ρ+ + ρ−)(ż − ẏ)

≤ 2Fα(ż)− 2Fα(ẏ) + 2R(ż − ẏ)

= −2ρα(ż)(ż − ẏ) + 2R(ż − ẏ)

≤ 2R|ẏ − ż|.

• ρ̂ ≤ σ ≤ R:

(19) = − (Fα(ẏ) + ẏρ+ − żρ+ − F (σ)) + (Fα(ẏ) + ẏρ− − żρ− − F (σ))

= (ρ+ − ρ−)(ż − ẏ) ≤ 0.
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1.3 (σ−, σ+) ∈ G3(ż): we set

f(σ−)− żσ− = f(σ+)− żσ+ =: F (σ) ≤ Fα(ż).

We observe that sgn(ρ+−σ+) < 0 and sgn(ρ−−σ−) > 0, see Figure 5c.
Therefore

(19) = − (Fα(ẏ) + ẏρ+ − żρ+ − F (σ))− (Fα(ẏ) + ẏρ− − żρ− − F (σ))

= 2F (σ)− 2Fα(ẏ) + (ρ+ + ρ−)(ż − ẏ)

≤ 2Fα(ż)− 2Fα(ẏ) + 2R(ż − ẏ)

= −2ρα(ż)(ż − ẏ) + 2R(ż − ẏ)

≤ 2R|ẏ − ż|.

2. (ρ−, ρ+) ∈ G2(ẏ): we set

ρ := ρ− = ρ+ and f(ρ)− ẏρ =: F (ρ) ≤ Fα(ẏ).

as illustrated in Figure 6.

ρR

f(ρ)

0 σ̌ ρ̌ σ̂ ρ̂ ρ

ẏ

ż

(a) Case 2.1

ρR

f(ρ)

0 σ̌ ρ̌ σ̂ ρ̂ ρσ

ẏ

ż

(b) Case 2.2

ρR

f(ρ)

σ−σ̌ρ̌ σ̂ ρ̂σ+ ρ

ẏ

ż

(c) Case 2.3

Figure 6. Case 2

2.1 (σ−, σ+) ∈ G1(ż):
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• 0 ≤ ρ ≤ σ̌:

(19) = − (F (ρ) + ẏρ− żρ− Fα(ż)) + (F (ρ) + ẏρ− żρ− Fα(ż)) = 0.

• σ̌ ≤ ρ ≤ ρ̌, this case is displayed in Figure 6a:

(19) = (F (ρ) + ẏρ− żρ− Fα(ż)) + (F (ρ) + ẏρ− żρ− Fα(ż))

= 2F (ρ)− 2Fα(ż) + 2ρ(ẏ − ż)
≤ 2 (Fα(ẏ)− Fα(ż))

≤ 2ρα(ẏ)(ż − ẏ)

≤ 2αR|ẏ − ż|.

• ρ̂ ≤ ρ ≤ R:

(19) = (F (ρ) + ẏρ− żρ− Fα(ż))− (F (ρ) + ẏρ− żρ− Fα(ż)) = 0.

2.2 (σ−, σ+) ∈ G2(ż), illustrated in Figure 6b:
We observe that sgn(ρ+ − σ+) = sgn(ρ− − σ−) = sgn(ρ− σ), therefore

(19) = sgn(ρ− σ) [(F (ρ) + ẏρ− żρ− F (σ))− (F (ρ) + ẏρ− żρ− F (σ))] = 0.

2.3 (σ−, σ+) ∈ G3(ż) shown in Figure 6c: If sgn(ρ− σ+) = sgn(ρ− σ−), we
get

(19) = sgn(ρ− σ+) [(F (ρ) + ẏρ− żρ− F (σ))− (F (ρ) + ẏρ− żρ− F (σ))] = 0.

Otherwise, we have that σ− ≤ ρ ≤ ρ̌ or ρ̂ ≤ ρ ≤ σ+. In this case

λ(ρ+, σ+)− ż =
f(σ+)− f(ρ)

σ+ − ρ
− f(σ+)− f(σ−)

σ+ − σ−
≤ 0,

λ(ρ−, σ−)− ż =
f(σ−)− f(ρ)

σ− − ρ
− f(σ+)− f(σ−)

σ+ − σ−
≥ 0,

by the concavity of f . Therefore, (19) ≤ 0 by (20).
3. (ρ−, ρ+) ∈ G3(ẏ): we set

f(ρ−)− ẏρ− = f(ρ+)− ẏρ+ =: F (ρ) ≤ Fα(ẏ).

See Figure 7, for a graphical representation.
3.1 (σ−, σ+) ∈ G1(ż), see Figure 7a.

(19) = (F (ρ) + ẏρ+ − żρ+ − Fα(ż)) + (F (ρ) + ẏρ− − żρ− − Fα(ż))

= 2F (ρ)− 2Fα(ż) + (ρ+ + ρ−)(ẏ − ż)
≤ 2 (Fα(ẏ)− Fα(ż))

≤ 2ρα(ẏ)(ż − ẏ)

≤ 2αR|ẏ − ż|.

3.2 (σ−, σ+) ∈ G2(ż): If sgn(ρ+ − σ) = sgn(ρ− − σ), we get

(19) = sgn(ρ+ − σ) [(F (ρ) + ẏρ+ − żρ+ − F (σ))− (F (ρ) + ẏρ− − żρ− − F (σ))]

≤ (ρ+ − ρ−)(ż − ẏ)

≤ R|ẏ − ż|.
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ρR

f(ρ)

σ+

ρ−
σ− ρ+

ẏ

ż

(a) Case 3.1

ρR

f(ρ)

ρ− σ ρ+

ẏ

ż

(b) Case 3.2

ρR

f(ρ)

ρ− ρ+

ẏ

ż

σ− σ+

(c) Case 3.3

Figure 7. Case 3

Otherwise as shown in Figure 7b, we have that ρ− ≤ σ ≤ σ̌ or σ̂ ≤ σ ≤
ρ+. In this case

λ(ρ+, σ+)− ż ≤ λ(ρ+, σ+)− ẏ

=
f(ρ+)− f(σ)

ρ+ − σ
− f(ρ+)− f(ρ−)

ρ+ − ρ−
≤ 0.

Moreover, we observe that λ(ρ−, σ−) > ẏ. Indeed

λ(ρ−, σ−)− ẏ =
f(ρ−)− f(σ)

ρ− − σ
− f(ρ+)− f(ρ−)

ρ+ − ρ−
≥ 0.

Therefore, by (20)

(19) ≤ R|ẏ − ż|.

3.3 (σ−, σ+) ∈ G3(ż):
We observe that one of the following relations must hold

ρ− ≤ σ− < σ+ ≤ ρ+, σ− ≤ ρ− < σ+ ≤ ρ+, σ− ≤ ρ− < ρ+ ≤ σ+.
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For an example see Figure 7c. Therefore

λ(ρ+, σ+)− ż =
f(ρ+)− f(σ+)

ρ+ − σ+
− f(σ+)− f(σ−)

σ+ − σ−
≤ 0,

λ(ρ−, σ−)− ż =
f(ρ−)− f(σ−)

ρ− − σ−
− f(σ+)− f(σ−)

σ+ − σ−
≥ 0,

again by concavity of f . Hence (19) ≤ 0 by (20).
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