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Abstract. The paper examines the model of traffic flow at an intersection in-
troduced in [2], containing a buffer with limited size. As the size of the buffer

approaches zero, it is proved that the solution of the Riemann problem with

buffer converges to a self-similar solution described by a specific Limit Rie-
mann Solver (LRS). Remarkably, this new Riemann Solver depends Lipschitz

continuously on all parameters.

1. Introduction. Starting with the seminal papers by Lighthill, Witham, and
Richards [12, 13], traffic flow on a single road has been modeled in terms of a scalar
conservation law:

ρt + (v(ρ)ρ)x = 0 . (1.1)

Here ρ is the density of cars, while v(ρ) is their velocity, which we assume depends
of the density alone. To describe traffic flow on an entire network of roads, one
needs to further introduce a set of boundary conditions at road junctions [7]. These
conditions should relate the traffic densities on incoming roads i ∈ I and outgoing
roads j ∈ O, depending on two main parameters:

(i) Driver’s turning preferences. For every i, j, one should specify the fraction
θij ∈ [0, 1] of drivers arriving to from the i-th road, who wish to turn into the
j-th road.

(ii) Relative priorities assigned to different incoming roads. If the intersection is
congested, these describe the maximum influx of cars arriving from each road
i ∈ I, allowed to cross the intersection.

Various junction models of have been proposed in the literature [4, 5, 7, 9]. See
also [1] for a survey. A convenient approach is to introduce a Riemann Solver, i.e. a
rule that specifies how to construct the solution in the special case where the initial
density is constant on each incoming and outgoing road. As shown in [4], as soon
as a Riemann Solver is given, the general Cauchy problem for traffic flow near a
junction can be uniquely solved (under suitable assumptions).
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The recent counterexamples in [3] show that, on a network of roads, in general
the Cauchy problem can be ill posed. Indeed, two distinct solutions can be con-
structed for the same measurable initial data. On a network with several nodes,
non-uniqueness can occur even if the initial data have small total variation. To
readdress this situation, in [2] an alternative intersection model was proposed, in-
troducing a buffer of limited capacity at each road junction. For this new model,
given any L∞ initial data, the Cauchy problem has a unique solution, which is ro-
bust w.r.t. perturbations of the data. Indeed, one has continuous dependence even
w.r.t. the topology of weak convergence.

A natural question, addressed in the present paper, is what happens in the limit
as the size of the buffer approaches zero. For Riemann initial data, constant along
each incoming and outgoing road, we show that this limit is described by a Limit
Riemann Solver (LRS) which can be explicitly determined. See (2.15)–(2.17) in
Section 2.

We recall that, in a model without buffer, the initial conditions consist of the
constant densities ρ♦k on all incoming and outgoing roads k ∈ I ∪O, together with

the drivers’ turning preferences θ♦ij . On the other hand, in the model with buffer,

these initial conditions comprise also the length of the queues q♦j , j ∈ O, inside the

buffer. One can think of q♦j as the number of cars already inside the intersection

(say, a traffic circle) at time t = 0, waiting to access the outgoing road j. Our main
results (see Theorem 2.3 and 2.4 in Section 2) can be summarized as follows.

(i) For any given Riemann data ρ♦k , θ
♦
ij , one can choose initial queue sizes q♦j

such that, for all t > 0 the solution of the problem with buffer is exactly the
same as the solution determined by the Riemann Solver (LRS).

(ii) For any Riemann data ρ♦k , θ
♦
ij , and any initial queue sizes q♦j , as t → ∞ the

solution of the problem with buffer approaches asymptotically the solution
determined by the Riemann Solver (LRS).

Using the fact that the conservation laws (1.1) are invariant under space and time
rescalings, from (ii) we obtain a convergence result as the size of the buffer ap-
proaches zero.

Our present results apply only to solutions of the Riemann problem, i.e. with
traffic density which is initially constant along each road. Indeed, for a general
Cauchy problem the counterexamples in [3] remain valid also for the Riemann Solver
(LRS), showing that the initial-value problem with measurable initial data can be
ill posed. Hence no convergence result can be expected. This should not appear as
a paradox: for every positive size of the buffer, the Cauchy problem has a unique
solution, depending continuously on the initial data. However, as the size of the
buffer approaches zero, the solution can become more and more sensitive to small
changes in the initial conditions. In the limit, uniqueness is lost.

An extension of our results may be possible in the case of initial data with
bounded variation, for a network containing one single node. In view of the results
in [4, 7], we conjecture that in this case the solution to the Cauchy problem with
buffer converges to the solution determined by the Riemann Solver (LRS).

2. Statement of the main results. Consider a family of n + m roads, joining
at a node. Indices i ∈ {1, . . . ,m} = I denote incoming roads, while indices j ∈
{m + 1, . . . ,m + n} = O denote outgoing roads. On the k-th road, the density of



TRAFFIC FLOW AT INTERSECTION 175

cars ρk(t, x) is governed by the scalar conservation law

ρt + fk(ρ)x = 0 . (2.1)

Here t ≥ 0, while x ∈ ] −∞, 0] for incoming roads and x ∈ [0, +∞[ for outgoing
roads. The flux function is fk(ρ) = ρ vk(ρ), where vk(ρ) is the speed of cars on the
k-th road. We assume that each flux function fk satisfies

fk ∈ C2, fk(0) = fk(ρjamk ) = 0, f ′′k (ρ) < 0 for all ρ ∈ [0, ρjamk ],
(2.2)

where ρjamk is the maximum possible density of cars on the k-th road. Intuitively,
this can be thought as a bumper-to-bumper packing, so that the speed of cars is
zero. For a given road k ∈ {1, . . . ,m+ n}, we denote by

fmaxk
.
= max

s
fk(s)

the maximum flux and

ρmaxk
.
= argmax

s
fk(s) (2.3)

the traffic density corresponding to this maximum flux (see Fig. 1).
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Figure 1. The flux fk as a function of the density ρ, along the k-th road.

Moreover, we say that

ρ is a free state if ρ ∈ [0, ρmaxk ] ,

ρ is a congested state if ρ ∈ [ρmaxk , ρjamk ] .

Given initial data on each road

ρk(0, x) = ρ♦k (x) k = 1, . . . ,m+ n, (2.4)

in order to determine a unique solution to the Cauchy problem we must supple-
ment the conservation laws (2.1) with a suitable set of boundary conditions. These
provide additional constraints on the limiting values of the vehicle densities

ρ̄k(t)
.
= lim

x→0
ρk(t, x) k = 1, . . . ,m+ n (2.5)

near the intersection. In a realistic model, these boundary conditions should depend
on:

(i) Relative priority given to incoming roads. For example, if the intersec-
tion is regulated by a crosslight, the flow will depend on the fraction ηi ∈ ]0, 1[
of time when cars arriving from the i-th road get a green light.
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(ii) Drivers’ choices. For every i ∈ I, j ∈ O, these are modeled by assigning
the fraction θij ∈ [0, 1] of drivers arriving from the i-th road who choose to
turn into the j-th road. Obvious modeling considerations imply

θij ∈ [0, 1] ,
∑
j∈O

θij = 1 for each i ∈ I . (2.6)

Since we are only interested in the Riemann problem, throughout the following
we shall assume that the θij are given constants, satisfying (2.6).

In [2] a model of traffic flow at an intersection was introduced, including a buffer
of limited capacity. The incoming fluxes of cars toward the intersection are con-
strained by the current degree of occupancy of the buffer. More precisely, consider
an intersection with m incoming and n outgoing roads. The state of the buffer at
the intersection is described by an n-vector

q = (qj)j∈O .

Here qj(t) is the number of cars at the intersection waiting to enter road j ∈ O (in
other words, the length of the queue in front of road j). Boundary values at the
junction will be denoted by

θ̄ij(t)
.
= limx→0− θij(t, x), i ∈ I, j ∈ O ,

ρ̄i(t)
.
= limx→0− ρi(t, x), i ∈ I ,

ρ̄j(t)
.
= limx→0+ ρj(t, x), j ∈ O ,

f̄i(t)
.
= fi(ρ̄i(t)) = limx→0− fi(ρi(t, x)), i ∈ I ,

f̄j(t)
.
= fj(ρ̄j(t)) = limx→0+ fj(ρj(t, x)), j ∈ O .

(2.7)

Conservation of the total number of cars implies

q̇j(t) =
∑
i∈I

f̄i(t)θ̄ij − f̄j(t) for all j ∈ O , (2.8)

at a.e. time t ≥ 0. Here and in the sequel, the upper dot denotes a derivative
w.r.t. time. Following [7], we define the maximum possible flux at the end of an
incoming road as

ωi = ωi(ρ̄i)
.
=

 fi(ρ̄i) if ρ̄i is a free state,

fmaxi if ρ̄i is a congested state,
i ∈ I . (2.9)

This is the largest flux fi(ρ) among all states ρ that can be connected to ρ̄i with
a wave of negative speed. Notice that the two right hand sides in (2.9) coincide if
ρ̄i = ρmaxi .

Similarly, we define the maximum possible flux at the beginning of an outgoing
road as

ωj = ωj(ρ̄j)
.
=


fj(ρ̄j) if ρ̄j is a congested state,

fmaxj if ρ̄j is a free state,
j ∈ O . (2.10)

Following the literature in transportation engineering, the fluxes ωi, i ∈ I, represent
the demand functions, while the fluxes ωj , j ∈ O, represent the supply functions.
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As in [2], we assume that the junction contains a buffer of size M . Incoming
cars are admitted at a rate depending of the amount of free space left in the buffer,
regardless of their destination. Once they are within the intersection, cars flow out
at the maximum rate allowed by the outgoing road of their choice.

Definition 2.1 (Single Buffer Junction (SBJ)). Consider a constant M > 0, de-
scribing the maximum number of cars that can occupy the intersection at any given
time, and constants ci > 0, i ∈ I, accounting for priorities given to different incom-
ing roads.

We then require that the incoming fluxes f̄i satisfy

f̄i = min

ωi , ci(M −∑
j∈O

qj

) , i ∈ I . (2.11)

In addition, the outgoing fluxes f̄j should satisfy
if qj > 0, then f̄j = ωj ,

if qj = 0, then f̄j = min
{
ωj ,

∑
i∈I f̄iθ̄ij

}
,

j ∈ O . (2.12)

Here ωi = ωi(ρ̄i) and ωj = ωj(ρ̄j) are the maximum fluxes defined at (2.9)-(2.10).
Notice that (SBJ) prescribes all the boundary fluxes f̄k, k ∈ I ∪ O, depending on
the boundary densities ρ̄k. It is natural to assume that the constants ci satisfy the
inequalities

ciM > fmaxi for all i ∈ I . (2.13)

These conditions imply that, when the buffer is empty, cars from all incoming roads
can access the intersection with the maximum possible flux (2.9). The analysis in [2]
shows that, with the above boundary conditions, the Cauchy problem on a network
of roads has a unique solution, continuously depending on the initial data.

The main goal of this paper is to understand what happens when the size of the
buffer approaches zero. More precisely, assume that (2.11) is replaced by

f̄i = min

ωi , ciε (Mε−
∑
j∈O

qj

) , i ∈ I . (2.14)

Notice that (2.14) models a buffer with size Mε. When
∑
j qj = Mε, the buffer is

full and no more cars are admitted to the intersection.
We will show that, as ε→ 0, the limit of solutions to the Riemann problem with

buffer of vanishing size can be described by a specific Limit Riemann Solver.

Definition 2.2 (Limit Riemann Solver (LRS)). At time t = 0, let the constant

densities ρ♦i , ρ♦j be given, together with drivers’ preferences θij , i ∈ I, j ∈ O.

Let ω♦i = ωi(ρ
♦
i ) and ω♦j = ωj(ρ

♦
j ) be the corresponding maximum possible

fluxes at the boundary of the incoming and outgoing roads, as in (2.9)-(2.10). Con-
sider the one-parameter curve

s 7→ γ(s) = (γ1(s), . . . , γm(s)),

where
γi(s)

.
= min{cis , ω♦i }.

Then for t > 0 the Riemann problem is solved by the incoming fluxes

f̄i = γi(s̄), (2.15)
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where

s̄ = max

{
s ∈ [0,M ] ;

∑
i∈I

γi(s) θij ≤ ω♦j for all j ∈ O

}
. (2.16)

In turn, by the conservation of the number of drivers, the outgoing fluxes are

f̄j =
∑
i∈I

f̄i θij j ∈ O . (2.17)

By specifying all the incoming and outgoing fluxes f̄i, f̄j at the intersection, the
entire solution of the Riemann problem is uniquely determined. Indeed:

(i) For an incoming road i ∈ I, there exists a unique boundary state ρ0i =
ρi(t, 0−) such that fi(ρ

0
i ) = f̄i and moreover

• If f̄i = fi(ρ
♦
i ), then ρ0i = ρ♦i . In this case the density of cars on the i-th

road remains constant: ρi(t, x) ≡ ρ♦i .

• If f̄i 6= fi(ρ
♦
i ), then the solution to the Riemann problem

ρt + fi(ρ)x = 0, ρ(0, x) =

 ρ♦i if x < 0,

ρ0i if x > 0,
(2.18)

contains only waves with negative speed. In this case, the density of cars
on the i-th road coincides with the solution of (2.18), for x < 0.

(ii) For an outgoing road j ∈ O, there exists a unique boundary state ρ0j =

ρj(t, 0−) such that fj(ρ
0
j ) = f̄j and moreover

• If f̄j = fj(ρ
♦
j ), then ρ0j = ρ♦j . In this case the density of cars on the j-th

road remains constant: ρj(t, x) ≡ ρ♦j .

• If f̄j 6= fj(ρ
♦
j ), then the solution to the Riemann problem

ρt + fj(ρ)x = 0, ρ(0, x) =

 ρ0j if x < 0,

ρ♦j if x > 0,
(2.19)

contains only waves with positive speed. In this case, the density of cars
on the i-th road coincides with the solution of (2.19), for x > 0.

Remark 1. For the Riemann Solver constructed in [3], the fluxes f̄k are locally

Hölder continuous functions of the data ρ♦k , θij , on the domain where θij > 0,
ωj > 0 for all j ∈ O.

The Riemann Solver (LRS) has even better regularity properties. Namely, the

fluxes f̄k defined at (2.15)–(2.17) are locally Lipschitz continuous functions of ρ♦k , θij ,

as long as ρ♦k < ρjamk for all outgoing roads k ∈ O. Unfortunately, as remarked
earlier, this additional regularity is still not sufficient to guarantee the well-posedness
of the Cauchy problem, for general measurable initial data.

Example 1. To see how continuity is lost when ρ♦k = ρjamk , consider an intersection
with one incoming and two outgoing roads, so that I = {1} while O = {2, 3}.
Assume that ρ♦3 = ρjam3 , and let the maximum fluxes be ω♦1 = ω♦2 = 1, ω♦3 = 0. If
θ13 = 0, then all incoming cars go to road 2, and the Riemann Solver (LRS) yields
the incoming flux f̄1 = 1. However, if θ13 > 0, then no car can cross the intersection,
and the incoming flux is f̄1 = 0. We remark that, even in this example, if a buffer is
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Figure 2. Constructing the solution of the the Riemann problem,
according to the limit Riemann solver (LRS), with two incoming and
two outgoing roads. The vector f = (f̄1, f̄2) of incoming fluxes is
the largest point on the curve γ that satisfies the two constraints∑

i∈I γi(s)θij ≤ ωj , j ∈ O.

present then the solution still depends continuously on the value of θ13, on bounded
time intervals. Indeed, when θ13 > 0 is small, the buffer will get slowly filled with
cars waiting to turn into road 3, while all the other cars will still be able to access
road 2.

Our first result refers to “well prepared” initial data, where the initial lengths of
the queues are suitably chosen.

Theorem 2.3. Let the assumptions (2.2), (2.13) hold. Let Riemann data

ρk(0, x) = ρ♦k ∈ [0, ρjamk [ , k ∈ I ∪ O, (2.20)

be assigned along each road, together with drivers’ turning preferences θij.

Then one can choose initial values q♦j , j ∈ O for the queues inside the buffer in
such a way that the solution to the Riemann problem with buffer coincides with the
self-similar solution determined by the Limit Riemann Solver (LRS).

Our second result covers the general case, where the initial sizes of the queues
are given arbitrarily, and the solution of the initial value problem with buffer is not
self-similar.

Theorem 2.4. Let the assumptions (2.2), (2.13) hold. Let Riemann data (2.20)
be assigned along each road, together with drivers’ turning preferences θij > 0 and
initial queue sizes

qj(0) = q♦j , with
∑
j∈O

q♦j < M. (2.21)

Then, as t→ +∞, the solution (ρk(t, x))k∈I∪O to the Riemann problem with buffer
asymptotically converges to the self-similar solution (ρ̂k(t, x))k∈I∪O determined by
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the Limit Riemann Solver (LRS). More precisely:

lim
t→+∞

1

t

∑
i∈I

∫ 0

−∞
|ρi(t, x)− ρ̂i(t, x)| dx+

∑
j∈O

∫ +∞

0

|ρj(t, x)− ρ̂j(t, x)| dx

 = 0.

(2.22)

A proof of the above theorems will be given in Sections 4 and 5, respectively. By
an asymptotic rescaling of time and space, using Theorem 2.4 we can describe the
behavior of the solution to a Riemann problem, as the size of the buffer approaches
zero.

Corollary 1 (limit behavior for a buffer of vanishing size). Let fk, θij , ci,M be as
in Theorem 2.4. Let Riemann data (2.20) be assigned along each road, together with
drivers’ turning preferences θij > 0 and initial queue sizes as in (2.21).

For ε > 0, let (ρεk(t, x))k∈I∪O be the solution to the initial value problem with a

buffer of size Mε, obtained by replacing (2.11) with (2.14) and choosing qεj (0) = εq♦j
as initial sizes of the queues.

Calling ρ̂k the self-similar solution determined by the Limit Riemann Solver
(LRS) with the same initial data (2.20), for every τ > 0 we have

lim
ε→0

∑
i∈I

∫ 0

−∞
|ρεi (τ, x)− ρ̂i(τ, x)| dx+

∑
j∈O

∫ +∞

0

|ρεj(τ, x)− ρ̂j(τ, x)| dx

 = 0.

(2.23)

Proof. Let (ρk(t, x))k∈I∪O, (qj(t))j∈O be the solution constructed in Theorem 2.4,
with initial data as in (2.20)-(2.21). For every ε > 0, the definition of ρεk im-

plies ρεk(τ, x) = ρk

(
τ
ε ,

x
ε

)
, while the corresponding queue sizes are given by

qεj (τ) = ε qj

(
τ
ε

)
. For every i ∈ I, by a rescaling of coordinates we thus ob-

tain

lim
ε→0

∫ 0

−∞
|ρεi (τ, x)− ρ̂i(τ, x)| dx = lim

ε→0

∫ 0

−∞

∣∣∣ρi(τ
ε
,
x

ε

)
− ρ̂i

(τ
ε
,
x

ε

)∣∣∣ dx
= lim

ε→0
ε

∫ 0

−∞

∣∣∣ρi(τ
ε
, x
)
− ρ̂i

(τ
ε
, x
)∣∣∣ dx

= lim
t→∞

τ

t

∫ 0

−∞

∣∣ρi(t, x)− ρ̂i(t, x)
∣∣ dx = 0.

In the last step we used Theorem 2.4 in connection with the variable change t = τ/ε.
For j ∈ O, the difference |ρεj − ρ̂j | is estimated in an entirely similar way.

3. The Riemann problem with buffer. We consider here an initial value prob-
lem with Riemann data, so that the initial density is constant on every incoming
and outgoing road.

ρi(0, x) = ρ♦i i ∈ I ,

ρj(0, x) = ρ♦j , j ∈ O ,
qj(0) = q♦j j ∈ O . (3.1)

We decompose the sets of indices as

I = If ∪ Ic , O = Of ∪ Oc,
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depending on whether these roads are initially free or congested. More precisely:

If .
= {i ∈ I ; ρ♦i < ρmaxi } , Of .

= {j ∈ O ; ρ♦j ≤ ρmaxj } ,

Ic .
= {i ∈ I ; ρ♦i ≥ ρmaxi } , Oc .

= {j ∈ O ; ρ♦j > ρmaxj } .
(3.2)

Observe that

• If i ∈ Ic, then the i-th incoming road will always be congested, i.e. ρi(t, x) ≥
ρmaxi for all t, x.

• If j ∈ Of , then the j-th outgoing road will always be free, i.e. ρj(t, x) ≤ ρmaxj

for all t, x.
• If i ∈ If , then part of the i-th road can become congested (Fig. 3, left).
• If j ∈ Oc, then part of the j-th road can become free (Fig. 3, right).

x 0

t

0 x

1

t
2

t
3

Figure 3. Left: an incoming road which is initially free. For t1 <
t < t2 part of the road is congested (shaded area). Right: an outgoing
road which is initially congested. For 0 < t < t3 part of the road is free
(shaded area). In both cases, a shock marks the boundary between the
free and the congested region.

The next lemma plays a key role in the proof of Theorem 2.4. It shows that, for
any t > 0, the maximum possible flux at the boundary of any incoming or outgoing
road is greater or equal to the maximum flux computed at t = 0.

Lemma 3.1. Let ρk = ρk(t, x), k ∈ I ∪ O be the solution of the Riemann problem

with initial data (3.1). As in (2.9)-(2.10) call ω♦k = ωk(ρ♦k ) the maximum possible
fluxes. Similarly, for t > 0 call ωk(t) = ωk(ρ̄k(t)) the corresponding maximum
fluxes. Then

ωk(t) ∈
{
ω♦k , f

max
k

}
for all k ∈ I ∪ O, t ≥ 0. (3.3)

Proof. 1. We first consider an incoming road i ∈ I.

Case 1. The road is initially congested, namely ρ♦i ≥ ρmaxi . In this case the i-th

road always remains congested and we have ωi(t) = ω♦i = fmaxi , for every t ≥ 0.

Case 2. The road is initially free, namely ρ♦i < ρmaxi . For a given t > 0, two
subcases may occur.
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(i) There exists a characteristic with positive speed, reaching the point (t, 0).
Since this characteristic must start at a point x0 < 0, we conclude that
ρi(t, 0−) = ρi(0, x0) = ρ♦i . Hence ωi(t) = ω♦i .

(ii) There exists a neighborhood of (t, 0) covered with characteristics having neg-
ative speed. In this case ρi(t, 0−) ≥ ρmaxi , hence ωi(t) = fmaxi .

2. For an outgoing road j ∈ O, the analysis is similar.

Case 1. The road is initially free, namely ρ♦j ≤ ρmaxj . In this case the j-th road

always remains free and we have ωj(t) = ω♦j = fmaxj , for every t ≥ 0.

Case 2. The road is initially congested, namely ρ♦j > ρmaxj . For a given t > 0, two
subcases may occur.

(i) There exists a characteristic with negative speed, reaching the point (t, 0).
Since this characteristic must start at a point x0 > 0, we conclude that
ρj(t, 0+) = ρj(0, x0) = ρ♦j . Hence ωj(t) = ω♦j .

(ii) There exists a neighborhood of (t, 0) covered with characteristics having pos-
itive speed. In this case ρj(t, 0+) ≥ ρmaxj , hence ωj(t) = fmaxj .

4. Proof of Theorem 2.3. Let ρ♦k , k ∈ I ∪ O be the initial densities of cars on
the incoming and outgoing roads, and let θij be the drivers’ turning preferences, as

in (2.6). Call ω♦i , ω
♦
j the maximum possible boundary fluxes on the incoming and

outgoing roads, and define s̄ as in (2.16). Two cases will be considered, shown in
Fig. 4.

Case 1. s̄ = M , so that γ(s̄) = (ω♦1 , ω
♦
2 , . . . , ω

♦
m). This is the demand constrained

case, where none of the incoming roads remains congested, and all the drivers
arriving at the intersection can immediately proceed to the outgoing road of their
choice.

In this case we choose the initial queues

q♦j = 0 for all j ∈ O .

With these choices, the solution of the Cauchy problem with buffer coincides with
the self-similar solution determined by the Limit Riemann Solver (LRS). The buffer
remains always empty: qj(t) = 0 for all t ≥ 0 and j ∈ O.

Case 2. s̄ < M . This is the supply constrained case, where there is an index j∗ ∈ O
such that ∑

i∈I
γi(s̄)θij∗ = ω♦j∗ . (4.1)

When this happens, the entire flow through the intersection is restricted by the
number of cars that can exit toward the single congested road j∗. We then define

q∗
.
= M − s̄ , (4.2)

and choose the initial queues to be

q♦j =

{
q∗ if j = j∗

0 if j 6= j∗.
(4.3)

Then the corresponding solution coincides with the self-similar solution determined
by the Limit Riemann Solver (LRS). Indeed, by the definition of γ(s̄), for every
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j ∈ O we have∑
i

min
{
ci(M − q∗), ωi

}
· θij =

∑
i

γi(s̄) θij ≤ ωj , (4.4)

with equality holding when j = j∗. By (4.4), all queues remain constant in time,
namely qj∗(t) = q∗ and qj(t) = 0 for j 6= j∗.

j

γ

γ

j*

ω
1

2ω

ω
1

ω
2

(s)
_ _

(s)γ

γ

Figure 4. The two cases in the proof of Theorem 2.3. Left: none of the
outgoing roads provides a restriction on the fluxes of the incoming roads.
The queues are zero. Right: one of the outgoing roads is congested and
restricts the maximum flux through the node.

Remark 2. In the proof of Theorem 2.3, the queue sizes q♦j may not be uniquely
determined. Indeed, in Case 2 there may exist two distinct indices j∗1 , j

∗
2 ∈ O such

that ∑
i∈I

γi(s̄)θij∗1 = ωj∗1 ,
∑
i∈I

γi(s̄)θij∗2 = ωj∗2 .

When this happens, we can choose the queue sizes to be

q♦j =


αq∗ if j = j∗1 ,

(1− α)q∗ if j = j∗2 ,

0 if j /∈ {j∗1 , j∗2},

(4.5)

for any choice of α ∈ [0, 1].

5. Proof of Theorem 2.4. In this section we prove that, for any initial data,
as t → +∞ the solution to the Riemann problem with buffer converges as to the
self-similar function determined by the Limit Riemann Solver (LRS). The main
argument can be divided in three main steps. (i) Establish an upper bound on the
size q =

∑
j qj of the queue inside the buffer, showing that lim supt→∞ q(t) ≤M− s̄.

(ii) Establish the lower bound lim inft→∞ q(t) ≥ M − s̄. (iii) Using the previous
steps, show that as t→∞ all boundary fluxes in the solution with buffer converge
to the corresponding fluxes determined by (LRS). From this fact, the limit (2.22)
follows easily.

Given the densities ρ♦i on the incoming roads i ∈ I, call ω♦i the corresponding
maximal flows, as in (2.9). Call q̂i the value of the queue inside the buffer such that

ci(M − q̂i) = ω♦i .
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Without loss of generality, we can assume

0 ≤ q̂m ≤ · · · ≤ q̂2 ≤ q̂1 . (5.1)

At an intuitive level, we have

• If the queue inside the buffer is small, i.e. q < q̂i, then all drivers arriving from
the i-th road can access the intersection, and the i-th road will become free.

• If the queue inside the buffer is large, i.e. q > q̂i, then not all drivers coming
from the i-th road can immediately access the intersection, and the i-th road
will become congested.

This can be formulated in a more precise way as follows. By the definition (2.11),
if q > M − s̄ one has∑

i∈I
min{ci(M − q), ω♦i } · θij < ω♦j for every j ∈ O . (5.2)

On the other hand, if q < M − s̄, let j∗ ∈ O be an index such that (4.1) holds. We
then have ∑

i∈I
min{ci(M − q), ω♦i } · θij∗ > ω♦j∗ . (5.3)

2ω

3
ω

ω

(s)γ
_

1

Figure 5. A case with three incoming roads. For large times, the first
two roads become free, while the third road remains congested.

The proof is achieved in several steps.
1. We first study the case where, in the solution determined by the Limit Rie-

mann Solver, at least one of the outgoing roads is congested (Fig. 4, right), so that
(4.1) holds. Let s̄ be as in (2.16). As in (4.2), define the asymptotic size of the
queue to be q∗ = M − s̄ > 0. To fix the ideas, assume

0 ≤ q̂m ≤ · · · ≤ q̂ν+1 ≤ q∗ < q̂ν ≤ · · · ≤ q̂2 ≤ q̂1 . (5.4)

In this setting, we will show that for t large the incoming roads i = 1, . . . , ν will be
free, while the incoming roads with q̂i < q∗ will be congested. More precisely, we
shall prove the following

Claim. There exist times

0 = t0 = τ0 < t1 < τ2 < t2 < · · · < τν < tν (5.5)

and constants δ`, ε` > 0, ` = 1, . . . , ν, with the following properties.
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(i) If t ≥ t`−1, then we have the implication

q(t) ≥ q̂` − δ` =⇒ q̇(t) ≤ −ε` < 0 . (5.6)

(ii) If t ≥ τ`, then q(t) ≤ q̂` − δ`
(iii) For all times t ≥ t` the incoming road ` is free. Hence its flux near the

intersection satisfies

f̄`(t) = ω♦` for all t ≥ t` . (5.7)

Proof. The above claim is proved by induction on ` = 1, . . . , ν.
We begin with ` = 1. For any t ≥ 0, if q(t) ≥ q̂1 then by (2.8), (5.2), and (5.4)

we have q(t) > q∗. Lemma 3.1 implies that ωj(t) ≥ ω♦j , and thus

q̇j(t) ≤
∑
i

ci(M − q(t))θij − ω♦j if qj(t) > 0.

Therefore, if qj(t) > 0, then

q̇j(t) ≤ −2ε1j < 0

for some ε1j > 0. By continuity, there exists δ1 > 0 such that

q(t) > q̂1 − δ1 , qj(t) > 0 =⇒ q̇j(t) ≤ −ε1j . (5.8)

We observe that, if q(t) > q̂1 − δ1 > 0, then qj(t) > 0 for some j ∈ O. Setting
ε1

.
= minj ε1j , we obtain (5.6) for ` = 1.
From the implication

q(t) ≥ q̂1 − δ1 =⇒ q̇(t) ≤ −ε1 ,
it follows q(t) ≤ q̂1 − δ1 for all t ≥ τ1 sufficiently large. This yields (ii), for ` = 1.

Next, for t > τ1, the flux of cars arriving to the intersection from road 1 is

f̄1(t) = min{ω♦1 , c1(M − q(t))}.
If road 1 is congested near the intersection, i.e. if ρ1(t, 0−) > ρmax1 and we are in a
supply-constrained case, then for t > τ1 the outgoing flux is

f̄1(t) = c1(M − q(t)) ≥ c1(M − q̂1 + δ1)} = ω♦1 − δ′1 ,
for some δ′1 > 0. As a consequence, road 1 must become free within time

t1 = τ1 +
1

δ′1
·
∫ τ1

0

[ω♦1 − f̄1(t)] dt .

This proves (iii), in the case ` = 1.
The general inductive step is very similar. Assume that the statements (i)–(iii)

have been proved for ` − 1. Then for t ≥ t`−1 the incoming roads i = 1, . . . , ` − 1

are free. The flux of cars reaching the intersection from these roads is f̄i(t) = ω♦i .
Now assume that t > t`−1 and q(t) ≥ q̂`. In this case, q(t) ≥ q̂i for all i ∈ I,

i ≥ `. Lemma 3.1 implies that ωj(t) ≥ ω♦j , and thus for any j ∈ O we obtain

q̇j(t) ≤
∑
i<`

ω♦i θij +
∑
i≥`

ci(M − q(t))θij − ω♦j if qj(t) > 0.

Therefore, if qj(t) > 0, then

q̇j(t) ≤ −2ε`j < 0

for some constants ε`j . By continuity, there exists δ` > 0 such that

q(t) > q̂` − δ` , qj(t) > 0 =⇒ q̇j(t) ≤ −ε`j . (5.9)
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Setting ε`
.
= minj ε`j , we obtain (5.6).

From the implication

q(t) ≥ q̂` − δ` =⇒ q̇(t) ≤ −ε` ,
it follows q(t) ≤ q̂` − δ` for all t ≥ τ` sufficiently large. This yields (ii).

Finally, for t > τ`, the flux of cars arriving to the intersection from road ` is

f̄`(t) = min{ω♦` , c`(M − q(t))}
If road ` is congested near the intersection, then for t > τ` the outgoing flux is

f̄`(t) = c`(M − q(t)) ≥ c`(M − q̂` + δ`)} = ω♦` − δ
′
` ,

for some δ′` > 0. As a consequence, road ` must become free within time

t` = τ` +
1

δ′`
·
∫ τ`

0

[ω♦` − f̄`(t)] dt .

This proves (iii). By induction on `, our claim is proved.
2. We now prove that, for any ε > 0, there exists a time tε > tν large enough so

that

q(t) ≤ q∗ + ε for all t ≥ tε . (5.10)

Indeed, if t > tν , then the same arguments used before yield the implication

q(t) ≥ q∗ + ε =⇒ q̇(t) ≤ −δ < 0,

for some δ = δ(ε) > 0. Hence, q(t) ≤ q∗ + ε whenever

t ≥ tε = tν + δ−1q(tν).

For future use, we notice that

t ≥ tν , q(t) > q∗ =⇒ q̇(t) < 0 . (5.11)

Indeed, for any t > tν and j ∈ O, if qj(t) > 0, then

q̇j(t) ≤
∑
i≤ν

ω♦i θij +
∑
i>ν

ci(M − q(t))θij − ω♦j . (5.12)

Observing that the right hand side of (5.12) is nonpositive when q(t) ≥ q∗, we
obtain (5.11). In turn, if q(τ) ≤ q∗ for some τ ≥ tν , then (5.11) implies

q(t) ≤ q∗ for all t ≥ τ . (5.13)

3. In this step we prove a lower bound on the queue. We claim that, for any
ε] > 0, there exists a time t] > tν such that

q(t) ≥ q∗ − 2ε] for all t ≥ t] . (5.14)

Indeed, if our claim fails, there would exist a sequence of times tν ≤ τ0 < τ1 < τ2 <
· · · , with lim`→∞ τ` = +∞, such that

q(τ`) ≤ q∗ − 2ε]

for every ` ≥ 1. Observing that the queue size is a Lipschitz function of time, we
can find h > 0 small enough such that

q(τ`) ≤ q∗ − ε] for all t ∈ I`
.
= [τ` − h, τ` + h], ` ≥ 1.

By possibly taking a subsequence, it is not restrictive to assume that the intervals
I` are all disjoint. As proved in (5.13),

q(t) ≤ q∗ for all t ≥ τ0 . (5.15)
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To obtain a contradiction, choose j∗ ∈ O such that (4.1) holds. Then

q̇j∗(t) =
∑
i

min
{
ci(M − q(t)), ωi(ρ̄i(t))

}
θij∗ − f̄j∗(t).

Two cases will be considered.

Case 1. If the outgoing road j∗ is initially free, then it remains free for all times
t ≥ 0. Hence f̄j∗(t) ≤ fmaxj∗ = ω♦j∗ . In this case we have

q(t) ≤ q∗−ε] =⇒ q̇j∗(t) ≥
∑
i

min
{
ci(M−q∗+ε]), ω♦i

}
θij∗−ω♦j∗ ≥ δ],

with δ] = ε] mini{ciθij∗} > 0. This implies

qj∗(τ` + h)− qj∗(τ` − h) ≥ 2hδ] .

Since q̇j∗(t) ≥ 0 for all t ≥ τ0, we conclude

lim
t→+∞

qj∗(t) = +∞.

This contradicts the obvious bound qj∗(t) ≤ q(t) ≤ q∗.
Case 2. If the outgoing road j∗ is initially congested, then ω♦j∗ = fj∗(ρ♦j∗). To treat
this case, for any t > 0 we consider the difference between the maximum amount
of cars that could enter road j∗, and the amount that actually entered this road
during the time interval [0, t]:

Ej∗(t)
.
= ω♦j∗ t−

∫ t

0

f̄j∗(s) ds ≥ 0 . (5.16)

For t > tν we observe that, if q(t) < q∗, then

q̇j∗(t)− Ėj∗(t) ≥

∑
i≤ν

ω♦i θij∗ +
∑
i>ν

min
{
ci(M − q(t)), ω♦i

}
θij∗ − f̄j∗(t)


−
(
ω♦j∗ − f̄j∗(t)

)
. (5.17)

If q(t) ≤ q∗ − ε], by (5.17) it follows

q̇j∗(t)− Ėj∗(t) ≥ δ], (5.18)

for δ]
.
= ε] mini{ciθij∗} > 0. This implies[

qj∗(τ` + h)− Ej∗(τ` + h)
]
−
[
qj∗(τ` − h)− Ej∗(τ` − h)

]
≥ 2hδ].

Since the map t 7→ qj∗(t)−Ej∗(t) is nondecreasing t ≥ τ0, observing that Ej∗(t) ≥ 0
we conclude

lim
t→+∞

qj∗(t) ≥ lim
t→+∞

[
qj∗(t)− Ej∗(t)

]
= +∞,

reaching again a contradiction.
4. Denote by ρk(t, x), k ∈ I∪O, the solution to the Riemann problem with buffer,

and σk(t, x) the self-similar solution determined by the Limit Riemann Solver (LRS).
From the convergence limt→∞ q(t) = q∗ proved in the previous steps, it follows that
all boundary fluxes f̄k(t) converge to the corresponding boundary fluxes f̄k in the
self-similar solution determined by (LRS).

Now consider an incoming road i ∈ I. Since the initial data coincide

ρi(0, x) = σi(0, x) = ρ♦i x < 0 ,
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for every t > 0 by [11] we have the estimate∫ 0

−∞

∣∣ρi(t, x)− σi(t, x)
∣∣ dx ≤ ∫ t

0

|f̄i(s)− f̄i| ds . (5.19)

From the limit

lim
t→∞

|f̄i(t)− f̄i| = 0

it thus follows

lim
t→∞

1

t

∫ 0

−∞

∣∣ρi(t, x)− σi(t, x)
∣∣ dx = 0.

For outgoing roads j ∈ O, the estimates are entirely similar. This achieves a proof
of Theorem 2.4 in the case where (4.1) holds for some j∗ ∈ O.

5. It remains to consider the case (Fig. 4, left) where∑
i

ω♦i θij < ω♦j (5.20)

for every j ∈ O. In this case, the arguments in step 1 show that, for all t ≥ tm
sufficiently large, all incoming roads become free. In this case, for all times t ≥ t]

sufficiently large the incoming fluxes are

f̄i(t) = ω♦i = f̄i . i ∈ I.
Moreover, for t large all queue sizes become qj(t) = 0, and the outgoing fluxes are

f̄j(t) =
∑
i

ω♦i θij = f̄j j ∈ O.

Inserting these identities in (5.19), we conclude the proof as in the previous case.
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