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Abstract. We study heterogeneous interactions in a time-continuous bounded
confidence model for opinion formation. The key new modelling aspects are to

distinguish between open-minded and closed-minded behaviour and to include

an open-mindedness social norm. The investigations focus on the equilibria
supported by the proposed new model; particular attention is given to a novel

class of equilibria consisting of multiple connected opinion clusters, which does
not occur in the absence of heterogeneity. Various rigorous stability results

concerning these equilibria are established. We also incorporate the effect of

media in the model and study its implications for opinion formation.

1. Introduction. The mathematical modelling of opinion formation within a group
of interacting agents has recently been attracting considerable interest. Various
models for opinion formation have been proposed, covering a diverse range of is-
sues including consensus formation or the polarization of opinions [25, 36, 42], the
emergence of extremism [13], the evolution of political organizations [5], and media
influence [8]. Such models may be viewed as falling within the more general study of
self-organized dynamics [10] and aggregation phenomena [43], which has also seen a
surge of interest in the last decade: Due to inter-individual interactions among the
members of a group, self-organization may occur in a physical space (insect swarms,
fish schools, robots) or, more abstractly, in an opinion space.
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The modelling of opinion dynamics predominantly seeks to represent different
aspects of social influence [4]. This is manifested in the general tendency of most
individuals to change their own opinion to align with those of their peers, and
has been studied extensively since the classical work of Festinger on social com-
parison and cognitive dissonance [17, 18]. A standard mathematical framework for
modelling opinion formation considers a number N of individuals (agents) and an
opinion modelled as a real number. In the notation of the present paper, an individ-
ual i has an opinion xi, with xi taking values in the interval [−1, 1]. The end values
−1 and 1 are regarded as extreme opinions. Social interactions between individu-
als are typically represented by an adjacency matrix A = (aij)1≤i,j≤N , where the

generic entry aij in the matrix describes the social influence exerted on individual
i by individual j [19]. In the most general form, the matrix A depends on time and
is not necessarily symmetric.

A model for opinion formation is a set of rules for opinions xi to evolve over
time. Such rules can be time-discrete, resulting in difference equations [13, 19, 25]
or time-continuous, expressed as differential equations [42]. In both types of models,
an individual’s opinion is driven by a weighted average of the opinions of those other
agents with whom he/she interacts. Depending on the model, and in particular on
the evolution of the time-dependent interaction matrix A, the dynamics could result
in full consensus (all xi approach the same common value) or in the formation of
several clusters (groups) of individuals sharing the same opinion value.

An individual’s response to peer opinions is in general not homogeneous; instead,
there is an enhanced tendency of individuals to interact with and be influenced by
others with similar opinions (homophily). Mathematically, this can be modelled by
permitting no social influence between individuals i and j when their opinions xi and
xj differ by more than a fixed amount (which we denote by ε), that is, by requiring
the corresponding interaction weight aij to vanish. Models that incorporate this
feature are referred to as bounded confidence models [12, 25, 36, 42, 23]. Compared
to global models of opinion formation [1, 14], which promote consensus formation,
bounded confidence models are able to demonstrate a more diverse set of equilibria.

The model considered in this paper is a time-continuous social influence model
which generalizes the Motsch-Tadmor model [11, 41, 42] described in Section 2
below. The generalization is done in two stages. First, we focus on the heterogeneous
response within a population [31, 33] and consider the psychological mechanism
behind its occurrence. Second, we include media in the model and investigate its
effects on the opinions of the population. The two generalizations are elaborated
below.

We model heterogeneity by recognizing different approaches to communication,
while acknowledging that in a social interaction with peers, an individual acts si-
multaneously as both communicator and communicatee. Among communicatees, we
distinguish between open- and closed-minded individuals; while as communicators,
agents are assumed to act either by encouraging open discussion or by avoiding
it [51]. Open-minded communicatees who also act openly as communicators are
simply referred in the paper as open-minded individuals; regardless of their opinion,
they are assumed to interact with everyone else within their interaction range ε.

The remainder of the population is assumed to interact in a cold, discussion-
averse manner when acting as communicators, and also to be disposed to behave
in a closed-minded manner as communicatees when their opinions become too ex-
treme. Specifically, we introduce a critical threshold Xc in the opinion space, and



HETEROGENEITY AND OPEN-MINDEDNESS IN OPINION DYNAMICS 61

regard opinions in the interval [−Xc, Xc] as being “moderate”. Individuals who
have a closed-mindedness disposition but who hold sufficiently moderate opinions,
are assumed to respond open-mindedly as communicatees. On the other hand, those
having non-moderate opinions behave closed-mindedly, and blindly approach their
respective group’s extreme opinion (at 1 or −1). However, there is a caveat: in
one of the main novelties of our model, we optionally allow for the inclusion of an
open-mindedness social norm. There is empirical evidence that by acting openly
and warmly as communicators, individuals can induce communicatees to be more
receptive and thereby facilitate open-minded discussion that allows for efficient com-
munication about and potential reconciliation of conflicting views [40, 49, 50, 51].
We model this effect by having extremist, otherwise closed-minded individuals be-
have open-mindedly when—and only when—they interact with communicators that
approach discussion openly, namely those which in our model are represented by
the open-minded individuals.

A key focus of our work concerns the diversity and stability of equilibria obtained
with the proposed heterogeneous opinion formation model. In previous homoge-
neous bounded confidence models [25, 12, 42], the dynamic evolution leads either
to a consensus at an averaged opinion value or to several isolated opinion groups.
Specifically, in a multi-cluster equilibrium, all opinions within each group asymp-
totically approach a common value [30], but the groups are disconnected from each
other (the opinions of individuals in different clusters are separated by a distance
larger than the bound of confidence ε). As a consequence, such equilibria are neu-
trally stable; for instance, a perturbation consisting of a small uniform translation
of all opinions would not die out.

By contrast, we demonstrate that the heterogeneous model proposed in this pa-
per, incorporating both open- and closed-minded agents, supports additional types
of equilibria, in particular connected multi-cluster groups, extreme polarization and
consensus at an extreme opinion. We illustrate numerically various qualitatively
different equilibria that emerge from our model, and provide bifurcation studies
showing their dependence on some important parameters. Most significantly, it
turns out that the extreme consensus and polarization equilibria are asymptotically
stable, as are the multi-cluster states provided they are suitably connected; we prove
this result analytically using a graph-theoretical framework. Such stability is not
often found in such aggregation or opinion dynamics models; in the present case it
is due to the attraction experienced by (non-moderate) closed-minded individuals
towards the extremes at ±1, which act as sinks in the dynamics.

We note that various authors [20, 32, 34, 35] have recently considered heterogene-
ity in bounded confidence models using a different approach. The common strategy
in these papers is to distinguish between open- and closed-minded agents by assign-
ing different bounds of confidence to individuals, with the main goal of studying
how heterogeneity affects the likelihood of consensus formation in society. In [35],
for instance, it is noted that heterogeneity substantially enriches the complexity
of the dynamics and in particular, perhaps surprisingly, enhances the chances of
reaching a consensus. We point out that our approach of modelling heterogeneity
is different, and also that our focus is on connected steady states and not solely
on pure consensus. Note that while some partially connected equilibria have been
obtained using other heterogeneous models [35], the discussion there does not dwell
at all on this aspect.
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The effect of attraction to (possibly) extreme views has also received attention. In
one recent such study, Hegselmann and Krause [26] incorporated radical individuals
or charismatic leaders into their original time-discrete model [25]. Such individuals,
who by assumption maintain constant opinion values, send signals to the rest of
the population (referred to as normals in [26]), signals which may or may not drive
normals to their radical view. Among the differences between their model and ours
is that we assume two radical opinions (placed at the extremes, 1 and −1), not
just one as in [26]. More importantly, in our model the attraction exerted by these
extreme opinions acts only on a subset of a population, namely on closed-minded
agents with non-moderate views. The remainder of the population experiences an
attraction to the extremes only indirectly, via interactions with individuals in the
susceptible subset.

The time-discrete bounded confidence model of Deffuant et al. [12] has also been
extended [13, 38] by incorporating extremists (at two extremes) as well as moder-
ates; this generalization can also give rise to central multi-cluster and polarization
states. In this model, which evolves by randomly-chosen pairwise interactions, when
the bounds of confidence are fixed and sufficiently large, a statistically stationary
state can arise in which the moderates’ opinions fail to equilibrate [38]; this may
be interpreted as an alternative form of “connectedness” maintained by ongoing
opinion fluctuations.

Our second major extension to the Motsch-Tadmor model [42] is to incorporate
the effect of media influences on the opinions in a population. It is important to
take into account that, as for their reactions to peer opinions, individuals’ responses
to media exposure are heterogeneous. As noted in [31, 33], while some individuals
become more moderate when exposed to cross-cutting media (which expresses a
different partisan perspective from their own), a majority of individuals experiencing
media influences with such contrary partisan biases tend either to not change their
opinion, or to react by becoming more extreme in their own beliefs.

Existing mathematical models that consider the effects of media focus primar-
ily on the interplay between consensus-seeking behaviour and the media [8, 39],
and thus seem to overlook the effect of closed-mindedness or consensus-resisting
behaviour in the presence of media. The model proposed in this work does con-
sider these effects, systematically extending the above-mentioned ideas on open-
and closed-mindedness to allow for media influences: We discuss the role of media
in this framework and, in particular, the effect of social norms of open-mindedness
in facilitating consensus or polarization. These questions are particularly intrigu-
ing since the perception of news media is often influenced by a social phenomenon
known as the hostile media effect [52].

The outline of the paper is as follows. Section 2 introduces the heterogeneous
model for opinion formation proposed in this paper. Section 3 focusses on the
equilibria of this model, including a numerical illustration of various qualitatively
different states accessible in our model, a bifurcation study with respect to several
parameters, and a rigorous analysis of the stability of connected equilibria. In Sec-
tion 4 we introduce media into our model, including both some numerical examples
and some rigorous stability results for the extended system.

2. Formulation of the model. The modeling of group opinion dynamics using
differential equations has grown in popularity over the last few years [42, 16, 8,
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39, 43, 7, 2]. Our work is based is an ordinary differential equation (ODE) model
recently proposed and investigated by Motsch and Tadmor [41, 42].

Consider N individuals with opinions xi, i = 1, . . . , N , which we assume to take
real values in the interval [−1, 1], where the end values −1 and 1 represent the
extreme opinions; this introduction of signed opinions allows for a group classifica-
tion based on the sign of xi. Following [41, 42], a basic model describing the time
evolution of these opinions subject only to interpersonal interactions is a system of
ordinary differential equations (ODEs) of the form

dxi
dt

= α
∑
j 6=i

aij(xj − xi), i = 1, ..., N, (1)

where

aij = φ(|xj − xi|)/φi, with φi =
∑
j 6=i

φ(|xj − xi|). (2)

Here, α > 0 represents an interaction strength, while φ ≥ 0 is an influence function
acting on the relative difference of opinions |xj−xi|. We observe that the interaction
coefficients aij have been normalized such that∑

j 6=i

aij = 1, i = 1, . . . , N, (3)

and that the adjacency matrix (aij) is in general not symmetric.
One of the central ideas in [42] is that heterophily, the tendency to interact more

strongly with those who have rather different opinions than with those holding more
similar views (the opposite of homophily), may play a key role in the formation of
opinion consensus and of group clusters in general. Mathematically, such tendencies
in social interactions may be encapsulated in the choice of influence function φ. If
φ has global support, φ(r) > 0 for all r ≥ 0, then the dynamics (1)–(2) always
approach a consensus state [42]; that is, there is an opinion x∞ so that xi(t)→ x∞
as t → ∞ for all i. However, if φ has compact support ε, then disjoint opinion
clusters can form displaying local consensus [30]. The observation of Motsch and
Tadmor [42] was that for a given ε, consensus formation is more likely if φ is a
step function increasing over part of its support, so that individuals interact more
weakly with others of very similar opinions than with those holding somewhat more
distant views—this models heterophilious dynamics—than if φ is just the simple
indicator function supported on [0, ε].

These observations concerning the effect of heterophily [42] foreshadow a general
principle that consensus is more likely to occur when individuals are more open
to being influenced by opinions somewhat different from their own. In the present
paper we restrict our attention to non-increasing influence functions φ—specifically,
we use the characteristic function φ = 1[0,ε]—and focus instead on the distinction
between open- and closed-minded individuals; in particular, we investigate the ef-
fect of an open-mindedness social norm, by which open-minded individuals could
promote consensus even in the presence of closed-minded individuals.

In formulating our model, we consider different approaches to communication,
recognizing that in each interaction, an individual acts simultaneously to transmit
opinions and ideas as the communicator, and to receive them as the communicatee
[6, 9]. As a communicatee, an individual can be open-minded, willing to listen to and
be influenced by others’ ideas; or on the contrary, be closed-minded and impervious
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to the opinions held by others. On the other hand, for communicators one can
broadly distinguish between those who are warm and open in their communication,
and thus more likely to be considered reliable and to influence others, versus those
whose communication style is colder and more averse to open discussion [51].

In our model we consider two classes of agents. The first class consists in individ-
uals who act warmly and openly as communicators and also behave open-mindedly
as communicatees. We denote by O the set of such agents, whom we refer to
as open-minded individuals. The remaining individuals, comprising the set C, are
assumed to act coldly and in a discussion-avoiding manner in their capacity as
communicators1.

However, when functioning as communicatees, the response of individuals in C
in our model depends on their opinion values. To incorporate the observation that
closed-minded behaviour is usually only possible amongst extremist individuals [46],
we introduce a critical threshold Xc, such that agents in C with moderate opinions
falling between −Xc and Xc are assumed to behave in an open-minded fashion as
communicatees. On the other hand, individuals in C with extreme opinions are as-
sumed to act closed-mindedly with respect to any other agent in C, in a manner that
reinforces their extreme-seeking tendencies. With respect to their interactions with
agents in O, we consider two possibilities: In one version of our model we assume
that such extreme individuals always react similarly closed-mindedly, independent
of with whom they are communicating. Our alternative modelling assumption is
to introduce an open-mindedness social norm, in the light of evidence that inter-
actions with individuals having warm and empathetic communication styles may
induce others to react more open-mindedly [40, 49, 50, 51]; this is characterized by
an open-minded response (as communicatees) of the extreme individuals in C when
they interact with agents in O.

Throughout this paper the term non-closed-minded refers both to all individuals
in O as well as to those individuals in C whose opinions are not sufficiently extreme
as to induce closed-minded behaviour (that is, individuals in C with opinions in
the range [−Xc, Xc]); while a closed-minded individual is by definition a member
of C with opinion xi satisfying |xi| > Xc. The transition between open-minded
and closed-minded behaviour is usually presumably continuous in practice, but for
modelling simplicity we approximate this behavioural transition as an on-off process
with a discrete threshold. We denote the total number of open-minded individuals
by m; it follows that the number of individuals in C is N −m.

The general form of the opinion model is

dxi
dt

= fi, i = 1, . . . , N, (4)

where fi represents the social force from peer pressure, whose form depends on
whether an individual is behaving open- or closed-mindedly. We consider two ver-
sions of the model, depending on whether or not we include a social norm of open-
mindedness. A schematic diagram showing interactions between individuals in our
model is shown in Figure 1.

Model without open-mindedness social norm. In the absence of an open-
mindedness social norm, we assume that closed-minded individuals are attracted to
the nearest extremist views, regardless of with whom they are interacting [15, 27,

1With an abuse of notation we also let O and C be the sets of indices i ∈ {1, . . . , N} that
correspond to such individuals. No confusion should arise from this dual interpretation.
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Figure 1. Schematic diagram of opinion interactions along the
opinion continuum [−1, 1] in the presence of a social norm of open-
mindedness (note that opinion space is shown on the vertical axis in
all other figures). Green circles represent warm and open-minded
individuals (in O), while diamonds correspond to individuals in
C, those having colder and less open communication styles. (i)
The interactions on the left show the influences acting on the
open-minded agent at x1, which experiences attractive social forces
(green arrows) from both open- and closed-minded individuals with
opinions within the bound of confidence ε; the influence function
φ(|x − x1|) = 1[x1−ε,x1+ε] is shown in green. (ii) The social forces
acting on the closed-minded individual with non-moderate opinion
x2 (large red diamond; note |x2| > Xc), in the presence of a social
norm of open-mindedness, are shown on the right. Interactions
with other members of C, both moderate (blue diamond at x3)
and extremist (red diamond), reinforce the opinion x2 and drive it
closer to the nearest extreme at 1 (blue and red arrows). However,
given an open-mindedness social norm (model (6)), the interaction
with an agent in O within its bound of confidence (green circle
near x2) induces an open-minded response and attractive interac-
tion (green arrow) according to the influence function shown in red.
In the absence of a social norm of open-mindedness (model (5)),
this interaction would instead also drive the individual at x2 to the
extreme at 1.
Further notes: The individual with opinion x3 (blue diamond) is in
C, but has a sufficiently moderate opinion (|x3| < Xc) to respond
in an open-minded manner. In particular, it interacts with and
is attracted to the agent at x2 (arrow not shown); however, due
to its intrinsically colder communication style it fails to attract
the closed-minded individual at x2, so that the influence is not re-
ciprocal. Lastly, the distance of the opinion of the open-minded
individual at x4 to each of the opinions x1, x2 and x3 is greater
than the bound of confidence ε, so it does not interact with any of
these three other individuals.

45]. The model reads:

fi =

α2(N − 1)âi (sgn(xi)− xi) if |xi| > Xc and i ∈ C,
α1

∑
j 6=i
aij(xj − xi) otherwise. (5)

Here α1 and α2 are positive parameters capturing the magnitudes of interpersonal
influences, while the interaction coefficients aij for non-closed-minded individuals
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are given by (2) as in the Motsch-Tadmor model [42]. In addition, we introduce
coefficients âi governing the interactions of closed-minded individuals with others.
We note here that throughout the paper the “hat” is used for coefficients and
parameters that relate to closed-minded individuals.

The psychological forces shaping âi are different from those shaping aij . That is,
by comparison with the schematic diagram in Figure 1, the closed-minded individual
at x2 would not be attractively influenced by the nearby open-minded agent (right-
hand green arrow), but would rather be driven to the extreme as in all of their other
interactions.

One might typically expect that the rate at which a closed-minded individual i
approaches the extreme when interacting with the jth individual might depend on
the sign of xj , representing the perceived group categorization of the jth individ-
ual [46]. However, for simplicity we shall assume that the âi in (5) are constant,
âi = 1/(N − 1), independent of xj . This is equivalent to postulating that the two
psychological responses driving closed-minded individuals to seek their group’s ex-
treme opinion (depending on whether they are interacting with similarly-minded
agents or with those holding opposing views) have comparable strength, that is,
closed-minded individuals effectively see all others as similarly predisposed; see also
Remark 2.2.

Model with open-mindedness social norm. Empirical studies [50, 49, 51, 40]
have identified a strong link between open and warm behaviour and the enhance-
ment of mutual understanding between individuals. It was found in these studies
that an open and warm approach to communication induced curiosity, which in
turn led to a search for more information. Participants confronted with opposing
views in open, direct discussions started to doubt and feel uncertain about their
own position. They showed more interest in learning, and felt motivated to ask
questions and to search for more arguments [51]. The result was an enhancement
of shared understanding on the issue in question. Throughout the paper we refer
to this approach to communication using the notion of an open-mindedness social
norm [40].

We modify our model (4)-(5) to incorporate an open-mindedness social norm
by letting the extremist closed-minded individuals act in an open-minded manner,
but only when interacting with open-minded individuals. In this case, the model is
given by (4) with fi defined by

fi =


α2(N −m− 1)âi (sgn(xi)− xi) + α3

∑
j∈O

âij(xj − xi) if |xi| > Xc and i ∈ C,

α1

∑
j 6=i
aij(xj − xi) otherwise.

(6)
In (6), the interactions of non-closed-minded individuals with all others are as

before, with interaction coefficients aij as in (2), where we fix the influence function
φ = 1[0,ε].

The new features of this model, by comparison with (5), arise when we consider
the behaviour of closed-minded agents. Thus suppose that the ith individual is in
C and holds a non-moderate opinion, |xi| > Xc; and we consider the effect on it
due to its interaction with the jth individual:

If j ∈ C—that is, as a communicator the jth agent is assumed to act coldly
and in a discussion-averse manner—then such an interaction merely reinforces the
closed-minded and extremist tendencies of the ith individual and contributes to its
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attraction to the nearest extreme, at a rate governed by a normalized interaction
coefficient âi weighted by α2 > 0, as in (5); note that there are now N − m − 1
such interactions. The influence of the extremes ±1 on closed-minded individuals is
subject to the kernel φ̂ with support ε̂, where (as for the inter-individual influence

function φ) we shall take φ̂ = 1[0,ε̂]. As in the model (5), we assume that the effect
of this interaction on xi is independent of xj , provided j ∈ C; this is motivated by
observations that closed-minded individuals consolidate their extreme opinions as
a result of interactions with peers, regardless of whether the latter hold similar or
dissimilar views [45].

If on the other hand j ∈ O, so that the interlocutor is one who communicates
warmly and openly, then—in the presence of a social norm of open-mindedness—our
extremist ith individual becomes receptive and is induced to respond open-mindedly,
with strength α3 > 0 and an interaction coefficient âij playing the same role as aij
encountered previously.

These interactions are represented schematically in Figure 1. Expressing the
above description quantitatively, we thus model âi and âij by

âi = φ̂(| sgn(xi)− xi|)/φ̂i and âij = φ(|xj − xi|)/φ̂i. (7)

The difference between âij and aij appears in the normalization condition: whenever
the ith individual is closed-minded, we require

(N −m− 1)âi +
∑
j∈O

âij = 1, (8)

so that the normalization factor φ̂i is given by

φ̂i = (N −m− 1)φ̂(| sgn(xi)− xi|) +
∑
j∈O

φ(|xj − xi|). (9)

For simplicity we shall take φ̂(| sgn(xi)− xi|) = 1 in all of our simulations unless

explicitly stated otherwise. This means that the support ε̂ of φ̂ must be large enough
to encompass all closed-minded individuals (those i ∈ C with |xi| > Xc); for this
it is sufficient that ε̂ ≥ 1 −Xc. For theoretical purposes, though, this assumption
is not necessary. If this condition does not hold (ε̂ < 1 −Xc), then closed-minded
individuals with relatively moderate opinions satisfying |xi| ∈ (Xc, 1 − ε̂) would
have âi = 0, so that their opinion dynamics would be governed entirely by the
open-mindedness social norm.

We end this section with some remarks:

Remark 2.1. Since aij and âij are modelled using the same inter-individual in-
fluence function φ and differ only in their normalization (see (2), (7) and (9)), we
have the following property for interactions between a closed-minded ith individ-
ual (i ∈ C with |xi| > Xc) and an open-minded jth individual (j ∈ O): While
âij (modelling the influence of the open-minded individual j on the closed-minded
individual i) and aji (the effect of the ith on the jth individual) are in general
not equal, they vanish simultaneously (or not). This observation is important in
establishing rigorous results on the stability of equilibria using the connectivity of
the interaction matrix (see Section 3.4).

Remark 2.2. In the absence of open-minded individuals (m = 0, that is, O is
empty), there can clearly be no active social norm of open-mindedness, so that
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(7)–(9) become

âi = φ̂(| sgn(xi)− xi|)/φ̂i with φ̂i = (N − 1)φ̂(| sgn(xi)− xi|). (10)

This is simply âi = 1/(N − 1), so that the dynamics of closed-minded individuals
governed by (6) reduce to (5). In fact, (10) could have been taken as the modelling
assumption for âi in model (5).

3. Analysis and simulations. The introduction of distinct open-minded and
closed-minded individuals in a Motsch-Tadmor-type opinion dynamics model con-
siderably broadens the range of possible long-time behaviours. To illustrate the
qualitatively different equilibria, we show the results of numerical simulations of
model (4), with fi given by (5) or (6), performed using the 4th order Adams-
Bashforth method [29].

In our computations, we have two ways of initializing the time evolution of the
model. The first, referred below as a type NS (non-symmetric) initial condition,
distributes the opinions x1, . . . , xN uniformly in (−1, 1), and then randomly assigns
which m of the N indices represent the open-minded individuals. The second, type S
(symmetric) initial condition is also an equispaced distribution of the N opinions in
(−1, 1), but in this case the m open-minded individuals are assigned symmetrically
and uniformly. The N − m non-open-minded individuals in symmetric data are
assembled in m + 1 groups, each group having the same number of agents. More
specifically, counting individuals in increasing order of their opinion value, there is a
first group of N−mm+1 non-open-minded agents, followed by an open-minded individual,

then a second group of N−mm+1 non-open-minded agents, followed by an open-minded,
etc. Note that, for a given total population N , this symmetry requirement places a
constraint on the possible m values.

In all of our simulations we use a total population N = 80; in this case sym-
metric placements of the open-minded agents (type S data) can occur only for
m = 0, 8, 26, 54, 72 or 80. The values of the interaction strengths α1, α2 and α3 are

set at 1 throughout. All numerical results correspond to influence functions φ and φ̂
in the form of indicator functions with supports ε and ε̂, respectively. The stability

results are also formulated for φ and φ̂ in this form; the same proof methodology
would apply for any influence functions that are piecewise constant.

3.1. Time evolution and equilibria. Figure 2 shows the time evolution for vari-
ous different initial data and parameters, demonstrating several qualitatively differ-
ent equilibrium states. For all these plots, we have simulated the model (4) with (6),
corresponding to a social norm of open-mindedness, with N = 80 individuals. Plots
(b), (c) and (e) of Figure 2 were obtained with type NS (non-symmetric) initial
conditions, while (a), (d) and (f) correspond to type S (symmetric) initialization.
Dashed lines indicate (open-minded) individuals in O, while solid lines represent
(non-open-minded) individuals in C; some of the equilibria shown contain both
types of agents.

As noted in the Introduction, in addition to consensus and isolated multi-cluster
equilibria, our model captures connected multi-cluster states, which do not appear
to have been observed with previous homogeneous bounded confidence models.

• If all individuals are open-minded (m = N), then our model reduces to (1)–
(2), the model of Motsch and Tadmor [42]. In that case, the opinions can
either coalesce on a single value x∞, yielding consensus formation—this is
guaranteed if the support φ is sufficiently large—or there is convergence to
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Figure 2. Evolution to equilibria of solutions to model (4) with
(6) with N = 80 for some choices of the parameters m (number
of open-minded agents), Xc (critical threshold for extreme-seeking
dynamics) and ε (bound of confidence), and with both type NS
(non-symmetric) and type S (symmetric) initial conditions. The
plots illustrate various qualitatively different outcomes as discussed
in the text: (a) m = 80 (Xc irrelevant), ε = 0.2, type S; (b) m = 54,
Xc = 1/3, ε = 1.5010, type NS; (c) m = 54, Xc = 1/3, ε = 0.7909,
type NS; (d) m = 0, Xc = 0 ε = 2, type S; (e) m = 8, Xc = 2/3,
ε = 0.5222, type NS; (f) m = 8, Xc = 2/3, ε = 1.0020, type S.

a long-time state consisting of multiple isolated opinion clusters [30]. In the
latter case, the clusters are disconnected (see Definition 3.1 in Section 3.4),
in the sense that their separation in opinion space is greater than the radius
ε of the support of the influence function φ; and such separated or consensus
equilibria can only be neutrally stable, since their location depends on the
initial opinion distribution.

Figure 2(a) shows one of our simulations for this case of purely open-minded
individuals, confirming the emergence of neutrally stable isolated opinion clus-
ters.

• As shown in Figure 2(b), for sufficiently large ε there can be convergence
to the previously-observed intermediate consensus [42] even in the presence
of individuals with a propensity for closed-mindedness (that is, the set C is
non-empty, or equivalently m < N), provided that there is a social norm
of open-mindedness, and there are sufficiently many open-minded agents to
overcome the attraction of closed-minded individuals to the extremes.

• More interestingly, our model (4) with (6) also allows for the creation of
an extremist consensus; such behaviour requires closed-minded agents and
thus cannot occur in (1)–(2). As seen in Figure 2(c), convergence of all the
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opinions in a population to one of the extremes at ±1 can occur even in the
presence of a relatively large number of open-minded individuals, provided
the initial opinion distribution is asymmetric about 0. The possibility of
extremist consensus is consistent with the psychological literature, where it
has been shown to arise in group scenarios in which individuals have some
sort of group-identifying feature associated with their belief [45, 15]; in such
cases, the consensus that is finally attained tends to be more extreme than
the initial mean opinion of the group.

• Figure 2(d) demonstrates a common consequence of closed-mindedness, namely
extreme polarization, in which the population splits into two groups each set-
tling at an extreme opinion; this corresponding to situations containing two
hostilely opposed groups who are unwilling to listen to each other. In the
simulation shown in (d), there are no open-minded individuals (m = 0), but
extreme polarization can occur also in their presence, especially with (almost)
symmetric initial conditions.

• The versatility of our model becomes particularly apparent in the remaining
two plots. In Figure 2(e), the equilibrium consists of seven opinion clusters
distributed non-symmetrically in a connected configuration (none is isolated
from the others); that is, the separation between adjacent clusters is less than
ε. In the computation shown, some of the clusters contain only open-minded
individuals, some only closed-minded, and some are mixed; there are clusters
both at extremes and at intermediate, more moderate opinions. In Section 3.4
we show that for our model, certain connected equilibria are asymptotically
stable (Theorems 3.6 and 3.7); in particular, this holds for the equilibrium
configuration in plot (e).

• Figure 2(f) shows another example of a connected, asymptotically stable equi-
librium configuration; in this simulation, with Type S initial data, opinions
are distributed symmetrically in five clusters, with the middle (x = 0) and
extreme (|x| ≈ 1) clusters containing no open-minded individuals. We feel
that opinion equilibria such as those in Figure 2(e) and (f) are more realis-
tic compared to the isolated opinion groups exclusively captured by previous
bounded confidence models. Indeed, in such equilibria, there are several dif-
ferent groups of individuals, each with a distinct belief on the particular issue
being considered, but at the same time within communication range of at least
one other group, and thus able to interact with and influence the opinions of
others.

3.2. Remarks on equilibria and their stability. As seen in the examples shown
in Figure 2, in all our simulations the initial opinion distribution converges to a
stationary state; that is, xi(t)→ x∗i as t→∞ for each i = 1, . . . , N . Furthermore,
the limiting opinions are clustered, taking on only K distinct values, where typically
K � N (for instance, N = 80 and K ≤ 7 for the runs shown in Figure 2). That
is, for any i and j we have either x∗i = x∗j or |x∗i − x∗j | ≥ δ, where we let δ denote
the minimum equilibrium separation between clusters. Note that two agents i and
j (eventually) belong to the same cluster if limt→∞ |xi(t)− xj(t)| = 0.

Neutrally stable clusters. For the original Motsch-Tadmor model [42], Jabin
and Motsch [30] have recently made the above ideas precise; in particular, they
rigorously proved such convergence to clusters with δ ≥ ε. That is, if only open-
minded (or more generally non-closed-minded) individuals are present, then the
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minimum cluster separation is at least as large as the radius ε of the support of
the influence function φ: individuals in distinct opinion clusters do not interact at
equilibrium. In the graph-theoretic terms introduced in Section 3.4 below, these
clusters are isolated or disconnected.

Now it is readily seen that an attracting equilibrium consisting of such dynami-
cally disconnected clusters is neutrally stable but cannot be asymptotically stable,
due to the existence of non-decaying perturbations. Most straightforwardly, since
the dynamics (1)–(2) are translation-invariant, a perturbation of each x∗i in the
equilibrium configuration by a sufficiently small constant amount η will simply lead
to a translation of all the cluster locations by the same amount η; adding η to all the
xi(0) will similarly translate the final state. More generally, perturbing all the xi(t)
in the same direction must lead to a shift in the steady state. Note that if δ > ε,
since the equilibrium clusters are disconnected a sufficiently small perturbation of
size η < (δ−ε) to the opinions in one cluster will have no effect on other clusters, so
that perturbations can also disturb individual cluster locations independently. The
consensus state in Figure 2(b) and the 4-cluster disconnected state in Figure 2(a)
are examples of such neutrally stable equilibria.

Linearly stable clusters. By contrast, in our model the presence of closed-
minded individuals (i ∈ C with |xi| > Xc) can dramatically affect the stability,
and permit linearly (asymptotically) stable equilibria to exist in many configura-
tions. The origin of this stabilization is the absorbing effect exerted by the opinion
extremes at ±1 on closed-minded individuals, which are drawn to the extremes
whenever they interact with other agents in C or even (in the absence of a social
norm of open-mindedness) in O; mathematically this effect manifests itself in the
eigenvalues of the linearization about the equilibrium, as is shown in Section 3.4
below.

The simplest types of such asymptotically stable equilibria are the extremist con-
sensus and polarization states, seen in Figures 2(c) and (d), respectively. In each of
these cases, all individuals in C become closed-minded, and are attracted to one or
both extremes, depending on the initial data; any open-minded individuals present
are then influenced by the closed-minded agents and themselves approach the ex-
tremes (with a lag, apparent in Figure 2(c)). Note that a symmetric initial opinion
distribution must lead to a symmetric (polarized) final state, as in Figure 2(d); only
sufficiently asymmetric distributions can give rise to extremist consensus, as in (c).

In addition and possibly most interestingly, our model supports the existence of
asymptotically stable, connected multi-cluster states, as shown in Figures 2(e) and
(f). Such states can have a variety of properties: for instance, they may, but do not
need to, include clusters at the extreme opinions at ±1 (compare (e) with (f)); and
some of the clusters may include only open-minded individuals (such as that with
x∗ ≈ −0.8 in (e)) or no open-minded individuals at all (the clusters at x∗ = ±1
and x∗ ≈ −0.5 in (e); the middle and outside clusters in (f)). In general such states
are numerous and diverse, and we have not attempted to classify them fully; some
aspects of their parameter-dependence are explored in Section 3.3 below.

The common feature of these asymptotically stable K-cluster states, though, is
that they are connected ; that is, the separation in opinion space between any pair of
adjacent clusters at equilibrium is less than ε (which implies δ < ε). Furthermore,
the two clusters nearest to ±1 must consist only of closed-minded individuals, for
whom the attraction experienced towards the opinions of other agents is equal and
opposite to the pull of the extremes. This permits the stable equilibrium to exist,
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via a balance (of course dependent on the initial opinion distribution) between the
two extremes, with the opinions of individuals in intermediate clusters stabilized by
interactions with others of both higher and lower opinion values. Observe that if
such a connected multi-cluster state contains open-minded individuals (m > 0), it
must necessarily consist of at least three clusters (K ≥ 3).

Note that the main theorems from Section 3.4 guarantee only linear stability, that
is, local stability to sufficiently small perturbations. We illustrate this numerically
on the 5-cluster equilibrium solution of Figure 2(f) (which satisfies the assumptions
of Theorem 3.7): We perform a time evolution of the initial data of Figure 2(f),
allowing it to settle down to the 5-cluster state, which is then perturbed at time
t = 50; the perturbed opinion configuration is then further evolved to t = 100.
Given a fixed η > 0, for each i = 1, . . . , N the perturbation applied to xi(50) is ±η,
where + and − are chosen at random with equal probabilities. Some representative
η-dependent outcomes are shown in Figure 3: Sufficiently small perturbations decay
to the previous fixed point, as seen in Figure 3(a) with η = 0.02. However, larger
disturbances may drive the system into the basin of attraction of another equilib-
rium, as shown in Figure 3(b), in which following a perturbation of size η = 0.03
the opinion distribution approaches a qualitatively different 4-cluster configuration.
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Figure 3. Numerical illustration of local stability: At time t = 50
a perturbation of size η is applied to the 5-cluster solution in Fig-
ure 2(f); the perturbed system is then evolved to t = 100. (a)
For η = 0.02, the solution returns to the original 5-cluster con-
figuration; (b) with η = 0.03, the system approaches a 4-cluster
state.

We conclude this discussion on connected clusters by pointing out some similari-
ties between our results and those in [35]. Unlike the approach in this paper, Lorenz
modelled heterogeneity by assigning different bounds of confidence to individuals,
to distinguish between open and closed-minded agents. We refer in particular to
Figure 8 in [35]. In this Figure, the upper plot shows an extremist consensus (as
also captured by our model; see Figure 2(c)), while the lower one displays a partially
connected cluster equilibrium, in the following sense: the equilibrium configuration
has three clusters, the one in the centre consisting of only open-minded agents and
the two on the sides containing exclusively closed-minded individuals. The distance
between the open-minded group’s opinion and the two closed-minded clusters is less
than the bound of confidence of the open-minded, meaning that the open-minded
agents communicate with the closed-minded at equilibrium. On the other hand,
neither of the two closed-minded clusters has the open-minded cluster within its
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own bound of confidence, so the closed-minded clusters are isolated in that sense.
We call this configuration partially connected, to distinguish it from the fully con-
nected equilibria that we find in our model. Note that Lorenz [35] does not elaborate
further on this new type of equilibrium, aside from mentioning it briefly.

Explicit construction of a connected equilibrium opinion distribution.
It is instructive to verify the existence of multi-cluster equilibria satisfying the hy-
potheses of Theorem 3.7 (with a social norm of open-mindedness) through explicit
calculation. The steady state constructed below is similar to the long-time state
depicted in Figure 2(f):

We postulate an equilibrium consisting of K = 5 opinion clusters located sym-
metrically at −z, −y, 0, y, and z, where 0 < y < z < 1. There are N agents in
total for some sufficiently large N (we need at least N ≥ 4), of whom m > 0 are
open-minded (in O) and q > 0 are closed-minded (in C with opinion magnitudes
exceeding Xc), with N , m and q assumed even. The critical threshold Xc and the
interaction ranges ε and ε̂ are chosen later to impose suitable constraints on y and z;
the (positive) interaction strengths α1, α2 and α3 are arbitrary, and for simplicity
we choose them to be equal, α1 = α2 = α3, consistent with our numerics.

The most extreme clusters at ±z cannot contain open-minded individuals, while
the q closed-minded individuals are equally distributed between opinion values z
and −z; this requires 0 < Xc < z. Each of the two clusters at −y and y contains
m1 open-minded individuals, and the cluster at 0 has m0 = m− 2m1 open-minded
individuals and N − m − q individuals in C whose opinion values are below the
threshold Xc and therefore act open-mindedly.

Choosing ε̂ ≥ 1−Xc, the opinion separation between the closed-minded agents at

±z and their respective extremes at ±1 lies within the support ε̂ of φ̂, so that âi > 0
for all i = 1, . . . , q. Furthermore, we assume that ε is such that the individuals with
opinion 0 interact with all others, while those in the cluster with opinion y influence
and are influenced by those at z, 0 and −y but not at −z; consequently the closed-
minded individuals with opinion z are connected to those with opinions y and 0,
but not to those at −y and −z. This implies the constraints ε > z, ε > 2y and
ε < y + z < 2z.

Due to symmetry, the equilibrium criteria for such a configuration reduce to just
two equations, the balance conditions for the clusters at z and y (the influences
on the N − q − 2m1 centrist individuals with opinion 0 automatically cancel by
symmetry):

(N −m− 1)(1− z) + (m1(y − z)−m0z) = 0,

−m1(2y)−m0y − (N −m− q)y +
q

2
(z − y) = 0,

which using m0 = m− 2m1 is equivalent to

−m1y + (N −m1 − 1)z = (N −m− 1), (11)

−
(
N − q

2

)
y +

q

2
z = 0. (12)

It may readily be verified that for m1 + q/2 ≤ (m+ q)/2 ≤ N/2, this linear system
in y and z has a unique solution; since m > 0, we have q < N so that by (12) we
have y < z, and hence by (11) z < 1. Thus for any even number m of open-minded
individuals, 0 < m < N , there is a solution of (11)–(12) satisfying 0 < y < z < 1 for
any even number q of closed-minded individuals satisfying 0 < q ≤ N −m and any
0 < m1 ≤ m/2. Note that in general, if m0 = m− 2m1 > 0 and/or m+ q < N , this
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is a 5-cluster solution; if neither of these conditions holds, then there is no cluster
with opinion 0, and this calculation describes a 4-cluster configuration reminiscent
of that in Figure 3(b).

3.3. Bifurcation phenomena. The equilibrium configuration of opinion clusters
in our model clearly depends on the various parameters as well as the initial opinion
distribution. A full investigation of the parameter space and/or the dependence on
initial data is well beyond the scope of the present study. However, to gain some
insight into the global structure of the solutions of our model, we explore the in-
fluence of variations in the open-mindedness threshold Xc, the interaction range ε
and the number m of open-minded individuals on the locations of equilibria and
qualitative changes thereof. For all the computations, as in Section 3.1 we set the
number of agents at N = 80 and the interaction strengths α1 = α2 = α3 = 1,
and use a fixed initial condition of either type NS (non-symmetric distribution of
open-minded individuals) or type S (symmetric distribution). Some representative
bifurcation plots are presented and discussed below, showing the equilibrium loca-
tions of opinion clusters, obtained by performing sufficiently long time integrations
to permit convergence to the stationary state (as in Figure 2), as functions of the
parameters. In addition, for each parameter value we indicate the stability of the
steady state, which as discussed in Section 3.2 above and proved in Section 3.4
below, depends on whether or not all opinion clusters are connected to one or both
attracting opinion extremes: we identify neutrally stable states—exhibiting mod-
erate consensus or disconnected opinion clusters—using red stars, while linearly
(asymptotically) stable states—having either only closed-minded individuals at the
extremes, or fully connected clusters—are denoted with blue filled circles.

Parameter-dependence of equilibrium cluster count. The simplest con-
figuration to consider is that in which all individuals are open-minded, that is,
m = N = 80, in which case our models reduce to the Motsch-Tadmor model (1)–
(2). Having fixed the influence function as φ = 1[0,ε], and since in the absence of
closed-minded individuals the threshold Xc becomes irrelevant, the only parameter
that remains to be investigated, for given initial conditions, is the interaction range
ε. Figure 4(a) shows a typical cluster distribution for uniformly spaced (symmet-
ric) initial opinions. Since the equilibrium separation of clusters must be at least
ε, for small ε there can be multiple disconnected clusters, while increasing ε leads
to consensus; the critical value for consensus formation, which occurs here beyond
ε ≈ 0.5, depends on the initial data. Qualitatively similar bifurcation diagrams
were obtained by Lorenz [36] for the discrete-time models of Deffuant et al. [12]
and Hegselmann and Krause [25]. We note in Figure 4(a) that, as ε decreases, the
central cluster bifurcates into two clusters at ε ≈ 0.5. By further decreasing ε, the
central cluster reappears, and persists for a while, before bifurcating again into two
clusters. The pattern then seems to repeat, generating more and more clusters with
decreasing ε. It has been suggested in [36] that the bifurcation pattern repeats itself
on time intervals that scale with 1/ε, though no clear conclusion in this sense can
be drawn from Lorenz’s studies, or from ours.

Figure 4(b) represents the opposite extreme m = 0, in which no individuals are
open-minded. For the relatively small interaction range ε = 0.2 chosen here, a con-
nected, linearly stable state would need to consist of at least 10 clusters, and would
presumably have a small basin of attraction; we have not observed convergence
to such an equilibrium for typical equally spaced or random uniformly distributed
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Figure 4. Dependence of the number and stability of cluster equi-
libria on Xc (threshold for extreme-seeking dynamics) and ε (bound
of confidence): (a) m = 80 (all open-minded), type S initial data;
(b) m = 0 (none open-minded), ε = 0.2, type S data; (c) m = 8,
Xc = 2/3, type NS data (type S data in insert). Cluster locations
for linearly stable equilibria are represented by blue filled circles,
while neutrally stable equilibria are denoted by red stars.

initial conditions in our simulations. Instead, the observed cluster distributions are
disconnected and thus neutrally stable. For this fixed ε, we plot the clusters as
functions of the critical threshold for extremism Xc. Note that for large Xc, most
individuals in C will act open-mindedly; but that for all Xc < 1, individuals with
sufficiently large xi become closed-minded and are attracted to the extremes at
±1. We see in Figure 4(b) that for Xc near 1, there are four moderate opinion
clusters together with the two at the extremes. As Xc decreases, the opinions of an
increasing proportion of individuals begin or are drawn beyond the threshold for
closed-minded behaviour and are consequently pulled to the extremes, with only
those that remain in [−Xc, Xc] acting open-mindedly, so that the number of mod-
erate clusters monotonically decreases accordingly. Eventually, below a critical Xc

value (about 0.4 for the parameters in the figure), apart from the extremes there
remains only the cluster at opinion 0, which is present for any Xc > 0 provided the
initial opinion distributions are symmetric and sufficiently dense.

An intermediate situation is shown in Figure 4(c), in which only 10% of the
population is open-minded (m = 8), but the critical threshold for closed-mindedness
is relatively high, Xc = 2/3. For small interaction range ε, the situation is similar
to that in (b), with convergence typically to disconnected opinion clusters and the
closed-minded individuals attracted fully to the extremes; the number of clusters
decreases as ε increases. However, stable connected multi-cluster states can also
exist for such parameter values—albeit presumably with relatively small basins of
attraction—and we see that for ε ≈ 0.5 there is convergence to a linearly stable
asymmetric 7-cluster configuration; the time evolution for these parameter values
and initial data is that shown in Figure 2(e). We suspect that such connected
clusters may occur more readily for symmetric data; indeed, as seen in the insert
to Figure 4(c), there are two values of ε near 0.5 for which type S initial conditions
approach linearly stable states consisting of 9-cluster and 6-cluster configurations,
respectively.

As seen in the figure, there is a critical value of the interaction range (occurring
at ε ≈ 0.8 here) beyond which the largest gap between clusters is always below ε,
so that convergence is to a connected multi-cluster state; observe that since in the
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presence of open-minded individuals there must be at least one moderate cluster,
this critical value of ε is bounded above by 1. Interestingly, the initial bifurcation
is typically to a 5-cluster state with three moderate clusters (or sometimes to a
4-cluster state), while there is a further bifurcation value (here at ε ≈ 1.1) beyond
which there remains only a single moderate cluster with opinion near 0. Observe
that for these large ε, the most extreme opinions are bounded away from 1 (in
absolute value), as they experience attraction to the moderate cluster as well as to
the extremes.

Extremist consensus. A consensus of extremism has been observed in societies
(such as Nazi Germany in the 1930s, for instance) and investigated with previous
bounded confidence opinion models [13, 26, 35, 38]. In Figure 5 we explore the
emergence of an extremist consensus within our model (4)-(6) for representative
parameter values. Within each plot, the same non-symmetric (type NS) opinion
configuration is used to initialize all the computations, and as before the long-time
cluster locations are shown with their stability. Note that an unbalanced distribu-
tion of initial opinions is essential for reaching extremist consensus; as verified in
the inserts of plots (a) and (c), symmetric (type S) arrangements of open-minded
individuals do not lead to such equilibria.
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Figure 5. Extremist consensus arising as bifurcations in param-
eter space. Within each plot, the same non-symmetric (type NS)
initial conditions are used to generate equilibria for all parameter
values. The inserts show equilibria obtained from symmetric initial
data (type S), where no extremist consensus can arise. (a) Depen-
dence on Xc with m = 26, ε = 1.2; (b) dependence on m with
Xc = 1/3, ε = 2; (c) dependence on ε with m = 54, Xc = 1/3.
Symbols are as in Figure 4.

In Figure 5(a) and (b), extremist consensus is observed to emerge from 3-cluster
equilibria through bifurcations in Xc and m, respectively (recall that a higher
threshold for closed-mindedness Xc implies that individuals in C are relatively more
likely to act open-mindedly). The extremist consensus then holds for a relatively
small range of parameters, before another bifurcation brings the equilibrium into a
moderate opinion consensus. The results suggest that a certain balance between the
proportion of open-minded individuals in a group and the opinion threshold Xc may
allow a minority of closed-minded individuals to drag the group opinion towards
their extreme. A theoretical explanation for this phenomenon was also investigated
by Galam and Moscovici [21] using a discrete model for opinions.
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Figure 5(c) shows extremist consensus emerging from a polarized equilibrium,
through a bifurcation in the range ε of the influence function. At bifurcation, the
relatively large number of open-minded individuals (m = 54), as they approach an
extreme opinion, can drag individuals from one extreme to the other. However, fur-
ther increase of the influence range brings the extremist consensus into a moderate
opinion one.

Sensitivity to the total population size N . We have investigated the sen-
sitivity of the results presented in Figure 5 with respect to the size N of the total
population. Specifically, we performed a variety of numerical experiments with pop-
ulation sizes that ranged from N = 40 to N = 520, with an increment of 40. First,
we investigated the robustness of the three qualitatively different equilibria shown
in Figure 5(a), that is, the 3-cluster equilibrium, the extreme consensus and the
consensus at a moderate opinion value. For this purpose we selected three different
values of Xc (Xc = 1/3, Xc = 2/3 and Xc = 3/4) that correspond, respectively,
to these three different equilibria, and ran simulations with various randomly cho-
sen non-symmetric initial conditions and different population sizes. For consistency
with Figure 5(a), in all these simulations the bound of confidence ε and the fraction
m/N of open-minded individuals were fixed at ε = 1.2 and m/N = 26/80, respec-
tively. The 3-cluster equilibrium for Xc = 1/3 and the consensus at a moderate
opinion for Xc = 3/4 proved to be very robust with respect to different population
sizes N = 40, 80, . . . , 520, appearing in each of the 30 different initializations for
each N . The simulations with Xc = 2/3 did not show a similar robustness, how-
ever; this is unsurprising in view of the fact that, as seen in Figure 5(a), Xc = 2/3
is close to the bifurcation value at which extremist consensus emerges from a 3-
cluster equilibrium. In our 60 different runs for each N , both extreme consensus
states (as in Figure 5(a)) and 3-cluster equilibria occurred in a significant fraction
of cases. For most values of N we observed extreme consensus in more than 70%
of the simulations, while we have not seen clear evidence that the probability of
extreme consensus depends monotonically on the population size.

In a second set of runs, we tested the sensitivity to N of two equilibria observed
in Figure 5(c): the polarized equilibrium at ε = 0.5 and the consensus at moderate
opinion at ε = 1.5. We ran simulations with different non-symmetric initializations,
for N = 40, 80, . . . , 520, with Xc = 1/3 and the fraction m/N = 54/80 fixed. We
found that the polarized equilibrium (ε = 0.5) is very robust; all 30 different initial
conditions we tested resulted in such an equilibrium, regardless of the population
size. The numerical simulations for the other choice of the bound of confidence,
ε = 1.5, were less definitive, however; while the 60 different runs for each N always
resulted in a 1-cluster equilibrium, this cluster lay either at a moderate value (as
in Figure 5(c)) or at an extreme. It appeared that for most population sizes, an
extreme consensus arose in more than 50% of the simulations. Our results for this
set of experiments suggest that the likelihood of an extreme consensus increases
with the size of the population, but with a slow rate of convergence. Given the
important potential sociological implications of such a result, we plan to investigate
this issue further.

Effect of a social norm of open-mindedness on consensus formation.
Figure 6 demonstrates the relationship (for a specific set of parameters) between
the proportion of open-minded individuals in a population and the extent to which
an open-mindedness social norm enhances agreement within a population. We set
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ε = 2, which implies that all individuals communicate with each other; and Xc = 0,
meaning that all individuals in C act closed-mindedly. The plots correspond to type
NS (non-symmetric) initial data.
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Figure 6. Effect of a social norm of open-mindedness on opin-
ion convergence. The initial data is of type NS (non-symmetric);
parameters are set at N = 80, ε = 2 and Xc = 0, and symbols
are as in Figure 4. Increasing the proportion m/N of open-minded
individuals has a negligible effect on the opinion distribution when
there is no social norm of open-mindedness (plot (a)), but increases
agreement significantly when a social norm of open-mindedness is
present (plot (b)).

Figure 6(a) shows results for the case when no social norm of open-mindedness
is present, while Figure 6(b) corresponds to the model incorporating an open-
mindedness social norm. The most common equilibrium configuration in the two
plots consist of three clusters, where the outside clusters contain exclusively closed-
minded individuals, while the centre cluster has a mixed population. As m varies
however, the locations of three clusters behave essentially different in the two plots.

When no social norm of open-mindedness is present, the closed-minded adopt
extreme opinions and the qualitative configuration of the three-cluster equilibrium
changes very little with increasing m. For small numbers of closed-minded individ-
uals (m & 75), the asymmetry of the initial data plays a significant role, as observed
in the central opinion cluster approaching one of the extremes. For the last data
point (one closed-minded individual), the entire population reaches the extreme
opinion of that closed-minded agent. We conclude that increasing the proportion
of open-minded individuals in the model with no social norm of open-mindedness
has little effect on consensus.

Figure 6(b) demonstrates how including an open-mindedness social norm has the
potential to enhance agreement. We observe there that, by increasing the number
of open-minded individuals, the two outside clusters drift monotonically toward the
central opinion cluster, meaning that opinions in the population become less diverse.
This trend is consistent for values of m . 71. Beyond that we note the emergence
of an extremist consensus. This is an effect of the asymmetric initial placement of
the open-minded individuals, similar to what has been observed in Figure 5. This
effect is particularly strong when only a small number of closed-minded agents is
present. As long as there is at least one closed-minded individual, the consensus
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will be dragged to an extreme (unless it occurs exactly at 0, as for the last data
point).

3.4. Stability analysis. In this section we provide the details and proofs for the
stability results referred to in Section 3.2 above.

A key concept used in the stability analysis is the (graph) connectivity of a group
of individuals i = 1, . . . , N , or equivalently, of their opinion states {xi}i=1,...,N . In
our context, connectivity is defined in terms of the interaction coefficients: One can
associate a directed graph to the opinions of a group of individuals, where the nodes
of the graph are the opinions and the directed edges (or arrows) are ordered pairs
of opinions connected by a nonzero interaction coefficient. Given this framework we
can talk about the connectivity of the group, and the following definition is adopted
[42]:

Definition 3.1. An individual i is said to be connected2 to an individual j if there
exists a path linking i and j. A path, in this instance, is defined as a chain of nonzero
interaction coefficients which starts at i and ends at j. If any two individuals in a
population are mutually connected to each other (in both directions), the population
is said to be connected.

For instance, in model (6) a closed-minded individual i may connect to a non-
closed-minded individual j either directly, provided âij 6= 0, or indirectly, through a
path that reaches j. This path may consist of one or more individuals (for instance
a path âik, akj involving an open-minded individual k such that both âik and akj
are nonzero).

Remark 3.2. In graph-theoretic terminology, a population is connected according
to Definition 3.1 if the directed graph associated to its opinion state is strongly con-
nected. This property can be equivalently characterized in terms of the interaction
matrix. Indeed, it is a well known result [53] that a matrix is irreducible if and only
if its associated directed graph is strongly connected. Consequently, a population
is connected if and only if its interaction matrix is irreducible.

The following assumptions are made to prove the asymptotic stability results.

First, the influence functions φ and φ̂ are taken to be indicator functions with
arbitrary supports ε and ε̂ respectively. Second, we assume the following for the
equilibria:

Assumption 3.3. The equilibrium opinion state x∗ = (x∗1, x
∗
2, . . . , x

∗
N ) satisfies

1. |x∗i | 6= Xc for all individuals i in C;
2. |x∗i − x∗j | 6= ε for all non-closed-minded individuals i and all individuals j.

The next two assumptions apply to model (6) only:

3. |x∗i−x∗j | 6= ε for all closed-minded individuals i and all open-minded individuals
j;

4. | sgn(x∗i )− x∗i | 6= ε̂ for all closed-minded individuals i.

Assumption 1 simply excludes the ambiguous case when an opinion of an individ-
ual in C is at the threshold. Assumptions 2-4 guarantee that all coefficients âi, âij
and aij in models (5) and (6) are well-defined at equilibrium, as φ and φ̂ are never
evaluated at their points of discontinuity. Moreover, due to continuity, it follows

2In a strict mathematical sense, connectivity between two individuals i and j should be inter-
preted as connectivity between their opinions xi and xj .
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that there is an entire neighbourhood of x∗ where âi, âij and aij are well-defined,

and in fact they are all constants in this neighbourhood (since φ and φ̂ are assumed
to be indicator functions). Below we use â∗i , â

∗
ij and a∗ij to denote the values of âi,

âij and aij , respectively, at equilibrium.

Remark 3.4. We noted above that all coefficients âi, âij and aij are constant in a
neighbourhood of an equilibrium x∗ that satisfies Assumption 3.3. The size of this
neighbourhood can be calculated exactly for a given equilibrium x∗; it corresponds
to the largest perturbation of x∗ that would cause Assumption 3.3 to fail. For as
long as the solution remains in this neighbourhood of an equilibrium, the dynamics
is linear, and hence systems (4)-(5) and (4)-(6) are locally exactly linear near such
equilibria. As a consequence, linear (asymptotic) stability in this case is equivalent
to nonlinear (asymptotic) stability. Our analysis below deals with linear theory,
but all results prove in fact the stronger nonlinear stability of the equilibria.

The stability analysis requires us to distinguish between the closed-minded indi-
viduals (individuals in C with opinion values that exceed Xc in magnitude) and the
others. Thus suppose that there are q ≤ N −m individuals in the population who
act closed-mindedly; relabelling if necessary, we assume that these individuals have
indices i = 1, . . . , q. In both models (5) and (6), the interaction coefficients between
the non-closed-minded individuals are denoted by aij , with q + 1 ≤ i, j ≤ N . Two
coefficients aij and aji are not equal in general, but they are simultaneously zero
or nonzero.

The stability proofs for the models without a social norm of open-mindedness,
with interactions defined by (5), and with such a social norm, described by (6),
need to be treated separately, due to the differences in the interaction coefficients
corresponding to the q closed-minded individuals. In model (5), a closed-minded in-
dividual’s opinion is not influenced by anyone else’s opinion. However, the opinion of
a closed-minded individual i ∈ {1, . . . , q} affects the opinion of a non-closed-minded
individual j ∈ {q + 1, . . . , N} provided the corresponding interaction coefficient aji
is nonzero. Model (5) is asymmetric in that sense. Part of this asymmetry transfers
to (6) as well; indeed, by the same reasoning as above, closed-minded individuals
are not influenced by non-closed-minded individuals in C, but could affect their
opinions in turn. Model (6) is symmetric, however, with respect to interactions
between closed-minded and open-minded individuals—see Remark 2.1.

Stability for model without open-mindedness social norm. We start by
investigating the linear stability of an equilibrium solution x∗ for (4)-(5), which
reduces to studying the eigenvalues of its linear approximation.

Given that the âi and aij are all constants near x∗, the Jacobian matrix at
equilibrium for (5) has the form (recall that (N − 1)âi = 1)

J1 =

(
−α2I 0
B A

)
, (13)

where I is the identity matrix of size q × q, B is a (N − q) × q matrix of entries
α1a

∗
ij (q+ 1 ≤ i ≤ N , 1 ≤ j ≤ q) and A is a (N − q)× (N − q) square matrix given
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by

A =


−α1 α1a

∗
ij

[i<j]

. . .

α1a
∗
ij

[i>j]

. . .
...

... . . . −α1

 . (14)

The indices i and j of the entries a∗ij in A correspond to non-closed-minded in-
dividuals, i.e., i, j ∈ {q + 1, . . . , N}; note that we used the normalization (3) of
coefficients to simplify the diagonal entries of A.

The following classical result in linear algebra is an essential tool in the proof of
our stability result:

Theorem 3.5. If a matrix is irreducible and weakly diagonally dominant, with
strict diagonal dominance holding for at least one row, then it is non-singular [47,
Theorem 2].

We now state and prove the stability theorem for model (5).

Theorem 3.6. Let x∗ be an equilibrium solution of (4)-(5) that satisfies Assump-
tion 3.3. Then x∗ is asymptotically stable provided that, at equilibrium, all non-
closed-minded individuals are connected, and in addition at least one non-closed-
minded individual is connected to a closed-minded individual.

Proof. We have to show that the eigenvalues of J1 from (13) have negative real part.
Given that α2 > 0, this amounts to showing that the real parts of the eigenvalues
of A are negative. To this end, note that A has negative diagonal entries and is
weakly diagonally dominant (by the normalization (3) and the non-negativity of the
interaction coefficients aij). Hence, by the Gershgorin circle theorem [22, pg 320],
all its eigenvalues lie in the left half of the complex plane, with the Gershgorin discs
overlapping the imaginary axis only at the origin.

To conclude the proof we have to rule out the possibility that one (or more) of
these eigenvalues is 0. We show this using Theorem 3.5. Note that, aside from the
diagonal entries and the multiplicative constant α1, the matrix A is the interaction
matrix of the non-closed-minded individuals at equilibrium. Since by assumption,
all non-closed-minded individuals are connected at equilibrium, from Remark 3.2
we conclude that the matrix A is irreducible.

Also by assumption, there exists at least one non-closed-minded individual con-
nected to a closed-minded individual, which means that at least one of the entries
α1a

∗
ij in B is nonzero; that is, a∗ij 6= 0 for some indices i ∈ {q + 1, . . . , N} and

j ∈ {1, . . . , q}. Then, by the normalization condition (3), the corresponding row of
A must be strictly diagonally dominant. Hence A satisfies the hypotheses of Theo-
rem 3.5, and consequently is non-singular. This excludes the possibility of A having
a zero eigenvalue; so all the eigenvalues of J1 have strictly negative real part, and
the equilibrium x∗ is linearly (asymptotically) stable.

Stability for model with open-mindedness social norm. The study of
the stability of equilibria for the model (4) with (6) follows along similar lines.
Notation is as before; in particular, for an equilibrium opinion state x∗, without
loss of generality we let the indices {1, . . . , q} correspond to the individuals in C
with opinions that exceed Xc in absolute value.
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Now for linear stability to be possible, at least one of these q closed-minded
individuals must be connected to an open-minded individual; if not, then all the
moderate clusters containing non-closed-minded agents would be disconnected from
the extremes and hence necessarily be neutrally stable, as discussed in Section 3.2.
Hence among the closed-minded individuals {1, . . . , q} we distinguish two sub-
groups: we let the labels {1, . . . , r} refer to those r closed-minded individuals
(0 ≤ r < q) who do not interact with any other individual, while individuals
{r + 1, . . . , q} are connected with at least one open-minded agent, so that for each
i ∈ {r + 1, . . . , q}, â∗ij 6= 0 for some j ∈ O. Note that the results established below
also apply (trivially) in the special case when r = 0. The remaining N − q non-
closed-minded individuals are then labelled so that the N−q−m non-closed-minded
individuals in C are listed first, with labels {q + 1, . . . , N −m}, while the last m
indices {N −m+ 1, . . . , N} correspond to the m open-minded individuals in O.

Recall that under Assumption 3.3, all coefficients âi, âij , and aij are constants
in a neighbourhood of x∗. Hence the Jacobian matrix at equilibrium for (6) has the
form

J2 =

(
−α2(N −m− 1)D1 0

0 E

)
, (15)

with D1 an r× r diagonal matrix with entries â∗i , i = 1, . . . , r, corresponding to the
first group of closed-minded individuals.

The (N − r) × (N − r) matrix E contains the entries in the Jacobian matrix
corresponding to the remaining q − r closed-minded and the N − q non-closed-
minded individuals; via (6) one finds that E has the form

E =

(
D2 F
B A

)
, (16)

where D2 is a diagonal matrix of size (q − r)× (q − r), with entries

di = −α2(N −m− 1)â∗i − α3

∑
j∈O

â∗ij , i = r + 1, . . . , q. (17)

The matrix F , of size (q − r)× (N − q), has two main blocks:

F =
(

0 | α3(â∗ij)j∈O
)
. (18)

The zero block has N − q−m columns and is due to the lack of explicit interaction
between closed-minded individuals and the non-closed-minded agents in C. The
other block has entries α3â

∗
ij , and represents the interactions between closed-minded

individuals i ∈ {r+ 1, . . . , q} and open-minded individuals j ∈ {N −m+ 1, . . . , N}.
Finally, the matrices A and B in (16) have a similar expression as A and B from

(13). Specifically, B has size (N − q)× (q− r) with entries α1a
∗
ij , and A is given by

(14).
The stability theorem for our model (4) with (6) now reads:

Theorem 3.7. Let x∗ be an equilibrium solution of (4) with (6) that satisfies
Assumption 3.3. Assume additionally that â∗i > 0 for at least one i ∈ {r+1, . . . , q}.
Then x∗ is asymptotically stable provided that, at equilibrium, all non-closed-minded
individuals are connected, and also that at least one closed-minded individual is
connected to an open-minded individual.

Proof. We follow the strategy from the proof of Theorem 3.6. First note that the
closed-minded individuals 1, . . . , r do not interact with any other individual and
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consequently, their opinions lie at one of the extremes ±1. Hence, â∗i > 0 for all
i ∈ {1, . . . , r} and since α2 > 0, D1 is a diagonal matrix with positive entries. We
conclude from here that the eigenvalues of J2 given by (15) all have negative real
parts provided the same is true of the eigenvalues of E. We prove the latter fact
following an argument similar to that used to show that matrix A in the proof of
Theorem 3.6 has eigenvalues with negative real parts.

Matrix E has negative diagonal entries and is weakly diagonally dominant. The
weak diagonal dominance for the first q − r rows follows from (17) and (18), since
α2 > 0, α3 > 0 and all interaction coefficients are non-negative. For the rows of
E that involve the rows of B and A, the weak diagonal dominance follows from
the normalization condition (3). Hence, by the Gershgorin circle theorem, all the
eigenvalues of E have either strictly negative real parts or fall at the origin.

We rule out the possibility of E having zero eigenvalues using Theorem 3.5. Due
to the assumption that at least one â∗i > 0 with i ∈ {r + 1, . . . , q}, one of the first
q − r rows of E is in fact strongly diagonally dominant. The irreducibility of E
follows by Remark 3.2, as the assumptions made on the connectivity at equilibrium
render the directed graph associated to E strongly connected. Hence, by Theorem
3.5, E is non-singular, and this completes the proof.

4. Opinion dynamics model in the presence of media. In the following we
further extend the Motsch-Tadmor [42] model to incorporate the effects of media
on opinion formation. Various attempts to model media-influenced opinion models
have appeared in the recent literature [39, 48, 8, 2, 37, 44]. In particular, Pineda and
Buendia [44] have recently considered media effects in the discrete-time bounded
confidence models of Deffuant et al. [12] and Hegselmann and Krause [25]. Their
approach is to assume that individuals interact with the media with a certain prob-
ability, or otherwise interact with other individuals in their confidence range; within
this framework, the effectiveness of the media is studied in terms of the sizes of the
bounds of confidence and the media intensity [44].

We introduce media via a natural extension of the basic model (4), modelling
a media effect similarly to the inter-individual interaction term fi. For simplicity
we first present the case where there is a single source of media influence. Each
media source is assumed to have an intrinsic perspective or bias µ measured on the
same scale as individuals’ opinions, that is, µ ∈ [−1, 1]. The model proposed and
investigated in this section is then given by

dxi
dt

= fi + g(xi, µ), i = 1, . . . , N, (19)

where fi represents the inter-individual interactions (as given by (5) or (6)) and
g(xi, µ) models the effect of media on individual i.

In modelling g(xi, µ), we assume that individuals respond to media influences in
an analogous way to how they respond to other individuals’ opinions; this assump-
tion that media-individual interactions are similar to inter-individual interactions
is supported by empirical studies [33, 3, 45, 15, 27, 3]. In particular, we distinguish
again between open-minded and closed-minded individuals, which presumably have
qualitatively different responses to media. Following the notation of previous sec-
tions, we thus assume that g takes the following form:

g(xi, µ) =

{
α4b̂i(sgn(xi)− xi) if |xi| > Xc and i ∈ C,
α5bi(µ− xi) otherwise.

(20)
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Here α4 and α5 are constants representing the strength of the media source, and
the partisan dependence of the media influence is captured by the coefficients bi
and b̂i, whose formulation within our model is given below.

The analogies between (20) and (5) (or (6)) are immediate. We assume in (20)
that the closed-minded individuals approach the extremes upon exposure to media,
regardless of the actual bias of the media. This feature is similar to the closed-
minded individuals’ response in (5). Non-closed-minded individuals do respond to
the media, however, and their opinions are steered toward the media bias µ.

To model coefficients bi and b̂i, we define two media-influence functions φm and

φ̂m, the analogues of the functions φ and φ̂ used in previous sections. Again, for

simplicity both φm and φ̂m are taken to be simple indicator functions, with supports
denoted by εm and ε̂m, respectively; here the magnitude of εm indicates the extent
of the media influence on non-closed-minded individuals, while ε̂m describes the
range of influence of the extreme opinions, as triggered by the presence of media.

The coefficients bi and b̂i in our model are then assumed to be given by

bi = φm(|µ− xi|) and b̂i = φ̂m(| sgn(xi)− xi|). (21)

More general media models. Model (19) can be generalized in various ways.
First, one could consider more media sources, in which case the media term g should
account for the effects of all such sources. Suppose that there are P media sources
with biases µp and strengths α4p and α5p, where p = 1, . . . , P . The extension of
(20) to multiple media sources is straightforward:

g(xi,µ) =


∑
p
α4p b̂ip (sgn(xi)− xi) if |xi| > Xc and i ∈ C,∑

p
α5p bip (µp − xi) otherwise,

(22)

where µ = (µ1, . . . , µP ), and the coefficients b̂ip, bip are just the extensions of b̂i, bi
from (21), appropriately normalized, to take into account the potential diversity of
media influences.

A second possible generalization is to allow the media bias(es) to vary in time,
potentially driven by the opinion distribution, to take into account changing media
perspectives due to economic and competitive pressures [24]. A general framework
to describe the time evolution of the bias of a single media source in model (20)
may be given by

dµ

dt
= λ(t, µ,x), (23)

where x = (x1, . . . , xN ); however, obtaining an appropriate form of the rate func-
tion λ is presumably a challenging modelling problem in itself, and we have not
attempted this.

In the remainder of this paper we focus on the restricted case of a single media
source of constant bias µ; some preliminary investigations of the more general case
may be found in [28].

4.1. Numerical results. In all simulations of opinion dynamics with one constant

media source, we assume that both φm and φ̂m are indicator functions with identical

supports to φ and φ̂, respectively (that is, εm = ε, and ε̂m large enough so that

φ̂m(| sgn(xi)− xi|) = 1, for all closed-minded individuals i).
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Representative simulations with media. Figure 7 shows the time evolution
of the model (19)-(20) with (6) in two cases: (a) media bias located at an extreme
(µ = 1), and (b) media bias located at a moderate value (µ = 0.1). In both
simulations, there are m = 26 open-minded individuals and the influence range is
ε = 1.2, and the initial conditions are non-symmetric (Type NS—see Section 3.1).
Also, in both cases, Xc = 0, meaning that all non-open minded individuals with
nonzero opinions act closed-mindedly, and hence are not directly affected by the
location of the media—see modelling assumption (20). Due to the presence of an
open-mindedness social norm, however, the non-open-minded agents are indirectly
affected by the media, through their interactions with the media-influenced open-
minded agents.

In Figure 7(a) all individuals approach the extreme media bias. This occurs both
because the open-minded individuals are attracted to the media and drag the non-
open-minded individuals along with them, and due to interactions among closed-
minded individuals which cause them to approach the extremes. For more moderate
media, as in Figure 7(b), open-minded agents again approach the media bias, but
this time the non-open-minded agents do not follow entirely, but instead form two
distinct opinion groups. Note that in this 3-cluster equilibrium configuration, with
the media bias µ lying between opinion clusters, again the two clusters with the
most positive and negative opinions can contain only closed-minded individuals,
who experience a balance between the attraction towards the opinions of others
and towards the extremes; open-minded agents, who are drawn to others’ opinions
and to the media but not to the extremes, must lie in the intermediate cluster. On
the other hand, the cluster at µ > 0 cannot contain closed-minded agents; if it did,
even in the presence of a social norm of open-mindedness, such individuals would
not experience any attraction to open-minded individuals in the same cluster, so
that the only net contribution to their social force fi would be their attraction to
the extremist views at +1, contradicting the assumption of a steady state.

As shown in Theorem 4.3 below, the equilibria in both (a) and (b) are asymptot-
ically stable; indeed, the presence of media enhances the potential for stability by
providing an additional external attractive force for the dynamics. As in the non-
media model, the connectivity of the configuration plays a major role in stability;
in particular, note that in (b) the two groups of non-open minded individuals are
within the interaction range ε of both the open-minded individuals at the media
bias, and of each other.

The effect of the media bias on equilibria. We perform a bifurcation study,
similar to that done for Figure 4 but now focussing on the effect of the parameter µ
that describes the media bias. The goal is to monitor, as µ varies, the number and
location of the opinion clusters that form at equilibrium, using both Type NS (non-
symmetric) and Type S (symmetric) initial conditions. We fix the threshold Xc for
closed-mindedness at Xc = 0, meaning that all individuals in C act closed-mindedly.
The bound of confidence is set at ε = 1.2.

Figure 8 shows the equilibrium cluster locations using three values for the number
of open-minded individuals m (m = 0, 26, 54 with N = 80), and a Type NS initial
condition. The inserts contain the corresponding runs for Type S initial data,
where the open-minded are symmetrically distributed; of course for Figure 8(a), in
the absence of open-minded individuals (m = 0), these two plots would be the same.
The green dashed line, which is simply the graph of the identity map, indicates the
location of the media µ.
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Figure 7. Evolution to equilibria of the opinion model with me-
dia (19)-(20) with (6) with Type NS (non-symmetric) initial data,
and parameter values m = 26 (number of open-minded agents),
Xc = 0 (threshold for extreme-seeking dynamics) and ε = 1.2
(bound of confidence). The circles indicate the media location µ.
(a) µ = 1: all individuals approach the extremist media bias. (b)
µ = 0.1: open-minded individuals converge to the media bias, while
the opinions of non-open-minded individuals form two clusters bal-
anced between attraction to open-minded agents and to the ex-
tremes.

Figure 8(a) corresponds to a population consisting only of closed-minded indi-
viduals; predictably, the equilibrium consists of two opinion clusters located at the
extremes, regardless of the location of the media. On the other hand, Figures 8(b)
and (c) demonstrate a stronger persuasive effect of the media as the number of
open minded individuals increases. Note in particular figure (b), showing signif-
icantly different outcomes for the two types of initialization: The insert, which
corresponds to a symmetric placement of the open-minded individuals, shows the
formation of a group that deviates from the media bias; while a non-symmetric ini-
tial distribution of open-minded agents somehow seems to enhance the effect of the
media (for µ = 0.1 and µ = 1, the full dynamic evolution with this initial condition
corresponds to those illustrated in Figure 7). Finally, in figure (c), a relatively large
number of open-minded individuals (m = 54) results in a strong effect of the media,
with little differences noticed between the two types of initialization.

As seen in Figures 8(b) and (c), there are two typical configurations of such
opinion dynamics models with media and a social norm of open-mindedness in
the absence of symmetry. One is a 3-cluster configuration, occurring for relatively
modest media, as discussed already in Figure 7(b). In this case the open-minded
individuals form the intermediate cluster located at or near the media bias, experi-
encing a balance between an attraction to the closed-minded individuals at higher
and lower opinion values, and to the media. Simultaneously, there are two clusters
of closed-minded individuals: one at a positive opinion between µ and +1, balanced
between the attractive effects of the extremist state at +1 and the open-minded
individuals; and one at a negative opinion between −1 and µ, whose opinion values
are pulled down by the lower extreme and up by the open-minded agents. The
second case consists of only two opinion clusters, both located between the media
location and an extreme: the open-minded individuals are closer to the media bias,
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and balanced between the media and the closed-minded agents; while the closed-
minded individuals equilibrate between the open-minded agents and an extreme. In
Figures 8(b) and (c), with µ positive and increasing, the transition between these
two configurations occurs when the location of the lower closed-minded cluster in
the 3-cluster case passes x = 0 (this occurs for µ ≈ 0.5 in (b) and µ ≈ 0.2 in
(c)); once that happens, all closed-minded individuals are attracted to the upper
extremist state at +1, and the equilibrium becomes a 2-cluster configuration. A
degenerate case of this configuration is that shown in Figure 7(a), in which the
media bias µ = 1 coincides with an extreme and the two clusters merge.

We conclude by noting that all equilibria illustrated in Figure 8 are asymptot-
ically stable, as they satisfy the connectivity properties required by the analytical
results in Section 4.2.
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Figure 8. Bifurcation with respect to the location of the media
source. The filled circles represent the locations of equilibrium
clusters, while the dashed line indicates the media bias; parameter
values are Xc = 0 and ε = 1.2, with (a) m = 0, (b) m = 26, and (c)
m = 54. In the absence of open-minded individuals (a), the media
has no effect, as all closed-minded individuals approach extremist
views. Plots (b) and (c) correspond to non-symmetric (type NS)
initial data, with inserts that show the results obtained from sym-
metric (type S) initializations. Asymmetry seems to enhance the
effect of the media, in particular when the number of open-minded
individuals is relatively low (m = 26, plot (b)).

4.2. Stability of equilibria. The stability of equilibria for the opinion formation
model in the presence of media, (19) with (5) or (6) coupled to the media term
(20), can be studied similarly to that for the model without media (Section 3.4).
We present the analysis briefly, highlighting the changes from Section 3.4.

Consider an equilibrium opinion state x∗ = (x∗1, x
∗
2, . . . , x

∗
N ) of (19). We suppose

that all assumptions made in Section 3.4 hold here as well; specifically, x∗ satisfies

Assumption 3.3, and the influence functions φ and φ̂ are simple indicator functions
with supports ε and ε̂, respectively.

We assume, similarly, that the media-influence functions φm and φ̂m are also
simple indicator functions, with supports εm and ε̂m, respectively. Additionally, we
require

Assumption 4.1. The equilibrium state x∗ satisfies:

1. |µ− x∗i | 6= εm, for all non-closed-minded individuals i;
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2. | sgn(x∗i )− x∗i | 6= ε̂m, for all closed-minded individuals i.

Assumption 4.1 guarantees that the coefficients b̂i and bi in (20) are well-defined at

equilibrium, by ensuring that φ̂m and φm are not evaluated at a point of disconti-
nuity. Again, by continuity, there is in fact an entire neighbourhood of x∗ where all

b̂i and bi are constants.
Extending the terminology introduced in Definition 3.1, we say that a non-closed-

minded individual i is connected to the media if its interaction coefficient with the
media is nonzero, that is, bi 6= 0.

As in Section 3.4, we study stability via the eigenvalues of the linear approxima-
tion. The terms in the Jacobian that correspond to the inter-individual interactions
modelled by fi are given by previous computations (see (13) and (15)). Since all

coefficients b̂i and bi are constants near x∗, the media term (20) only contributes to

the diagonal entries of the Jacobian for (19). Specifically, (20) contributes −α4b̂
∗
i to

each diagonal term corresponding to closed-minded individuals, and −α5b
∗
i to the

diagonal entries that correspond to non-closed-minded individuals. (As before, an
asterisk indicates that the respective coefficients are evaluated at the equilibrium
x∗).

Stability for model with media and no social norm of open-mindedness.
We use the setup from Section 3.4, and label by 1, . . . , q the closed-minded individ-
uals. If no social norm of open-mindedness is present, so that fi is given by (5), the
Jacobian matrix of (19) is given by

J1m =

(
Dm 0
B Am

)
, (24)

where Dm is the q × q diagonal matrix with entries −α2 − α4b̂
∗
i , B is the same

(N − q) × q matrix with entries α1a
∗
ij as in (13), and Am is a (N − q) × (N − q)

square matrix given by

Am =


−α1 − α5b

∗
q+1 α1a

∗
ij

[i<j]

...

α1a
∗
ij

[i>j]

. . .
...

... . . . −α1 − α5b
∗
N

 . (25)

Here the indices i and j of the entries in Am correspond to non-closed-minded
individuals.

The argument now proceeds as in the proof of Theorem 3.6: By the normalization
condition (3), Am is weakly diagonally dominant, so the eigenvalues of J1m have neg-
ative real parts provided Am is non-singular. If b∗i > 0 for some i ∈ {q + 1, . . . , N},
strict diagonal dominance holds in that row of Am. On the other hand, if all b∗i = 0,
strict diagonal dominance in a row of Am can be inferred—as in Section 3.4—by
making the additional assumption that at least one entry in the corresponding row
of B is nonzero. Finally, provided Am is also irreducible, Theorem 3.5 can be used
to conclude that Am is non-singular.

Hence for linear stability to hold in this case, one of the connectivity assumptions
in Theorem 3.6 can be replaced by the presence of a nontrivial media influence at
equilibrium. The stability result is given by the following theorem:

Theorem 4.2. Let x∗ be an equilibrium solution of the model for opinion dynamics
with media in the absence of an open-mindedness social norm, (19) with (5) and
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(20), that satisfies Assumptions 3.3 and 4.1. Then x∗ is asymptotically stable pro-
vided that, at equilibrium, all non-closed-minded individuals are connected, and in
addition at least one non-closed-minded individual is connected either to the media
or to a closed-minded individual.

Stability for model with media and a social norm of open-mindedness.
As in Section 3.4, closed-minded individuals separate into two groups: a group
consisting of the individuals 1, . . . , r who do not connect to any other individual,
and a second group of closed-minded individuals who connect to at least one open-
minded individual.

The Jacobian for (19) can be written as

J2m =

(
D1m 0

0 Em

)
, (26)

where D1m is a diagonal matrix of size r × r, with entries

−α2(N −m− 1)â∗i − α4b̂
∗
i , i = 1, . . . , r,

that corresponds to the first group of closed-minded individuals. The matrix Em
has a form similar to E from (15), namely

Em =

(
D2m F
B Am

)
, (27)

where the (q − r)× (q − r) diagonal matrix D2m has entries

−α2(N −m− 1)â∗i − α3

∑
j∈O

â∗ij − α4b̂
∗
i , i = r + 1, . . . , q.

The matrices F and B are the same as in (15) (the media term only affects the
diagonal entries of the Jacobian), and the matrix Am is given by (25).

Note that D1m has negative diagonal entries, as individuals 1, . . . , r have extreme

opinions ±1 and hence â∗i and b̂∗i are strictly positive for all i ∈ {1, . . . , r}. Then the
argument follows along the same lines as that for the proof of Theorem 3.7, with
E replaced by Em. In particular, to show that Em is irreducible it is necessary to
make the same connectivity assumption as in Theorem 3.7; that is, unlike in the
case of media in the absence of an open-mindedness social norm, here the presence
of media cannot be used to replace the connectivity assumption at equilibrium.

Strong diagonal dominance holds for a row of Em either if one of â∗i or b̂∗i is strictly
positive for some i ∈ {r+1, . . . , q}, or if at least one non-closed-minded individual is
connected to the media at equilibrium (that is, b∗i > 0 for some i ∈ {q+ 1, . . . , N}).

The stability result in this case reads:

Theorem 4.3. Let x∗ be an equilibrium solution of the model for opinion dynamics
with media in the presence of an open-mindedness social norm, (19) with (6) and

(20), that satisfies Assumptions 3.3 and 4.1. Also assume either that one of â∗i or b̂∗i
is strictly positive for some i ∈ {r+1, . . . , q}, or that at least one non-closed-minded
individual is connected to the media at equilibrium. Then x∗ is asymptotically stable
provided that, at equilibrium, all non-closed-minded individuals are connected, and
in addition at least one closed-minded individual is connected to an open-minded
individual.

Theorems 4.2 and 4.3 suggest that media has the potential to increase stability.
This is not surprising, given the tendency of the media to attract individuals who
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have been perturbed away from it. Empirical studies show indeed that the distance
from a media source in opinion space is positively correlated with the tendency to
move towards said media source upon exposure [33, 3].

5. Discussion and concluding remarks. We have generalized the continuous-
time opinion dynamics model introduced by Motsch and Tadmor [42] to incorporate
closed-minded, extreme-seeking individuals who may, however, be induced to act
more open-mindedly when they interact with naturally open-minded individuals.
Our model yields a richly diverse range of potential equilibrium states, which we
have explored analytically and numerically: in addition to moderate consensus and
mutually disconnected opinion clusters, we have shown the existence of extremist
consensus and extreme polarization states, as well as of connected opinion clusters.
Moreover, we have proved that these latter configurations are asymptotically, not
just neutrally, stable. We have further extended the model to include media, which
are assumed to have different influences on open- and closed-minded individuals, and
confirm using analysis and simulation that media introduce an additional attractive
and stabilizing effect on the long-time opinion distribution.

Our modelling framework suggests numerous natural extensions. For instance,
at present our model contains sharp cutoffs both at the bound of confidence ε in the
influence function φ, and at the critical threshold Xc for extreme-seeking dynamics;
it would be useful to explore whether the qualitative and rigorous conclusions are
modified by smoothing out the transitions. Among other natural generalizations, a
particularly challenging but realistically important one appears to be robustness to
the addition of noise; since many equilibria of our model are asymptotically stable,
presumably our qualitative conclusions would persist in the presence of sufficiently
small random perturbations.

Understanding the influence of media on societal opinion distributions is partic-
ularly important, and much more could be done within our modelling framework
to explore this influence, by for instance adding multiple and potentially competing
media sources with possibly time-varying strengths and/or intrinsic biases, account-
ing for the hostile media effect, or even as suggested in equation (23), incorporating
a feedback loop by letting media bias be driven by the opinion distribution.
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