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Abstract. We study numerically a coagulation-fragmentation model derived

by Niwa [17] and further elaborated by Degond et al. [5]. In [5] a unique equi-

librium distribution of group sizes is shown to exist in both cases of continuous
and discrete group size distributions. We provide a numerical investigation of

these equilibria using three different methods to approximate the equilibrium:

a recursive algorithm based on the work of Ma et. al. [12], a Newton method
and the resolution of the time-dependent problem. All three schemes are val-

idated by showing that they approximate the predicted small and large size
asymptotic behaviour of the equilibrium accurately. The recursive algorithm is

used to investigate the transition from discrete to continuous size distributions

and the time evolution scheme is exploited to show uniform convergence to
equilibrium in time and to determine convergence rates.

1. Introduction. Most animals in nature aggregate in groups of different sizes.
These sizes vary in their frequency and obviously depend on the species. So the
question arises whether and how typical distributions of group sizes emerge. Related
questions are: Can we find adequate models for these distributions? How do the
distributions evolve over time? Is there an (or several) equilibrium distribution(s)?
Can one say something about the trend towards these equilibria?

Various models of describing the coagulation and fragmentation of groups of an-
imals have been suggested and analysed in the past (cf. e.g. [1, 2, 8, 9, 19]). The
model this work rests upon was introduced by Hiro-Sato Niwa in 2003 [17] related
to studies in [15, 16, 18] and has turned out to hold for data from pelagic fish and
mammalian herbivores in the wild. The model can be formalized into coagulation-
fragmentation integral equations where the coagulation rate is a constant indepen-
dent from the group sizes and the fragmentation rate is also a constant independent
from the fragment. By analogy with an Itô Stochastic Differential Equation Niwa
shows that the equilibrium must be given by

W (N) ∼ N−1 exp

[
− N

NP

(
1− e−N/NP

2

)]
. (1.1)
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W (N) is the stationary probability density function of group sizes and NP is the
average of the population distribution among group sizes, i.e. the expected size of
the groups which an arbitrary individual is part of. For a continuum of cluster sizes,
this is defined as

NP =

∫
N2W (N)dN∫
NW (N)dN

.

In the discrete setting the integrals are replaced by sums.
In [17] Niwa shows that the proposed equilibrium distribution (1.1) matches

empirical data of several species of pelagic fish very well. Ma et al. [12] provide a
critical discussion of Niwa’s result and point out some obscurities in the analysis.
Due to the appealing simplicity of Niwa’s model and the good empirical match to
the data, mathematical clarification is important. Degond et al. [5] have pursued
with Niwa’s model and given a rigorous description of the equilibria for continuous
(model C) and discrete (model D) cluster sizes, which differ from (1.1). The lack of a
detailed balanced condition has made the analysis difficult. However, by introducing
the so called Bernstein transformation, they have shown that there exists a unique
equilibrium, under a suitable normalization condition, for both the discrete and the
continuous cluster size case.

The task of the present work is a numerical investigation of both models and their
equilibria. The continuous equilibrium is approximated numerically using three dif-
ferent methods whose accuracy will be examined. One of them is a recursive al-
gorithm derived from model D in [12] which enables a transition from the discrete
to the continuous equilibrium. The other two, a Newton and a time-dependent
method, operate within a discretized truncated model, denoted by D’, of the con-
tinuous model C. There is an abundant amount of literature about discretizations
of coagulation (and fragmentation) integral equations using finite volume methods
(e.g. [3, 6, 7, 10, 11, 21]) or finite element methods (e.g. [13, 14, 20]). In our case,
the discretization scheme is already predetermined by model D.

It is investigated how well the numerically generated equilibria match the analyt-
ically predicted decay rate and the small-size asymptotic behaviour of the model C
equilibrium. We find all three methods to be very accurate apart from small devia-
tions of the large-size behaviour in the case of the Newton and the time-dependent
method due to truncation. The Newton method turns out to be extremely fast,
providing a very close approximation of the equilibrium after five iterations. The
recursive algorithm is the best numerical approach to this particular model with
respect to a couple of aspects: it is numerically cheap, doesn’t require truncation,
is completely accurate for the discrete model D and approximates the continuous
case properly without any aberrations. However, the other two methods are far
more flexible regarding changes of the models since, in principal, they don’t require
constant coagulation-fragmentation parameters p and q as opposed to the recursive
algorithm. The Newton scheme as an approach to prove the existence and unique-
ness of the equilibrium, as introduced in this work for model C’, has the advantage
of not depending on fixed parameters as contrasted with the Bernstein method (see
[5]) which needs p and q to be equal to one.

Hence, the truncated model and the associated numerical methods provide the
tools to work in more sophisticated models with the coagulation and fragmenta-
tion depending on the group sizes and/or time. In this context, the model under
investigation serves as a toy model to show the accuracy of the suggested schemes.
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In addition to that, the Euler scheme helps to examine the convergence of time-
dependent solutions to the stationary one, something that hasn’t been understood
comprehensively in the analysis in [5]. The numerical approach indicates uniform
convergence on finite intervals with super-exponential convergence rates indepen-
dent from the group sizes.

We introduce model C and model D in Section 2. In Section 3 we summarise the
analytical results concerning equilibria in models C and D. We introduce our own
truncated model C’ and the constructive approximation (Newton) method to its
equilibrium in Section 4. Section 5 provides a description of the different numerical
algorithms whose validations and insights are shown in Section 6.

2. The governing equations: The continuous and the discrete version.

2.1. General form of the equations. The continuous version of a coagulation-
fragmentation equation, called also Smoluchowski equation, describes the evolution
of the number density f(x, t) of continuous sizes x ≥ 0 at time t. In weak form it
reads, for all test functions ϕ in a class to be specified later:

d

dt

∫
R+

ϕ(x)f(x, t)dx =
1

2

∫
(R+)2

(ϕ(x+ y)− ϕ(x)− ϕ(y))a(x, y)f(x, t)f(y, t)dxdy

−1

2

∫
(R+)2

(ϕ(x+ y)− ϕ(x)− ϕ(y))b(x, y)f(x+ y, t)dxdy.

(2.1)

The coagulation rate a(x, y) and fragmentation rate b(x, y) are both nonnega-
tive and symmetric. The coagulation and fragmentation reactions can be written
schematically

(x) + (y)
a(x,y)−−−−→ (x+ y) (binary coagulation),

(x) + (y)
b(x,y)←−−−− (x+ y) (binary fragmentation).

By a change of variables, (2.1) can be transformed into

d

dt

∫
R+

ϕ(x)f(x, t)dx =
1

2

∫
(R+)2

(ϕ(x+ y)− ϕ(x)− ϕ(y))a(x, y)f(x, t)f(y, t)dxdy

−1

2

∫
(R+)

(∫ x

0

(ϕ(x)− ϕ(y)− ϕ(x− y))b(y, x− y)dy

)
f(x, t)dx.

(2.2)

Note that by taking ϕ(x) = x, one obtains the conservation of mass

d

dt

∫
R+

xf(x, t)dx = 0. (2.3)

The intuition behind (2.1) becomes clearer when we consider the strong form. In
the following, QC shall denote the coagulation operator and QF the fragmentation
operator. They both have a gain and a loss component and build up the strong
form of the equation as

∂f

∂t
(x, t) = QC(f)(x, t) +QF (f)(x, t), (2.4)

QC(f)(x, t) =
1

2

∫ x

0

a(y, x− y)f(y, t)f(x− y, t)dy −
∫ ∞

0

a(x, y)f(x, t)f(y, t)dy,

(2.5)
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QF (f)(x, t) =

∫ ∞
0

b(x, y)f(x+ y, t)dy − 1

2

∫ x

0

b(y, x− y)f(x, t)dy. (2.6)

The case where the cluster sizes form a discrete set can be described analogously.
So consider a system of clusters with discrete sizes i ∈ N. Merging and splitting
with the coagulation rate ai,j and fragmentation rate bi,j are ruled by the following
coagulation-fragmentation reactions

(i) + (j)
ai,j−−→ (i+ j) (binary coagulation),

(i) + (j)
bi,j←−− (i+ j) (binary fragmentation).

The system is described by the number density fi(t) of clusters of size i at time t
evolving according to the discrete coagulation-fragmentation equation. Written in
weak form the equation reads for any test sequence ϕi in a class to be specified later

d

dt

∞∑
i=1

ϕifi(t) =
1

2

∞∑
i,j=1

(ϕi+j − ϕi − ϕj)(ai,jfi(t)fj(t)− bi,jfi+j(t)). (2.7)

The equation can also be written similarly to (2.2) as

d

dt

∞∑
i=1

ϕifi(t) =
1

2

∞∑
i,j=1

(ϕi+j − ϕi − ϕj)ai,jfi(t)fj(t)

−1

2

∞∑
i=2

i−1∑
j=1

(ϕi − ϕj − ϕi−j)bj,i−j

 fi(t).

(2.8)

If one takes ϕk = k, it can be seen immediately that mass is conserved:

d

dt

∞∑
i=1

ifi(t) = 0.

Let QCi and QFi denote the coagulation resp. fragmentation operator for cluster
size i. Then the strong form can be written as

∂fi
∂t

(t) = QCi(f)(t) +QFi(f)(t), (2.9)

QCi(f)(t) =
1

2

i−1∑
j=1

aj,i−jfj(t)fi−j(t)−
∞∑
j=1

ai,jfi(t)fj(t), (2.10)

QFi(f)(t) =

∞∑
j=1

bi,jfi+j(t)−
1

2

i−1∑
j=1

bj,i−jfi(t). (2.11)

2.2. The equations based on Niwa’s model. According to Niwa’s model, we
assume s different zones of space on which Φ individuals move. The number of
individuals is conserved through time. At each time step every group moves towards
a randomly selected site with equal probability. When i-and j-sized groups meet
at the same site, they aggregate to a group of size i + j. So the coagulation rate
is independent from the group sizes and can be written as ai,j = 2q for any i, j >
0 where q > 0 is the fixed coagulation parameter. The fragmentation rate bi,j
expresses the fact that at each time step each group with size k ≥ 2 splits with
probability p independent of k, and that if it does split, it breaks into one of the
pairs with sizes (1, k − 1), (2, k − 2), . . . , (k − 1, 1) with equal probability. As the
actually distinct pairs are counted twice in such an enumeration, one gets for all
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1 ≤ i, j < k with i+ j = k: bi,j = p
(i+j−1)/2 = 2p

i+j−1 . Summarizing, we can express

Niwa’s model in the discrete system of equations introduced above by choosing

ai,j = 2q, bi,j =
2p

i+ j − 1
. (2.12)

As already indicated, Ma et al. [12] have studied the coagulation-fragmentation
system with these rates. Gueron and Levin [9] had proposed coagulation and frag-
mentation rates that satisfied a detailed balance condition. That means that their
choice of a and b was such that there exists an equilibrium distribution f fulfilling

b(x, y)f(x+ y) = a(x, y)f(x)f(y) ∀x, y > 0.

The detailed balance condition is not satisfied in Niwa’s model (cf. [5, Section 7]).
Degond et al. have chosen the same fragmentation and coagulation rates as Niwa
in the continuous case but slightly different ones in the discrete case. The results
of these steps are the discrete model D and the continuous model C, as described
below:

• Model D (Discrete):

ai,j = 2q, bi,j =
2p

i+ j + 1
. (2.13)

• Model C (Continuous):

ax,y = 2q, bx,y =
2p

x+ y
. (2.14)

The fragmentation of a group of size k in Model D can now be understood as
breaking into the pairs (0, i), . . . , (i, 0) with equal probability 1/k + 1. This means
that we also consider the cases in which actually nothing changes. This results in a
significantly simpler analysis.

To summarize, we will consider the following models:

Model D. The weak form for Model D (derived from (2.8)) reads, for all bounded
test sequences ϕi,

d

dt

∞∑
i=1

ϕifi(t) = q

∞∑
i,j=1

(ϕi+j − ϕi − ϕj)fi(t)fj(t)

+p

∞∑
i=1

−ϕi +
2

i+ 1

i∑
j=1

ϕj

 fi(t).

(2.15)

The test space is chosen to be l∞ because of the finite mass assumption on the
solutions which is specified in Section 3.2. The strong form becomes

∂fi
∂t

(t) = QCi(f)(t) +QFi(f)(t), (2.16)

QCi(f)(t) = q

i−1∑
j=1

fj(t)fi−j(t)− 2q

∞∑
j=1

fi(t)fj(t), (2.17)

QFi(f)(t) = −pfi(t) + 2p

∞∑
j=i

1

j + 1
fj(t). (2.18)
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Model C. The continuous model C can be written in weak form, for any test function
ϕ ∈ C([0,∞)), as

d

dt

∫
R+

ϕ(x)f(x, t)dx = q

∫
(R+)2

(ϕ(x+ y)− ϕ(x)− ϕ(y))f(x, t)f(y, t)dxdy

−p
∫

(R+)2
(ϕ(x+ y)− ϕ(x)− ϕ(y))

f(x+ y, t)

x+ y
dxdy.

(2.19)

or as

d

dt

∫
R+

ϕ(x)f(x, t)dx = q

∫
(R+)2

(ϕ(x+ y)− ϕ(x)− ϕ(y))a(x, y)f(x, t)f(y, t)dxdy

+p

∫
(R+)

(
2

x

∫ x

0

ϕ(y)dy − ϕ(x)

)
f(x, t)dx.

(2.20)

The test space is chosen to be C([0,∞)) because of the finite mass assumption on
the solutions which is specified in Section 3.1. The strong form can be written as

∂f

∂t
(x, t) = QC(f)(x, t) +QF (f)(x, t), (2.21)

QC(f)(x, t) = q

∫ x

0

f(y, t)f(x− y, t)dy − 2q

∫ ∞
0

f(x, t)f(y, t)dy, (2.22)

QF (f)(x, t) = −pf(x, t) + 2p

∫ ∞
x

f(y, t)

y
dy. (2.23)

By introducing the method of Bernstein transformations, the existence and unique-
ness of an equilibrium can be shown. The following section summarizes the impor-
tant findings of [5], and prepares us for the numerical investigation.

3. Preliminary findings in the analysis of the coagulation-fragmentation
model. This section contains a summary of important results from [5].

3.1. Equilibrium in the continuous case. Let k ∈ N and f : x ∈ R+ 7→ f(x) ∈
R+. The kth moment mk(f) is given by

mk(f) =

∫
x∈R+

xkf(x)dx.

For initial condition f0 with m1(f0) < ∞, we know from (2.3) that m1(f(t)) =
m1(f0) := m1. There is a scaling invariance for model C ((2.19) - (2.23)):

Proposition 3.1. Let f0 : x ∈ R+ 7→ f0(x) ∈ R+ be an initial condition for (2.21)
with m1(f0) =: m1 <∞ and let fp,q(x, t) be the solution of (2.21) with parameters
p and q. Then, one has

fp,q(x, t) =
p2

m1q
2 f1,1(

p

m1q
x,

p3

m2
1q

2 t),

where f1,1 is associated with the initial condition f̃0 such that

f0 =
p2

m1q
2 f̃0(

p

m1q
x),

m1(f1,1(·, t)) = m1(f̃0) = 1.
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Due to this proposition, we can assume p = 1, q = 1 and m1 = 1. The problem
in strong form becomes

∂f

∂t
(x, t) =

∫ x

0

f(y, t)f(x−y, t)dy−2f(x, t)

∫ ∞
0

f(y, t)dy−f(x, t)+2

∫ ∞
x

f(y, t)

y
dy,

(3.1)

m1(f(·, t)) =

∫ ∞
0

f(y, t)ydy = 1 ∀t ∈ [0,∞). (3.2)

In weak form it reads as
d

dt

∫
R+

ϕ(x)f(x, t)dx =

∫
R2

+

(ϕ(x+ y)− ϕ(x)− ϕ(y))f(x, t)f(y, t)dxdy

+

∫
R+

f(x, t)

(
2

x

∫ x

0

ϕ(y)dy − ϕ(x)

)
dx.

(3.3)

Definition 3.2. A function f : x ∈ (0,∞)→ R is said to be completely monotone
if it is C∞ and such that

(−1)kf (k) ≥ 0, ∀k ∈ N.

The main theorem can be stated as follows:

Theorem 3.3. There is a unique equilibrium distribution function f∞ of (3.1) and
(3.3) satisfying (3.2). It can be written as

f∞(x) = γ(x)e−
4
27x,

where γ is a completely monotone function and has the following asymptotic be-
haviour:

γ(x) ∼ 1

3Γ(4/3)
x−2/3 as x→ 0, (3.4)

γ(x) ∼ 9

16Γ(3/2)
x−3/2 as x→∞. (3.5)

3.2. Equilibrium in the discrete case. One can show that there is a scaling
invariance for model D ((2.15)-(2.18)) as well (cf. [5, Section 2.3]). Hence, we will
work with p = q = 1 in the following.

In the discrete setting the kth moment of a sequence f = (fi)i∈N is given by

mk(f) =

∞∑
i=1

ikfi.

Let us further introduce the sets

`1,k = {f = (fi)i∈N : fi ≥ 0, mk(f) <∞}.
One can establish the well-posedness of the initial value problem (for a proof see [5,
Theorem 12.1]):

Theorem 3.4. Let k ≥ 0 and fin = (fin,i)i∈N be given in `1,k. Then there exists
a unique global-in-time strong solution f ∈ C1([0,∞), l1,k) for system (2.16)-(2.18)
with f(0) = fin. If k ≥ 1, then m1(f(t)) = m1(fin) for all t ≥ 0.

Let Ft(x) denote a time-dependent solution of the continuous model C ((2.19)-
(2.23)). For a transition from the continuous to the discrete model, we introduce a
grid size h > 0 and the approximation

fhi ≈
∫
Ihi

Ft(dx), Ihi := [ih, (i+ 1)h), i = 1, 2, . . . (3.6)
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for the number of clusters with sizes in the interval Ihi .
For a smooth test function ϕ(x), we can write ϕi = ϕ(ih) and require that

fh(t) = (fhi (t))i∈N solves Model D ((2.15)-(2.18)) as a discretization of Model C
((2.19)-(2.23)):

∞∑
i=1

ϕi
dfhi
dt

(t) =

∞∑
i,j=1

(ϕi+j − ϕi − ϕj)fhi (t)fhj (t)

+

∞∑
i=1

fhi (t)

−ϕi +
2

i+ 1

i∑
j=1

ϕj

 .

(3.7)

Letting h → 0, leads to an approximation of the continuous model by the discrete
one. Since the physically attainable scenario in the case of animal group size sta-
tistics is given by h = 1, one might wonder why smaller grid sizes are of interest.
Clearly this is the case not just for mathematical reasons but also due to the fact
that the coagulation-fragmentation equation can be used to model a variety of phe-
nomena where the cluster sizes are not necessarily integer numbers. Understanding
the relation between the continuous and discrete model for small h is therefore an
important part of this paper.

We define the zeroth and first moment of an equilibrium distribution by

mh
0 =

∞∑
i=1

fhi , mh
1 =

∞∑
i=1

ihfhi .

The following theorem tells us that such an equilibrium actually exists and gives
details about the asymptotic behaviour (cf. [5, Sections 11 and 15]):

Theorem 3.5. For any mh
1 ∈ [0,∞), there is a unique equilibrium solution fh =

(fhi )i∈N of model D ( (2.15)-(2.18)). The solution has the form

fhn = γnz
−n, z = 1 +

4h

27mh
1

,

where γ is a completely monotone sequence with the asymptotic behaviour

γn ∼
9

8

(
mh

1z

hπ

)1/2

n−3/2 as n→∞.

Further, the following mass-number relation holds:

mh
0

(1−mh
0 )3

=
mh

1

h
. (3.8)

Complete monotonicity in the discrete context means that

(−1)k(∆kfh)n ≥ 0 ∀n, k ∈ N,

where the difference operator ∆ is given by (∆fh)n = fhn+1 − fhn and (∆kfh)n =(
∆
(
∆k−1fh

))
.

Let Fht denote the discrete measure on the grid {ih : i = 1, . . . } formed from
the solution fh(t) of model D ((2.15)-(2.18)):

Fht (dx) =

∞∑
i=1

fhi (t)δih(dx). (3.9)
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Let again Ft(x) be a solution of the continuous model C ((2.19)-(2.23)). One can
show that for a certain correspondence of initial data, for each t > 0, we have
Fht → Ft narrowly as h→ 0 (for a proof see [5, Theorem 16.1]).

In the following, we want to approximate these equilibria numerically. We are
going to apply three different methods. The one based on model D ((2.15)-(2.18))
will rest upon a recursive algorithm introduced in Section 5.1. The other two, a
Newton and a time-dependent method, require for a truncation in model C ((2.19)-
(2.23)) onto a compact interval of R. This new model C’ will be treated in the next
section.

4. Model C’: A truncated version of model C.

4.1. The time-dependent problem. We introduce a truncation of the weak for-
mulation of model C to the interval [0, L]. Let ϕ be a test function. The truncation
is chosen as follows:

Definition 4.1. A time-dependent size distribution f(t, x) in Model C’ is charac-
terised as a solution of the weak problem

d

dt

∫ L

0

ϕ(x)f(x, t)dx =

∫
0≤x+y≤L

(ϕ(x+ y)− ϕ(x)− ϕ(y))f(x, t)f(y, t)dxdy

−
∫

0≤x+y≤L
(ϕ(x+ y)− ϕ(x)− ϕ(y))

f(x+ y, t)

x+ y
dxdy,

(4.1)

for all t > 0 and test functions ϕ.

Note that, indeed, by chosing ϕ(x) = x mass conservation is still obtained:

d

dt

∫ L

0

xf(x, t)dx = 0.

Proposition 4.2. Let QCT
denote the coagulation operator and QFT

the fragmen-
tation operator. Then the strong form of model C’ can be written down as:

∂f

∂t
(x, t) = QCT

(f)(x, t) +QFT
(f)(x, t), (4.2)

QCT
(f)(x, t) =

∫ x

0

f(y, t)f(x− y, t)dy − 2

∫ L−x

0

f(x, t)f(y, t)dy, (4.3)

QFT
(f)(x, t) = 2

∫ L

x

f(y, t)

y
dy − f(x, t). (4.4)

Proof. Obvious calculation.

Further, we can state the following local existence and uniqueness result:

Proposition 4.3. Let f0 ∈ L1([0, L]) and R > 0. Then there is an α > 0 such that
the initial value problem corresponding with (4.2)

∂f

∂t
(x, t) = QCT

(f)(x, t) +QFT
(f)(x, t), f(·, 0) = f0(·) a.s.

has a unique solution on [0, α] with values in B(f0, R) ⊂ L1([0, L]).

Proof. This is an immediate application of the Cauchy-Lipschitz Theorem for initial
value problems in Banach spaces as QCT

is a continuous quadratic and QFT
is a

continuous linear operator from L1([0, L]) to itself (cf. Lemma 4.4).
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4.2. The equilibrium: A constructive approximation method. We present
a constructive approach to find the equilibrium in model C’ ((4.1)-(4.4)). It relies
on a Newton method.

The stationary version of (4.2) is

−QFT
(f)(x) = QCT

(f)(x).

This equation can also be written as

Tf = q(f, f), (4.5)

with

Tf(x) = f(x)− 2

∫ L

x

f(y)

y
dy = −QFT

(f)(x), (4.6)

q(f, φ)(x) =

∫ x

0

f(y)φ(x− y)dy −

(∫ L−x

0

f(y)dy

)
φ(x)−

(∫ L−x

0

φ(y)dy

)
f(x).

(4.7)

T is a linear operator whereas q is a bilinear form with QCT
(f) = q(f, f).

Starting with an appropriate f0, we want to find a recursive scheme giving a
convergent sequence (fn)n∈N with limit f∞, the equilibrium. Observe the following:
If fn+1 was an equilibrium, we’d have

Tfn+1 = QCT
(fn+1)

= QCT

(
fn + (fn+1 − fn)

)
= QCT

(fn) + 2q(fn, fn+1 − fn) +QCT
(fn+1 − fn)

= 2q(fn, fn+1)−QCT
(fn) +QCT

(fn+1 − fn).

with

QCT
(fn+1 − fn) = O(fn+1 − fn)2

when
∣∣fn+1 − fn

∣∣ is small. Hence, the following Newton scheme rests upon neglect-
ing this quadratic term and defines a sequence (fn)n∈N by iteratively solving the
following linear problem:

Tfn+1 − 2q(fn, fn+1) = −QCT
(fn). (4.8)

Introducing δf = fn+1 − fn, by adding −Tfn and 2QCT
(fn) on both sides of

equation (4.8), we get

Tδf − 2q(fn, δf) = −Tfn +QCT
(fn). (4.9)

We introduce the notation

Wfn(δf) = Tδf − 2q(fn, δf), Gn = −Tfn +QCT
(fn),

where Wfn is a linear operator and Gn is a function.
Wφ can be written as

Wφf(x) = [(1 + 2

∫ L−x

0

φ(y)dy) Id−2Kφ]f(x), (4.10)

where

Kφf(x) =

∫ L

x

f(y)

y
dy +

∫ x

0

f(y)φ(x− y)dy − φ(x)(

∫ L−x

0

f(y)dy). (4.11)

In the following, R (Wφ) denotes the range of Wφ and N (Wφ) its null space.
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For f ∈ L1([0, L]), g ∈ L∞([0, L]) we define

〈f, g〉 =

∫ L

0

fg dx,

and for V ⊂ L∞([0, L]) we define

V ⊥ = {f ∈ L1([0, L]) : 〈f, g〉 = 0 ∀g ∈ V }.

Lemma 4.4. Let φ ∈ L1([0, L]). Then Wφ, as given in equations (4.10), (4.11), is
a bounded, linear operator from L1([0, L]) to L1([0, L]).

Proof. The Lemma follows immediately from the definitions.

In addition, we can find out the following about the range of Wfn (We choose
the index fn instead of φ in order to build on equation (4.9)):

Lemma 4.5. For any fn ∈ L1([0, L]) it holds that R (Wfn) ⊂ span {x}⊥.

Proof. For any test function ϕ we have∫ L

0

[−Tfn(x) +QCT
(fn)(x)]ϕ(x)dx =

=

∫
0≤x+y≤L

(ϕ(x+ y)− ϕ(x)− ϕ(y))fn(x)fn(y)dxdy

−
∫

0≤x+y≤L
(ϕ(x+ y)− ϕ(x)− ϕ(y))

fn(x+ y)

x+ y
dxdy.

So if we set ϕ(x) = x, we get

0 =

∫ L

0

[−Tfn(x) +QCT
(fn)(x)]xdx =

∫ L

0

Gn(x)xdx. (4.12)

By adding and subtracting Tfn(x) and QCT
(fn)(x), one can see that

0 =

∫ L

0

[−Tfn+1(x) +QCT
(fn+1)(x)]xdx

=

∫ L

0

[−Tfn(x) +QCT
(fn)(x)− Tδf(x) +QCT

(δf)(x) + 2q(fn, δf)(x)]xdx.

Since this is true for any δf and the first two summands can be cancelled due to
(4.12), for any λ > 0 it holds that∫ L

0

[T (λδf(x))− 2q(fn, λδf)(x)]xdx =

∫ L

0

QCT
(λδf)(x)xdx.

Extracting the λ and dividing by λ leaves the factor λ on the right hand side of the
equation. Due to arbitrariness of λ, it can be chosen arbitrarily small which shows
that the left hand side is zero.

Now, we conjecture the following based on Fredholm theory (cf. [4]):

Conjecture 4.6. R (Wφ) = span {x}⊥, dim N (Wφ) = 1 and N (Wφ)∩span {x}⊥ =
{0}.
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Proving this conjecture allows to single out the solution of Wφf = g by imposing∫
xfdx = 1. This is the subject of current work.
A natural question is how large L has to be such that the equilibrium of model

C’ ((4.1) - (4.4)) is reasonably close to the equilibrium profile f∞ of model C ((2.19)
- (2.23)). Recall from Theorem 3.3 that

f∞(x) = γ(x)e−
4
27x,

where γ is a completely monotone function with

γ(x) ∼ 9

16Γ(3/2)
x−3/2 as x→∞.

The analysis in [5] suggests that for L ∼ 10 the function γ is already approximated
very well by these asymptotics. This means that for L > 10∫ ∞

L

xf∞(x)dx ∼ 9

16Γ(3/2)

∫ ∞
L

x−1/2e−
4
27xdx <

7

L
e−

4
27L .

If we choose L = 100, as will be done in the following numerical experiments, the
neglected mass of the equilibrium is of order e−15. This indicates that the truncation
error is indeed very small.

5. Numerical methods. This section contains three numerical methods to ap-
proach an equilibrium distribution. The first one concerns a recursive computation
of the equilibrium sequence for model D ((2.15)-(2.18)) already proposed in [12]
and [5]. The other approaches rely on model D’, a discretised version of truncated
model C’ ((4.1)-(4.4)). The first one simulates the evolution of the size distribu-
tion in time via an explicit Euler scheme and shall reach the steady state after a
certain time span. The other one follows the Newton method theoretically outlined
in Section 4.2. Note that the second method provides also an approximation of
the time-dependent problem while the first and third methods only allow for the
computation of the equilibrium.

5.1. A recursive algorithm for model D equilibria. The equilibrium sequence
in model D ((2.15)-(2.18)), (fhi )i∈N, can be computed recursively for any h > 0 (see
[5, Section 4.2.3] and [12, Eq. (13)-(15)]).

For a test function ϕ with ϕi = ϕ(ih), the equilibrium profile satisfies

0 =

∞∑
i,j=1

[ϕi+j − ϕi − ϕj ]fhi fhj +

∞∑
i=1

fhi [
2

i+ 1

i∑
j=1

ϕj − ϕi].

Define now

mh
0 =

∞∑
j=1

fhj , bi =

∞∑
j=i

1

j + 1
fhj .

Taking ϕj ≡ 1 yields

0 = −(mh
0 )2 −mh

0 + 2

∞∑
i=1

i

i+ 1
fhi = −(mh

0 )2 +mh
0 − 2b1. (5.1)

Further, with taking ϕk = 1 if k = i and 0 otherwise, we get

0 =

i−1∑
j=1

fhj f
h
i−j − (2mh

0 + 1)fhi + 2bi, i ≥ 1.
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Note that this is the stationary version of the strong form of model D given by
(2.16) - (2.18) which is solved by the equilibrium profile. The specific choice of the
test sequence ϕj ≡ 1 in the weak form has lead to the relation (5.1) which is used
to obtain the following recursive algorithm:

Choose mh
0 ∈ (0, 1) and set

b1 =
1

2
(−(mh

0 )2 +mh
0 ). (5.2)

Then for i = 1, 2, 3, . . . :

fhi = (1 + 2mh
0 )−1

2bi +

i−1∑
j=1

fhj f
h
i−j

 , (5.3)

bi+1 = bi −
fhi
i+ 1

. (5.4)

5.2. Model D’: The discretized form of model C’.

5.2.1. Setting of the model. We consider solutions f(x, t) of the truncated model C’
and write fi(t) = f(ih, t) for the discretised function. Let L > 0 be the truncation
size, h the grid size and N = L/h. Write φi = φ(ih) for a test function φ.

Definition 5.1. The weak form of model D’, the discretisation of model C’, is given
by the following evolution equation for the discrete size distribution fi(t):

d

dt

N∑
i=1

hfi(t)φi =
∑

2≤i+j≤N

h2[φi+j − φi − φj ]fi(t)fj(t)

+
∑

1≤i≤N

hfi(t)[
2

i+ 1

i∑
j=1

φj − φi], (5.5)

for all test sequences φi.

Observe that mass is preserved over time according to this equation.

Remark 5.2. Note that the link between model C’ ((4.1)-(4.4)) and model D’ re-
sembles the link between model C ((2.19)-(2.23)) and D ((2.15)-(2.18)) as discussed
in Section 3.2. However, note that equation (3.6) defines fhi (t) to be interpreted as
hFt(ih), if Ft(x) is a solution of model C.

Proposition 5.3. The strong form of model D’ is given by

d

dt
fi(t) = h

i−1∑
j=1

fi−j(t)fj(t)− 2hfi(t)

N−i∑
j=1

fj(t)− fi(t) + 2

N∑
j=i

fj(t)

j + 1
. (5.6)

for 1 ≤ i ≤ N .

Proof. Obvious calculation.

5.2.2. Time discretization of the time-evolution scheme. The explicit Euler scheme
in time is applied with time step size ∆t. Let tk = k∆t. The sequence {fk}k∈N
denotes an approximation of {f(tk)}k∈N and is defined by the following recursive
scheme:

fk+1 = fk + (
df

dτ
)k∆t, (5.7)
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where for any point ih with 1 ≤ i ≤ N ,

{(
dfi
dτ

)k}
i=1,...,N

is given by

(
dfi
dτ

)k
= h

i−1∑
j=1

fki−jf
k
j − 2hfki

N−i∑
j=1

fkj − fki + 2

N∑
j=i

fkj
j + 1

. (5.8)

A linear stability analysis of the scheme would mean to study the eigenvalues of the
following operator Lf , which is the Jacobian of the right hand side in (5.6):

(Lfg)i = 2h

i−1∑
j=1

fi−jgj − 2hgi

N−i∑
j=1

fj − 2h1{i≤N−i}fi

N∑
j=1

gj

− gi + 2

N∑
j=1

gj
j + 1

.

Since a spectral analysis of this operator is analytically impossible and numerically
very costly, we restrain ourselves to adjusting the time-step recursively. Starting
with ∆t = 10−2, the time step size is increased by ten per cent as long as the
distribution stays non-negative and monotone. If one of these criteria is violated,
the step size is reduced by ten per cent. The maximal time step size given by that
scheme is ∆t = 1.1.

5.2.3. Equilibrium in model D’: The Newton method. The stationary equation in
the discretized setup of model C’ ((4.1)-(4.4)) reads, for 1 ≤ i ≤ N ,

0 = h

i−1∑
j=1

fi−jfj − 2hfi

N−i∑
j=1

fj − fi + 2

N∑
j=i

fj
j + 1

.

Analogously to Eq. (4.5) involving the operators T and q, the discretized problem
can be written as

Sf = p(f, f), (5.9)

where for 1 ≤ i ≤ N

(Sf)i = fi − 2

N∑
j=i

fj
j + 1

,

(p(f, g))i =

i−1∑
j=1

hfjgi−j − fi
N−i∑
j=1

hgj − gi
N−i∑
j=1

hfj .

S is a linear operator and p is a bilinear form. Write P (f) = p(f, f). Hence, the
task is to find f such that its image under the linear operator S equals its image
under the quadratic form P derived from the bilinear form p.

Following our considerations in Section 4.2, we apply the Newton method ex-
pressed by Eq. (4.8). Starting with an appropriate f0 the following recursive
scheme is applied:

Sfn+1 − 2p(fn+1, fn) + P (fn) = 0.

The limit of this sequence, if it exists, satisfies the stationary equation (5.9).
Analogously to (4.9), the recursive scheme can be written as

Sδf − 2p(fn, δf) = −Sfn + P (fn),

where we introduce the notation

Vfn(δf) = Sδf − 2p(fn, δf), Hn = −Sfn + P (fn).
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This equation can be written explicitly as

(Hn)i = −2

 N∑
j=i

(δf)j
j + 1

+

i−1∑
j=1

h(δf)jf
n
i−j − fni

N−i∑
j=1

h(δf)j


+

1 + 2

N−i∑
j=1

hfnj

 (δf)i. (5.10)

We transfer our considerations concerning the invertibility of Wfn in Section 4.2
to the discretised version Vfn . Let x = (1, . . . , N). The range of the operator is
restricted to span{x}⊥, i.e. to N − 1 dimensions, and, hence, consider the above
equation just for 1 ≤ i ≤ N − 1. Thereby we win a degree of freedom to implement
the mass conservation in form of

(δf)N =

(
−
N−1∑
i=1

i(δf)i

)
/N.

This scheme provides us with an algorithm to approximate numerically the solution
of the stationary problem (4.5). As always, the performance of Newton’s method
crucially depends on the choice of the initialization. Here, we choose

f0
i =

m1 exp(−ih)

h
∑N
j=1 jh exp(−jh)

, (5.11)

with m1 > 0 denoting the mass to be chosen which will lead to convergence.

6. Numerical investigations. The numerical methods introduced in Section 5
shall now be applied. In the first subsection we check if the computed equilibrium
distributions actually show the behaviour analytically predicted in [5]. Hence, we
have to account for non-negativity and the predicted asymptotics for small and large
sizes. We supplement the validation of the schemes by a comparison of the large-size
asymptotics in model D ((2.15)-(2.18)) and model C ((2.19)-(2.23)). Further, we
exploit the codes to gain new insights into the small-size behaviour in model D and
the convergence rates to equilibrium in time. In the following, it will be appropriate
to display the distributions mainly in a log scale using the decadic logarithm if not
declared otherwise.

6.1. Validation of the numerical schemes.

6.1.1. The Newton method. First, we want to check the accuracy of the Newton
method presented in the previous section. In particular, we will compare the pre-
dicted asymptotic behaviour with the asymptotic behaviour displayed by the com-
puted equilibrium distribution. Recall from Theorem 3.3 that according to equation
(3.4) the unique equilibrium f∞ for mass m1 = 1 satisfies

log10 f∞(x) ∼ log10

1

3Γ(4/3)
− 4

27
x log10 e− (2/3) log10 x as x→ 0. (6.1)

Due to equation (3.5), the large-size asymptotic behaviour of f∞ is given by

log10 f∞(x) ∼ log10

9

16Γ(3/2)
− 4

27
x log10 e− (3/2) log10 x as x→∞. (6.2)

The following plots show that the approximation of the equilibrium generated by
the Newton method matches the predicted asymptotic behaviour very well. First,
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we are interested in the asymptotic behaviour for large sizes. We choose m1 = 1,
truncation size L = 100 and h = 0.01. We perform five iterations. In Fig. 1a, the
solid blue line shows the logarithmic distribution as a function of the group sizes
whereas the dashed red line shows the predicted asymptotic behaviour for x → ∞
in (6.2). The distribution is chosen in a log scale while the group size is shown
in a linear scale in order to illustrate the leading behaviour for the logarithmic
distribution, − 4

27x log10 e, in a linear shape. Second, we focus on the small-size
behaviour x → 0. We truncate at L = 5 and take h = 0.0005. Since for the
case of m1 = 1 and a calculation up to L = 100, the mass concentrated in [0, 5]
equals 0.5676, we take this as our starting value for the mass. Again, we perform
five iterations. In Fig. 1b the blue solid graph shows the log of the distribution as
a function of the log of the group sizes whereas the red dashed graph shows the
predicted asymptotic behaviour close to 0. These graphs show a linear behaviour
consistent with the leading order term being given by −(2/3) log10 x (see Eq. (6.1)).

Note that the distribution as shown in Fig. 1a tends to zero very quickly (already
f∞(x) < 10−2 at x = 10) but never becomes negative as intended. Observe the
perfect convergence of both graphs for the group sizes becoming higher and higher.
This means that the large-size asymptotic behaviour of the equilibrium generated
by the Newton scheme is utterly accurate. There is a very small kink at the cut-off
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(b) Illustration of small-size behaviour

Figure 1. The equilibrium distribution is approximated by the Newton
scheme (Section 5.2.3). In Fig. 1a, we take mass m1 = 1, grid size
h = 0.01 and the cut-off at L = 100. The plot shows the generated
distribution (blue solid line) in a log scale against the group sizes in a
linear scale and presents the theoretically found large-size asymptotic
behaviour (red dashed line) in a log scale for the sake of comparison.
The group sizes are taken in a linear scale in order to illustrate the
leading behaviour for large group sizes as a straight line. For Fig. 1b, the
equilibrium distribution is approximated by the Newton scheme taking
mass m1 = 1, grid size h = 0.0005 and the cut-off at L = 5. The
plot shows the generated distribution (blue solid line) in a log scale and
presents the theoretically found asymptotic small-size behaviour (red
dashed line) in a log scale for the sake of comparison. The group sizes
are taken in a log scale as well in order to illustrate the leading behaviour
close to zero as a straight line.
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at L = 100. This is a consequence of the truncation. In model C’ ((4.1)-(4.4)) the
groups of size L = 100 cannot be part of coagulation into a group of bigger size,
as opposed to model C ((2.19)-(2.23)) which is defined on [0,∞). Also groups with
sizes slightly smaller than 100 are concerned as they are involved in significantly
less coagulation than in the case without truncation. Summarizing, the cut-off
leads to a small overestimate of the probability of occurrence for group sizes in a
small neighbourhood of 100 compared to model C. Varying h in the range (0, 0.1)
doesn’t make a visible difference regarding the kink. For 0.1 ≤ h ≤ 1 the kink
becomes much smaller. This indicates that the missing coagulation concerns mainly
a neighbourhood of L with radius 0.1. Group sizes outside that range are not visibly
affected by not being able to merge into groups of size bigger than 100.

Note the approach of both graphs for x→ 0 in Fig. 1b. We can see a high similar-
ity to the predicted small-size behaviour but no real convergence. This divergence
close to 0 can be explained by the fact that model C ((2.19)-(2.23)) is continuous
and has a singularity at 0 whereas the numerical equilibrium is discrete. Further re-
call from equations (2.13) and (2.14) that we have chosen the discrete fragmentation
rate to be bi,j = 2

i+j+1 whereas the continuous rate is given by bx,y = 2
x+y . Hence,

the fragmentation probability is smaller in the discrete setting than in model C. This
explains that the generated distribution lies beneath the asymptotic behaviour of
model C.

If we choose the computed equilibrium distributions shown in Fig. 1 as initial
distributions for the time-dependent scheme described in Section 5.2.2, they actually
stay the same over an arbitrary long period of time (taking time step size ∆t ≤ 1.1).
This confirms that the computed equilibrium is indeed a proper approximation of
the stationary solution of (4.2)-(4.4).

6.1.2. The Euler scheme. Let us now turn to the convergence to the equilibrium in
the time evolution scheme. In the following we start with a uniform distribution. We
take the time step size ∆t = 1 (which is accurate due to the remark in Section 5.2.2)
and work with m1 = 1. We observe in Fig. 2 that there is actually convergence
to the equilibrium. Again, start with the large sizes and take the truncation size
L = 100 and the grid size h = 0.01. The stationary distribution reached after time
length T = 30 has exactly the same shape as Fig. 1a. As we can see in Fig. 2a,
the predicted large-size asymptotics are reached. As in the case of the Newton
algorithm, one can also observe the kink at the cut-off due to the reason explained
above. For the investigation of the small-size behaviour, we truncate at L = 5
and take h = 0.0005. As in the case of the Newton algorithm for generating the
equilibrium, we choose 0.5676 as starting value for the mass to simulate the process
for an overall mass of m1 = 1. For generating the small-size behaviour accurately
enough, we have to choose ∆t = 0.5. After T = 6 we get the small-size behaviour
displayed in the following Fig. 2b. It seems to equal the predicted asymptotics up
to a point very close to 0 where it diverges slightly from the theoretical prediction.
This is exactly the same observation as in the Newton scheme. The possible reasons
are obviously the same.

6.1.3. The recursive computation of the equilibrium sequence. Now we turn to check-
ing the accuracy of the recursive scheme introduced in Section 5.1. In the following
we will choose mh

1 and then mh
0 such that equation (3.8) is satisfied. Using the recur-

sive algorithm determined by equations (5.2)-(5.4), one can compute the equilibrium
(fhi )i∈N up to an arbitrarily large integer. As opposed to model C’ ((4.1)-(4.4)),
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(b) Illustration of small-size behaviour

Figure 2. The equilibrium distribution is approximated by simulating
the time evolution of the distribution via the Euler scheme. Starting
with a uniform distribution, the equilibrium, is reached at T = 30 at
the latest. In Fig. 2a, we take mass m1 = 1, grid size h = 0.01 and
the cut-off at L = 100. The plot shows the generated distribution (blue
solid line) in a log scale as a function of the group sizes in a linear scale
and presents the theoretically found large-size asymptotic behaviour (red
dashed line) in a log scale for the sake of comparison. The group sizes
are taken in a linear scale in order to illustrate the leading behaviour
for large group sizes as a straight line. For Fig. 2b, the equilibrium
distribution is approximated by the Euler scheme taking mass m1 = 1,
grid size h = 0.0005 and the cut-off at L = 5. The plot shows the
generated distribution (blue solid line) in a log scale and presents the
theoretically found asymptotic small-size behaviour (red dashed line) in
a log scale for the sake of comparison. The group sizes are taken in a
log scale as well in order to illustrate the leading behaviour close to zero
as a straight line.

we do not have to care about truncation. For the sake of comparison with the
continuous model, we will look at fhi as hf(ih) in accordance with equation (3.6).

Again, we want to compare the predicted asymptotic behaviour with the asymp-
totic behaviour displayed by the computed equilibrium distribution: recall from
Theorem (3.5) that the equilibrium fhn for mass mh

1 satisfies the large-size asymp-
totic behaviour given by

log10 f
h
n ∼ log10 C − n log10 z − (3/2) log10 n as n→∞, (6.3)

where

z = 1 +
4h

27mh
1

, C = (9/8)

√
mh

1z

hπ
.

There is no theoretical prediction for the small-size behaviour since the recursive
scheme was derived from the discrete model which obviously doesn’t have an equi-
librium with singularity at zero as opposed to the continuous case. However, we
will discuss the possibility of a small-size analysis in Section 6.2.

The plots in Fig. 3 indicate that the distribution generated by the algorithm
matches very well the predicted asymptotic behaviour for the equilibrium for any
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h > 0. Again for the sake of comparison with the continuous setting, we choose
mh

1 = 1 and compute the terms of the sequence until L = 100. In Fig. 3a, we choose
the grid size h = 1 which gives the actual realistic distribution with integer group
sizes. The plot compares the predicted asymptotic behaviour given by Eq.(6.3)
with the one given by our computed equilibrium. In Fig. 3b, we do the same for
h = 0.01. Observe that in both cases the equilibrium is non-negative. Note that
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(a) Log Distribution for h = 1
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(b) Log Distribution for h = 0.01

Figure 3. The equilibrium distribution is approximated by the recur-
sive scheme (Section 5.1). In Fig. 3a, the mass is mh

1 = 1, the grid size
h = 1 and the equilibrium sequence is computed till L = 100. It shows
the generated distribution (blue solid line) in a log scale and presents
the theoretically found asymptotic behaviour (red dashed line) in a log
scale (Eq. 6.3) for the sake of comparison. One can observe perfect
agreement for large sizes. In Fig. 3b, exactly the same is done for grid
size h = 0.01. Again, one can observe that the generated distribution
shows the predicted asymptotics.

the asymptotics are perfectly matched for both choices of h. As opposed to the
truncated discretisation of the continuous model, one cannot observe any kink at
the right-hand side of the graph. Obviously, this is the case since we don’t need
any truncation for the recursive algorithm. Additionally, one can observe that the
large-size asymptotics differ for h = 1 and h = 0.01. We are going to investigate
this phenomenon more precisely in the next section where we compare the large-size
asymptotics of model D ((2.15)-(2.18)) and model C ((2.19)-(2.23)).

6.1.4. Link between discrete and continuous model.

i) Convergence for fixed interval length L. For m1 = mh
1 = 1 the continuous and

discrete models can be compared as follows: according to Eq. (6.2) the leading
term in the asymptotics of the continuous equilibrium f∞ is given by e−(4/27)x as
x → ∞. Set x = hn. Then, due to Eq. (6.3), the leading term in the asymptotics
of the discrete equilibrium fhn is given by [(1 + 4h

27 )−1/h]x as n(= x/h)→∞. Since
we have

[(1 +
4h

27
)−1/h]x → e−(4/27)x as h→ 0, (6.4)

the leading term of the discrete equilibrium converges to the leading term of the
continuous equilibrium as h→ 0. Deploying the Newton method and the recursive
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scheme, we verify numerically if the same holds true for the truncated models uni-
formly on a fixed interval [0, L]. Indeed, we can observe that for h small enough
and a fixed truncation size L, the discretized equilibrium for model C’ ((4.1)-(4.4)),
i.e. for model D’ ((5.5)-(5.6)), as approximated by the Newton method and the
equilibrium for model D ((2.15)-(2.18)) generated by the recursive algorithm are
very close. We have chosen L = 100, h = 0.01 and m1 = mh

1 = 1. The equilibrium
computed by the Newton scheme – the solid blue line in Fig. 4 – and the equilibrium
computed by the recursive scheme – the dotted red line in Fig. 4 – are the same up
to a maximal absolute error of magnitude 10−6. This can be seen as an additional
validation of the Newton method.

We have verified numerically uniform convergence of model C’ ((4.1)-(4.4)) and
model D’ ((5.5)-(5.6)) in their large-size behaviour on finite intervals as h→ 0. This
reflects the uniform convergence of model C ((2.19)-(2.23)) and model D ((2.15)-
(2.18)) on finite intervals as indicated by Eq. (6.4). We illustrate this by fixing
L = 200 and comparing the asymptotics of model C and model D for h becoming
smaller. Fig. 5 shows the asymptotic large-size behaviour of the discrete equilibria
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Equilibrium in D (recursive method)

Figure 4. Comparison of the equilibria for model D’ ((5.5)-(5.6)) and
model D ((2.15)-(2.18)). We take truncation L = 100, grid size h = 0.01
and mass m1 = mh

1 = 1. The equilibrium for model D’ is generated by
the Newton scheme (Section 5.2.3) and represented in a log scale by the
solid blue line. The equilibrium for model D is generated by the recursive
scheme (Section 5.1) and represented in a log scale by the dotted red line.

(fhi )i∈N generated by the recursive algorithm in Section 5.1 and the analytically
predicted continuous one (Eq. (6.2)). We consider the grid sizes h = 1, h = 0.1 and
h = 0.01 and observe the expected convergence of both models. The equilibrium
in the genuine discrete case of model D ((2.15)-(2.18)), i.e. h = 1, differs from
the stationary solution of model C ((2.19)-(2.23)) in its large-size behaviour. This
difference becomes smaller for h = 0.1 and even much smaller, invisible in the shown
scale, for h = 0.01.

ii) Divergence on increasing intervals. If we fix h and increase the investigated
intervals of group sizes, the large-size behaviour of the discrete and continuous
model diverge. This is due to the dependence on h in the asymptotics of the discrete
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Large−size behaviour for model C

Figure 5. The equilibrium distribution is generated by the recursive
scheme, for mass m1 = 1, taking grid size h = 1, h = 0.1 and h = 0.01.
The figure shows the generated distributions (solid lines) and the large-
size asymptotic behaviour for model C ((2.19)-(2.23)) (dashed line) in a
log scale (equation (6.2)). We have magnified the plot close to x = 200.

equilibrium fhn . The discretization error between fhn and f∞(nh), where f∞ is the
continuous equilibrium profile, accumulates with increasing n. Hence, the solutions
of the two models separate for larger sizes if h is fixed. We illustrate that in Fig. 6
where we compare the predicted asymptotic behaviour for model D ((2.15)-(2.18))
and model C ((2.19)-(2.23)) at large group sizes x. The plots show the asymptotic
behaviour close to x = 200, x = 1000, x = 2000 for fixed h = 0.01. One can see how
the difference increases which means that for fixed h the continuous and discrete
equilibrium diverge as x→∞.

6.2. Small-size behaviour for model D. We turn towards the asymptotics of
the equilibrium sequence in the case h→ 0. Although this seems not significant for
the application of the model to animal group sizes, we investigate the question for
the sake of a more thorough comparison of model C ((2.19) - (2.23)) and model D
((2.15) - (2.18)). In applications with non-integer cluster sizes this will definitely
be relevant.

First, we need to investigate mh
0 for h→ 0. As pointed out in [5, Section 15] we

can immediately see from Eq. (3.8) that the leading behaviour for h → 0 is given
by

mh
0 ∼ 1− (

h

mh
1

)1/3.

Obviously, fh1 is a good indicator of the sought behaviour since it is the first term
of the sequence. With the above and using (5.2)-(5.4), one gets (for taking mh

1 = 1
in the end)

fh1 =
mh

0 (1−mh
0 )

1 + 2mh
0

∼
(1− ( h

mh
1

)1/3)( h
mh

1
)1/3

1 + 2(1− ( h
mh

1
)1/3)

∼ 1

3

h

mh
1

1/3

=
1

3
h1/3 as h→ 0. (6.5)

Let’s compare this behaviour with the small-size asymptotics of the stationary so-
lution of model C ((2.19)-(2.23)), denoted by f . We need to collate f(h) with 1

hf
h
1
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(c) Log Distributions close to x = 2000

Figure 6. The large-size behaviours of the discrete and continuous equi-
librium distributions are compared, for mass m1 = 1 and fixed grid size
h = 0.01, close to x = 200 (Fig. 6a), close to x = 1000(Fig. 6b) and
close to x = 2000 (Fig. 6c). In each case, it shows the large-size as-
ymptotic behaviour for model D ((2.15)-(2.18)) given by equation (6.3)
(blue dotted line) and the large-size asymptotic behaviour for model C
((2.19)-(2.23)) given by equation (6.2) (red dashed line) in a log scale.
Observe that for x becoming greater, the difference between both graphs
increases significantly.

due to Eq. (3.6). One can see that – except for the factor 1
Γ(4/3) ≈ 1.12 – the

discrete case actually has the same leading behaviour as the continuous one:

1

h
fh1 ∼

1

3
h−2/3 as h→ 0,

f(h) ∼ 1

Γ(4/3)

1

3
h−2/3 as h→ 0 (see (3.5)). (6.6)

In Fig. 7a we compare 1
hf

h
1 for h ∈ [5 ∗ 10−5, 1] with the small-size behaviour of

model C. We observe an approximation for decreasing h due to the converging
leading behaviour but the preservation of a small gap between the two graphs due
to the different constants as seen in (6.6). In Fig. 7b we look at the equilibrium
sequence given by the recursive algorithm for h = 5 ∗ 10−5, just in the interval
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(b) Equ. sequence for h = 5 ∗ 10−5

Figure 7. In Fig. 7a we plot 1
h
fh
1 for h ∈ [5 ∗ 10−5, 1] in log-log scale

(blue solid line) and the small-size asymptotics of the continuous model
C ((2.19)-(2.23)) (red dashed line). For small h, the graphs illustrate
the findings in (6.6). In Fig. 7b, the equilibrium sequence for model
D ((2.15)-(2.18)) is generated as described in Section 5.1 taking mass
mh

1 = 1 and grid size h = 5 ∗ 10−5. The plot shows the distribution
(fh

i )i∈N as a function of the group size in log-log scale (blue solid line)
in the interval [h, 1] and the small-size asymptotics of the continuous
model C (red dashed line). Both graphs tend to have the same slope for
the sizes becoming smaller except for a slight divergence at the smallest
group sizes.

[h, 1], and compare it to the behaviour predicted for the continuous case. We note
that the two curves show a very close approximation for decreasing group sizes with
the very first members of the sequence exhibiting the gap explained above. So the
slope close to 0 becomes the same but diverges slightly for the first few members of
the sequence. Again, this can be explained by model D ((2.15)-(2.18)) providing a
smaller fragmentation rate than model C ((2.19)-(2.23)), in connection with the fact
that whereas the continuous equilibrium is defined on (0,∞) and has a singularity
at 0, the discrete equilibrium is a sequence.

6.3. Determination of convergence rates. Degond et al. have proven in [5]
that model C ((2.19)-(2.23)) exhibits weak convergence to equilibrium as time goes
to∞. However, there is no finding about convergence almost everywhere. We want
to show that the time-dependent solution f(x, t) of Eq. (3.1) converges uniformly
to the equilibrium f∞ if we start with a uniform distribution or also an exponential
distribution. We also investigate the convergence rates for different group sizes.
For simulating the convergence process, we work with the Euler method in the
discretized version D’ ((5.5)-(5.6)) of the truncated model C’((4.1)-(4.4)). Denote
the discrete approximation of the time-dependent solution by fi(t) ( ∼ f(ih, t)) and
the discrete approximation of the equilibrium by f∞i .

Let’s again choose the cut-off at L = 100, grid size h = 0.01, mass m1 = 1 and
time step size ∆t = 1. As initial distribution we first take the uniform distribu-
tion (Table 1) as described in Section 5.2.2 and then the exponential distribution
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(Table 2) as for the Newton method, given by Eq. (5.11). The discretized equilib-
rium distribution f∞i is approximated by conducting the Euler scheme until t = 30.
Further, we calculate fi(25), fi(20), fi(15), fi(10) and fi(5) representing f(x, 25),
. . . , f(x, 5). We evaluate the distributions at i = 500, 3500, 6500, 9500 (representing

x = 5, 35, 65, 95) and consider the relative distance to the equilibrium
|f∞

i −fi(t)|
f∞
i

for

t = 5, 10, 15, 20, 25 and i = 500, 3500, 6500, 9500. Table 1 gives an overview of the
results for starting with a uniform distribution and Table 2 for starting with an
exponential distribution. The tables indicate that the convergence is uniform on a

Time t x = 5 x = 35 x = 65 x = 95
t = 5 0.2772 9.2148 154.7531 2046.0000
t = 10 0.0638 1.4009 10.8288 67.0145
t = 15 0.0089 0.1976 1.0721 3.8651
t = 20 0.0012 0.0260 0.1300 0.3832
t = 25 0.0001 0.0030 0.0149 0.0423

Table 1. Starting with a uniform distribution the time-dependent so-
lution of model C ((2.19)-(2.23)), f(x, t), is approximated via the Euler
scheme for model D’ ((5.5)-(5.6)), taking L = 100, h = 0.01, ∆t = 1
and m1 = 1. This approximation, fi(t), is evaluated at t = 5, 10, 15, 20
and the equilibrium distribution is approximated via following the Euler
scheme until t = 30. The table shows the relative distances to the equi-

librium,
|f∞

i −fi(t)|
f∞
i

for t = 5, 10, 15, 20, 25 and i = 500, 3500, 6500, 9500.

Time t x = 5 x = 35 x = 65 x = 95
t = 5 0.05620 0.75370 0.98890 0.99980
t = 10 0.00800 0.16010 0.50000 0.77500
t = 15 0.00120 0.02670 0.11420 0.25710
t = 20 0.00020 0.00430 0.02000 0.05220
t = 25 0.00003 0.00004 0.00290 0.00790

Table 2. Starting with an exponential distribution the time-dependent
solution of model C ((2.19)-(2.23)), f(x, t), is approximated via the Euler
scheme for model D’ ((5.5)-(5.6)), taking L = 100, h = 0.01, ∆t =
0.5 (smaller than in the previous case due to stabilisation problems for
small sizes) and m1 = 1. This approximation, fi(t), is evaluated at
t = 5, 10, 15, 20 and the equilibrium distribution is approximated via
following the Euler scheme until t = 30. The table shows the relative

distances to the equilibrium,
|f∞

i −fi(t)|
f∞
i

for t = 5, 10, 15, 20, 25 and i =

500, 3500, 6500, 9500.

bounded interval since the distance to equilibrium decreases in time monotonically
for any i (resp. x). Taking a uniform initial distribution effects in the relative
distances being on a much smaller scale for small i than for large i. The impact
of the initial distribution vanishes on the long run. The convergence rates seem to
approach each other for different group sizes (with the exception of x = 35 in the
second table) which can be seen by comparing the quotients of subsequent entries
in the different columns.
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We are investigating the speed of convergence depending on the sizes and time
more thoroughly. Consider the following approach for determining the exponential
convergence rate δx,t where x stands for the group size and t for time: one can
express f(x, t) as

f(x, t) = f∞(x)(1− e−tδx,t) + f0(x)e−tδx,t .

Substracting and dividing both sides by f∞(x) and taking absolute values gives

µ(x, t) :=
|f(x, t)− f∞(x)|

f∞(x)
=
|f0(t)− f∞(x)| f0(x)e−tδx,t

f∞(x)
. (6.7)

Hence, for two different points of time t1 and t2, one gets

µ(x, t2)

µ(x, t1)
= e−(t2δx,t2

−t1δx,t1
).

Thus, if the convergence rate is the same for t2 and t1, it can be expressed as

δx,t1 = δx,t2 =
1

t2 − t1
log (

µ(x, t1)

µ(x, t2
). (6.8)

We have estimated δx,t2 numerically for x = 5 and x = 95 by calculating the relative
distances µ(x, t1), µ(x, t2) as for Table 1 and Table 2. The points of time t1, t2 were
taken to be t1 = 20, . . . , 28 and t2 = t1 + 1. We have started with a uniform
distribution (Fig. 8a) and with an exponential distribution (Fig. 8b) and observed
– as expected – the same limit behaviour for the convergence rates. Note that in
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(b) Convergence rates for exponential initial

Figure 8. Starting with a uniform distribution (Fig. 8a) and with an
exponential distribution (Fig. 8b), the time-dependent solution of model
C ((2.19)-(2.23)), f(x, t), is approximated via the Euler scheme for model
D’ ((5.5)-(5.6)), taking L = 100, h = 0.01, m1 = 1 and ∆t = 1 for uni-
form initial and ∆t = 0.5 for exponential initial (due to stability issues
for small sizes). The approximation, fi(t), is evaluated at t = 20, . . . , 29
and the equilibrium distribution is approximated via following the Euler
scheme until t = 30. Calculating the relative distances to the equilib-
rium, µi(t) = |f∞i − fi(t)| /f∞i , for i = 500 and i = 9500 (representing
x = 5 and x = 95), we estimate the exponential convergence rate δx,t2
(∼ δx,t1) for t1 = 20, . . . , 28 and t2 = t1 + 1 according to Eq. (6.8).
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both cases the estimated convergence rates become the same for the small and the
large size. The increase in time indicates super-exponential convergence rates.

7. Conclusion. In this work, we have investigated numerically the coagulation-
fragmentation model for animal group size distributions theoretically discussed by
Degond et al. in [5]. The central point of this work was to approximate the equilibria
numerically and investigate convergence to equilibrium. We have worked with three
different numerical methods: a recursive algorithm – first introduced by Ma et al.
in [12] – and a Newton and a time-dependent method – developed in this paper.
We have validated our numerical methods by checking the accordance with the
predicted asymptotic behaviour and used the time-dependent scheme to show that
there is super-exponential convergence to equilibrium in time on finite intervals.

We have seen that the Newton method provides a very fast approximation of the
equilibrium after just five iterations. We suggest that the algorithm could be used
in more complicated models with coagulation and fragmentation rates depending
on the group sizes and/or time. Further, the Newton scheme could be deployed
to prove the existence and uniqueness of the equilibrium in such models where the
Bernstein method – used in [5] – fails as it solely works for fixed coagulation and
fragmentation parameters. Another topic of possible future work is to analyse the
indicated super-exponential convergence more precisely and determine the conver-
gence rates analytically.
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