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Abstract. In this paper we formulate a theory of measure-valued linear trans-

port equations on networks. The building block of our approach is the initial

and boundary-value problem for the measure-valued linear transport equation
on a bounded interval, which is the prototype of an arc of the network. For

this problem we give an explicit representation formula of the solution, which

also considers the total mass flowing out of the interval. Then we construct
the global solution on the network by gluing all the measure-valued solutions

on the arcs by means of appropriate distribution rules at the vertexes. The

measure-valued approach makes our framework suitable to deal with multiscale
flows on networks, with the microscopic and macroscopic phases represented by

Lebesgue-singular and Lebesgue-absolutely continuous measures, respectively,

in time and space.

1. Introduction. In recent times there has been an increasing interest in the no-
tion of measure-valued solutions to evolution equations. Compared to standard ap-
proaches based on classical and weak solutions, the measure-theoretic setting allows
one to better describe some interesting phenomena such as aggregation, congestion
and pattern formation in a multiscale perspective. Several of these phenomena occur
in applications such as vehicular traffic, data transmission, crowd motion, supply
chains, where the state of the system evolves on a network, see e.g. [5, 9, 13, 14, 16].

In order to extend the measure-valued approach to these irregular geometric
structures, in this paper we study measure-valued solutions to a linear transport
process defined on a network. For classical and weak solutions to transport equa-
tions on networks we refer the reader for example to [10, 14, 18].

The measure-valued approach in Euclidean spaces relies on the notion of push-
forward of measures along the trajectories of a vector field describing the transport
paths [1, 6, 7, 17]. The study of these problems in bounded domains poses additional
difficulties, especially concerning the behaviour at the boundaries of the transported
measure. For problems on networks similar difficulties arise at the vertexes.

Our analysis is inspired by the results in [11, 12], where measure-valued transport
equations are studied in a bounded interval. We also refer to [15], where the authors
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consider instead measure-valued solutions to non-linear transport problems with
measure transmission conditions at nodal points, i.e. points where the velocity
vanishes.

Consider a network Γ = (V, E), where V = {Vi}i∈I is the set of vertexes and
E = {Ej}j∈J is the set of arcs. We assume that the network is oriented and that
a strictly positive, autonomous and Lipschitz continuous velocity field vj is defined
on each arc Ej . Our aim is to describe the evolution of a mass distribution on the
network Γ transported by the velocity field v(x) =

∑
j∈J vj(x)χEj (x). For this we

will make extensive use of the fundamental fact that a generic measure µ can be
written as the superposition of elementary Dirac masses, i.e.

µ =

∫
suppµ

δx dµ(x), (1)

where suppµ denotes the support of µ belonging to an appropriate σ-algebra. This
representation formula has to be understood in the sense of Bochner integrals.

From (1) it follows that if we are able to define the transport of an atomic
measure δx on the network then by linearity we can transport the whole distribution
µ. Hence, let us assume that the mass distribution µ0 at the initial time t = 0 is
given by a Dirac measure δx0

, with x0 ∈ Ej for some j ∈ J . If we postulate the
conservation of the mass then in the time interval (0, τ) where the mass remains
inside the arc Ej the evolution of µ0 is governed by the continuity equation

∂tµ
j
t + ∂x(vj(x)µjt ) = 0, (2)

µjt being a spatial measure denoting the mass distribution along the arc Ej at time
t.

For t < τ the solution to (2) is given by the push-forward of µ0 by means of the
flow map

Φjt (x0, 0) := x0 +

∫ t

0

vj(Φ
j
s(x0, 0)) ds,

which describes the trajectory issuing from the point x0 at time t = 0 and arriving
at the point Φjt (x0, 0) ∈ Ej at time t. Consequently, µjt is characterised as µjt (A) =

µ0((Φjt )
−1(A)) for any measurable set A ⊆ Ej . Hence if µ0 = δx0

then µjt = δΦjt(x0, 0)

for t ∈ (0, τ).

At t = τ the trajectory t 7→ Φjt (x0, 0) hits the final vertex Vi of the arc Ej .
Assuming that mass concentration at the vertexes of the network is not admitted,
fractions pijk of the mass carried by δΦjτ (x0, 0) have then to be distributed on each

outgoing arc Ek which originates from Vi.
This preliminary discussion sketches the main ideas that we intend to follow

in order to tackle the global problem on the network. We first consider a local
problem, namely a transport equation on each single arc with a measure acting as
a source term (boundary condition) at the initial vertex. For this local problem
we formulate an appropriate notion of measure-valued solution, for which we give
a representation formula taking into account also the mass which flows out of the
arc. Then we glue all the solutions on the single arcs by means of appropriate mass
distribution rules at the vertexes, thereby constructing the global solution on the
network.

In more detail, the paper is organised as follows. In Section 2 we introduce some
notations and assumptions for the problem, while in Section 3 we review some basic
facts about the measure-theoretic setting in which we will frame our analysis. In
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Section 4 we study the initial/boundary-value problem for the transport equation
on a single bounded interval, which is the prototype of an arc of the network, then
in Section 5 we move to the problem on networks. Finally, in Section 6 we construct
explicit measure-valued solutions on simple networks, which constitute preliminary
examples of the application of our theory to vehicular traffic.

2. Preliminary definitions and statement of the problem. We start by de-
scribing the constitutive elements of the problem.

Definition 2.1 (Network). A network Γ is a pair (V, E) where V := {Vi}i∈I is
a finite collection of vertexes and E := {Ej}j∈J is a finite collection of continuous
non-self-intersecting oriented arcs whose endpoints belong to V. Each arc Ej is
parameterised by a smooth function πj : [0, 1]→ Rn. We assume that the network is
connected and equipped with the topology induced by the minimum path distance.

Given a vertex Vi ∈ V, we say that an arc Ej ∈ E is outgoing (respectively,
incoming) if Vi = πj(0) (respectively, if Vi = πj(1)). We denote by diO (respectively,
by diI) the number of outgoing (respectively, incoming) arcs in Vi and by di :=
diI + diO the degree of Vi. We say that a vertex Vi is internal if diI · diO > 0, that it
is a source if diO = di and finally that it is a well if diI = di.

We denote by I the set of indexes i ∈ I corresponding to the internal vertexes,
by S the one corresponding to the sources and by W the one corresponding to the
wells.

Definition 2.2 (Distribution matrices). For an internal vertex Vi, i ∈ I, and for

t > 0 we consider a distribution (or transition) matrix {pikj(t)}
diI , d

i
O

k, j=1 such that

pikj(t) ≥ 0

diO∑
j=1

pikj(t) =
∑

j :Vi=πj(0)

pikj(t) = 1. (3)

Here pikj(t) represents the fraction of mass which at time t flows from the incoming

arc Ek to the outgoing arc Ej through the vertex Vi. Condition (3) corresponds to
the fact that, unlike [11, 12, 15], the mass cannot concentrate at the vertexes of the
network.

For a source vertex Vi, i ∈ S, we consider instead a distribution vector {pij(t)}
diO
j=1

such that

pij(t) ≥ 0

diO∑
j=1

pij(t) =
∑

j :Vi=πj(0)

pij(t) = 1. (4)

Definition 2.3 (Velocity field). On each arc Ej ∈ E we assume that a strictly
positive, bounded and Lipschitz continuous velocity vj : [0, 1]→ (0, vmax] is defined,
with 0 < vmax < +∞. We denote by v =

∑
j∈J vjχEj the velocity field on the

network (χEj being the characteristic function of the arc Ej).

Definition 2.4 (Initial and boundary data). We prescribe the initial mass distri-

bution over Γ as a positive measure µ0 =
∑
j∈J µ

j
0 with suppµj0 ⊆ Ej for all j.

Furthermore, at all the source vertexes Vi, i ∈ S, we prescribe an inflow measure ςi

with supp ςi ⊆ [0, T ], T > 0 being a certain final time.
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To define the transport of the initial measure µ0 and of the inflow measures
{ςi}i∈S on the network Γ we describe their evolution inside an arc. On each arc
Ej we take into account the inflow mass coming from the initial vertex πj(0) and
we describe how the outflow mass leaving from the final vertex πj(1) is distributed
to the corresponding outgoing arcs. In detail, we fix a final time T > 0 and we
consider the following system of measure-valued differential equations on Γ× [0, T ]:

∂tµ
j + ∂x(vj(x)µj) = 0 x ∈ Ej , t ∈ (0, T ], j ∈ J

µjt=0 = µj0 x ∈ Ej , j ∈ J

µjVi=πj(0) =


dIi∑
k=1

pikj(t)µ
k
Vi=πk(1) if i ∈ I

pij(t)ς
i if i ∈ S,

(5)

where by µjVi=πj(0) we mean the measure flowing into the arc Ej from its initial

vertex Vi = πj(0) while by µkVi=πk(1) we mean the measure flowing out of the arc Ek

from its final vertex Vi = πk(1). Moreover, by pikj(t)µ
k
Vi=πk(1) we mean a measure

(in time) which is absolutely continuous with respect to µkVi=πk(1) with density pikj(t)

(and analogously for pij(t)ς
i).

For an internal vertex, the inflow measure is given by the mass flowing in Ej
from the arcs incident to Vi = πj(0) according to the distribution rule given by the
distribution matrix {pikj(t)}. For a source vertex, the inflow measure is the fraction

pij(·) of the prescribed datum ςi entering Ej . The outflow measure, i.e. the part
of the mass leaving the arc from the final vertex πj(1), is not given a priori but
depends on the evolution of the measure µ inside the arc.

The detailed study of problem (5) is postponed to Section 5. Before that, we
introduce an appropriate measure theoretic setting, see Section 3, and consider
preliminarily the problem on a single arc, see Section 4.

3. Measures and norms. We introduce a space of measures with an appropriate
norm where we consider the solutions to our measure-valued transport equations.
Moreover, since the notion of solution is based on the superposition principle (1),
we briefly describe the measure-theoretic setting which guarantees the validity of
this formula. We refer for details to [1, 2, 11, 19].

Let T be a topological space with B(T ) the Borel σ-algebra in T . We denote by
M(T ) the space of finite Borel measures on T and by M+(T ) the convex cone of
the positive measures inM(T ). For µ ∈M(T ) and a bounded measurable function
ϕ : T → R we write

〈µ, ϕ〉 :=

∫
T
ϕdµ.

Given a Borel measurable vector field Φ : T → T , the push-forward of the
measure µ under the action of Φ is an operation on µ which produces the new
measure Φ#µ ∈M(T ) defined by

(Φ#µ)(E) := µ(Φ−1(E)), ∀E ∈ B(T ).

We immediately observe that 〈Φ#µ, ϕ〉 = 〈µ, ϕ ◦ Φ〉.
Given a metric d : T × T → R+ in T , we denote by BL(T ) the Banach space

of the bounded and Lipschitz continuous functions ϕ : T → R equipped with the



TRANSPORT OF MEASURES ON NETWORKS 195

norm
‖ϕ‖BL := ‖φ‖∞ + |φ|L ,

where the semi-norm |·|L is defined by

|ϕ|L := sup
x, y∈T
x6=y

|ϕ(y)− ϕ(x)|
d(x, y)

.

Furthermore, we introduce a norm in M(T ) by taking the dual norm of ‖·‖BL:

‖µ‖∗BL := sup
ϕ∈BL(T )
‖ϕ‖BL≤1

〈µ, ϕ〉.

It is easy to see that if µ ∈M+(T ) then ‖µ‖∗BL = µ(T ).
The space (M(T ), ‖·‖∗BL) is in general not complete, hence it is customary to

consider its completion M(T )
‖·‖∗BL with respect to the dual norm. However, the

cone M+(T ), which is a closed subset of M(T ) in the weak topology, is complete,
although it is not a Banach space because it is not a vector space. Since in our
model we will consider only positive measures, we restrict our attention to the
complete metric space (M+(T ), ‖·‖∗BL) with the corresponding distance induced
by the norm.

Remark 1. If T is bounded the Kantorovich-Rubinstein’s duality theorem implies
that the norm ‖·‖∗BL induces the 1-Wasserstein distance in M+(T ).

Remark 2. The distance induced in M(T ) by the total variation norm:

‖µ‖TV := sup
ϕ∈Cb(T )
‖ϕ‖∞≤1

〈µ, ϕ〉,

where Cb(T ) is the space of bounded continuous function on T , is another metric
frequently used for measures. However, we observe that it may not be fully suited
to transport problems where one wants to measure the distance between flowing
mass distributions. Indeed, if we consider two points x, y ∈ T , x 6= y, and the
corresponding Dirac mass distributions δx, δy ∈ M+(T ) centred at them we see
that

‖δy − δx‖∗BL ≤ d(x, y), ‖δy − δx‖TV = 2.

Hence the two measures are closer and closer in the norm ‖·‖∗BL as the points x, y
approach, which is consistent with the intuitive idea of transport of mass distribu-
tions; while they are not in the total variation norm, no matter how close the points
x, y are.

As alredy anticipated in Section 1, for the subsequent development of the theory
we will extensively use the following fact linked to the concept of Bochner integral [2,
19]: any µ ∈M+(T ) can be represented as a (continuous) sum of elementary masses
in the form

µ =

∫
T
δx dµ(x)

as a Bochner integral in (M(T )
‖·‖∗BL , ‖·‖∗BL).

We now specialise the previous definitions to the case T = Γ × [0, T ], where
Γ ⊂ Rn is a network. In particular, we will call x the variable in each arc of Γ and
t the variable in the interval [0, T ]. We equip Γ× [0, T ] with the distance

d(x, y) + |t− s| , (x, t), (y, s) ∈ Γ× [0, T ],
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d being the shortest path distance on Γ.
We consider the Borel σ-algebra B(Γ× [0, T ]) given by the union of the Borel σ-

algebras B([0, 1]× [0, T ]) corresponding to each arc Ej of Γ. Thus A ∈ B(Γ× [0, T ])

if (π−1
j , Id)(A ∩ (Ej × [0, T ])) ∈ B([0, 1] × [0, T ]) for all j ∈ J , where Id denotes

the identity mapping.
A measure µ belongs to M(Γ × [0, T ]) if each of its restrictions µj := µx(Ej ×

[0, T ]), j ∈ J , is a finite Borel measure on Ej × [0, T ]. We define the coneM+(Γ×
[0, T ]) analogously.

For µ ∈ M+(Γ× [0, T ]) and a bounded measurable function ϕ : Γ× [0, T ]→ R
we write

〈µ, ϕ〉 :=
∑
j∈J

∫
Ej×[0, T ]

ϕdµj . (6)

For a function ϕ : Γ × [0, T ] → R, we denote by ϕj : [0, 1] × [0, T ] → R its
restriction to Ej × [0, T ], i.e.:

ϕ(x, t) = ϕj(y, t) for x ∈ Ej , y = π−1
j (x), t ∈ [0, T ].

A function ϕ belongs to BL(Γ × [0, T ]) if it is continuous on Γ and ϕj ∈
BL([0, 1]× [0, T ]) for every j ∈ J . For ϕ ∈ BL(Γ× [0, T ]) the norm ‖ϕ‖BL(Γ×[0, T ])

is defined by

‖ϕ‖BL(Γ×[0, T ]) := sup
j∈J
‖ϕj‖BL([0, 1]×[0, T ]) .

The corresponding dual norm ‖·‖∗BL of a measure µ ∈M(Γ× [0, T ]) is given by

‖µ‖∗BL := sup
ϕ∈BL(Γ×[0, T ])
‖ϕ‖BL(Γ×[0, T ])≤1

〈µ, ϕ〉.

4. The transport equation in a bounded interval. In this section we study
the transport equation in a bounded interval. Actually, we start by focusing on the
problem of prescribing appropriate initial and boundary conditions to the differen-
tial equation in R+ × R+, which is an unbounded domain with boundary; then we
will restrict the results to a truly bounded domain.

Consider the conservation law

∂tµ+ ∂x(v(x)µ) = 0, (x, t) ∈ R+ × R+, (7)

where v : R+ → R is a strictly positive, bounded and Lipschitz continuous velocity
field, so that the flow is one-directional and depends only on the space variable
x. Given µ ∈ M+(R+

0 × R+
0 ), where R+

0 := [0, +∞), owing to the disintegration
theorem [1, Section 5.3] we can decompose this measure by means of its projection
maps on the coordinate axes:

• using the projection with respect to the space variable we can write

µ(dx dt) = µt(dx)⊗ dt, (8)

where dt is the Lebesgue measure in time in R+
0 and µt ∈ M+(R+

0 × {t}) ≡
M+(R+

0 ) for a.e. t ∈ R+
0 . The measure µt is called the conditional measure,

or trace, of µ with respect to t on the fibre R+
0 × {t};

• similarly, projecting with respect to the time variable we can write

µ(dx dt) =
νx(dt)

v(x)
⊗ dx, (9)
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where dx is the Lebesgue measure in space in R+
0 and νx ∈M+({x}×R+

0 ) ≡
M+(R+

0 ) for a.e. x ∈ R+
0 . The measure νx is called the conditional measure,

or trace, of µ with respect to x on the fibre {x} × R+
0 .

Remark 3. The coefficient 1
v(x) in the decomposition (9) is considered for dimen-

sional reasons, so that νx represents actually the mass distributed on the fibre
{x} × R+

0 .
We incidentally notice that if µ solves (7) then the mapping x 7→ νx solves the

equation ∂xνx + ∂̄tνx = 0, where ∂̄t := 1
v(x)∂t. As far as the decomposition (8) is

concerned, the mapping t 7→ µt solves instead the equation ∂tµt + ∂x(v(x)µt) = 0.

Relying on the concept of conditional measures, we formulate the following
initial/boundary-value problem for (7):

∂tµ+ ∂x(v(x)µ) = 0 (x, t) ∈ R+ × R+

µt=0 = µ0 ∈M+(R+
0 × {0})

νx=0 = ν0 ∈M+({0} × R+
0 )

(10)

with µ ∈M+(R+
0 × R+

0 ), where:

• assigning an initial condition at t = 0 amounts to prescribing the trace of µ
on the fibre R+

0 × {0} according to the decomposition (8);
• assigning a boundary condition at x = 0 amounts to prescribing the trace of
µ on the fibre {0} × R+

0 according to the decomposition (9).

In order to give a suitable notion of measure-valued solution to (10), we preliminarily
introduce integration-by-parts formulas useful to deal with the initial and boundary
data. Let C1

0 (R+
0 ×R+

0 ) be the space of continuous functions in R+
0 ×R+

0 which are
differentiable in R+ × R+ and vanish for x, t → +∞. For µ ∈ M+(R+

0 × R+
0 ) and

ϕ ∈ C1
0 (R+

0 × R+
0 ) we set:

〈∂tµ, ϕ〉 := −〈µ, ∂tϕ〉 −
∫
R+

0

ϕ(x, 0) dµ0(x),

〈∂x(v(x)µ), ϕ〉 := −〈µ, v(x)∂xϕ〉 −
∫
R+

0

ϕ(0, t) dν0(t),

where 〈·, ·〉 denotes the duality pairing between measures and test functions in
R+

0 × R+
0 , i.e. 〈µ, ϕ〉 =

∫∫
R+

0 ×R
+
0
ϕ(x, t) dµ(x, t). Notice that if ϕ is compactly

supported in R+ × R+ then the previous formulas agree with the usual definition
of the distributional derivatives of µ.

Remark 4. With a slight abuse of notation, in the following we will denote∫
R+

0

ϕ(x, 0) dµ0(x) =: 〈µ0, ϕ〉,
∫
R+

0

ϕ(0, t) dν0(t) =: 〈ν0, ϕ〉,

the difference between duality pairings in R+
0 × R+

0 and in R+
0 × {0} or {0} × R+

0

being clear from the measures used.

Thanks to these formulas, we are in a position to introduce the following notion
of measure-valued solution to (10):

Definition 4.1. Given µ0 ∈M+(R+
0 × {0}) and ν0 ∈M+({0} × R+

0 ), a measure-
valued solution to (10) is a finite measure µ ∈M+(R+

0 × R+
0 ) such that

〈µ, ∂tϕ+ v(x)∂xϕ〉 = −〈µ0, ϕ〉 − 〈ν0, ϕ〉, ∀ϕ ∈ C1
0 (R+

0 × R+
0 ). (11)
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Since (10) is a linear problem, its solution can be obtained from the superposition
of two measures µ1, µ2 ∈M+(R+

0 ×R+
0 ), where µ1 is the solution to (10) with data

µt=0 = µ0 and νx=0 = 0 while µ2 is the solution to (10) with data µt=0 = 0 and
νx=0 = ν0. This is doable in a standard way in terms of the push-forward of the
initial and boundary data by means of appropriate vector fields in R+

0 ×R+
0 , cf. [1].

With this approach time and space play the same role, the former being understood
in particular as an additional state variable of the system.

However, for the next purposes it is convenient to characterise the solution µ
to (10) by means of the traces of µ1 and µ2 over the fibres R+

0 × {t}, t > 0; i.e.

µ(dx dt) = (µ1
t (dx) + µ2

t (dx))⊗ dt,

where µ1
t , µ

2
t are given by the transport of µ0, ν0, respectively, along the character-

istics generated in R+ × R+ by the velocity field v.
In order to obtain a formula for µ1

t , let Φt = Φt(x, 0) be the position at time
t > 0 of the particle which is in x ∈ R+

0 at time t = 0 and which moves following
the velocity field v = v(x):

d

dt
Φt(x, 0) = v(Φt(x, 0)), t > 0

Φ0(x, 0) = x.
(12)

By standard results, it is well known that

µ1
t = Φt#µ0 =

∫
R+

0

δΦt(x, 0) dµ0(x) ∈M+(R+
0 × {t}),

where # is the push-forward operator, δ is the Dirac delta measure, and the integral
at the right-hand side is understood in the sense of Bochner.

Likewise, to obtain a formula for µ2
t we consider the characteristic lines issuing

from the t axis. In particular, we denote now by Φt(0, s) the position at time t > 0
of the particle which is in x = 0 at time s ∈ R+

0 and which moves following the
velocity field v = v(x): 

d

dt
Φt(0, s) = v(Φt(0, s)), t > s

Φs(0, s) = 0.
(13)

By transporting the mass ν0 along these characteristics we can write

µ2
t =

∫
[0, t]

δΦt(0, s) dν0(s) ∈M+(R+
0 × {t}),

where the integral is again meant in the sense of Bochner.
Summing up, we consider the following representation formula for µ:

µ(dx dt) =

(∫
R+

0

δΦt(ξ, 0)(dx) dµ0(ξ) +

∫
[0, t]

δΦt(0, s)(dx) dν0(s)

)
⊗ dt (14)

and we check that it actually defines a solution to (10) in the sense of Definition 4.1.
To this purpose we preliminarily observe that, since µ1

t = Φt#µ0, for every (bounded
and measurable) function f : R+

0 → R it results∫
R+

0

f(x) dµ1
t (x) =

∫
R+

0

f(Φt(x, 0)) dµ0(x). (15)



TRANSPORT OF MEASURES ON NETWORKS 199

We can obtain a similar formula for µ2
t by observing that, given a simple function

f : R+
0 → R, f(x) =

∑N
k=1 αkχAk(x), where {Ak}Nk=1 is a measurable finite disjoint

partition of R+
0 , it results∫

R+
0

f(x) dµ2
t (x) =

N∑
k=1

αkµ
2
t (Ak) =

N∑
k=1

αk

∫
[0, t]

δΦt(0, s)(Ak) dν0(s)

=

N∑
k=1

αk

∫
[0, t]

χAk(Φt(0, s)) dν0(s)

=

∫
[0, t]

N∑
k=1

αkχAk(Φt(0, s)) dν0(s)

=

∫
[0, t]

f(Φt(0, s)) dν0(s).

Approximating a measurable function f with a sequence of simple functions we get
in general ∫

R+
0

f(x) dµ2
t (x) =

∫
[0, t]

f(Φt(0, s)) dν0(s). (16)

Interestingly, an integral with respect to the x variable is converted into one with
respect to the t variable.

Plugging (14) into the left-hand side of (11) and using (15), (16) we discover:

〈µ, ∂tϕ+ v(x)∂xϕ〉

=

∫
R+

0

∫
R+

0

(
∂tϕ(Φt(x, 0), t) + v(Φt(x, 0))∂xϕ(Φt(x, 0), t)

)
dµ0(x) dt

+

∫
R+

0

∫
[0, t]

(∂tϕ(Φt(0, s), t) + v(Φt(0, s))∂xϕ(Φt(0, s), t)) dν0(s) dt

=

∫
R+

0

∫
R+

0

d

dt
ϕ(Φt(x, 0), t) dµ0(x) dt+

∫
R+

0

∫
[0, t]

d

dt
ϕ(Φt(0, s), t) dν0(s) dt,

where in the last passage we have invoked (12), (13). By switching the order of
integration in view of Fubini-Tonelli’s Theorem we further obtain

=

∫
R+

0

∫
R+

0

d

dt
ϕ(Φt(x, 0), t) dt dµ0(x) +

∫
R+

0

∫
[s,+∞)

d

dt
ϕ(Φt(0, s), t) dt dν0(s)

=

∫
R+

0

[
ϕ(Φt(x, 0), t)

]t=+∞

t=0
dµ0(x) +

∫
R+

0

[
ϕ(Φt(0, s), t)

]t=+∞

t=s
dν0(s)

= −
∫
R+

0

ϕ(x, 0) dµ0(x)−
∫
R+

0

ϕ(0, s) dν0(s)

= −〈µ0, ϕ〉 − 〈ν0, ϕ〉,

which confirms that (14) is indeed a measure-valued solution to (10). Uniqueness of
such a solution is a consequence of continuous dependence estimates on the initial
and boundary data, which can be proved by standard arguments in literature, cf. [1].
In conclusion, for the transport problem in R+ × R+ we have the following well-
posedness result:
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Theorem 4.2. For µ0 ∈ M+(R+
0 × {0}), ν0 ∈ M+({0} × R+

0 ) there exists a
unique measure-valued solution to (10) in the sense of Definition 4.1, which can be
represented by (14).

We now pass to consider the transport problem on the bounded domain Q :=
(0, 1)× (0, T ), T > 0, i.e.

∂tµ+ ∂x(v(x)µ) = 0, (x, t) ∈ Q
µt=0 = µ0 ∈M+([0, 1]× {0})
νx=0 = ν0 ∈M+({0} × [0, T ])

(17)

for a given bounded, strictly positive and Lipschitz continuous velocity field v :
[0, 1] → (0, vmax]. The solution to this problem can be obtained by restricting to
Q the measure µ solving (10) (with the velocity field v possibly extended to the
whole R+

0 as, e.g. v(x) = v(1) for x ≥ 1). Therefore we are going to consider the
restriction of µ to Q defined as the measure µxQ such that

µxQ(E) := µ(E ∩Q)

for every measurable set E ⊆ R+
0 × R+

0 .
In particular, in view of the application of this problem to a network, it is im-

portant to characterise the traces of µxQ on the fibres [0, 1]×{T} and {1}× [0, T ],
which depend on the transport of µ0 and ν0 inside Q.

Let us introduce the following quantities:

τ(x) := inf{t ≥ 0 : Φt(x, 0) = 1}, x ∈ [0, 1] (18)

σ(s) := inf{t ≥ s : Φt(0, s) = 1}, s ∈ [0, T ] (19)

corresponding to the time needed to the characteristic line issuing from either (x, 0),
in case of τ(x), or (0, s), in case of σ(s), to hit the boundary x = 1. Since the con-
sidered transport problem is linear, in particular the velocity field v does not depend
on the measure µ itself, both τ and σ are one-to-one, thus invertible. Moreover τ
decreases with x while σ increases with s and, in particular, σ(s) = τ(0)+s because
v is autonomous.

Recalling (14) and using τ , σ we write the trace of µxQ on the fibre [0, 1]×{T}
as (cf. Figure 1)

µT :=

∫
[0,max{0, τ−1(T )}]

δΦT (x, 0) dµ0(x) +

∫
[max{0, σ−1(T )}, T ]

δΦT (0, s) dν0(s) (20)

whereas, following the characteristics, we construct the trace on the fibre {1}×[0, T ]
as

ν1 :=

∫
(max{0, τ−1(T )}, 1]

δτ(x) dµ0(x) +

∫
[0,max{0, σ−1(T )})

δσ(s) dν0(s). (21)

We incidentally notice that the first term at the right-hand side of (20) is the push-
forward of µ0 by the flow map ΦT then restricted to x ∈ [0, 1] while the second
term at the right-hand side of (21) is the push-forward of ν0 by the mapping σ then
restricted to t ∈ [0, T ].

The relationship between these traces and the transport of µ0, ν0 inside Q is
rigorously stated by the following theorem, which represents our main result on
problem (17):
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Figure 1. Sketch of the characteristics of problem (17) in the two
cases τ(0) = σ(0) < T (left) and τ(0) = σ(0) > T (right). For
pictorial purposes we imagine a constant velocity field, so that the
characteristics are straight lines in the space-time.

Theorem 4.3. Given µ0 ∈M+([0, 1]× {0}), ν0 ∈M+({0} × [0, T ]), the measure
µxQ ∈M+(Q̄), µ ∈M+(R+

0 ×R
+
0 ) being the solution to (10), is the unique measure

which satisfies the balance

〈µxQ, ∂tϕ+ v(x)∂xϕ〉 = 〈µT − µ0, ϕ〉+ 〈ν1 − ν0, ϕ〉, ∀ϕ ∈ C1(Q̄), (22)

where µT ∈ M+([0, 1] × {T}), ν1 ∈ M+({1} × [0, T ]) are the traces defined
in (20), (21), respectively.

Moreover, for µk0 ∈ M+([0, 1] × {0}), νk0 ∈ M+({0} × [0, T ]), k = 1, 2, there
exists a constant C = C(T ) > 0 such that∥∥µ2

T − µ1
T

∥∥∗
BL

+
∥∥ν2

1 − ν1
1

∥∥∗
BL
≤ C

(∥∥µ2
0 − µ1

0

∥∥∗
BL

+
∥∥ν2

0 − ν1
0

∥∥∗
BL

)
. (23)

Proof. See Appendix A.

We also give a result about the dependence on time.

Theorem 4.4. Given µ0 ∈ M+([0, 1]× {0}), ν0 ∈ M+({0} × [0, T ]), there exists
a constant C = C(T ) > 0 such that

‖µt − µt′‖∗BL + ‖ν1x[0, t]− ν1x[0, t′]‖∗BL ≤ C |t− t
′|+ ν0([t′, t]) (24)

for all t′, t ∈ [0, T ] with t′ < t.

Proof. See Appendix A.

Remark 5. Theorem 4.4 states virtually that the traces µt and ν1x[0, t] of µxQ
are Lipschitz continuous in time, a part from the presence of the term ν0([t′, t]) in
the estimate (24).

If the boundary datum ν0 is absolutely continuous with respect to the Lebesgue
measure in the interval [t′, t] then for t → t′ we get actually ‖µt − µt′‖∗BL +
‖ν1x[0, t]− ν1x[0, t′]‖∗BL → 0. If instead ν0 contains singularities in [t′, t] then the
distances ‖µt − µt′‖∗BL, ‖ν1x[0, t]− ν1x[0, t′]‖∗BL between two traces on horizontal
and vertical fibres are in general not proportional to the time gap |t− t′|.
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In the applications, a Lebesgue-absolutely continuous ν0 corresponds to a macro-
scopic inflow mass provided with density. A Lebesgue-singular ν0 corresponds in-
stead to microscopic point masses flowing from the boundary x = 0 during the time
interval [t′, t] and then propagating as singularities across Q.

5. The transport equation on a network. In this section we go back to the
study of problem (5). In order to make the notation consistent with the one intro-
duced in Section 4, we set

νj0 := µjVi=πj(0), νj1 := µjVi=πj(1)

and we rewrite (5) as

∂tµ
j + ∂x(vj(x)µj) = 0 x ∈ Ej , t ∈ (0, T ], j ∈ J

µjt=0 = µj0 x ∈ Ej , j ∈ J

νj0 =


∑

k :Vi=πk(1)

pikj(t)ν
k
1 if i ∈ I

pij(t)ς
i if i ∈ S.

(25)

Let ϕ ∈ C1(Γ × [0, T ]). Given µj0 ∈ M+(Ej × {0}), νj0 ∈ M+({0} × [0, T ]),
owing to Theorem 4.3 there exists µj ∈M+(Ej × [0, T ]) such that

〈µj , ∂tϕ+ vj(x)∂xϕ〉 = 〈µjT − µ
j
0, ϕ〉+ 〈νj1 − ν

j
0 , ϕ〉 (26)

for every j ∈ J . Similarly to (20), (21), the traces µjT , νj1 are

µjT =

∫
[0,max{0, τ−1

j (T )}]
δΦjT (x, 0) dµ

j
0(x) +

∫
[max{0, σ−1

j (T )}, T ]

δΦjT (0, s) dν
j
0(s) (27)

νj1 =

∫
(max{0, τ−1

j (T )}, 1]

δτj(x) dµ
j
0(x) +

∫
[0,max{0, σ−1

j (T )})
δσj(s) dν

j
0(s), (28)

where the flow maps Φjt (x, 0) and Φjt (0, s) are defined like in (12), (13), respectively,
using the velocity field vj(x) on the arc Ej , j ∈ J . Likewise, τj and σj are defined
like in (18), (19).

Summing (26) over j and recalling (6) we deduce

〈µ, ∂tϕ+ v(x)∂xϕ〉 = 〈µT − µ0, ϕ〉+
∑
j∈J
〈νj1 − ν

j
0 , ϕ〉, (29)

where
µ0 =

∑
j∈J

µj0, µT =
∑
j∈J

µjT . (30)

In particular, the last term at the right-hand side in (29) can be rewritten in more
detail by summing on the vertexes of the network:∑

j∈J
〈νj1 − ν

j
0 , ϕ〉 =

∑
i∈I

 ∑
j :Vi=πj(1)

〈νj1 , ϕ〉 −
∑

j :Vi=πj(0)

〈νj0 , ϕ〉


=
∑
i∈I

 ∑
j :Vi=πj(1)

〈νj1 , ϕ〉 −
∑

j :Vi=πj(0)

〈νj0 , ϕ〉


+
∑
i∈W

∑
j :Vi=πj(1)

〈νj1 , ϕ〉 −
∑
i∈S

∑
j :Vi=πj(0)

〈νj0 , ϕ〉.
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For an internal vertex Vi, i ∈ I, using the corresponding boundary condition
prescribed in (25) we obtain:∑

j :Vi=πj(1)

〈νj1 , ϕ〉 −
∑

j :Vi=πj(0)

〈νj0 , ϕ〉 =
∑

j :Vi=πj(1)

〈νj1 , ϕ〉

−
∑

j :Vi=πj(0)

〈
∑

k :Vi=πk(1)

pikj(t)ν
k
1 , ϕ〉

=
∑

j :Vi=πj(1)

〈νj1 , ϕ〉

−
∑

k :Vi=πk(1)

〈
∑

j :Vi=πj(0)

pikj(t)ν
k
1 , ϕ〉

whence, taking (3) into account in the second term at the right-hand side,

=
∑

j :Vi=πj(1)

〈νj1 , ϕ〉 −
∑

k :Vi=πk(1)

〈νk1 , ϕ〉

= 0.

This is the conservation of the mass through the internal vertexes of the network.
For a source vertex Vi, i ∈ S, we use the corresponding boundary condition

prescribed in (25) to find:∑
i∈S

∑
j :Vi=πj(0)

〈νj0 , ϕ〉 =
∑
i∈S

∑
j :Vi=πj(0)

〈pij(t)ςi, ϕ〉

=
∑
i∈S
〈

 ∑
j :Vi=πj(0)

pij(t)

 ςi, ϕ〉

whence, in view of (4),

=
∑
i∈S
〈ςi, ϕ〉 = 〈ς, ϕ〉

where we have defined the measure ς :=
∑
i∈S ς

i ∈M+(∪i∈S{Vi}× [0, T ]). This is
the total mass flowing into the network from the source vertexes up to the time T .

Finally, for a well vertex Vi, i ∈ W, we define

ωi :=
∑

j :Vi=πj(1)

νj1 ∈M+({Vi} × [0, T ]),

ω :=
∑
i∈W

ωi ∈M+(∪i∈W{Vi} × [0, T ]),

(31)

which represents the total mass flowing out of the network up to the time T .
Equation (29) takes then the form

〈µ, ∂tϕ+ v(x)∂xϕ〉 = 〈µT − µ0, ϕ〉+ 〈ω − ς, ϕ〉, ∀ϕ ∈ C1(Γ× [0, T ]), (32)

thereby expressing the counterpart of (22) on the network.
Using the formulation just obtained, we are in a position to establish the well-

posedness of the transport problem over networks.
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Theorem 5.1. Given µ0 ∈ M+(Γ × {0}) and ς ∈ M+(∪i∈S{Vi} × [0, T ]), there
exists a unique measure µ ∈ M+(Γ × [0, T ]) which satisfies the balance (32) with
µT ∈ M+(Γ × {T}) defined in (27)-(30) and ω ∈ M+(∪i∈W{Vi} × [0, T ]) defined
in (28)-(31).

Moreover, for µ0,k ∈M+(Γ×{0}), ςk ∈M+(∪i∈S{Vi}× [0, T ]), k = 1, 2, there
exists a constant C = C(T ) > 0 such that

‖µT,2 − µT,1‖∗BL + ‖ω2 − ω1‖∗BL ≤ C
(
‖µ0,2 − µ0,1‖∗BL + ‖ς2 − ς1‖∗BL

)
. (33)

Proof. We treat separately the cases in which the set of the source vertexes is or is
not empty.

(i) Assume S 6= ∅. We introduce a partition of the set E = {Ej}j∈J based on the
distance from the source set:

E0 = {Ej : Vi = πj(0) is a source}
Em = {Ej : ∃Ek ∈ Em−1 s.t. Vi = πj(0) = πk(1)}, m = 1, 2, . . .

We first apply Theorem 4.3 to the problem defined on each arc in E0, i.e for
each Ej ∈ E0 such that Vi = πj(0), i ∈ S, we consider

∂tµ
j + ∂x(vj(x)µj) = 0 in Ej × (0, T ]

µjt=0 = µj0 ∈M+(Ej × {0})

νj0 = pij(t)ς
i ∈M+({Vi} × [0, T ]).

Since νj0 is prescribed, we obtain the existence of µj ∈M+(Ej × [0, T ]), µjT ∈
M+(Ej × {T}) and νj1 ∈ M+({πj(1)} × [0, T ]) satisfying the balance (22).
Next we proceed by induction on m = 1, 2, . . . considering the problem on
Ej ∈ Em with Vi = πj(0):

∂tµ
j + ∂x(vj(x)µj) = 0 in Ej × (0, T ]

µjt=0 = µj0 ∈M+(Ej × {0})

νj0 =
diI∑
k=1

pikj(t)ν
k
1 ∈M+({Vi} × [0, T ]).

Since the arcs Ek, k = 1, . . . , diI , belong to Em−1, the solution to the transport
equation on them is known by the inductive step (using the case m = 0 as

basis), hence the boundary measure νj0 is well defined because so are the
outflow measures νk1 . Therefore we can apply again Theorem 4.3 to fulfil the
balance (22) on Ej ∈ Em.

In this way, after a finite number of steps we build arc by arc the measures
µ ∈ M+(Γ × [0, T ]), µT ∈ M+(Γ × {T}) and ω ∈ M+(∪i∈W{Vi} × [0, T ])
which globally satisfy the balance (32).

(ii) Assume now S = ∅. Fix an arbitrary internal vertex Vi, i ∈ I, and choose

t0 < min
j∈J :Vi=πj(1)

τj(0).

From (28) we see that, up to the time t0, on all the arcs Ej such that Vi = πj(1)

the outflow measure νj1 is given by

νj1 =

∫
(τ−1
j (t0), 1]

δτj(x) dµ
j
0(x),
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because τ−1
j (t0) > 0 while σ−1

j (t0) < 0 (cf. Figure 1, left). Hence νj1 depends

only on the initial datum µj0 and not on the inflow measure νj0 .
Let us consider the initial/boundary-value problem (25) for t ∈ (0, t0] with

Vi as source vertex and corresponding source measure

ςi =
∑

j :Vi=πj(1)

νj1 =
∑

j :Vi=πj(1)

∫
(τ−1
j (t0), 1]

δτj(x) dµ
j
0(x).

From the case S 6= ∅ we know that we can construct µ ∈ M+(Ej × [0, t0]),
µt0 ∈ M(Ej × {t0}) and ω ∈ M+(∪i∈W{Vi} × [0, t0]) which satisfy the bal-

ance (22). Moreover, the inflow measures νj0 of all the arcs Ej such that
Vi = πj(0) coincide with those of the original problem without sources, be-
cause they are actually determined only by the initial datum. Hence µ is also
a solution of the original problem in [0, t0]. By repeating this argument on
the intervals (t0, 2t0], (2t0, 3t0], . . . , with initial data µt0 , µ2t0 , . . . , after a
finite number of steps we obtain the solution of the problem without source
in any interval [0, T ], T > 0.

Finally, the estimate (33) is in both cases an immediate consequence of the
corresponding estimate (23) holding on each arc.

6. Examples of junctions. In this section we write explicitly the solution to
problem (25) for two typical junctions which occur frequently for instance in traffic
flow on road networks. It is worth pointing out that, since in our linear equation
the velocity depends only on the space variable but not on the measure µ itself, the
transport model that we are considering may provide an acceptable description of
the flow of vehicles at most in the so-called free flow regime. In fact, in such a case
the number of vehicles is sufficiently small that their speed is almost independent
of the presence of other vehicles on the road.

6.1. The 1-2 junction – Atomic inflow distribution. Let Γ be the road net-
work shown in Figure 2 formed by 3 arcs, viz. roads, E1, E2, E3 and 4 vertexes
V1, . . . , V4 such that E1 connects the source vertex V1 to the internal vertex V2

while E2 and E3 connect the internal vertex V2 to the well vertexes V3 and V4. This
gives also the orientation of the arcs. In practice, beyond the junction V2 the road
E1 splits in the two roads E2, E3. We assume that the network is initially empty.
At some time t0 > 0 a microscopic vehicle enters the network from the vertex V1

and then travels across it. At the junction V2 we prescribe a flux distribution rule
stating that a time-dependent fraction p = p(t) : [0, T ] → [0, 1] of the incoming
mass flows to the road E2 while the complementary fraction 1 − p(t) flows to the
road E3. Taking T = +∞, the problem can be formalised as:

∂tµ
j + ∂x(vj(x)µj) = 0 x ∈ Ej , t ∈ R+, j = 1, 2, 3

µ0 = 0 x ∈ Γ

ν1
0 = δt0 t ∈ R+

0

ν2
0 = p(t) · ν1

1 t ∈ R+
0

ν3
0 = (1− p(t)) · ν1

1 t ∈ R+
0 ,

where the velocity fields vj : Ej → (0, vjmax], 0 < vjmax < +∞, are given Lipschitz
continuous functions of x.

The solution on each road has the form µj(dx dt) = µjt (dx) ⊗ dt, where µjt is
the trace of µj on the fibre Ej × {t}. Using (27), (28) we determine explicitly
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Figure 2. The 1-2 junction with a sketch of the characteristics
along which the solution to the example of Section 6.1 propagates
in the space-time of the network.

the expression of µjt for all t > 0 and that of the outflow masses νj1 on the fibres
{πj(1)} × R+

0 (notice that π1(1) = V2, π2(1) = V3, π3(1) = V4). We find (cf.
Figure 2):

µ1
t = δΦ1

t (0, t0)χ[t0, σ1(t0)](t)

ν1
1 = δσ1(t0)

µ2
t = p(σ1(t0))δΦ2

t (0, σ1(t0))χ[σ1(t0), σ2(σ1(t0)](t)

ν2
1 = ω3 = p(σ1(t0))δσ2(σ1(t0))

µ3
t = [1− p(σ1(t0))]δΦ3

t (0, σ1(t0))χ[σ1(t0), σ3(σ1(t0))](t)

ν3
1 = ω4 = [1− p(σ1(t0))]δσ3(σ1(t0)).

Furthermore, using Bochner integrals in the product space Ej × R+
0 we can

possibly write the solution µj on each road as

µ1 =

∫ σ1(t0)

t0

δ(Φ1
t (0, t0), t) dt

µ2 = p(σ1(t0))

∫ σ2(σ1(t0))

σ1(t0)

δ(Φ2
t (0, σ1(t0)), t) dt

µ3 = [1− p(σ1(t0))]

∫ σ3(σ1(t0))

σ1(t0)

δ(Φ3
t (0, σ1(t0)), t) dt.

Remark 6. By carefully inspecting the expressions of µjt , j = 1, 2, 3, we see that
the unit-mass Dirac delta prescribed at the source vertex V1 splits in two Dirac
deltas beyond the junction V2, cf. also Figure 2, each of which carries a fraction,
p(σ1(t0)) and 1− p(σ1(t0)), respectively, of the initial mass.

Unlike the Dirac delta entering the road E1 from V1, the two Dirac deltas prop-
agating in the roads E2, E3 do not represent physical microscopic vehicles. Rather,
each of them is the same microscopic vehicle coming from the road E1 and the



TRANSPORT OF MEASURES ON NETWORKS 207

coefficients p(σ1(t0)), 1− p(σ1(t0)) have to be understood as the probabilities that
such a vehicle takes either outgoing road beyond the junction V2.

This approach differs from the one proposed in [8], which instead assigns a path
to each microscopic vehicle through the network in the spirit of the multipath traffic
model introduced in [3, 4].

6.2. The 1-2 junction – Continuous inflow distribution. We now consider
the same network as in the previous Section 6.1 but we prescribe an inflow measure
ν1

0 which is absolutely continuous with respect to the Lebesgue measure:

ν1
0(dt) := ρ(t) dt,

where ρ ∈ L1(R+
0 ) with supp ρ ⊆ R+

0 is the density of the vehicles entering the
network from the vertex V1.

Recalling that the network is initially empty and using (27), we obtain that for
each t > 0 the trace µ1

t of the solution µ1 in the road E1 is

µ1
t =

∫ t

max{0, σ−1
1 (t)}

δΦ1
t (0, s)

ρ(s) ds =

∫ t−max{0, σ−1
1 (t)}

0

δΦ1
r(0, 0)ρ(t− r) dr,

where in the last passage we have set r := t − s after observing from (13) that
Φ1
t (0, s) = Φ1

t−s(0, 0) for all 0 ≤ s ≤ t. Likewise, recalling (28) we find that the
outflow mass ν1

1 at the vertex V2 is

ν1
1 =

∫ +∞

0

δσ1(s)ρ(s) ds =

∫ +∞

σ1(0)

δrρ(r − σ1(0)) dr,

where in the second passage we have set r := σ1(s) = s + σ1(0). In view of the
Bochner representation (1) and considering that supp ρ(· − σ1(0)) ⊆ [σ1(0), +∞),
we deduce in particular

ν1
1(dt) = ρ(t− σ1(0)) dt.

According to our transmission conditions, this mass is distributed to the outgoing
roads E2, E3 as

ν2
0 = p(t)ν1

1 , ν3
0 = (1− p(t))ν1

1 ,

which, owing to (27), implies that the traces µ2
t , µ

3
t of the solutions µ2, µ3 in the

outgoing roads are respectively given by

µ2
t =

∫ t

max{0, σ−1
2 (t)}

δΦ2
t (0, s)

p(s)ρ(s− σ1(0)) ds

=

∫ t−max{0, σ−1
2 (t)}

0

δΦ2
r(0, 0)p(t− r)ρ(t− r − σ1(0)) dr

and by

µ3
t =

∫ t

max{0, σ−1
3 (t)}

δΦ3
t (0, s)

(1− p(s))ρ(s− σ1(0)) ds

=

∫ t−max{0, σ−1
3 (t)}

0

δΦ3
r(0, 0)(1− p(t− r))ρ(t− r − σ1(0)) dr.

It is interesting to note that, since in general the density ρ is split asymmetrically
in the roads E2 and E3 (unless p(t) = 1

2 ), the corresponding measure solution, even
if possibly continuous inside the arcs of the network, is discontinuous across the
vertex V2.
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Figure 3. The 2-1 junction with a sketch of the characteristics
along which the solution to the example of Section 6.3 propagates
in the space-time of the network.

Finally, the outflow masses ν2
1 = ω3 and ν3

1 = ω4 are recovered from (28) as

ν2
1 = ω3 =

∫ +∞

0

δσ2(s)p(s)ρ(s− σ1(0)) ds

=

∫ +∞

σ2(0)

δrp(r − σ2(0))ρ(r − σ1(0)− σ2(0)) dr

and

ν3
1 = ω4 =

∫ +∞

0

δσ3(s)(1− p(s))ρ(s− σ1(0)) ds

=

∫ +∞

σ3(0)

δr(1− p(r − σ3(0)))ρ(r − σ1(0)− σ3(0)) dr.

Observing that supp ρ(· − σ1(0) − σj(0)) ⊆ [σ1(0) + σj(0), +∞) for j = 2, 3, from
the Bochner representation (1) of a measure we further deduce

ν2
1(dt) = ω3(dt) = p(t− σ2(0))ρ(t− σ1(0)− σ2(0)) dt

ν3
1(dt) = ω4(dt) = (1− p(t− σ3(0))ρ(t− σ1(0)− σ3(0)) dt.

Remark 7. The transport problem being linear, the case of an inflow measure
ν1

0 carrying both an atomic and a Lebesgue-absolutely continuous part can be ad-
dressed by simply superimposing the solutions obtained in Sections 6.1 and 6.2.

6.3. The 2-1 junction. We consider now the road network Γ illustrated in Figure 3
with again 3 arcs, viz. roads, E1, E2, E3 and 4 vertexes V1, . . . , V4. However, in
this case both vertexes V1, V2 are sources and are connected by roads E1, E2 to
the internal vertex V3. The latter is finally connected to the well vertex V4 by road
E3. In practice, beyond the junction V3 the incoming roads E1, E2 merge into the
outgoing road E3.

Like in Sections 6.1, 6.2, we assume that the network is initially empty. At two
successive time instants 0 ≤ t1 ≤ t2 two microscopic vehicles enter the network from
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the sources V1, V2, respectively. Their propagation across the network for t > 0 is
then described by the problem:

∂tµ
j + ∂x(vj(x)µj) = 0 x ∈ Ej , t ∈ R+, j = 1, 2, 3

µ0 = 0 x ∈ Γ

ν1
0 = δt1 t ∈ R+

0

ν2
0 = δt2 t ∈ R+

0

ν3
0 = ν1

1 + ν2
1 t ∈ R+

0 ,

where the velocity fields vj : Ej → (0, vjmax], 0 < vjmax < +∞, are as usual given
Lipschitz continuous functions of x. Notice that, for mass conservation purposes, the
flux distribution coefficients at the junction V3 are necessarily p3

13(t) = p3
23(t) = 1

for all t > 0.
Relying again on (27), (28) we write explicitly the solution µj ∈ M+(Ej × R+

0 )

on each road as well as the outflow measures νj1 ∈M+({πj(1)}×R+
0 ), with π1(1) =

π2(1) = V3 and π3(1) = V4. We find (cf. Figure 3):

µ1
t = δΦ1

t (0, t1)χ[t1, σ1(t1)](t), ν1
1 = δσ1(t1)

µ2
t = δΦ2

t (0, t2)χ[t2, σ2(t2)](t), ν2
1 = δσ2(t2)

µ3
t = δΦ3

t (0, σ1(t1))χ[σ1(t1), σ3(σ1(t1))](t) ν3
1 = ω4 = δσ3(σ1(t1)) + δσ3(σ2(t2)),

+ δΦ3
t (0, σ2(t2))χ[σ2(t2), σ3(σ2(t2))](t),

whence, using Bochner integrals in the product spaces Ej × R+
0 , j = 1, 2, 3,

µ1 =

∫ σ1(t1)

t1

δ(Φ1
t (0, t1), t) dt

µ2 =

∫ σ2(t2)

t2

δ(Φ2
t (0, t2), t) dt

µ3 =

∫ σ3(σ1(t1))

σ1(t1)

δ(Φ3
t (0, σ1(t1)), t) dt+

∫ σ3(σ2(t2))

σ2(t2)

δ(Φ3
t (0, σ2(t2)), t) dt.

Appendix A. Proofs of the theorems of Section 4.

Proof of Theorem 4.3. We observe that µ can be obtained, by linearity, as the sum
of the solutions of two transport problems with ν0 = 0 and µ0 = 0, respectively.

We begin by considering the case ν0 = 0 and assume, without loss of generality,
that T ≤ τ(0). Then τ−1(T ) ≥ 0 whence, recalling (20), (21), we obtain

µT =

∫
[0, τ−1(T )]

δΦT (x, 0) dµ0(x), ν1 =

∫
(τ−1(T ), 1]

δτ(x) dµ0(x) (34)

and we have to show that

〈µxQ, ∂tϕ+ v(x)∂xϕ〉 = 〈µT − µ0, ϕ〉+ 〈ν1, ϕ〉, ∀ϕ ∈ C1(Q̄), (35)

where µ is the measure (14). Following the characteristics, its restriction to Q writes
as

µxQ(dx dt) =

∫
[0, τ−1(t)]

δΦt(ξ, 0)(dx) dµ0(ξ)︸ ︷︷ ︸
:=µtxQ(dx)

⊗ dt,
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thus for ϕ ∈ C1(Q̄) we discover:

〈µxQ, ∂tϕ+ v(x)∂xϕ〉

=

∫ T

0

∫
[0, 1]

(∂tϕ+ v(x)∂xϕ) dµtxQ(x) dt

=

∫ T

0

∫
[0, τ−1(t)]

(
∂tϕ(Φt(x, 0), t) + v(Φt(x, 0))∂xϕ(Φt(x, 0), t)

)
dµ0(x) dt

=

∫ T

0

∫
[0, τ−1(t)]

d

dt
ϕ(Φt(x, 0), t) dµ0(x) dt,

where in the last passage we have used (12). Switching the order of integration, we
continue the calculation as:

=

∫
[0, 1]

∫ min{τ(x), T}

0

d

dt
ϕ(Φt(x, 0), t) dt dµ0(x)

=

∫
[0, τ−1(T )]

∫ T

0

d

dt
ϕ(Φt(x, 0), t) dt dµ0(x)

+

∫
(τ−1(T ), 1]

∫ τ(x)

0

d

dt
ϕ(Φt(x, 0), t) dt dµ0(x)

=

∫
[0, τ−1(T )]

(
ϕ(ΦT (x, 0), T )− ϕ(Φ0(x, 0), 0)

)
dµ0(x)

+

∫
(τ−1(T ), 1]

(
ϕ(Φτ(x)(x, 0), τ(x))− ϕ(Φ0(x, 0), 0)

)
dµ0(x)

=

∫
[0, τ−1(T )]

ϕ(ΦT (x, 0), T ) dµ0(x)︸ ︷︷ ︸
(i)

+

∫
(τ−1(T ), 1]

ϕ(1, τ(x)) dµ0(x)︸ ︷︷ ︸
(ii)

−
∫

[0, 1]

ϕ(x, 0) dµ0(x)︸ ︷︷ ︸
(iii)

.

From (34) we recognise that the term (i) is indeed
∫

[0, 1]
ϕ(x, T ) dµT (x) = 〈µT , ϕ〉

and that the term (ii) is
∫

[0, T ]
ϕ(1, t) dν1(t) = 〈ν1, ϕ〉, while the term (iii) is clearly

〈µ0, ϕ〉. Consequently (35) follows.
We consider now the case µ0 = 0 and assume, without loss of generality, that

T ≥ σ(0). Then σ−1(T ) ≥ 0 whence, recalling again (20), (21), we find

µT =

∫
[σ−1(T ), T ]

δΦT (0, s) dν0(s), ν1 =

∫
[0, σ−1(T ))

δσ(s) dν0(s) (36)

and we have to show that

〈µxQ, ∂tϕ+ v(x)∂xϕ〉 = 〈µT , ϕ〉+ 〈ν1 − ν0, ϕ〉, ∀ϕ ∈ C1(Q̄), (37)

where µ is again the measure (14). Following the characteristics we see that µxQ
is now expressed as

µxQ(dx dt) =

∫
[max{0, σ−1(t)}, t]

δΦt(0, s)(dx) dν0(s)︸ ︷︷ ︸
:=µtxQ(dx)

⊗ dt,
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hence for ϕ ∈ C1(Q̄) we obtain:

〈µxQ, ∂tϕ+ v(x)∂xϕ〉

=

∫ T

0

∫
[0, 1]

(∂tϕ+ v(x)∂xϕ) dµtxQ(x) dt

=

∫ T

0

∫
[max{0, σ−1(t)}, t]

(
∂tϕ(Φt(0, s), t) + v(Φt(0, s))∂xϕ(Φt(0, s) t)

)
dν0(s) dt

=

∫ T

0

∫
[max{0, σ−1(t)}, t]

d

dt
ϕ(Φt(0, s), t) dν0(s) dt,

where in the last passage we have used (13). We now switch the order of integration
to discover:

=

∫
[0, T ]

∫ min{σ(s), T}

s

d

dt
ϕ(Φt(0, s), t) dt dν0(s)

=

∫
[0, σ−1(T )]

∫ σ(s)

s

d

dt
ϕ(Φt(0, s), t) dt dν0(s)

+

∫
(σ−1(T ), T ]

∫ T

s

d

dt
ϕ(Φt(0, s), t) dt dν0(s)

=

∫
[0, σ−1(T )]

(
ϕ(Φσ(s)(0, s), σ(s))− ϕ(Φs(0, s), s)

)
dν0(s)

+

∫
(σ−1(T ), T ]

(
ϕ(ΦT (0, s)T )− ϕ(Φs(0, s), s)

)
dν0(s)

=

∫
[0, σ−1(T )]

ϕ(1, σ(s)) dν0(s)︸ ︷︷ ︸
(i)

+

∫
(σ−1(T ), T ]

ϕ(ΦT (0, s), T ) dν0(s)︸ ︷︷ ︸
(ii)

−
∫

[0, T ]

ϕ(0, s) dν0(s)︸ ︷︷ ︸
(iii)

.

Thanks to (36) we recognise that the term (i) is
∫

[0, T ]
ϕ(1, t) dν1(t) = 〈ν1, ϕ〉 and

that the term (ii) is
∫

[0, 1]
ϕ(x, T ) dµT (x) = 〈µT , ϕ〉, while the term (iii) is clearly

〈ν0, ϕ〉. Hence (37) follows.
To conclude the proof, we show the continuous dependence estimate (23). We

consider two problems of the type (17) with respective initial data µ1
0, µ

2
0 and source

data ν1
0 , ν

2
0 .

We begin by estimating the term
∥∥µ2

T − µ1
T

∥∥∗
BL

. Let ϕ ∈ BL(Q) with ‖ϕ‖BL ≤ 1.

Recalling (20) we have:

〈µ2
T − µ1

T , ϕ〉 =

∫
[0, 1]

ϕ(x, T ) d(µ2
T − µ1

T )(x)

=

∫
[0,max{0, τ−1(T )}]

ϕ(ΦT (x, 0), T ) d(µ2
0 − µ1

0)(x)

+

∫
[max{0, σ−1(T )}, T ]

ϕ(ΦT (0, s), T ) d(ν2
0 − ν1

0)(s)
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≤
∣∣µ2

0 − µ1
0

∣∣ ([0, max{0, τ−1(T )}])
+
∣∣ν2

0 − ν1
0

∣∣ ([max{0, σ−1(T )}, T ])

where here |·| stands for the total variation of a measure. Thus

≤ C
(∥∥µ2

0 − µ1
0

∥∥∗
BL

+
∥∥ν2

0 − ν1
0

∥∥∗
BL

)
and consequently, taking the supremum over ϕ at both sides,∥∥µ2

T − µ1
T

∥∥∗
BL
≤ C

(∥∥µ2
0 − µ1

0

∥∥∗
BL

+
∥∥ν2

0 − ν1
0

∥∥∗
BL

)
.

Proceeding in a similar way for
∥∥ν2

1 − ν1
1

∥∥∗
BL

, from (21) we have:

〈ν2
1 − ν1

1 , ϕ〉 =

∫
[0, T ]

ϕ(1, t) d(ν2
1 − ν1

1)(t)

=

∫
(max{0, τ−1(T )}, 1]

ϕ(1, τ(x)) d(µ2
0 − µ1

0)(x)

+

∫
[0,max{0, σ−1(T )})

ϕ(1, σ(s)) d(ν2
0 − ν1

0)(s)

≤
∣∣µ2

0 − µ1
0

∣∣ ((max{0, τ−1(T )}, 1])

+
∣∣ν2

0 − ν1
0

∣∣ ([0, max{0, σ−1(T )}))

≤ C
(∥∥µ2

0 − µ1
0

∥∥∗
BL

+
∥∥ν2

0 − ν1
0

∥∥∗
BL

)
,

hence, taking the supremum over ϕ at both sides,∥∥ν2
1 − ν1

1

∥∥∗
BL
≤ C

(∥∥µ2
0 − µ1

0

∥∥∗
BL

+
∥∥ν2

0 − ν1
0

∥∥∗
BL

)
.

Summing the two estimates just obtained yields finally (23).
Moreover, for µ1

0 = µ2
0, ν1

0 = ν2
0 the estimate (23) implies µ1

T = µ2
T , ν1

1 = ν2
1 ,

hence the uniqueness of (20) and (21).

Proof of Theorem 4.4. We begin with the estimate of ‖µt − µt′‖∗BL. Let ϕ ∈ BL(Q)
be such that ‖ϕ‖BL ≤ 1. By (20), since

(−∞, τ−1(t′)) = (−∞, τ−1(t)) ∪ [τ−1(t), τ−1(t′)],

we can write:∫
(−∞, τ−1(t))∩[0, 1)

ϕ(Φt(x, 0), t) dµ0(x)−
∫

(−∞, τ−1(t′))∩[0, 1)

ϕ(Φt′(x, 0), t′) dµ0(x)

=

∫
(−∞, τ−1(t))∩[0, 1]

(
ϕ(Φt(x, 0), t)− ϕ(Φt′(x, 0), t′)

)
dµ0(x)

−
∫

[τ−1(t), τ−1(t′))∩[0, 1]

ϕ(Φt′(x, 0), t′) dµ0(x)

≤ µ0((−∞, τ−1(t)) ∩ [0, 1)) ‖v‖∞ |t− t
′|

−
∫

[τ−1(t), τ−1(t′))∩[0, 1]

ϕ(Φt′(x, 0), t′) dµ0(x).

Likewise, assuming for simplicity that σ−1(t) ≤ t′,∫
(σ−1(t), t]∩(0, T ]

ϕ(Φt(0, s), t) dν0(s)−
∫

(σ−1(t′), t′]∩(0, T ]

ϕ(Φt(0, s), t) dν0(s)
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= −
∫

(σ−1(t′), σ−1(t)]

ϕ(Φt′(0, s), t
′) dν0(s)

+

∫
(σ−1(t), t′]

(
ϕ(Φt(0, s), t)− ϕ(Φt′(0, s), t

′)
)
dν0(s)

+

∫
(t′, t]

ϕ(Φt(0, s), t) dν0(s)

≤ ν0((t′, t]) + ν0((t− τ(0), t′]) ‖v‖∞ |t− t
′|

−
∫

(σ−1(t′), σ−1(t)]

ϕ(Φt′(0, s), t
′) dν0(s).

Hence

|〈µt − µt′ , ϕ〉| ≤

∣∣∣∣∣
∫

(τ−1(t), τ−1(t′)]∩[0, 1]

(
ϕ(Φt′(x, 0), t′)− ϕ(1, τ(x))

)
dµ0(x)

∣∣∣∣∣
+

∣∣∣∣∣
∫

(σ−1(t′), σ−1(t)]

(
ϕ(1, σ(s))− ϕ(Φt′(0, s), t

′)
)
dν0(s)

∣∣∣∣∣
≤ µ0((τ−1(t), τ−1(t′)] ∩ [0, 1]) ‖v‖∞ |t− t

′|
+ ν0((σ−1(t′), σ−1(t)]) ‖v‖∞ |t− t

′|

≤ ‖v‖∞
(
µ0([0, 1]) + ν0([0, t])

)
|t− t′|+ ν0((t′, t])

≤ C |t− t′|+ ν0([t′, t])

and finally, taking the supremum over ϕ at both sides,

‖µt − µt′‖∗BL ≤ C |t− t
′|+ ν0([t′, t]).

We now consider the estimate on the outflow measures. Taking again ϕ ∈ BL(Q)
with ‖ϕ‖BL ≤ 1, we compute:

〈ν1x[0, t]− ν1x[0, t′], ϕ〉

=

∫
[0, 1)∩[τ−1(t), 1)

ϕ(1, τ(x)) dµ0(x) +

∫
(0, t]∩(0, σ−1(t)]

ϕ(1, σ(s)) dν0(s)

−
∫

[0, 1)∩[τ−1(t′), 1)

ϕ(1, τ(x)) dµ0(x)−
∫

(0, t′]∩(0, σ−1(t′)]

ϕ(1, σ(s)) dν0(s).

We point out that if σ−1(t) < 0 then the interval (0, σ−1(t)] is actually understood
as [σ−1(t), 0) and, in this case, (0, t] ∩ (0, σ−1(t)] = ∅. Moreover, since t > t′ we
have τ−1(t′) > τ−1(t), which implies [τ−1(t′), 1) = [τ−1(t′), τ−1(t)) ∪ [τ−1(t), 1).
Then∫

[0, 1)∩[τ−1(t), 1)

ϕ(1, τ(x)) dµ0(x)−
∫

[0, 1)∩[τ−1(t′), 1)

ϕ(1, τ(x)) dµ0(x)

=

∫
[0, 1)∩[τ−1(t), τ−1(t′))

ϕ(1, τ(x)) dµ0(x).

Moreover,∫
(0, σ−1(t)]∩(0, t]

ϕ(1, σ(s)) dν0(s)
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=

∫
(0, σ−1(t′)]∩(0, t]

ϕ(1, σ(s)) dν0(s) +

∫
(σ−1(t′), σ−1(t)]∩(0, t]

ϕ(1, σ(s)) dν0(s),

which gives∫
(0, σ−1(t)]∩(0, t]

ϕ(1, σ(s)) dν0(s)−
∫

(0, σ−1(t′)]∩(0, t′]

ϕ(1, σ(s)) dν0(s)

=

∫
(σ−1(t′), σ−1(t)]∩(0, t]

ϕ(1, σ(s)) dν0(s).

Therefore

〈ν1x[0, t]− ν1x[0, t′], ϕ〉 =

∫
[0, 1)∩[τ−1(t), τ−1(t′))

ϕ(1, τ(x)) dµ0(x)

+

∫
(σ−1(t′), σ−1(t)]∩(0, t]

ϕ(1, σ(s)) dν0(s)

≤ ν0((t′, t]) + ν0((σ−1(t), t′]) ‖v‖∞ |t− t
′|

+ µ0((−∞, τ−1(t)) ∩ [0, 1)) ‖v‖∞ |t− t
′| ,

whence, taking the supremum over ϕ at both sides,

‖ν1x[0, t]− ν1x[0, t′]‖∗BL ≤ C |t− t
′|+ ν0([t′, t]).

Summing the estimates obtained so far for ‖µt − µt′‖∗BL, ‖ν1x[0, t]− ν1x[0, t′]‖∗BL
we finally get (24).
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[15] P. Gwiazda, G. Jamróz and A. Marciniak-Czochra, Models of discrete and continuous cell
differentiation in the framework of transport equation, SIAM J. Math. Anal., 44 (2012),

1103–1133.

[16] D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Understanding Com-
plex Systems, Springer International Publishing, 2014.

[17] B. Piccoli and F. Rossi, Generalized Wasserstein distance and its application to transport

equations with source, Arch. Ration. Mech. Anal., 211 (2014), 335–358.
[18] Y. V. Pokornyi and A. V. Borovskikh, Differential equations on networks, J. Math. Sci. (N.

Y.), 119 (2004), 691–718.

[19] D. T. H. Worm, Semigroups on Spaces of Measures, PhD thesis, Leiden University, 2010.

Received October 2016; revised February 2017.

E-mail address: camilli@sbai.uniroma1.it

E-mail address: raul.demaio@sbai.uniroma1.it

E-mail address: andrea.tosin@polito.it

http://www.ams.org/mathscinet-getitem?mr=MR3285312&return=pdf
http://dx.doi.org/10.1142/S0218202515400023
http://dx.doi.org/10.1142/S0218202515400023
http://www.ams.org/mathscinet-getitem?mr=MR2328174&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2914262&return=pdf
http://dx.doi.org/10.1137/11083294X
http://dx.doi.org/10.1137/11083294X
http://www.ams.org/mathscinet-getitem?mr=MR3243602&return=pdf
http://dx.doi.org/10.1007/978-3-319-04621-1
http://www.ams.org/mathscinet-getitem?mr=MR3182483&return=pdf
http://dx.doi.org/10.1007/s00205-013-0669-x
http://dx.doi.org/10.1007/s00205-013-0669-x
http://www.ams.org/mathscinet-getitem?mr=MR2070600&return=pdf
http://dx.doi.org/10.1023/B:JOTH.0000012752.77290.fa
mailto:camilli@sbai.uniroma1.it
mailto:raul.demaio@sbai.uniroma1.it
mailto:andrea.tosin@polito.it

	1. Introduction
	2. Preliminary definitions and statement of the problem
	3. Measures and norms
	4. The transport equation in a bounded interval
	5. The transport equation on a network
	6. Examples of junctions
	6.1. The 1-2 junction – Atomic inflow distribution
	6.2. The 1-2 junction – Continuous inflow distribution
	6.3. The 2-1 junction

	Appendix A. Proofs of the theorems of Section 4
	Acknowledgments
	REFERENCES

