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Abstract. The paper deals with a degenerate model of immiscible compress-

ible two-phase flow in heterogeneous porous media. We consider liquid and gas
phases (water and hydrogen) flow in a porous reservoir, modeling the hydro-

gen migration through engineered and geological barriers for a deep repository

for radioactive waste. The gas phase is supposed compressible and obeying
the ideal gas law. The flow is then described by the conservation of the mass

for each phase. The model is written in terms of the phase formulation, i.e.
the liquid saturation phase and the gas pressure phase are primary unknowns.

This formulation leads to a coupled system consisting of a nonlinear degenerate

parabolic equation for the gas pressure and a nonlinear degenerate parabolic
diffusion-convection equation for the liquid saturation, subject to appropriate

boundary and initial conditions. The major difficulties related to this model
are in the nonlinear degenerate structure of the equations, as well as in the cou-
pling in the system. The aim of this paper is to extend our previous results to

the case of an ideal gas. In this case a new degeneracy appears in the pressure

equation. With the help of an appropriate regularization we show the existence
of a weak solution to the studied system. We also consider the correspond-

ing nonlinear homogenization problem and provide a rigorous mathematical
derivation of the upscaled model by means of the two-scale convergence.
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1. Introduction. The modeling of displacement process involving two immiscible
fluids is of considerable importance in groundwater hydrology and reservoir engi-
neering such as petroleum and environmental problems. More recently, modeling
multiphase flow received an increasing attention in connection with gas migration
in a nuclear waste repository and sequestration of CO2.

In this paper, we focus our attention on the modeling of immiscible compressible
two-phase flow through heterogeneous reservoirs in the framework of the geological
disposal of radioactive waste. The long-term safety of the disposal of nuclear waste
is an important issue in all countries with a significant nuclear program. One of the
solutions envisaged for managing waste produced by nuclear industry is to dispose
the radioactive waste in deep geological formations chosen for their ability to delay
and to attenuate possible releases of radionuclides in the biosphere. Repositories
for the disposal of high-level and long-lived radioactive waste generally rely on a
multi-barrier system to isolate the waste from the biosphere. The multibarrier sys-
tem typically comprises the natural geological barrier provided by the repository
host rock and its surroundings and an engineered barrier system, i.e . engineered
materials placed within a repository, including the waste form, waste canisters,
buffer materials, backfill and seals, for more details see for instance [43]. An impor-
tant task of the safety assessment process is the handling of heterogeneities of the
geological formation.

In the frame of designing nuclear waste geological repositories, a problem of pos-
sible two-phase flow of water and gas, mainly hydrogen, appears, for more details
see for instance [43]. Multiple recent studies have established that in such installra-
tions important amounts of gases are expected to be produced in particular due to
the corrosion of metallic components used in the repository design, see e.g. [27, 42]
and the references therein. The French Agency for the Management of Radioactive
Waste (Andra) [11] is currently investigating the feasibility of deep geological dis-
posal of radioactive waste in an argillaceous formation. A question related to the
long-term performance of the repository concerns the impact of the hydrogen gas
generated in the wastes on the pressure and saturation fields in the repository and
the host rock.

During recent decades mathematical analysis and numerical simulation of mul-
tiphase flows in porous media have been the subject of investigation of many re-
searchers owing to important applications in reservoir simulation. There is an ex-
tensive literature on this subject. We will not attempt a literature review here but
will merely mention a few references. Here we restrict ourselves to the mathemat-
ical analysis of such models. We refer, for instance, to the books [14, 23, 26, 29,
36, 38, 44] and the references therein. The mathematical analysis and the homoge-
nization of the system describing the flow of two incompressible immiscible fluids in
porous media is quite understood. Existence, uniqueness of weak solutions to these
equations, and their regularity has been been shown under various assumptions on
physical data; see for instance [3, 14, 15, 21, 24, 25, 23, 29, 41] and the references
therein. A recent review of the mathematical homogenization methods developed
for incompressible immiscible two-phase flow in porous media and compressible mis-
cible flow in porous media can be viewed in [4, 37, 38]. We refer for instance to
[16, 17, 18, 19, 20, 34, 35] for more information on the homogenization of incom-
pressible, single phase flow through heterogeneous porous media in the framework
of the geological disposal of radioactive waste.
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However, as reported in [9], the situation is quite different for immiscible com-
pressible two-phase flow in porous media, where, only recently few results have been
obtained. In the case of immiscible two-phase flows with one (or more) compress-
ible fluids without any exchange between the phases, some approximate models were
studied in [30, 31, 32]. Namely, in [30] certain terms related to the compressibility
are neglected, and in [31, 32] the mass densities are assumed not to depend on the
physical pressure, but on Chavent’s global pressure. In the articles [22, 33, 39, 40],
a more general immiscible compressible two-phase flow model in porous media is
considered for fields with a single rock type and [9] treated the case with several
types of rocks. In [4, 10] homogenization results were obtained for water-gas flow in
porous media using the phase formulation, i.e. where the phase pressures and the
phase saturations are primary unknowns.

Let us also mention that, recently, a new global pressure concept was introduced
in [5, 7] for modeling immiscible, compressible two-phase flow in porous media with-
out any simplifying assumptions. The resulting equations are written in a fractional
flow formulation and lead to a coupled system which consists of a nonlinear para-
bolic equation (the global pressure equation) and a nonlinear diffusion-convection
one (the saturation equation). This new formulation is fully equivalent to the orig-
inal phase equations formulation, i.e. where the phase pressures and the phase
saturations are primary unknowns. For this model, an existence result is obtained
in [8] and homogenization results in [6].

Let us note that all the aforementioned works are restricted to the case where
the gas density is bounded from below and above, contrarily to the present work.
This assumption is too restrictive for some realistic problems, such as gas migration
through engineered and geological barriers for a deep repository for radioactive
waste. In this case the gas obeys the ideal gas law, i.e. the equation of state is given

by %g(p)
def
= σp where %g is the gas density, pg is the gas pressure and σ is a given

constant. Then a new degeneracy appears in the evolution term of the gas pressure
equation. In this paper we extend our previous results obtained in [4] to the more
complex case of an ideal gas which is more reasonable in gas reservoir engineering.
The major difficulties related to this model are in the nonlinear degenerate structure
of the equations, as well as in the coupling in the system. To obtain these results
we elaborated a new approach based on the ideas from [4] and regularization.

The rest of the paper is organized as follows. In Section 2 we describe the physical
model and formulate the corresponding mathematical problem. We also provide the
assumptions on the data.

The goal of Section 3 is to prove the existence result for the corresponding system
of equations. The proof is divided into a number of steps. In subsection 3.1 we
consider an auxiliary δ-problem where the gas density admits a positive lower bound.
The existence result for the δ-problem is given in subsection 3.2. In subsection 3.3
we obtain a number of a priori estimates for a solution of δ-problem. Then in
subsection 3.4 we prove a compactness result adapted to our model. Finally, in
subsection 3.5 we pass to the limit in δ-problems and complete the proof of the
existence.

Section 4 is devoted to the corresponding homogenization problem. In subsection
4.1 we introduce the model with a periodic microstructure. We assume that both
porosity and absolute permeability tensor are periodic rapidly oscillating functions.
Then subsection 4.2 we formulate the homogenization result. This result is proved
in subsection 4.3. The proof is based on the two-scale convergence technique. Our
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analysis relies essentially on a compactness result [4] which is rather involved due
to the degeneracy and the nonlinearity of the system.

The last section is followed by some concluding remarks.

2. Formulation of the problem. We consider an immiscible compressible two-
phase flow process in a porous reservoir Ω ⊂ Rd (d = 1, 2, 3) which is a bounded
Lipschitz domain. The time interval of interest is (0, T ). We focus here on the
particular case of water and gas phases, but the consideration below is also valid
for a general wetting phase and a non-wetting phase. Let Φ = Φ(x) be the porosity
of Ω; K = K(x) be the absolute permeability tensor of Ω; %w, %g are the densities
of water and gas, respectively; Sw = Sw(x, t), Sg = Sg(x, t) are the saturations
of water and gas in Ω × (0, T ); kr,w = kr,w(Sw), kr,g = kr,g(Sg) are the relative
permeabilities of water and gas; pw = pw(x, t), pg = pg(x, t) are the pressures of
water and gas in Ω× (0, T ).

In what follows, for the sake of presentation simplicity we neglect the source
terms. Then the conservation of mass of each phase is described by (see, e.g.,
[23, 26, 36]): 

Φ(x)
∂

∂t
(Sw %w(pw)) + div

{
%w(pw) ~qw

}
= 0 in ΩT ;

Φ(x)
∂

∂t
(Sg %g(pg)) + div

{
%g(pg) ~qg

}
= 0 in ΩT ,

(1)

where ΩT
def
= Ω×(0, T ) with T > 0, the velocities of water and gas ~qw, ~qg are defined

by Darcy-Muskat’s law:

~qw
def
= −K(x)λw(Sw)

(
∇pw − %w(pw)~g

)
, with λw(Sw) =

kr,w
µw

(Sw); (2)

~qg
def
= −K(x)λg(Sg)

(
∇pg − %g(pg)~g

)
, with λg(Sg) =

kr,g
µg

(Sg). (3)

Here ~g, µw, µg are the gravity vector and the viscosities of the water and gas,
respectively.

From now on we assume that the density of the water is constant, which for the
sake of simplicity will be taken equal to one, i.e. %w(pw) = Const = 1, and the gas
density %g obeys the ideal gas law and is given by the following function:

%g(p) = 0 for p 6 0; %g(p) = σ pmax for p > pmax;

%g(p)
def
= σp for 0 < p < pmax.

(4)

Here σ, %max, and pmax are positive constants. Note that %g is a continuous mono-
tone and non-negative function.

The model is completed as follows. By the definition of saturations, one has

Sw + Sg = 1 with Sw, Sg > 0. (5)

We set:
S

def
= Sw. (6)

Then the curvature of the contact surface between the two fluids links the jump of
pressure of two phases to the saturation by the capillary pressure law:

Pc(S) = pg − pw with P ′c(s) < 0 for all s ∈ [0, 1] and Pc(1) = 0, (7)

where P ′c(s) denotes the derivative of the function Pc(s).
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Now due to (6) and the assumption on the water density, we rewrite the system
(1) as follows:

Φ(x)
∂S

∂t
− div

{
K(x)λw(S)

(
∇pw − ~g

)}
= 0 in ΩT ;

Φ(x)
∂Θ

∂t
− div

{
K(x)λg(S)%g(pg)

(
∇pg − %g(pg)~g

)}
= 0 in ΩT ;

Pc(S) = pg − pw in ΩT ,

(8)

where λg(S) := λg(1− S) and

Θ
def
= %g(pg)(1− S). (9)

The system (8) have to be completed by appropriate boundary and initial con-
ditions.

Boundary conditions.: We suppose that the boundary ∂Ω consists of two parts

Γinj and Γimp such that Γinj ∩ Γimp = ∅, ∂Ω = Γinj ∪ Γimp. The boundary
conditions are given by:{

pg(x, t) = pw(x, t) = 0 on Γinj × (0, T );

~qw · ~ν = ~qg · ~ν = 0 on Γimp × (0, T ),
(10)

where the velocities ~qw, ~qg are defined in (2), (3).
Initial conditions.: The initial conditions read:

pw(x, 0) = p0w(x) and pg(x, 0) = p0g(x) in Ω. (11)

Notice that from (10) and (7) it follows that S = 1 on Γinj × (0, T ). The initial
condition for S is uniquely defined by the equation

Pc(S
0(x)) = p0g(x)− p0w(x). (12)

Then according to (9) the initial condition for Θ reads

Θ0 = %g(p
0
g)(1− S0). (13)

Remark 1. It is important to underline that in the earlier works (see, e.g., [4, 9,
10, 30, 31, 32, 33]) it was assumed that the gas density admits a strictly positive
lower bound:

%min 6 %g(p) 6 %max with 0 < %min < %max < +∞. (14)

2.1. A fractional flow formulation. In the sequel, we use a formulation obtained
after transformation using the concept of the so called global pressure. In the case
of incompressible two-phase flow this concept was introduced for the first time in
[12, 13]. Following [14, 23], see also [26], we first recall the definition of the global
pressure. It plays a crucial role, in particular, for compactness results. The idea of
introducing the global pressure is as follows. We want to replace the water-gas flow
by a flow of a fictive fluid obeying the Darcy law with a non-degenerating coefficient.
Namely, we are looking for a pressure P and the coefficient γ(S) such that γ(S) > 0
for all S ∈ [0, 1], and

λw(S)∇pw + λg(S)∇pg = γ(S)∇P. (15)

Then the global pressure, P, is defined by:

pw
def
= P + Gw(S) and pg

def
= P + Gg(S); (16)
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the functions Gw(s) and Gg(s) will be introduced later on, in (19), (20). Now it is
easy to see that

λw(S)∇pw + λg(S)∇pg = λ(S)∇P +
{
λg(S)∇Gg(S) + λw(S)∇Gw(S)

}
,

where
λ(s)

def
= λw(s) + λg(s) (17)

We set:
λg(S)∇Gg(S) + λw(S)∇Gw(S) = 0. (18)

Then γ(S) = λ(S). By construction, λ(S) > 0 for all S ∈ [0, 1] (see the condition
(A.5) below). Thus the relation (15) is established. Now we specify the functions
Gw, Gg. We define Gg as follows:

Gg(S)
def
= Gg(0) +

S∫
0

λw(s)

λ(s)
P ′c(s) ds. (19)

The functions Gw are then defined by

Gw(S)
def
= Gg(S)− Pc(S) with ∇Gw(S) = −λg(S)

λ(S)
P ′c(S)∇S. (20)

Notice that from (19), (20) we get:

λw(s)∇Gw(s) = α(s)∇s and λg(s)∇Gg(s) = −α(s)∇s, (21)

where

α(s)
def
=
λg(s)λw(s)

λ(s)
|P ′c(s)| . (22)

Now we link the capillary pressure and the mobilities. In a standard way (see,
e.g., [40] or [9] for more details) we obtain the following identity:

λg(S)|∇pg|2 + λw(S)|∇pw|2 = λ(S)|∇P|2 + |∇b(S)|2 , (23)

where

b(S)
def
=

s∫
0

a(ξ) dξ with a(s)
def
=

√
λg(s)λw(s)

λ(s)
|P ′c(s)| . (24)

Ii is also convenient to introduce the following function β:

β(s)
def
=

s∫
0

α(ξ) dξ, (25)

where the function α is defined in (22). Notice that by the definition of the global
pressure, (24), (25), and by the boundedness of λw, λg (see the condition (A.5)
below) the following relations holds:

|∇β(S)|2 6 C |∇b(S)|2 , (26)

λw(s)∇pw = λw(s)∇P +∇β(s), and λg(s)∇pg = λg(s)∇P−∇β(s). (27)

In order to complete this section, let us calculate the value of the global pressure
function P on Γinj. In what follows (see condition (A.4) below) we assume that the
capillary pressure function Pc satisfies the condition Pc(1) = 0. Then from (10)1

we have that the saturation S equals one on Γinj. Now the definition of the global
pressure (16) implies that the function P on Γinj is a constant which we denote by
P1.
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2.2. Main assumptions. The main assumptions on the data are as follows:

(A.1) The porosity Φ ∈ L∞(Ω), and there are positive constants φ−, φ
+ such that

0 < φ− < φ+ and

0 < φ− 6 Φ(x) 6 φ+ < 1 a. e. in Ω. (28)

(A.2) The tensor K ∈ (L∞(Ω))d×d and there exist constants K−,K
+ such that

0 < K− < K+ and

K−|ξ|2 6 (K(x)ξ, ξ) 6 K+|ξ|2 for all ξ ∈ Rd, a.e. in Ω. (29)

(A.3) The function %g = %g(p) is given by (4).
(A.4) The capillary pressure function Pc(s) ∈ C1([0, 1];R+). Moreover, P ′c(s) < 0

in [0, 1] and Pc(1) = 0.
(A.5) The functions λw, λg belong to the space C([0, 1];R+) and satisfy the fol-

lowing properties:
(i) 0 6 λw, λg 6 1 in [0, 1];
(ii) λw(0) = 0 and λg(1) = 0;
(iii) there is a positive constant L0 such that λ(s) = λw(s) +λg(s) > L0 > 0
in [0, 1].

(A.6) The function α defined in (22) is an element of C1([0, 1];R+). Moreover,
α(0) = α(1) = 0, and α > 0 in (0, 1).

(A.7) The function β−1, inverse of β defined in (25) is a Hölder continuous function
of order θ with θ ∈ (0, 1) on the interval [0, β(1)]. There exists a positive
constant Cβ such that for all s1, s2 ∈ [0, β(1)] the following inequality holds:∣∣β−1(s1)− β−1(s2)

∣∣ 6 Cβ |s1 − s2|θ.

(A.8) The initial data for the pressures are such that p0g , p
0
w ∈ L2(Ω).

(A.9) The initial data for the saturation is such that S0 ∈ L∞(Ω) and 0 6 S0 6 1
a.e. in Ω.

The assumptions (A.1)–(A.9) are classical for two-phase flow in porous media.

3. Existence result. In order to define a weak solution of the above problem, we
introduce the following Sobolev space:

H1
Γinj

(Ω)
def
=
{
u ∈ H1(Ω) : u = 0 on Γinj

}
.

The space H1
Γinj

(Ω) is a Hilbert space. The norm in this space is given by

‖u‖H1
Γinj

(Ω) = ‖∇u‖(L2(Ω))d .

Theorem 3.1. Let assumptions (A.1)-(A.9) be fulfilled. Then there exist func-
tions 〈pg, pw, S〉 such that:

(I):

pw, pg ∈ L2(ΩT ) and
√
λw(S)∇pw,

√
λg(S)∇pg ∈ L2(ΩT ); (30)

β(S) ∈ L2(0, T ;H1(Ω)) and P− P1 ∈ L2(0, T ;H1
Γinj

(Ω)); (31)

Φ
∂S

∂t
∈ L2(0, T ;H−1(Ω)) and Φ

∂Θ

∂t
∈ L2(0, T ;H−1(Ω)); (32)

where the function Θ is defined in (9); S = 1 on Γinj.
(II): the maximum principle holds:

0 6 S 6 1 a.e. in ΩT . (33)
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(III): For any ϕw, ϕg ∈ C1([0, T ];H1(Ω)) satisfying ϕw = ϕg = 0 on Γinj ×
(0, T ) and ϕw(x, T ) = ϕg(x, T ) = 0, we have:

−
∫

ΩT

Φ(x)S
∂ϕw
∂t

dx dt−
∫
Ω

Φ(x)S0(x)ϕw(x, 0) dx+

∫
ΩT

K(x)λw(S)∇pw ·∇ϕw dx dt−

−
∫

ΩT

K(x)λw(S)~g · ∇ϕw dx dt = 0; (34)

−
∫

ΩT

Φ(x)Θ
∂ϕg
∂t

dx dt−
∫
Ω

Φ(x)Θ0(x)ϕg(x, 0) dx+ (35)

+

∫
ΩT

K(x)λg(S)%g(pg)∇pg · ∇ϕg dx dt−
∫

ΩT

K(x)λg(S) [%g(pg)]
2
~g · ∇ϕg dx dt = 0

with Θ defined in (9), and Pc(S) = pg − pw.
(IV): The initial conditions are satisfied in a weak sense as follows:

∀ψ ∈ H1
Γinj

(Ω),

∫
Ω

Φ(x)S(x, t)ψ(x) dx,

∫
Ω

Φ(x)Θ(x, t)ψ(x) dx ∈ C ([0, T ]) .

(36)
Furthermore, we have∫

Ω

Φ(x)S ψ dx

 (0) =

∫
Ω

Φ(x)S0 ψ dx (37)

and ∫
Ω

Φ(x)Θψ dx

 (0) =

∫
Ω

Φ(x)Θ0 ψ dx (38)

with S0 and Θ0 defined in (12) and (13), respectively.

The proof of Theorem 3.1 is divided into a several steps. It is based on a auxiliary
existence result for the system obtained by approximation of the initial degenerate
gas density %g by a family of functions {%δg}δ>0 that admit a positive lower bound.
For such kind of system the desired existence result is proved in [9, 30, 31, 32, 33].
This result is formulated in subsection 3.1. Using the weak formulation of the
regularized problem and the uniform in δ estimates for its solution, we, finally,
prove Theorem 3.1.

3.1. Auxiliary δ-problem. In this subsection we approximate the function %g by
a family of functions {%δg}δ>0 that admit a positive lower bound. For each δ > 0
we set:

%δg(p) = δ for −∞ < p 6
δ

σ
; %δg(p) = σ pmax for p > pmax;

%δg(p)
def
= σp for

δ

σ
< p < pmax.

(39)

Here σ, %max, pmax are positive constants.
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In addition to (8), consider the following family of problems:

δ−problem :



Φ(x)
∂Sδ

∂t
− div

{
K(x)λw(Sδ)

(
∇pδw − ~g

)}
= 0 in ΩT ;

Φ(x)
∂Θδ

∂t
− div

{
K(x)λg(S

δ)%δg(p
δ
g)
(
∇pδg − %δg(pδg)~g

)}
= 0 in ΩT ;

Pc(S
δ) = pδg − pδw in ΩT ,

(40)
where

Θδ def
= %δg(p

δ
g)
(
1− Sδ

)
. (41)

System (40) have to be completed with the corresponding boundary and initial
conditions.

Boundary conditions.: The boundary conditions read{
pδg(x, t) = pδw(x, t) = 0 on Γinj × (0, T );

~q δw · ~ν = ~q δg · ~ν = 0 on Γimp × (0, T ),
(42)

where the velocities ~q δw, ~q
δ
g are given by:

~q δw
def
= −K(x)λw(Sδ)

(
∇pδw−~g

)
and ~q δg

def
= −K(x)λg(S

δ)

(
∇pδg−%δg(pδg)~g

)
. (43)

Initial conditions.: The initial conditions read:

pδw(x, 0) = p0w(x) and pδg(x, 0) = p0g(x) in Ω. (44)

The remaining part of the Section is organized as follows. First, in subection 3.2
we recall the existence result for the system (40). Then we obtain the uniform in
δ estimates for the solution of δ-problem (40). In subection 3.4 we formulate the
compactness and convergence results which we use in the proof of Theorem 3.1.

3.2. An existence result for the δ-problem. The goal of this subsection is to
recall the existence result for the δ-problem (40). First, we reformulate the condition
(A.3) from subsection 2.2 in order to adapt it to our δ-problem. For this problem
the condition (A.3) becomes:

(A.3δ) The function %δg = %δg(p) is given by (39).

Now we are in position to formulate the existence result to δ-problem (40). It
reads.

Theorem 3.2. (see [9, 33]) Let assumptions (A.1)-(A.2), (A.3δ), (A.4)-(A.9)
be fulfilled. Then, for each δ > 0, there exist 〈pδg, pδw, Sδ〉 such that:

(I):

pδw, p
δ
g ∈ L2(ΩT ) and

√
λw(Sδ)∇pδw,

√
λg(Sδ)∇pδg ∈ L2(ΩT ); (45)

β(Sδ) ∈ L2(0, T ;H1(Ω)) and Pδ − P1 ∈ L2(0, T ;H1
Γinj

(Ω)); (46)

Φ
∂Sδ

∂t
∈ L2(0, T ;H−1(Ω)) and Φ

∂Θδ

∂t
∈ L2(0, T ;H−1(Ω)); (47)

where the function Θδ is given by (41).
(II): the maximum principle holds:

0 6 Sδ 6 1 a.e. in ΩT . (48)
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(III): For any ϕw, ϕg ∈ C1([0, T ];H1(Ω)) satisfying ϕw = ϕg = 0 on Γinj ×
(0, T ) and ϕw(x, T ) = ϕg(x, T ) = 0, the following integral identity holds:

−
∫

ΩT

Φ(x)Sδ
∂ϕw
∂t

dx dt−
∫
Ω

Φ(x)S0(x)ϕw(x, 0) dx

+

∫
ΩT

K(x)λw(Sδ)∇pδw · ∇ϕw dx dt (49)

−
∫

ΩT

K(x)λw(Sδ)~g · ∇ϕw dx dt = 0;

−
∫

ΩT

Φ(x)Θδ ∂ϕg
∂t

dx dt−
∫
Ω

Φ(x)Θδ(x, 0)ϕg(x, 0) dx

+

∫
ΩT

K(x)λg(S
δ)%δg(p

δ
g)∇pδg · ∇ϕg dx dt (50)

−
∫

ΩT

K(x)λg(S
δ)
[
%δg(p

δ
g)
]2
~g · ∇ϕg dx dt = 0.

Here Θδ(x, 0) = %δg(p
0
g)(1 − S0) with the function S0 defined in condition

(A.9), and Pc(S
δ) = pδg − pδw.

(IV): The initial conditions are satisfied in a weak sense as follows:

∀ψ ∈ H1
Γinj

(Ω),

∫
Ω

Φ(x)Sδ(x, t)ψ(x) dx,

∫
Ω

Φ(x)Θδ(x, t)ψ(x) dx ∈ C ([0, T ]) .

(51)
Furthermore, we have∫

Ω

Φ(x)Sδ ψ dx

 (0) =

∫
Ω

Φ(x)S0 ψ dx (52)

and ∫
Ω

Φ(x)Θδ ψ dx

 (0) =

∫
Ω

Φ(x)Θδ(x, 0)ψ dx. (53)

3.3. A priori estimates for a solution of δ-problem (40). We start this sub-
section by obtaining the energy equality for δ-problem (40). The following result
holds.

Lemma 3.3 (Energy equality for δ-problem). Let 〈pδw, pδg, Sδ〉 be a solution to (40).
Then

d

d t

∫
Ω

Φ(x)Eδ
(
pδg(x, t), S

δ(x, t)
)
dx+

+

∫
Ω

K(x)

{
λw(Sδ)∇pδw ·

(
∇pδw − ~g

)
+λg(S

δ)∇pδg ·
(
∇pδg − %δg(pδg)~g

)}
dx = 0 (54)
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in the sense of distributions. Here

Eδ(p, S)
def
= (1− S)Rδ(p)−z(S), with Rδ(p)

def
= %δg(p)R

δ
g(p)− p, (55)

where

z(s)
def
=

s∫
0

Pc(ξ) dξ and Rδg(p)
def
=

p∫
pmax

dξ

%δg(ξ)
. (56)

Notice that in the previous works (see, e.g., [4, 9, 10, 30, 31, 32, 33]), the function

Rg was defined by Rg(pg)
def
=

pg∫
0

dξ
%g(ξ) . However, in our case, with such a definition

we do not have uniform in δ lower bound for the function Rδ. Thus, we have to
modify the definition of Rg, subtracting an appropriate constant C = C(δ). The
properties of the functions Rδg,R

δ, and Eδ are given in:

Lemma 3.4. Let Rδg,R
δ, and Eδ be the functions defined by (55), (56). Then

(i) The function Rδ is negative and bounded from below, that is

CR 6 Rδ 6 0 with CR
def
= min

{
−pmax, min

p∈[0,pmax]

(
p [ln p− ln pmax]− p

)}
. (57)

(ii) The function Eδ is bounded from below. Namely,

Eδ > −CR − max
S∈[0,1]

Pc(S). (58)

Proof of Lemma 3.4. Using the definition of the gas density %δg given by (39), it
is easy to calculate that

Rδg(p)
def
=

p∫
pmax

dξ

%δg(ξ)
=



1

σ

[
ln
δ

σ
− ln pmax

]
+

1

δ

(
p− δ

σ

)
for p ∈

(
−∞, δ

σ

)
;

1

σ
[ln p− ln pmax] for p ∈

[
δ

σ
, pmax

]
;

1

%max
[p− pmax] for p ∈ (pmax,+∞).

(59)
Consider now the function Rδ. Due to (39) and (59), we have:

Rδ(p)
def
= %δg(p)R

δ
g(p)− p =



δ

σ

[
ln
δ

σ
− ln pmax

]
− δ

σ
for p ∈

(
−∞, δ

σ

)
;

p [ln p− ln pmax]− p for p ∈
[
δ

σ
, pmax

]
;

−pmax for p ∈ (pmax,+∞).

(60)

The last formula immediately implies (57). Now (58) follows easily from (57) and
the estimate:

Eδ(p, S) = (1− S)Rδ(p)−z(S) > − (CR + z(1)) > −CR − max
S∈[0,1]

Pc(S). (61)

This completes the proof of Lemma 3.4.
In order to formulate a priori estimates for the solution to δ-problem (40), we

remark first that the global pressure Pδ for the problem under consideration can
be introduced in a way similar to one used in subsection 2.1 above. Then the
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desired a priori estimates for the solution of the δ-problem can be easily derived
from Lemmata 3.3, 3.4, and the equality (see subsection 2.1 for more details):

λg(S
δ)|∇pδg|2 + λw(Sδ)|∇pδw|2 = λ(Sδ)|∇Pδ|2 +

∣∣∇b(Sδ)
∣∣2 , (62)

where the function b(s) is defined in (24).
The following result holds.

Lemma 3.5. Let 〈pδw, pδg, Sδ〉 be a solution to (40), the global pressure Pδ is defined
in (16), and the function β(s) is defined in (25). Then∫

ΩT

{
λw(Sδ)|∇pδw|2 + λg(S

δ)|∇pδg|2
}
dxdt 6 C; (63)

∫
ΩT

{
|∇Pδ|2 + |∇β(Sδ)|2

}
dxdt 6 C; (64)

‖∂t(ΦΘδ)‖L2(0,T ;H−1(Ω)) + ‖∂t(ΦSδ)‖L2(0,T ;H−1(Ω)) 6 C. (65)

Here C does not depend on δ.

Proof of Lemma 3.5. Integrating (54) over the interval (0, T ), we get:∫
Ω

Φ(x)Eδ(x, T ) dx

+

∫
ΩT

K(x)

{
λw(Sδ)∇pδw ·

(
∇pδw − ~g

)
+ λg(S

δ)∇pδg ·
(
∇pδg − %δg(pδg)~g

)}
dxdt

=

∫
Ω

Φ(x)Eδ(x, 0) dx. (66)

Let us estimate now the right-hand side of (66) from above. Due to the definition
of the function Eδ, (55), and the initial conditions (44) we have that

Jδ
def
=

∫
Ω

Φ(x)Eδ(x, 0) dx =

∫
Ω

Φ(x)
{(

1− S0
)
Rδ(p0g)−z(S0)

}
dx. (67)

where S0 = S0(x) is the initial condition of the saturation function (see condition
(A.9) in Section 2.2). Now from condition (A.1) and the maximum principle (48),
we easily obtain that

|Jδ| 6 φ+

∫
Ω

|Rδ(p0g)| dx+ φ+

∫
Ω

z(S0) dx 6 φ+ |Ω| |CR|+ φ+

∫
Ω

z(S0) dx, (68)

where |Ω| stands for the measure of the domain Ω. Therefore,

|Jδ| 6 C0, (69)

where C0 is a constant which only depends on max
S∈[0,1]

Pc(S), and the constant φ+.

Combining condition (A.1), (66), (69), and the bound (61) yields:∫
ΩT

K(x)

{
λw(Sδ)∇pδw ·

(
∇pδw − ~g

)
+ λg(S

δ)∇pδg ·
(
∇pδg − %δg(pδg)~g

)}
dxdt 6

6 C0 + φ+ |Ω|
[
2 |CR|+ max

S∈[0,1]
Pc(S)

]
. (70)
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Applying the Cauchy inequality, from (70), we deduce (63), and consequently (64).
The uniform estimates (65) can be obtained in the standard way from (40) with

the help of (63). Lemma 3.5 is proved.

3.4. Compactness and convergence results. In this subsection we recall two
compactness results that were obtained in [9].

Lemma 3.6 (Compactness lemma). Let Φ ∈ L∞(Ω), and assume that there exist
positive constants φ1, φ2 such that 0 < φ1 6 Φ(x) 6 φ2 < 1 a.e. in Ω. Assume
moreover that a family {vδ}δ>0 ⊂ L2(ΩT ) satisfies the following properties:

1. the functions vδ satisfy the ineqiality 0 6 vδ 6 C;
2. there exists a function $ such that $(ξ) → 0 as ξ → 0, and the following

inequality holds true:∫
ΩT

∣∣vδ(x+ ∆x, τ)− vδ(x, τ)
∣∣2 dx dτ 6 C $(|∆x|); (71)

3. the estimate holds ‖∂t(Φ vδ)‖L2(0,T ;H−1(Ω)) 6 C.

Then the family {vδ}δ>0 is a compact set in L2(ΩT ).

This result is a particular case of Lemma 4.2 proved in [4]. We apply the state-
ment of Lemma 3.6 in order to prove the compactness of the sequences {Θδ}δ>0,
{Sδ}δ>0. As in [9] we obtain.

Proposition 1. Let {Θδ}δ>0 ⊂ L2(ΩT ) be defined by (41). Then {Θδ}δ>0 is a
compact set in the space Lq(ΩT ) for all q ∈ [1,+∞).

Proposition 2. Let {Sδ}δ>0 ⊂ L2(ΩT ). Then, for all q ∈ [1,+∞), {Sδ}δ>0 is a
compact set in the space Lq(ΩT ) for all q ∈ [1,+∞).

Now from Lemma 3.5 and Propositions 1, 2 we have.

Lemma 3.7. Up to a subsequence,

Sδ → S strongly in L2(ΩT ) and a.e. in ΩT ; (72)

0 6 S 6 1 a.e. in ΩT ; (73)

Pδ → P weakly in L2(0, T ;H1
Γinj

(Ω)); (74)

β(Sδ)→ β(S) weakly in L2(0, T ;H1(Ω)); (75)

Θδ def
= %δg(p

δ
g)
(
1− Sδ

) def
= %δg(P

δ + Gg(S
δ))
(
1− Sδ

)
→ Θ strongly in L2(ΩT )

Θδ → Θ a.e. in ΩT ,
(76)

where Θ
def
= %g(P + Gg(S)) (1− S)

def
= %g(pg) (1− S);[

%δg(p
δ
g)
]k
ψ(Sδ)→ [%g(pg)]

k
ψ(S) a.e. in ΩT (k = 1, 2), (77)

for any ψ ∈ C([0, 1]) such that ψ(0) = 0.

Proof of Lemma 3.7. The convergence (72) follows immediately from Proposition
2 and the limit function S evidently satisfies (73). The relations (74) and (75) are
the consequence of (64) from Lemma 3.5. The convergence (76) follows from (72)-
(74), the inequality 0 6 Sδ 6 1, and the fact that %δg is monotone. In order to

justify (76) we first observe that, due to the definitions of the functions %δ and %,

%δg(P
δ + Gg(S

δ))
(
1− Sδ

)
= %g(P

δ + Gg(S
δ))
(
1− Sδ

)
+O(δ) as δ → 0.
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Then for any v ∈ L∞(ΩT ), we have:(
(%g(P

δ +Gg(S
δ))(1− Sδ)− %g(v +Gg(S

δ))(1− Sδ)), (Pδ − v)
)
L2(ΩT )

> 0.

Denoting Θ̄ the limit of Θδ and passing to the limit, as δ → 0, in the last inequality,
we obtain (

Θ̄− %g(v +Gg(S))(1− S)), (P− v)
)
L2(ΩT )

> 0.

Choosing v = P + κv1 and sending κ to zero yields(
Θ̄− %g(P +Gg(S))(1− S)), v1

)
L2(ΩT )

> 0

for any v1 ∈ L2(ΩT ). This implies (76).
Finally, the convergence (77) can be proved by arguments similar to those from

Lemma 4.2 in [40]. Lemma 3.7 is proved.

3.5. Proof of Theorem 3.1. We begin this subsection by studying the regularity
properties of solution to (8).

3.5.1. Regularity properties of a solution to system (8). Taking into account the
lower semi-continuity of the norm, by Lemma 3.5, we obtain:∫

ΩT

|∇P|2 dx dt 6 lim
δ→0

∫
ΩT

∣∣∇Pδ∣∣2 dx dt 6 C; (78)

∫
ΩT

|∇β(S)|2 dx dt 6 lim
δ→0

∫
ΩT

∣∣∇β(Sδ)
∣∣2 dx dt 6 C; (79)

∫
ΩT

|∇b(S)|2 dx dt 6 lim
δ→0

∫
ΩT

∣∣∇b(Sδ)
∣∣2 dx dt 6 C; (80)

Now we set:

pw
def
= P + Gw(S) and pg

def
= P + Gg(S). (81)

We also recall the relation (23):

λg(S)|∇pg|2 + λw(S)|∇pw|2 = λ(S)|∇P|2 + |∇b(S)|2 .

Then, taking into account (78), (80), and the last relation we obtain that the
functions pw, pg defined in (81) are such that∫

ΩT

{
λg(S) |∇pg|2 + λw(S) |∇pw|2

}
dx dt < +∞. (82)

Thus properties (30)-(31) are established. The maximum principle (33) follows
immediately from (48) and (72). Finally, the interpretation of the initial conditions
can be done as in [40] (see also [9]).
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3.5.2. Passage to the limit in equations (49), (50). Consider the equation (49), with
ϕw ∈ C1([0, T ];H1(Ω)) and is such that ϕw = 0 on Γinj× (0, T ) and ϕw(x, T ) = 0.

Taking into account (72), one easily gets:

lim
δ→0

∫
ΩT

Φ(x)Sδ
∂ϕw
∂t

dx dt =

∫
ΩT

Φ(x)S
∂ϕw
∂t

dx dt. (83)

We then recall that

λw(Sδ)∇pδw = λw(Sδ)∇Pδ +∇β(Sδ). (84)

Then the third term on the left-hand side of (49) takes the form:∫
ΩT

K(x)λw(Sδ)∇pδw · ∇ϕw dx dt =

∫
ΩT

K(x)

{
λw(Sδ)∇Pδ +∇β(Sδ)

}
· ∇ϕw dx dt.

Now taking into account the convergence (72), (74), and (75), we obtain that

lim
δ→0

∫
ΩT

K(x)

{
λw(Sδ)∇Pδ +∇β(Sδ)

}
· ∇ϕw dx dt =

=

∫
ΩT

K(x)

{
λw(S)∇P +∇β(S)

}
· ∇ϕw dx dt.

Returning now to the water pressure function pw, we finally get:

lim
δ→0

∫
ΩT

K(x)λw(Sδ)∇pδw · ∇ϕw dx dt =

∫
ΩT

K(x)λw(S)∇pw · ∇ϕw dx dt. (85)

Considering (72), one can check that the fourth term of (49) satisfies the relation

lim
δ→0

∫
ΩT

K(x)λw(Sδ)~g · ∇ϕw dx dt =

∫
ΩT

K(x)λw(S)~g · ∇ϕw dx dt. (86)

Thus, the saturation equation (34) is derived.
We turn to (50) with ϕg ∈ C1([0, T ];H1(Ω)), ϕg = 0 on Γinj × (0, T ), and

ϕg(x, T ) = 0.

Taking into account (76), one easily gets:

lim
δ→0

∫
ΩT

Φ(x) %δg(p
δ
g)(1− Sδ)

∂ϕg
∂t

dx dt =

∫
ΩT

Φ(x)Θ(x, t)
∂ϕg
∂t

dx dt, (87)

where Θ
def
= %g(pg)(1− S) (see (9) above).

Considering the definition of the functions %g and %δg (see (4) and (39), respectively)
we have

lim
δ→0

∫
Ω

Φ(x) %δg(p
0
g)(1− S0)ϕg(x, 0) dx =

∫
ΩT

Φ(x)Θ(x, 0)
∂ϕg
∂t

dx dt. (88)

In order to pass to the limit in the third term of (50) we recall that (see relations
(27))

λg(S
δ)∇pδg = λg(S

δ)∇Pδ −∇β(Sδ). (89)
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Then ∫
ΩT

K(x)λg(S
δ)%δg(p

δ
g)∇pδg · ∇ϕg dx dt =

=

∫
ΩT

K(x) %δg
(
Pδ + Gg(S

δ)
){

λg(S
δ)∇Pδ −∇β(Sδ)

}
· ∇ϕg dx dt.

Now taking into account the convergence results (72), (74), and (75) we obtain that

lim
δ→0

∫
ΩT

K(x) %δg
(
Pδ + Gg(S

δ)
){

λg(S
δ)∇Pδ −∇β(Sδ)

}
· ∇ϕw dx dt =

=

∫
ΩT

K(x) %g (P + Gg(S))

{
λg(S)∇P−∇β(S)

}
· ∇ϕg dx dt.

Returning now to the gas pressure function pg, we finally get:

lim
δ→0

∫
ΩT

K(x)λg(S
δ)%δg(p

δ
g)∇pδg · ∇ϕw dx dt =

∫
ΩT

K(x)λg(S)%g(pg)∇pg · ∇ϕg dx dt

(90)
Finally, in view if (77),

lim
δ→0

∫
ΩT

K(x)λg(S
δ)
[
%δg(p

δ
g)
]2
~g · ∇ϕg dx dt =

∫
ΩT

K(x)λg(S) [%g(pg)]
2
~g · ∇ϕg dx dt.

(91)
Thus the gas pressure equation (35) is obtained. Theorem 3.1 is proved.

4. Homogenization result. In this Section we consider the problem describing
a reservoir with a periodic microstructure. Then in the model considered in the
previous sections one has rapidly oscillating porosity function and absolute perme-
ability tensor. Our goal is to prove the homogenization result for this model. The
convergence of the homogenization process is justified by the technique of two-scale
convergence [2].

4.1. Formulation of the microscopic problem. In this section, we present
the mathematical model describing water-gas flow in a periodically heterogeneous
porous medium. As above we suppose that the gas density vanishes as the gas
pressure is zero. For simplicity, we assume no source/sink terms.

We consider a bounded Lipschitz domain Ω ⊂ Rd (d = 1, 2, 3) with a periodic
microstructure. The microscopic length scale that represents the ratio between the
cell size to the size of the whole region Ω, is denoted by ε. We assume that 0 < ε� 1

is a small parameter tending to zero. We denote by Y
def
=(0, 1)d the periodic cell. Let

Φε(x) = Φ(x/ε) be the porosity of Ω; Kε(x) = K(x/ε) be the absolute permeability

tensor of Ω; Sε
def
= Sεw(x, t), is the saturations of water in Ω× (0, T ); pεw = pεw(x, t),

pεg = pεg(x, t) are the pressures of water and gas in Ω× (0, T ), respectively;
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System (8), in the case of a periodic porous medium, takes the form

ε−problem :



Φε(x)
∂Sε

∂t
− div

{
Kε(x)λw(Sε)

(
∇pεw − ~g

)}
= 0 in ΩT ;

Φε(x)
∂Θε

∂t
− div

{
Kε(x)λg(S

ε)%g(p
ε
g)
(
∇pεg − %g(pεg)~g

)}
= 0 in ΩT ;

Pc(S
ε) = pεg − pεw in ΩT ,

(92)
where

Θε def
= %g(p

ε
g)(1− Sε). (93)

System (92) has to be equipped with appropriate boundary and initial conditions.

Boundary conditions.: We suppose that the boundary ∂Ω consists of two parts

Γinj and Γimp such that Γinj ∩ Γimp = ∅, ∂Ω = Γinj ∪ Γimp. The boundary
conditions are given by:{

pεg(x, t) = pεw(x, t) = 0 on Γinj × (0, T );

~q εw · ~ν = ~q εg · ~ν = 0 on Γimp × (0, T ),
(94)

where the velocities ~q εw, ~q
ε
g are defined as follows:

~q εw
def
= −Kε(x)λw(Sε)

(
∇pεw − ~g

)
,

~q εg
def
= −Kε(x)λg(S

ε)

(
∇pεg − %g(pεg)~g

)
.

(95)

Initial conditions.: The initial conditions read:

pεw(x, 0) = p0w(x) and pεg(x, 0) = p0g(x) in Ω. (96)

Let us formulate the main assumptions on the data. First, we replace conditions
(A.1), (A.2) from Section 2.2 with the following assumptions:

(A.1ε) The function Φ = Φ(y) is Y -periodic, Φ ∈ L∞(Y ), and there are positive
constants φ1, φ2 such that 0 < φ1 6 Φ(y) 6 φ2 < 1 a.e. in Y .

(A.2ε) The tensor K = K(y) is Y -periodic, it belongs to (L∞(Y ))d×d. Moreover,
there exist positive constants K−,K+ such that

K−|ξ|2 6 (K(x)ξ, ξ) 6 K+|ξ|2 for all ξ ∈ Rd, a.e. in Ω. (97)

We also suppose that conditions (A.3)-(A.9) from subsection 2.2 hold true.

We now provide a weak formulation of problem (92)–(96).

Definition 4.1. For each ε > 0 we say that 〈pεw, pεg, Sε〉 is a weak solution of
problem (92), (94), (96) if (30)–(38) are fulfilled for functions pεw, p

ε
g, S

ε instead of
pw, pg, S.

Let us recall that for any ϕw, ϕg ∈ C1([0, T ];H1(Ω)) satisfying ϕw = ϕg = 0 on
Γinj × (0, T ) and ϕw(x, T ) = ϕg(x, T ) = 0, we have:

−
∫

ΩT

Φε(x)Sε
∂ϕw
∂t

dx dt−
∫
Ω

Φε(x)S0(x)ϕw(x, 0) dx

+

∫
ΩT

Kε(x)λw(Sε)∇pεw · ∇ϕw dx dt−
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−
∫

ΩT

Kε(x)λw(Sε)~g · ∇ϕw dx dt = 0 (98)

and

−
∫

ΩT

Φε(x)Θε ∂ϕg
∂t

dx dt−
∫
Ω

Φε(x)Θε(x, 0)ϕg(x, 0) dx+ (99)

+

∫
ΩT

Kε(x)λg(S
ε)%g(p

ε
g)∇pg·∇ϕg dx dt−

∫
ΩT

Kε(x)λg(S
ε)
[
%g(p

ε
g)
]2
~g·∇ϕg dx dt = 0,

where the function Θε is defined in (93).

Notational convention. In what follows C,C1, .. denote generic constants that
do not depend on ε.

4.2. Statement of the homogenization result. We study the asymptotic be-
havior of the solution to problem (92), (94), (96) as ε → 0. In particular, we are
going to show that the effective model reads:

0 6 S 6 1 in ΩT ;

〈Φ〉 ∂S
∂t
− divx

{
K? λw(S)

[
∇Pw − ~g

]}
= 0 in ΩT ;

〈Φ〉 ∂Θ?

∂t
− divx

{
K? %g(Pg)λg(S)

[
∇Pg − %g(Pg)~g

]}
= 0 in ΩT ;

Pc(S) = Pg − Pw in ΩT ,

(100)

where S, Pw, Pg denote the homogenized water saturation, water pressure, and
gas pressure, respectively. 〈Φ〉 denotes the mean value of the function Φ over the
cell Y . K? is the homogenized tensor with the entries K?ij defined by:

K?ij
def
=

∫
Y

K(y) [∇yξi + ~ei] [∇yξj + ~ej ] dy, (101)

where the function ξj is a Y -periodic solution of the following local problem: −divy

(
K(y) [∇yξj + ~ej ]

)
= 0 in Y,

y 7−→ ξj(y) Y -periodic

(102)

with ~ej being the j-th coordinate vector.

The function Θ? = Θ?(x, t) is given by: Θ? def
=(1− S) %g (Pg).

Remark 2. The homogenized system (100) generalizes the result obtained earlier
in [4] in two ways. First, this system allows the gas density to degenerate. In
addition, this system is written in terms of the homogenized phase pressures Pw, Pg
and not in terms of the homogenized global pressure and water saturation as was
done in [4] (see (3.1)).

System (100) has to be completed with the following boundary and initial con-
ditions.
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Boundary conditions.: The boundary conditions are given by:{
Pg(x, t) = Pw(x, t) = 0 on Γinj × (0, T );

~q ?w · ~ν = ~q ?g · ~ν = 0 on Γimp × (0, T ),
(103)

where the velocities ~q εw, ~q
ε
g are defined as follows:

~q ?w
def
= −K?λw(S)

(
∇Pw − ~g

)
and ~q ?g

def
= −K?λg(S)

(
∇Pg − %g(Pg)~g

)
. (104)

Initial conditions.: The initial conditions read:

Pw(x, 0) = p0w(x) and Pg(x, 0) = p0g(x) in Ω. (105)

4.3. Proof of Theorem 4.3. The rigorous justification of the homogenization
process relies on the two-scale convergence approach, see, e.g., [2]. For the reader’s
convenience, we recall the definition of the two-scale convergence.

Definition 4.2. A sequence of functions {vε}ε>0 ⊂ L2(ΩT ) two-scale converges to
v ∈ L2(ΩT × Y ) if ‖vε‖L2(ΩT ) 6 C, and for any test function ϕ ∈ C∞(ΩT ;C#(Y ))
the following relation holds:

lim
ε→0

∫
ΩT

vε(x, t)ϕ
(
x,
x

ε
, t
)
dx dt =

∫
ΩT×Y

v(x, y, t)ϕ(x, y, t) dy dx dt.

This convergence is denoted by vε(x, t)
2s
⇀ v(x, y, t).

The homogenization result reads.

Theorem 4.3. Let assumptions (A.1ε), (A.2ε), (A.3)-(A.9) be fulfilled. Then a
solution of problem (92) converges (up to a subsequence) to a weak solution of the
homogenized problem (100).

The proof is divided into a number of steps.

4.3.1. A priori estimates for solutions to problem (92). In this section we derive
the a priori estimates for problem (92). For any ε > 0, we consider the following
ε, δ-problem:

Φε(x)
∂Sε,δ

∂t
− div

{
Kε(x)λw(Sε,δ)

(
∇pε,δw − ~g

)}
= 0 in ΩT ;

Φε(x)
∂Θε,δ

∂t
− div

{
Kε(x)λg(S

ε,δ)%δg(p
ε,δ
g )
(
∇pε,δg − %δg(pε,δg )~g

)}
= 0 in ΩT ;

Pc(S
ε,δ) = pε,δg − pε,δw in ΩT ,

(106)
where the family of functions {%δg}δ>0 is defined in (39) and

Θε,δ def
= %δg(p

ε,δ
g )(1− Sε,δ). (107)

The (ε, δ)-problem is completed by the boundary and initial conditions (94) and
(96), respectively.

The energy equality for problem (106) can be obtained as in Section 3.3.
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Lemma 4.4 (Energy equality for (ε, δ)-problem). Let 〈pε,δw , pε,δg , Sε,δ〉 be a solution
to (106). Then

d

d t

∫
Ω

Φε(x)Eε,δ(x, t) dx+

+

∫
Ω

Kε(x)

{
λw(Sε,δ)∇pε,δw ·

(
∇pε,δw − ~g

)
+ λg(S

ε,δ)∇pε,δg ·
(
∇pε,δg − %δg(pε,δg )~g

)}
dx

(108)

= 0

in the sense of distributions. Here

Eε,δ
def
=
(
1− Sε,δ

)
Rδ(pε,δg )−z(Sδ), with Rδ(p)

def
= %δg(p)R

δ
g(p)− p, (109)

where the functions z(s) and Rδ(p) are defined by (56).

Then following the lines of Section 3.3 one can prove the following statement
which is similar to that of Lemma 3.5.

Lemma 4.5. Let 〈pε,δw , pε,δg 〉 be a solution to (106), the global pressure Pε,δ be defined
in (16), and the function β(s) be defined in (25). Then∫

ΩT

{
λw(Sε,δ)|∇pε,δw |2 + λg(S

ε,δ)|∇pε,δg |2
}
dx 6 C; (110)

∫
ΩT

{
|∇Pε,δ|2 + |∇β(Sε,δ)|2

}
dx 6 C. (111)

Here C does not depend on ε, δ.

Now, as in Section 3.5.1, we conclude that∫
ΩT

|∇Pε|2 dx dt 6 lim
δ→0

∫
ΩT

|∇Pε,δ|2 dx dt 6 C; (112)

∫
ΩT

|∇β(Sε)|2 dx dt 6 lim
δ→0

∫
ΩT

∣∣∇β(Sε,δ)
∣∣2 dx dt 6 C; (113)

∫
ΩT

|∇b(Sε)|2 dx dt 6 lim
δ→0

∫
ΩT

∣∣∇b(Sε,δ)
∣∣2 dx dt 6 C; (114)

∫
ΩT

{
λg(S

ε)
∣∣∇pεg∣∣2 + λw(Sε) |∇pεw|

2
}
dx dt 6 C, (115)

where C is a constant that does not depend on ε, δ.
The uniform estimates for the time derivatives of the functions ΦεΘε and ΦεSε

can be derived from (92) using (115). These estimates read:

‖∂t(ΦεΘε)‖L2(0,T ;H−1(Ω)) + ‖∂t(ΦεSε)‖L2(0,T ;H−1(Ω)) 6 C, (116)

where C is a constant that does not depend on ε.
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4.3.2. Compactness and convergence results. First, we recall the following compact-
ness result established in [4].

Lemma 4.6 (Compactness lemma). Let Φ ∈ L∞(Y ), and assume that there are
positive constants φ1, φ2 such that 0 < φ1 6 Φ(y) 6 φ2 < 1 a.e. in Y . Assume
moreover that a family {vε}ε>0 ⊂ L2(ΩT ) satisfies the following properties:

1. vε ∈ L∞(ΩT ), and 0 6 vε 6 C;
2. there exists a function $ such that $(ξ)→ 0 as ξ → 0, and∫

ΩT

|vε(x+ ∆x, τ)− vε(x, τ)|2 dx dτ 6 C $(|∆x|);

3. ‖∂t(Φεvε)‖L2(0,T ;H−1(Ω)) 6 C.

Then the family {vε}ε>0 is a compact set in L2(ΩT ).

Remark 3. In the formulation of the above compactness lemma the periodicity of
Φ can be replaced with the assumption that Φε ⇀ 1 weakly in L2(Ω), as ε→ 0.

Now we turn to the compactness result for the family {Θε}ε>0.

Proposition 3. Under our standing assumptions, the set {Θε}ε>0 is compact in
the space Lq(ΩT ) for all q ∈ [1,+∞).

A similar result holds for the set {Sε}ε>0.

Proposition 4. Under our standing assumptions, the set {Sε}ε>0 is compact in
the space Lq(ΩT ) for all q ∈ [1,+∞).

Summarizing the above statements yields.

Lemma 4.7. There exist a function S with 0 6 S 6 1 a.e. in ΩT and a function
P ∈ L2(0, T ;H1(Ω)) such that up to a subsequence:

Sε(x, t)→ S(x, t) strongly in Lq(ΩT ) ∀ 1 6 q < +∞; (117)

Pε(x, t)→ P(x, t) weakly in L2(0, T ;H1(Ω)); (118)

β(Sε)→ β(S) strongly in Lq(ΩT ) ∀ 1 6 q < +∞; (119)

Θε → Θ? def
= (1− S) %g (Pg) strongly in L2(ΩT ). (120)

The Proof of Lemma 4.7 relies on the arguments similar to those used in the
proof of Lemma 4.8 in [4].

4.3.3. Passage to the limit in equations (98), (99). In this subsection we apply the
method of a cut-off function introduced in [10].

It is easy to justify the passage to the two-scale limit in the temporal terms
using the convergence results (117) and (120) from Lemma 4.7 as it was done, for
example, in [4]. Namely, let ϕ0 ∈ D(ΩT ). The first two terms in (98) become:

JεS
def
= −

∫
ΩT

Φε(x)Sε(x, t)
∂ψ

∂t
(x, t) dx dt. (121)

Now we pass to the limit on the right-hand side of (121). Taking into account (117),
we have that

lim
ε→0

JεS = −〈Φ〉
∫

ΩT

S(x, t)
∂ψ

∂t
(x, t) dx dt. (122)
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For any η > 0, we introduce the family of functions {Sε,η} defined by:

Sε,η
def
= min {(1− η), max(η, Sε)} .

These functions satisfy the estimate:

‖Sε,η‖L2(0,T ;H1(Ω)) 6 C(η),

where C(η)→ +∞ as η → 0. Therefore,

S η
def
= min

{
(1− η), max(η, S)

}
∈ L2(0, T ;H1(Ω)) for any η > 0.

Now, taking into account (117), (118), for a subsequence,

∇ [Pε + Gw (Sε,η)]
2s
⇀ ∇x [P + Gw (Sη)] +∇yVηw(x, t, y) (123)

with Vηw ∈ L2(ΩT ;H1
#(Y )). We set:

ϕεw(x, t)
def
= εϕ(x, t)Z(Sε) ζ

(x
ε

)
(124)

with Z(s) being a smooth function equal to zero for s 6∈ (η, 1 − η); ζ(y) is smooth
periodic, and ϕ is a smooth function with a compact support in ΩT . Using ϕεw as
a test function in (98) and considering the global pressure definition, we get:∫

ΩT

Kε(x)λw(Sε) [∇pεw − ~g]∇ζ
(x
ε

)
ϕ(x, t)Z(Sε) dx dt = O(ε). (125)

We pass to the two-scale limit in (125). Taking into account (117), (118), and (123),
we obtain:∫
ΩT×Y

K(y)λw(S)

[
∇P+∇Gw(S)+∇yVηw(x, t, y)−~g

]
∇ζ(y)Z(S)ϕ(x, t) dy dx dt = 0.

(126)
Therefore,

Vηw = ξ(y)
(
∇xP +∇xGw(S)− ~g

)
(127)

for all (x, t) ∈ ΩT such that S ∈ (η, 1 − η). Here ξ ∈ Rd is a vector with the
components ξj that are the solutions of the auxiliary problem (102).

Since η is an arbitrary positive number, representation (127) is valid for all (x, t)
such that S ∈ (0, 1). In particular, Vη` does not depend on η: Vηw = Vw. This leads
to the following equation:∫
Y

K(y)λw(S)

{[
∇pw −~g

]
+∇yVw

}
· ∇yζ2(y) dy = 0 for all ζ2 ∈ C∞# (Y ). (128)

Finally, with the help of our a priori estimates we deduce in a standard way that

Kελw(Sε)
[
∇pεw − ~g

]
2s
⇀ K(y)λw(S)

[
I +∇yξ(y)

](
∇xP +∇xGw(S)− ~g

)
, (129)

where I is the unit matrix. This allows us, with the help of (122), to obtain the
weak formulation of the homogenized saturation equation (100)2.

The derivation of the weak formulation for the homogenized gas pressure equation
can be done in a similar way. This completes the proof of Theorem 4.3.
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5. Concluding remarks. We have presented new results for immiscible compress-
ible two-phase flow in porous media. More precisely, we give a week formulation
and an existence result for a degenerate system modeling water-gas flow through a
porous medium. The water is assumed to be incompressible and the gas phase is
supposed compressible and obeying the ideal gas law leading to a new degeneracy
in the evolution term of the pressure equation. Furthermore, a homogenization
result for the corresponding system is established in the case of a single rock-type
model. The extension to a porous medium made of several types of rocks, i.e. the
porosity, the absolute permeability, the capillary and relative permeabilities curves
are different in each type of porous media, is straightforward. Let us also men-
tion that this homogenization result has been used successfully in [1] to simulate
numerically a benchmark test proposed in the framework of the European Project
FORGE: Fate Of Repository Gases [28]. The study still needs to be improved in
several areas such as the cases of unbounded capillary pressure and double porosity
media. These more complicated cases appear in the applications. Further work on
these important issues is in progress.
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[19] A. Bourgeat, E. Marušić-Paloka and A. Piatnitski, Scaling up of an underground nuclear
waste repository including a possibly damaged zone, Asymptot. Anal., 67 (2010), 147–165.

[20] A. Bourgeat and A. Piatnitski, Averaging of a singular random source term in a diffusion
convection equation, SIAM J. Math. Anal., 42 (2010), 2626–2651.

[21] C. Cancès and P. Michel, An existence result for multidimensional immiscible two-phase flows
with discontinuous capillary pressure field, SIAM J. Math. Anal., 44 (2012), 966–992.

[22] F. Caro, B. Saad and M. Saad, Study of degenerate parabolic system modellingthe hydrogen
displacement in a nuclear waste repository, Discrete and Continuous Dynamical Systems,
Ser. S, 7 (2014), 191–205.
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