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ABSTRACT. We study well-posedness of scalar conservation laws with moving
flux constraints. In particular, we show the Lipschitz continuous dependence
of BV solutions with respect to the initial data and the constraint trajectory.
Applications to traffic flow theory are detailed.

1. Introduction. Motivated by the modeling of moving bottlenecks in traffic flow,
which can be caused by a large, slow moving vehicle, we consider the Cauchy prob-
lem for a scalar conservation law with moving flux constraint

Op+ 05 f(p) =0, (t,z) eRT xR,  (la)
p(0,2) = po(), zeR,  (1b)
Flo(ty(1) = §(0p(ty(1) < Fali(t)), teR",  (Ic)

where t — y(t) is a given trajectory, starting from y(0) = yo, and
Fa() = Falpa() = fa(pa(9)) — §pa (), (2)

with pa (9) such that f'(pa(9)/a) = . Systems of the form ([I]) arise in the modeling
of moving bottlenecks in vehicular traffic [12, [16]: p = p(¢,z) € [0, R] is the scalar
conserved quantity and represents the traffic density, whose maximum attainable
value is R. The flux function f : [0, R] — R7T is assumed to be strictly concave,
Lipschitz continuous and such that f(0) = f(R) = 0. The time-dependent variable y
denotes the constraint position. In the present paper we consider a weakly coupled
PDE-ODE system, in the sense that we assume that the constraint trajectory is
given, and it does not depend on the solution of .
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Let us detail the meaning of inequality . A moving flux constraint located at
x = y(t) acts as an obstacle, thus hindering the flow as expressed by the unilateral
constraint . There, a € ]0,1[ is the dimensionless reduction rate of the road
capacity (the maximal allowed density) at the bottleneck position. The inequal-
ity is derived by studying the problem in the constraint reference frame, i.e.,
setting p(t, z) := p(t, z + y(t)) and rewriting the conservation law as

Op+ 0.F(5) =0,  F(p)=f(p)—ip (3)

In fact, let f, : [0,aR] — RT be the rescaled flux function describing the reduced
flow at x = y(t), defined by fo(p) = af(p/a), and let p,(y) € |0, aR[ such that

Fo(pa(®) = falpa(@) —9=0 < folpal) =19, (4)
with Fi,(p) = fa(p) — yp, see Figure Notice that, for to have a solution

in ]0,aR[, we will need to assume that ¢(¢) < f’(0) for ¢ > 0. Then setting

Fo() = Fa(pa(3)) we recover (). Imposing that in the obstacle reference frame
the flux F' is less than the maximum value of the flux of the reduced flow, one
gets . Notice that the inequality is always satisfied if

o [t y(t)E))
b(t) = p(t,y(t)£)

since its left-hand side is 0. Moreover, it is well defined even if p has a jump at y(t),
because of the Rankine-Hugoniot conditions.

f
y 1 fp) =vp
/| Jo Rt VU Vo
e ‘ ! falp) —yp
PrT— ps 0 pa(9) R P
0 A(9)pal(y) p§) aR R P
—yp
(a) Fixed reference frame (b) Obstacle reference frame

FIGURE 1. Graphical representation of the constraint action in the
fixed (left) and moving (right) reference frames.

Problem , (1b)), , can therefore be recast in the framework of conservation
laws with fix local constraint, first introduced in [I0], then developed in [2] [4] for
scalar equations and extended in [3| 14l [13] to systems. Following [12] Definition
4.1] and [0, Definition 1 and 2], solutions of (If) are defined as follows.



STABILITY OF SCALAR CONSERVATION LAWS 247

Definition 1.1. Let y € WL(RT;R) with 0 < ¢ < f/(0) and py € L' N

L*>(R; [0, R]) be given. A function p € C° (R*;L*(R; [0, R])) is a solution to if

1. p satisfies Kruzkov entropy conditions [I5] on (RT x R)\ {(t,y(t)): t € R},
i.e. for every k € [0, R] and for all ¢ € CL(R%;RT) and ¢(¢,y(t)) =0, t > 0,

[ o= koo + sento = 1) (7(0) = 10 21 o

+ [ oo = Hipt0.2) do 0 (50)

R

2. for a. e. t > 0 the left and right traces of p at x = y(¢) satisfy
(p(t,y(t)=), p(t, y(t)+)) € Ga(y(t)). (5b)

Notice that the left and right traces in do exist, see [4, Section 2].
The set G, (y) in is defined as follows, see [ [F] [].

Definition 1.2. The admissibility germ Gq () C [0, R]? for (Lal), is the union
Ga(y) == Ql(y) U gz( ) U Gs(y), where

g1 (©) == {(cL,cr) €0, R] cp > cg, fler) —yer = flcr) — yer = Fa(9) },
G2(9) = {(c,c) 2 fle)—ge < Fu(9)},

g?»(y = {( CLaCR) [073]21 cp < cr, fler) —yer = fler) —jcr < Fa(9)} -
We refer the reader to Figure [2| for a graphical representation of G, (9)

CR
R
p*
\\93@) Ga ()
A(9) g
A(Y) *Gi(y)
Gs(¥)
o) () R crL

FIGURE 2. The set G, (y) (thick lines) in the case of a flux function
of the form f(p) = Vp(1 — p/R), as in Section [3|

The equivalence between Definition and [I2] Definition 4.1] can be proved as
in [4, Proposition 2.6].

Systems of the type arise in the modeling of moving bottlenecks in traffic
flows, see [12] [16] and Section |3| below, where they are coupled with an ODE de-
pending on the downstream traffic velocity and describing the trajectory of a slow
moving vehicle (a bus or a truck) acting as a bottleneck.

This paper is a first step towards establishing well-posedness for the strongly
coupled models [12 16]. Sectionpresents the main result, stating the L' Lipschitz
continuous dependence of solutions of from the initial data and the constraint
trajectory. Section [3| describes in details the related traffic flow model with moving
bottleneck. Technical proof details are deferred to Appendix [A]
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2. Lipschitz continuous dependence of BV solutions with respect to g.
Let us fix the constraint trajectory y € WH°(RT;R) with 0 < ¢ < f/(0) and the
initial datum py € BV(R; [0, R]), and let p € C° (RT; L*(R; [0, R])) be a solution of
(1) in the sense of Definition[L.1} Applying the coordinate transformation p(t, z) :=
p(t,z +y(t)), p is a weak entropy solution of the problem

Op+ 0. F(p) =0, (t,z) e RT x R, (6a)
p(0,2) = po(z + yo), z € R, (6b)
F(p(t,0)) < Fa(y(t)), teRT, (6¢)

in the sense of [4, Proposition 2.6(A)] where we have set F(p) := f(p) — y p. Exis-
tence and uniqueness for @ are proved in [4, [I0]. In particular, we have that for
every k € [0, R] and for all ¢ € C}(R%;R*) such that o(¢,0) =0, t > 0,

[ [ 6= Koo+ 0051000 do e+ [ |puta + ) = Hlo(0.2) do 0.
R+ JR R
where we have set
®(y;a,b) :=sgn(a—b) (f(a) — f(b)) —yla—0b],  fora,beR,
and
(5(t,0-), (1, 04)) € Gu(§(t)) for a. e. £ >0,

see [4, Proposition 2.6]. Moreover, we note that, since « < 1 and f is strictly
concave, we have

Fa®) = falpa(i)) = pa() < f(pa(i) = pali) = max Flp).  (7)
Remark 1. Solution to @ are not in BV in general (see [1I, [10]), but thanks to
the strict inequality in and since y € WL °(R*; R) implies § € BV;,.(RT), we
can conclude that p(t,-) € BV(R; [0, R]) for any ¢t > 0, as in [12].

We compare solutions of @ corresponding to different constraint trajectories y
and z.

Theorem 2.1. Assume y,z € WL (RT:R), with 0 < 5,2 < f'(0), po,60 €
L>(R,[0,R]) and po — 60 € L*(R). Let p,6 € C°(RT;LY(R;[0,R])) be solu-
tions of @ corresponding respectively to y,pg and z,6q9. Moreover, let Cy =
supyepo, I'V(p(s,-)) be finite. Then we have

6t -) =&t L@ < 6o = Gollprm) + (Ce + 2R — 2L o) (8)
Proof. The two solutions p, & satisfy
Oclp — k| + 0:®(y; p, k) <0, (9)

in D'(R* x R*) (where we have noted R* = R\ {0}). Following the proofs of [6l
Lemma 15] and [7, Theorem 3.1] we observe that

hlp — k| + 0, D(: p k) = D4l — K| + 0D (5 p, k) + 0,5 p, k) — Dp® (2 5, k)
therefore
15— K| + 0,0(55 5 k) < 0,925 k) — 0,05 5 K)
< 9 = 2[102p]. (11)
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Applying the classical Kruzkov doubling of variables technique [15], with a test
function v € C!(R%;R*) such that (¢,0) = 0, we deduce the following Kato
inequality

/ / (1 — 6100 + B(: 5. 5)0,0) da dt
R+ JR

+ [ 10— dolbt0.2) do+ Gl [ lo—2lar 20,
R R+
We now choose the test function (¢, z) = 0.(x)&(t, z), where £ € CL(R%*;RT) is an
approximation of the characteristic function of the trapezoid
{(s,z): x| <M+ L(t—s), 0<s<t}

(where L > sup,c(o,g),sejo,q |/ (p) — 2(s)| and M € R, M > 0) and 0. a smooth
approximation of x — min{|z|/e,1}. Following the proof of [I0, Proposition 4.4
and letting € \, 0 we get

M
/ (t,z) — 5(t, 2)|dx
M

M+Lt t
< / Po(z) — Go(x)|dz + C / [9(5) — £(s)lds

—M-—Lt
+/0 (®(2: p(t,04), 6 (1, 040)) — B2 j(t,0—), 5(£,0-))) ds.

By Lemma [A ] the last integrand can be bounded by

/0 (®(%A(t,04),6(t,04)) — (2 (¢, 0-),6(t,0-))) ds < ZR/O [9(s) — 2(s)lds.

(12)
Letting M — oo, we recover . O

We are now able to state the well-posedness of problem .

Corollary 1. Assume y,z € WL(RT;R), with 0 < 5,2 < f(0), po,00 €
L>*(R,[0,R]) and py — oo € L*(R). Let p,o € C°(RT;L*(R;[0,R])) be solu-
tions of corresponding respectively to y,po and z,0¢. Moreover, let C; =
supgepo, T'V(p(s,-)) be finite. Then we have

lo(t,) = ot, )l w)
<llpo = oollgr @) + 2Ct|y(0) = 2(0)| + (2C: + 2R)[|§ — Z[|1.1 0,17)- (13)

Proof. Setting
plt,x) = p(t,x + y(t)) and a(t,x) = o(t,xz + 2(t)),
for any t > 0 we get

[ lott.) = ott.a)ldz = [ lptto+ 2(0) = ot + 2(0)d
R R
= [ It 200 F plt. +5(0) =~ ot +2(0) o

< Jy(t) — 2TV (p(t, ) + /]R |p(t, x) — &(t, x)|de.
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Therefore, by , we get

/|p(t,x) _ o(t,2)|dz
R

IN

Culy(t) — ()] + / Ao(@) — Go(@)|dz + (Cy + 2R) / [9(s) — £(s)|ds

IN

/R 1po(z) — oo(2)ldz + [y(0) — 2(0)|TV (o)

+Cy <|y(0) — 2(0)] +/0 l9(s) — 2(5)|d8> +(Cy +2R) ; [9(s) — 2(s)lds
= / lpo(x) — oo(@)|dz 4 2C:|y(0) — 2(0)| + (2C: + 2R)/ [9(s) = 2(s)lds,
R 0

where we have used the estimate |y(¢) — z(t)| < |y(0) — Z(O)|—|—f0t ly(s) — 2(s)|ds. O

3. Application to traffic modeling. Setting

f(p) := pv(p),

where v(p) = V(1 — p/R) is the mean traffic speed, V being the maximal velocity
allowed on the road, problem can be used to describe the situation of a moving
bottleneck along a road, see [12]. In this case, we get fo(p) = Vp (1 — ﬁ) and

pa(y) = o (1 - %) , so that

aR

== 9)°.

Fo(y)
Let us suppose that a slow and large vehicle, like for example a bus or a truck
moves on the road. The slow vehicle, that in the following we will refer as “the

bus”, reduces the road capacity and moves with a trajectory given by the following
ODE:

y(t) = w(p(t,y(t)+)), teR*, (14)
y(0) = yo,

where the velocity of the bus is given by the following traffic density dependent
function (see Figure [3)

wip) = { Z?p) i)ftlplefvxfi):e.i =Y. (15)

This means that if the traffic is not too congested, the bus moves at its own maximal
speed V;, < V. When the surrounding traffic density becomes too high, the bus
adapts its velocity accordingly. In particular, it is not possible for the bus to
overtake the cars.

Solutions of the coupled system , for general initial data are defined as
follows.

Definition 3.1. A couple (p,y) € C° (RT; L*(R; [0, R])) x W:(RT; R) is a solution
to if
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w(p) — Bus speed
-- Cars speed
o(p)
Vo
p* R P

F1GUuRrE 3. Bus and cars speed.

1. p satisfies Kruzkov entropy conditions [15] on (RT x R) \ {(t,y(t)): t € RT},
i.e. for every k € [0, R] and for all ¢ € CL(R%;RT) and ¢(¢,y(t)) =0, t > 0,

[ o= koo +senio = 1) (7(0) = 1) 2ri) o

+ [ 1o~ He(0,2) do > 0 (168)
R
2. for a. e. t > 0 the one-sided traces of p at = = y(t) satisfy
(p(t,y(t) =), p(t,y(t)+)) € Ga((t)) ; (16b)
3. y is a Carathéodory solution of , i.e. for a.e. t € RT
t
o(0) w0+ [ wlpls,y(s) ) ds (160)
0

The proof of existence of solutions for the general Cauchy problem strongly
coupled with the bus trajectory with BV initial data can be found in [12].
For completeness, we recall the definition of the solution of a Riemann problem, as
given in [I2]. Let us consider a Riemann type initial datum

| pr ifz <0, _
o) ={ % RESD w0 (a7

Denote by R the standard (i.e., without the constraint (1d)) Riemann solver for
(Ta)-(IB)-(17), i.e., the (right continuous) map (t,z) — R(pr,pr)(z/t) given by
the standard weak entropy solution, see for instance [8, Chapter 5]. Moreover,
assume that g is constant and let p = p(y) and p = p(y), with p < p, be the
intersection points of the flux function f(p) with the line fo(pa) + 9(p — pa) (see

Figure [Ifa)):

. R .
p) = o (L=vVI—a) (V—19),
2V (18)
. R .
py) = BY4 1+ vI-a)(V-y).
Definition 3.2. The constrained Riemann solver R : [0, R]* — Li _(R;|[0, R])

corresponding to , , is defined as follows.
L. If f(R(pL,pr)(Vb)) > Fo + ViR(pL, pr)(Vs), then

ot = BN Kt 0=
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2. VW R(pr, pr)(Vs) < f(R(prL, pr)(V)) < Fa + VuR(pL, pr)(V3), then
R*(pr,pr) = R(pr,pr) and y(t) = Vpt.
3. If f(R(pr, pr)(Vs)) < VoR(pL, pr)(Vb), 1., v(R(pL, pr) (Vb)) < Vp then
R*(pr:pr) =R(pr,pr) and y(t) =v(pr)t.

Note that, when the constraint is enforced (point 1. in the above definition),
a non-classical shock arises between p(V3) and p(V4), which satisfies the Rankine-
Hugoniot condition but violates the Lax entropy condition, see Figure [4 for an
example.

Remark 2. Unfortunately, no result about the Lipschitz continuous dependence
of the solution y = y(t) of from the solution p = p(t, z) of is known at
present. Related results [9] [11] concerning uniqueness and continuous dependence
for ODEs of the form hold under hypothesis on the speed function w that are

not satisfied by .

Appendix A. Proof of .
Lemma A.1. For any (p—, py) € Go(y) and (0—,04) € Go(£), it holds
(%5 py,04) — B(21p-,0-) < 2R[y — 4.
Proof. First of all, let us remark that
(23 py,04) = B(25p-,0-) (19)
=sgn(py+ — o) (f(p+) — 2p+ — floy) + 204)
—sgn(p- —o-) (f(p-) — 2p— = f(o-) + 20-)

=(Mp+,04) = D)lp+ — o4 | = (Mp-,0-) = 2)|p- — o], (20)
where £(p) ~ £(0)
— flo
Ap,o) = =220,
p—o
Without loss of generality, we can assume y < 2. Therefore we get
Fa(§) = Fa(2) 2 pa(2)(2 =) > 0. (21)

We distinguish the following cases:
1. (p—,p+) € G1(y): we observe that

p—=p, p+=p and f(p-) —gp— = f(p+) — Yp+ = Fu(y).

Depending on the values of o_, o, different situations can occur as shown
in Figure
1.1 (6-,04) € G1(2): in this case o_ = &, o4 = J, as shown in Figure
and f(o_) — z20_ = f(04) — 204 = F, (%), therefore

9 = (Fa(9) + 9o+ — 2p1 — Fu(2)) — (Fa(9) + 9p- — 2p— — Fa(2))
=(p——p)(2—9)
< R|y — 2|
1.2 (0-,04) € Ga(2): we set
o:=0_=o0y and f(o)—z0=:F(0) < F,(%).

The following cases can occur:
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[ 1 ! | ’
I | I 7/
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(a) Example of solution corresponding to case 1. of Definition for pPL = PR = P,
Pa <P < pa-
t
f(p)
Vo
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Vi ARPR
‘.""‘ I
RKiad |
i oo* < [ : PR
e ! |
i R ! |
Rl | |
(B4 | | |
prLi¢ [ |
I b
1 1 1 1
0 Pa Pa Pa ap” 10 x
(b) Example of solution corresponding to case 2. of Definition for 0<prL < Pa
and po < pr < p*.
t
(0 o(or)
PR
Vi |
|
[ IR pL
‘ | Voo
| ! |
| | | | PR
I I I
‘ 1 AN
0 Pa Pao ﬁu @ P* 1/ T

(c) Example of solution corresponding to case 3. of Definition for pL, PR > p".

FIGURE 4. Different solutions of the Riemann problem . Each
subfigure illustrates a point of the Definition fundamental di-
agram representation (left) and space-time diagram (right).
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f(p) i)
3 z
7 Y
0—pP+ 0+ P— R P P+ o P— o R P
(a) Case 1.1 (b) Case 1.2
f(p)
I,’
3 /0
. Y
o_agP Gop P R P
(c) Case 1.3

FIGURE 5. Case 1

e <o <y

[1L9) = (Fa(9) + 9o+ — 2p+ — F(0)) = (Fa() + 9p— — 2p— — F(0))
=(p- —p+)(Z —9)

< Rl |,
e 5 <o < p, see Figure b}
(19) = = (Fu(9) + 9p+ — 2p4 — F(0)) — (Faly) + 9p- — 2p— — F(0))

=2F(0) = 2Fa(y) + (p+ + p-)(2 = 9)
< 2Fa(73) - 2Fa(y) + 2R(2 - y)
= —2pa(2) (2 —§) + 2R(: — §)

< 2R[y — Z|.
e p<o<R:
[ = — (Fa(§) + 50+ — 204 — F(0)) + (Fal§) + 90— — 20— — F(0))

= (pr —p-)(2—9) <0.
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1.3 (o—,04) € G3(2): we set
flo ) =20 = f(o) — o = F(o) < Fu(?).

We observe that sgn(p; — o) < 0 and sgn(p— —o_) > 0, see Figure [5d
Therefore

(19 = = (Fa(9) + 9p+ — 2p+ = F(0)) = (Fa(9) + 9p- — 2p- = F(0))
— 2F(0) = 2Fa(i) + (ps + p ) — )
< 2F, (%) — 2Fa(y) + 2R(2 — 9)
= —2pa(2)(2 — ) + 2R(2 — )
< 2Ry — 3.
2. (p—, p+) € Ga(y): we set
p:=p-=ps and f(p)—yp=:F(p) < Fa(y).
as illustrated in Figure [6]

f(p) /()
B 3
7 Y
0GP & p P R P 05 P G o p P R P
(a) Case 2.1 (b) Case 2.2
f(p)
/"
Yyl
o_GP Goy pp R P

(c) Case 2.3

FIGURE 6. Case 2

2.1 (o_,04) € G1(2):
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e 0<p<a:
(19 = = (F(p) +9p — 2p — Fu(2)) + (F(p) + 4p — Zp — Fu(2)) = 0.
e 5 < p < p, this case is displayed in Figure [Ga}

p, t
[19) = (F(p) +9p — 2p — Fa(2)) + (F(p) + 9p — 2p — Fa(2))
=2F(p) — 2Fa(2) + 2p(j — %)
(

2aR|y — 2|
e p<p<R
[19) = (Fp) +9p — 2p — Fu(2)) — (F(p) +4p — 2p — Fa(2)) = 0.

2.2 (0_,04) € Ga(2), illustrated in Figure
We observe that sgn(p; —oy) =sgn(p— —o_) = sgn(p — o), therefore

([19) = sen(p — o) [(F(p) +9p — 2p — F(0)) — (F(p) +9yp — 2p — F(0))] = 0.

2.3 (0_,04) € G3(%) shown in Figure If sgn(p —oy) =sgn(p —o_), we
get

(19 = sgn(p — o) [(F(p) + 4p — 2p — F(0)) = (F(p) + 9p — 2p — F(0))] = 0.
Otherwise, we have that o < p < por p < p < o;. In this case

flog)—flp)  floy)— flo-)

Movyov) =2= o+ —p a oy —o_ <0,
AMp—,o-)— 2= f(o_j _Z(p) B f(U;j :i(jf—) >0,

by the concavity of f. Therefore, <0 by .
3. (p—,p+) € G3(9): we set
flp=) = 9p— = flp3) = 9p+ =: F(p) < Fa(y).
See Figure[7] for a graphical representation.
3.1 (0-,04) € G1(2), see Figure[7al
@D = (F(p) + 9p+ — 2p+ — Fal2)) + (F(p) + 9p— — 2p— — Fa(2))
—2F(P)—2F (2) + (p+ + =)y — 2)
2(Fa(y) — Fu(2))
< 2pa( )(Z = 9)
< 2aRly — Z|.
3.2 (0_,04) € Ga(2): If sgn(py — o) =sgn(p_ — o), we get
@) = sen(ps — o) [(F(p) + i+ — 2ps — F(0)) — (F(p) + o — 3p — F(0))]
< (p+ —p-)(E—-9)
< Rly— 2|
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£(p) f(p)
2 z \
p—
T+ o P+ R P p- o Pt R »
(a) Case 3.1 (b) Case 3.2
fp)
i
",y. ///
o_P- oy P+ R P
(c) Case 3.3

FIGURE 7. Case 3

Otherwise as shown in Figure @, we have that p_ <o <dord <o <
p+. In this case

)\(ﬂ+,0’+) -z < /\(p+,a+) —
flp4) = flo)  flp+) — f(p-)
P+ —0 P+ — P-

<0.

Moreover, we observe that A(p—,o_) > 3. Indeed

flp-) = flo) _ flp) = flo-) o

)‘(p*a U*) - y = - =
p—-—0 P+ — p-
Therefore, by
< Ry — 2.

3.3 (o_,04) € G3(2):
We observe that one of the following relations must hold

p- <0 <04 <py, 0-<p-<0o4<py, 0-<p-<pp<oq.
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For an example see Figure Therefore
flps) = floy) — flog) = flo-)

Mpy,04) —2= T <0,
S =

again by concavity of f. Hence <0 by .
O
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