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CERMICS, École des Ponts Paristech
Université Paris Est
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Abstract. This article presents a mathematical framework for modeling het-

erogeneous flow networks with a single source and multiple sinks with no merg-
ing. The traffic is differentiated by the destination (i.e. Lagrangian flow) and

different flow groups are assumed to satisfy the first-in-first-out (FIFO) condi-

tion at each junction. The queuing in the network is assumed to be contained
at each junction node and spill-back to the previous junction is ignored. We

show that this model leads to a well-posed problem for computing the dynam-

ics of the system and prove that the solution is unique through a mathematical
derivation of the model properties. The framework is then used to analytically
prescribe the delays at each junction of the network and across any sub-path,

which is the main contribution of the article. This is a critical requirement
when solving control and optimization problems over the network, such as sys-

tem optimal network routing and solving for equilibrium behavior. In fact,

the framework provides analytical expressions for the delay at any node or
sub-path as a function of the inflow at any upstream node. Furthermore, the
model can be solved numerically using a very simple and efficient feed forward
algorithm. We demonstrate the versatility of the framework by applying it
to two example networks, a single path of multiple bottlenecks and a diverge

junction with complex junction dynamics.
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1. Introduction. Modeling and analysing the dynamics of network flows is an im-
portant problem that has applications in many different areas such as transportation
planning [7, 25, 42], air traffic control [32, 48], communication networks [1, 6, 12, 22],
processor scheduling [49] and supply chain optimization [34, 17]. Flow models are
crucial for understanding the response of networked systems under different bound-
ary conditions, estimating the state of the system, measuring system performance
under different tunable parameters and devising the appropriate control strategies
for efficient operation of the system. For example, in transportation networks, flow
models are used for traffic estimation [53], dynamic traffic assignment or demand
response assessment [30], traffic signal control [28], ramp-metering control [43] and
rerouting [47]. This article focuses on modeling heterogeneous (multi-path) traffic
flow through a network with a single source and multiple sinks with the objective of
analytically expressing the delays at each node of the network as a function of the
boundary flows at the source. This is a critical requirement when solving certain
control and optimization problems over the network, where flow entering the net-
work is one of the direct or indirect control parameters [46]. We present this model
in the context of a transportation network modeling, but the results can be applied
to any single origin network with no merge junctions that satisfies the following
properties; 1) link flows are capacity restricted, 2) the flow through each junction
satisfies the first-in-first-out (FIFO) condition, and 3) there is no holding of flow,
i.e. the flow through a junction is maximized subject to the FIFO condition.

There are many types of traffic dynamics models, including microsimulation [18],
cellular automaton [33], first-order or higher-order macroscopic models [19, 26, 44,
51] and point queue models [52], listed roughly in decreasing model complexity. Mi-
crosimulation models simulate the movement of individual vehicles by applying car
following models and lane changing models. This approach enables the modeling of
very specific and detailed characteristics of driver behavior and networks dynam-
ics [18] such as route choice modeling and the implications of the precise network
geometry (e.g. road curvature). Therefore, microscopic models are very popular in
transportation planning at an urban scale, since planners have the ability to observe
the behavior on the entire network due to modifications such as road closures and
changes in traffic signal plans. However, these models can not be expressed in closed
form, are very difficult to calibrate [20] and have an extremely high computational
overhead associated with them.

Another related approach is to use cellular automaton models to simulate traf-
fic [33]. Typically, cellular automaton models divide the roadway into cells, each of
which can be empty or occupied by only one vehicle. This approach as also been
extended to model heterogeneous flow [21, 23], where the behavior around freeway
off-ramps are considered. Cellular automation models are similar to microscopic
models in the sense that they both scale very poorly with the problem size and are
generally computationally intractable since they track individual vehicles.

The third and perhaps most common approach is the use of macroscopic traffic
flow models. Among these models, the most well known is the continuum or fluid-
dynamic model based on the Lighthill-Williams-Richards (LWR) partial differential
equation [26, 27, 44]. This model uses first-order partial differentiation equations to
describe the relationship between aggregate traffic flow variables (flux and density),
under the principle of mass conservation. Due to its simplicity, the LWR model does
not capture individual driver behavior and cannot be used to model heterogeneous
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flows where different groups of drivers exhibit different behaviors. However, there
have been extensions to the LWR model that can account for such heterogeneous
flow [8, 9].

The most popular solution method to the LWR PDE is the Godunov scheme, also
known as the cell transmission model (CTM) [7, 25]. The CTM discretizes space
into cells and keeps track of the vehicle density in each cell instead of individual
vehicles. Another approach for solving the LWR PDE is using the Moskowitz func-
tion. The Moskowitz function numbers vehicles as they pass a reference location
and it describes the evolution of this number over time and space. The Moskowitz
function can be interpreted as the cumulative vehicle count at a reference location,
also known as cumulative curves, which is similar to our approach. Cumulative
curves have been proposed together with triangular shaped fundamental diagram
(relationship between flow and density) to simplify the traffic analysis based on the
LWR model [35, 36, 37], because the adoption of cumulative curves automatically
guarantees conservation. However, while cumulative curves do provide a nice graph-
ical interpretation of the traffic flow, they do not present the ability to describe the
network behavior as a function of variable boundary flows.

The final approach, which is also the approach used in this work, is to model the
traffic via a network of point queues that are typically represented using ordinary
differential equations (ODE’s). One of the first point queue models was presented
in the seminal work of Vickrey [52] to study a roadway with a single bottleneck.
This approach has since been extended to handle networks with multiple commodi-
ties [11]. One of the main limitations of this ODE-based approach is that it does
not capture the spatial propagation of traffic along a roadway (unlike the PDE-
based macroscopic models) and assumes that all delayed vehicles wait at the point
of the bottleneck, as if vehicles were packets in a data network. As a result, point
queue models are generally unable to capture queue spillback. However, some re-
cent work [41, 40] shows how point queue models can be adapted to capture queue
spillback using two queues for each bottleneck.

There is a vast literature in the transportation community on network flow models
based on both ordinary differential equation (ODE) based point queues and the
LWR PDE based spatio-temporal propagation. These models are also commonly
referred to as network loading models [2] in dynamic traffic assignment (DTA) [31].
While the existing literature provides a rich portfolio of modeling techniques, of
which some recent works we summarize below, this work presents a new technique
that adds to the existing literature by enabling the analytical expression of delays
within the network as a function of the inflows at the origin and the bottlenecks
that are active. This however comes at the cost of some restrictions in terms of the
types of networks that can be analyzed, as we will explain in detail below.

There have been a number of recent works on extending point queue models
for network loading in DTA. In [3, 4], the authors take a similar approach to ours
in terms of extending the Vickrey point queue model (with no spillback). A time
discretized iterative numerical scheme is provided to obtain a dynamic user equi-
librium solution and the existence of the solution is proven under the assumptions
of the model. The convergence rate of the iterative scheme is not explicitly ad-
dressed. Similarly, [11] considers a point-queue model with no spillback, but is able
to model congestion delay during the free-flow phase of the fundamental diagram
for hyperbolic fundamental diagrams. In contrast, [29] uses a point queue network



116 S. SAMARANAYAKE, A. PARMENTIER, E. XUAN AND A. BAYEN

with multiple queues to capture spillback, based on the double queue technique in
[41]. The existence and uniqueness of the solution to the network loading problem
is not addressed, but an existence result for the dynamic system optimal solution is
provided. While the work in [11] allows for merge junctions and the model in [29]
captures some queue spillback, none of the works above can analytically express the
delays within the network as a function of the input flows1.

A series of articles by Han et al. [14, 15, 16] reformulates the Vickrey model
using a PDE-based approach and extends the results to general networks. This
reformulation enables more rigorous mathematical analysis of the network loading
model, better numerical methods for solving the network loading problem and a
proof of existence for a route and departure time user equilibrium. In a follow
up work, [5] shows the existence and well-posedness of this PDE-based queuing
model. Furthermore, [13] presents a very important contribution to the literature
by providing a continuous time network loading model with both existence and well-
posedness guarantees. This model can be considered a continuous time counterpart
of the Link Transmission Model [39, 54]. The results on existence and well-posedness
are however limited to certain junction models. In particular, the results require
fixed turning ratios at junctions, which does hold in dynamic traffic assignment.

In addition, there is a rich literature on ODE-based network flow propagation
for various packet networks [1, 6, 12, 22], but a large majority of these dynamics
models violate the FIFO and no holding requirements that are essential in phy-
isical flow networks. The models proposed for transportation network flows, as
described above, can in fact satisfy these physical requirements, but cannot ana-
lytically prescribe the internal delays of the network as a function of the boundary
flows. Therefore, a new framework is required for the problem that we consider.

Our approach can be summarized as follows. We assume that the traffic flow
is differentiated by the destination of the flow (i.e. Lagrangian flow) and that the
different flow groups satisfy the FIFO condition at each junction. The network is
limited to a contain a single origin and no merge junctions. The input flows are
assumed to be piecewise continuous in time and the link capacities are assumed to be
piecewise constant in time. The queuing in the network is assumed to be contained
at each junction node and spill-back to the previous junction is ignored2. We show
that this model leads to a well-posed ordinary differential equation for computing
the dynamics of the network as a function of the boundary flows and prove that
the solution is unique through a rigorous mathematical derivation of the model
properties. The main benefit of this framework is the ability to analytically prescribe
the delays at any junction in the network and across any sub-path as a function of
the the boundary flows, which can be an important requirement when solving certain
control and optimization problems, such as demand allocation problems, where the
flow entering the network is one of the direct or indirect control parameters. This is
achieved via the creation of a time mapping operator that maps the traffic flow at
a given node at a given time to the corresponding flow at the origin of the network

1We wish to incorporate the approach in [41] for capturing queue spillback into the proposed

model as future work.
2This is a restrictive assumption in the case where the queue length at a given node exceeds

the length of the incoming link because the queue would have interrupted the flow at the previous
junction. The model allows for these cases of queue spill-back to be identified by comparing the

queue length to the queue capacity, and for control actions to be taken to mitigate the spill-back.
However, in general, it may not be possible to prevent spill-back under certain input flow profiles.
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when that flow entered the network. We also show that this model can be solved
numerically using a simple and efficient forward simulation approach. Finally, we
demonstrate the application of the model by applying it to two example networks,
a single path of multiple bottlenecks and a diverge junction with complex junction
dynamics including time varying capacities.

The article is organized as follows. Section 2 introduces the network properties
and junction dynamics. Then section 3 formalizes the time mapping operator,
shows the well-posedness of the problem and proves the uniqueness of the solution
to this model. Section 4 demonstrates the practical application of the mathematical
framework by showing that the off-ramp model posed by Newell [38] can be modeled
using this framework. Section 5 concludes the article.

2. A point queue model for network flow. The traffic network with a single
source is modeled as an arborescence3. The congestion at each bottleneck is modeled
as a vertical queue that is located at the start of the bottleneck. Thus, the physical
propagation of the queue forming at the bottleneck is not modeled. This modeling
choice is only restrictive when the queue propagates upstream to the preceding
junction, as the change in dynamics at the junction due to the queue is not taken
into account, but the model is equivalent to a horizontal queuing model otherwise.

2.1. Network definitions. A node v denotes a junction in the network and V is
the set of all nodes. A link l = (vin

l , v
out
l ) is a couple consisting of an origin node

vin
l and a destination node vout

l , and L is the set of all links.
The congestion-free travel time on link l is denoted by Tl, an agent that enters

link l at time t will exit link l at time t+Tl. The congestion-free travel time between
nodes v1 and v2 is denoted by T(v1,v2), an agent that enters node v1 at time t will
reach node v2 at time t+ T(v1,v2)

The set of incoming links to node v is denoted by Lin
v , the set of outgoing links

from node v is denoted by Lout
v and the set of all links l connected to node v is

denoted by Lv.

Lin
v = {l ∈ L|vout

l = v}, Lout
v = {l ∈ L|vin

l = v} (1)

A node v is a source if it admits no incoming link (Lin
v = ∅). A node v is a sink

if it admits no exiting link (Lout
v = ∅). The set of sinks is denoted by S.

The set of nodes V and the set of links L compose a network. Due to the
network being an arborescence, it contains a unique source indexed by v0. For all
nodes v ∈ V \{v0}, Lin

v is a singleton. The element of this singleton is called the
parent node and is denoted by πv: L

in
v = {(πv, v)}.

We define a path p(vorig,vdest) as a finite sequence of distinct nodes from an origin
node vorig to a destination node vdest such that there is a link connecting each pair
of subsequent nodes.

p(vorig,vdest) = (vorig, · · · , vdest) s.t. (πvi , vi) ∈ L ∀i ∈ p\vorig (2)

There is a unique path from any source to any destination since the network is
tree structured. For each sink s, let ps be the path starting at the origin vorig and
ending at node vs = s, and Vps be the sequence of nodes on path ps. The set of

3An arborescence is a directed rooted tree where all edges point away from the root.
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paths Pv is the set of all paths p for which v ∈ p. The set of paths Pl is the set of
all paths p for which l ∈ p.

Pv = {p|v ∈ Vp} ; Pl = {p|vin
l ∈ Vp and vout

l ∈ Vp} (3)

Remark 1. The path sets Pl where l is a link in Loutv form a partition of Pv

Pv = ∪l∈Lout
v
Pl (4)

2.2. Modeling the flow of agents. The traffic flow at a node is measured by
counting the number of agents that pass through the node between an arbitrary
initial time tinitial and any given time t.

For a node v ∈ V \v0 (that is not the source) and path p ∈ Pv, the arrival curve
Apv (t) gives the total number of agents on path p that arrive at node v during the
time interval (tinitial, t]. Similarly, for a node v ∈ V \S (that is not a sink) and
p ∈ Pv, the departure curve Dp

v (t) gives the total number of agents on path p that
leave node v during the time interval (tinitial, t].

Remark 2. The arrival curve Apv (t) (resp. departure curve Dp
v (t)) also gives the

agent number of the last agent on path p to arrive at (resp. leave) node v by t.
Arrival and departure curves are non-decreasing: if t1 < t2, A(t2) − A(t1) (resp.
Dp(t2)−Dp(t1)) is the total number of agents who arrive at (resp. pass) node v in
the interval (t1, t2], and is therefore non-negative.

Definition 2.1. Acceptable cumulative arrival and departure curves A(tinitial, tfinal],
D(tinitial, tfinal]

Given times tinitial and tfinal, a function on (tinitial, tfinal] is an acceptable cumu-
lative curve on (tinitial, tfinal] if it is continuous, piecewise C1, and strictly increasing
functions on (tinitial, tfinal].

The assumption that the cumulative curves are strictly increasing is made for
mathematical convenience, but can be relaxed4. Cumulative curves are required to
be piecewise C1 in order to be able to define flows.

The outgoing flow λvp at a node v is the piecewise continuous derivative of the
departure curve Dv

p

λvp =
dDv

p

dt
(5)

Remark 3. Zero congestion-free travel time
Let πv, v be two consecutive nodes on path p. Agents on path p leaving node

v at time t arrive at node v at t + T(πv,v). For all links (πv, v) and paths p ∈ Pv,
without loss of generality we set the congestion-free travel time T(πv,v) to be zero:
T(πv,v) = 0. This implies that:

Dπv
p = Avp ∀l = (πv, v) ∈ L, p ∈ Pv (6)

This modeling choice is made purely for mathematical convenience, since the goal
of this framework is to analyze delays in the network. The total travel time for each
agent can be easily reconstructed a posteriori by adding the actual congestion-free
travel time for each link of the path traveled by the agent.

4We could relax the assumption that the cumulative curves are strictly increasing and allow
for non-decreasing curves. However, this results in the time mapping function T (,πv)v introduced
in section 3.2 being a correspondence instead of a function and makes the analysis significantly

more complicated. Therefore, for mathematical convenience, we make the assumption that the
cumulative curves are strictly increasing.
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Thus, for all links (πv, v) ∈ L and paths p ∈ P we have:

dAvp
dt

=
dDπv

p

dt
= λπvp (7)

dDv
p

dt
= λvp. (8)

2.3. Queuing and diverge model. This section defines the model dynamics for
queuing and the flow propagation through a junction, which will then lead to a
definition of the feasible departure curves that the model admits.

The capacity µl (t) of a link l is the maximum flow that can enter the link from
its input node vin

l at time t. Road capacity may vary with time due to weather
conditions, accidents, or other factors. Thus, capacity is a time varying quantity.

Requirement 1. Capacity constrained flows
The inflow entering a link is always no greater than the links capacity.∑

p∈Pl

λ
vin
l
p (t) ≤ µl (t) ∀t, l ∈ L (9)

If the flows arriving at a node v are larger than available outflow capacity, a
queue will form at node v.

Definition 2.2. Queue length nv,p (t)
We define the path queue length nv,p (t) at node v as the number of agents on

path p that arrive at node v by time t and are yet to depart node v

nv,p (t) = Avp (t)−Dv
p (t) (10)

The total queue length nv (t) at node v is the sum of the path queue lengths.

nv (t) =
∑
p∈Pv

nv,p (t) (11)

Remark 4. Let [Dv]−1 be the inverse of the departure curve Dv. Since Dv is
strictly increasing, tk = [Dv]−1(k) gives the time at which agent number k leaves
node v.

Definition 2.3. Delay in queue v
We define δv,p (t) as the delay encountered in queue v by the agent that entered

the queue at time t.

δv,p (t) = [Dv
p ]−1

(
Avp (t)

)
− t

= [Dv
p ]−1

(
Dπv
p (t)

)
− t (12)

As Dv
p is continuous, piecewise C1, and strictly increasing, its inverse is continuous,

piecewise C1 and strictly increasing. Since the composition of functions preserves
continuity (see [45] for the C0 case and [10, 24] for the Ck case), the function
[Dv

p ]−1 ◦ Dπv
p is continuous and piecewise C1, and therefore, the delay δv,g is also

continuous and piecewise C1.
Remark 5.

If nv,p (t) = 0 ∀p ∈ Pv, then Dv
p (t) = Avp (t) ∀p ∈ Pv =⇒ δv,p (t) = 0 ∀p ∈ Pv.

If ∃p′ ∈ Pv : nv,p′ (t) > 0, then Dv
p′ (t) < Avp′ (t) =⇒ [Dv

p ]−1
(
Avp (t)

)
> t and

δv,p (t) > 0 ∀p ∈ Pv.
Therefore,

∀t, δv,p (t) > 0⇔ ∃p′ ∈ Pv : nv,p′ (t) > 0 (13)



120 S. SAMARANAYAKE, A. PARMENTIER, E. XUAN AND A. BAYEN

Queue	
  

Node	
  

Flow	
  

v

⇡v

v1 v2

µ(⇡v,v)

µ(v,v1) µ(v,v2)

�⇡v
p1

�⇡v
p2

�⇡v
p2

�⇡v
p1

Figure 1. Diverge model

We now describe the diverge model with a graphical illstration of a one to two
diverge junction given in Figure 1.

Requirement 2. First-in-first-out (FIFO) property
The model satisfies the FIFO property. The delay encountered in queue v at time

t is identical for all paths p in Pv.

δv (t) = δv,p (t) = [Dv
p ]−1

(
Dπv
p (t)

)
− t ∀t,∀p ∈ Pv (14)

FIFO property implies that agents exit the queue in the same order that they
enter the queue regardless of which path they belong to.

t1 < t2 ⇔ [Dv
p1

]−1
(
Dπv
p1

(t1)
)
< [Dv

p2
]−1
(
Dπv
p2

(t2)
)

(15)

Interpreting Avp (resp Dv
p) as the identifier of the agent which arrives in (resp.

leaves) queue v at time t, we can see that the queues respect the FIFO rule for each
path p. Let x1 and x2 be two agents: agent x1 enters queue v at time tin1 such that
Avp
(
tin1
)

= x1 and leaves queue v at time tout1 such that Dv
p (tout1 ) = x1, agent x2

entered in queue v at time tin2 such that Avp
(
tin2
)

= x2 and leaves queue v at time

tout2 such that Dv
p (tout2 ) = x2. As Avp and Dv

p are both strictly increasing functions,

tin1 ≤ tin2 ⇒ x1 ≤ x2 ⇒ tout1 ≤ tout2 , which means that if x1 is enters queue v before
x2, it will leave v before x2.

Proposition 1. FIFO implies conservation of the ratio of flows
If p1 and p2 are two paths in Pv such that λπvp1

, λπvp2
> 0, then the ratio of their

flows is conserved when exiting node v

λvp1
(t+ δv (t))

λvp2
(t+ δv (t))

=
λπvp1

(t)

λπvp2 (t)
, ∀t ∈ (tinit, tfinal] (16)

Proof. Let t be an arbitrary time. The FIFO assumption gives δv,p (t) = δv (t).
By definition of delay δv,p (t),

Dπv
p (t) = Dv

p (t+ δv,p (t)) ∀p ∈ Pv
Taking the derivative with respect to t and using δv,p (t) = δv (t),

dDπv
p (t)

dt
=

(
1 +

dδv (t)

dt

)
· dD

v
p

dt

∣∣∣∣
t+δv(t)
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Using equation (8) we obtain,

λπvp (t) =

(
1 +

dδv (t)

dt

)
· λvp (t+ δv (t)) ∀p ∈ Pv (17)

Therefore, it follows that

λvp1
(t+ δv (t))

λvp2
(t+ δv (t))

=
λπvp1

(t)

λπvp2 (t)

�

Definition 2.4. Queue state ηv - state transitions
We define queue state as the boolean valued function ηv (t):

ηv (t) =

{
1 if δv (t) > 0
0 otherwise

(18)

If ηv = 1, queue v is said to be active, or in active state
If ηv = 0, queue v is said to be inactive, or in inactive state
A queue state transition happens at time t if

∃ε > 0 s.t. ∀θ ∈ {(−ε, 0) ∪ (0, ε)}, ηv (t− θ) = 1− ηv (t+ θ) (19)

When queue v is inactive, Dv = Dπv .

Definition 2.5. Link constraint cv,l (t)
Let v ∈ V \{v0 ∪ S} be a node which is not a source or a sink. For all links

l ∈ Lout
v , we define the link constraint cv,l (t) as the ratio of arriving flows at time t

on capacity at queue v when this flow leaves queue v5.

cv,l (t) =

∑
p∈Pl λ

πv
p (t)

µl (t+ δv (t))
(20)

Definition 2.6. Active link γv (t) and set of active paths Γv (t) of a node
We define the active link γv (t) of a node v at time t as the most constrained link

6 in Lout
v :

γv (t) ∈ arg max
l∈Lout

v

cv,l (t) (21)

We define the set of active paths Γv (t) in queue v as the set of paths in the most
constrained link γv (t)

Γv (t) = Pγv(t) (22)

Remark 1 gives Γv ⊂ Pv.

Requirement 3. Full capacity discharge property
The model satisfies the full capacity discharge property. For each node v and time

t, if queue v is active at t, then the active link γv (t) discharges at full capacity.

ηv (t) = 1⇒
∑

p∈Γv(t)

λvp (t+ δv (t)) = µγv(t) (t+ δv (t)) (23)

With this last property, we complete the definition of the dynamics model.

5The dissipation rate of the point queue at the node is only governed by the capacities of the
outgoing links. This model can be extended to also impose a discharge rate constraint based on

the capacity of the incoming link, but increases the complexity of the notation and the proofs.
6When there is a tie, one of them is chosen arbitrarily.
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Definition 2.7. Feasible flows
A feasible flow λvp at a node v is a flow that satisfies the FIFO, capacity constraint

and full capacity discharge properties from requirements 1, 2 and 3.

The definition of the initial conditions on the network completes the definition
of the model.

Definition 2.8. Initial times for each non-source node
Given a set of initial delays at each node δv (tinitial) ≥ 0,∀v ∈ V \(S ∪ {v0}) and

an initial time tinitial, we define the set of initial times over which the departure
curves are defined for each non-source node recursively as follows:{

t0,initial = tinitial for node v0

tv,initial = tπv,initial + δv (tπv,initial)
(24)

2.4. Existence and uniqueness of the solution to the model. Now that we
have fully defined the model dynamics, we consider the well-posedness of the model.
In other words, given a network, link capacities and the departure functions at the
source, we want to know whether the dynamics of the model admits a unique
solution.

Problem 1: General network problem
Input. An arborescence (V,L) with source v0 and sink set S, capacities µl (t) ,∀l ∈
L, t ∈ [tinitial, tfinal], acceptable departure functions from the source Dv0

p ∈
D(tinitial, tfinal) ∀p ∈ Pv0

and initial delays δv (tinitial) ≥ 0, ∀v ∈ V \(S ∪ {v0})
Question. Does a corresponding set of feasible flows exist for all internal nodes
v ∈ V \v0 and are they unique?

Theorem 1 states that the solution to problem 1 both exists and that the solution
is unique, under certain conditions on the departure curves at the origin and the
link capacities of the network.

Theorem 1. Existence and uniqueness of the solution to problem 1
Problem 1 admits a unique solution under the following conditions.

1) the path flows at the origin λ0
p (t) are piecewise polynomial,

2) link capacities µl are piecewise constant over time.

Note that neither of the assumptions of the theorem are restrictive in a practical
sense7.

The next section is devoted to a constructive proof of Theorem 1. The general
flow of the proof is as follows. Sections 3.1-3.3 first develop a set of differential
equations for delays in the network. In section 3.4, we then prove that a unique so-
lution to differential equation on delays also implies a unique solution to problem 1.
Section 3.5 proves that the differential equations on the delay at each node always
admit an unique solution, which finally leads to the proof of Theorem 1.

3. A solution based on time mapping. This section builds a constructive proof
of Theorem 1. Throughout sections 3.1-3.3, we require that the flows at the origin
are acceptable departure curves as defined in definition 2.1 and that the outflows

7Neither of these assumptions are restrictive in a practical sense, because any piecewise contin-
uous function on a closed interval can be approximated to an arbitrary accuracy by a polynomial
of appropriate degree (Stone-Weierstrass theorem [50]) and link capacities do not evolve in a con-

tinuous manner. Link capacities are typically subject to discrete changes due to incidents such as
accidents and changes in weather.
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at each node satisfy the model requirements (i.e. result in feasible flows as defined
in definition 2.7).

3.1. Local study of point queues. We begin by proving Proposition 2, which
gives an analytical expression for the derivative of the delay at node as a function
of its downstream capacities and outgoing flow at its parent nodes.

Proposition 2. Evolution law of a single queue
If queue v is active at time t,

dδv
dt

∣∣∣∣
t

=

∑
p∈Γv(t) λ

πv
p (t)

µγv(t) (t+ δv (t))
− 1 (25)

Proof. From Equation (17),

λπvp (t) =

(
1 +

dδv (t)

dt

)
· λvp (t+ δv (t)) ∀p ∈ Γv (t)

⇒ dδv (t)

dt
+ 1 =

λπvp (t)

λvp (t+ δv (t))
∀p ∈ Γv (t)

⇒ dδv (t)

dt
+ 1 =

∑
p∈Γv(t) λ

πv
p (t)∑

p∈Γv(t) λ
v
p (t+ δv (t))

Using the full capacity discharge property from Requirement 3,

dδv (t)

dt
+ 1 =

∑
p∈Γv(t) λ

πv
p (t)

µγv(t) (t+ δv (t))

⇒ dδv
dt

∣∣∣∣
t

=

∑
p∈Γv(t) λ

πv
p (t)

µγv(t) (t+ δv (t))
− 1

3.2. Time mapping. The evolution law stated above for any given node v depends
on the outgoing flows λπvp at the parent node. However, this it not an input of
Problem 1. In this section, we introduce the notion of time mapping to obtain a
modified law for the delay evolution that replaces the outgoing flows at the parent
node with the outgoing flow at the origin.

3.2.1. Definition of time mapping functions. The evolution law from Proposition 2
gives a non-linear ordinary differential equation (ODE) that governs the evolution
of δv (t). The evolution of delay encountered by an agent x entering queue v at
time t depends on the flows entering the queue at t and the capacity of the active
link(s) γv at time t+ δv (t) when agent x leaves the queue. The non-linearity of the
ODE makes directly computing the dynamics along a path algebraically complex.
Therefore, we introduce a time mapping function.

Let v be an internal node of the network and its parent node be πv. An agent
leaving node πv at time t will leave node v at time t+ δv (t). We now introduce the
following time mapping function:

Definition 3.1. Node time mapping function T v,πv

We define the time mapping function T v,πv by

T v,πv : t 7→ t+ δv (t) (26)

an agent leaving node πv at time t will leave node v at time T v,πv (t)
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The notation T v,πv (variable ordering) is chosen for mathematical convenience with
respect to the derivatives of the function, as will be apparent in the rest of the
discussion. In equation (26), T v,πv takes a time with a physical meaning at the exit
of node πv on its right hand side, and gives back a time with a physical meaning at
the exit of node v on its left hand side.

Proposition 3. T v,πv is strictly increasing and bijective
The function T v,πv is strictly increasing and thus bijective from its domain to its

image. Its derivative is

dT v,πv

dt

∣∣∣∣
t

=

∑
p∈Γv(t) λ

πv
p (t)

µl (t+ δv (t))
> 0 (27)

Physically, this means that the FIFO assumption is respected: i.e. an agent x2

entering queue v after another agent x1 will also leave the queue after x1

Proof. Taking the derivative of equation (26) and applying equation (25) in
Proposition 2 gives,

dT v,πv

dt

∣∣∣∣
t

=

∑
p∈Γv(t) λ

πv
p (t)

µl (t+ δv (t))
. (28)

The departure curves at the origin are strictly increasing since they must be ac-
ceptable departure curves. The full capacity discharge property from requirement 3
requires that one outgoing link at each node discharges at full capacity. Finally,
these properties combined with Proposition 1, which states that the outflows at a

node are proportional to the inflows, give us the result that
dT v,πv

dt

∣∣∣∣
t

> 0. �

Thus T v,πv is invertible and its inverse is an increasing function8.

Definition 3.2. Node time mapping function Tπv,v

Given an internal node v, we define the function Tπv,v as the inverse of T v,πv

Tπv,v ◦ T v,πv = 1 and T v,πv ◦ Tπv,v = 1 (29)

We now consider the unique path (v0, v1, · · · , vn−1, vn) which leads from the
source v0 to some node vn. As each node has a unique parent, we can recursively
trace the path from node v back to the source node v0. Let tvn be a fixed time. If
an agent x leaves node vn at the time tvn , we can recursively define the following:
1) tvn−1=T vn−1,vn(tvn) is the time that agent x left vn−1, tvn=tvn−1 + δv(t

vn−1)
2) tvn−2=T vn−2,vn−1 (tvn−1) is the time that agent x left vn−2,
tvn=tvn−2 + δvn−1

(tvn−2) + δv(t
vn−2 + δvn−1

(tvn−2))
3) tvn−3=T vn−3,vn−2 (tvn−2) is the time that agent x left vn−3, · · ·
As T v,πv and Tπv,v are bijective for all internal nodes v, we can give the following
definition

Definition 3.3. Time mapping function from and to the origin T v,v0 and T v0,v

Let vn be a node, and (v0, v1, v2, · · · , vπn , vn) be a path from the origin v0 to node
v. We define the time mapping function to the origin as the composition of the
node time mapping function on the path between the source and vn

T v0,vn = T v0,v1 ◦ T v1,v2 ◦ · · · ◦ T vπn ,vn (30)

8If the acceptable set of departure curves D is relaxed to allow non-decreasing instead of strictly

increasing functions, T v,πv becomes a correspondence, and the mathematical treatment would be
more involved.
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Figure 2. Time mapping nodes

an agent that leaves node vn at time t left the origin v0 at time T v0,vn (t).

T vn,v0 = T vn,vπn ◦ · · · ◦ T v2,v1 ◦ T v1,v0 (31)

an agent that leaves the origin at time t will leave node vn at time T vn,v0 (t)

A sample path from the origin v0 to a node vn is illustrated in figure 2. We can
now define the time mapping function between any arbitrary pair of nodes.

Definition 3.4. Time mapping function between two arbitrary nodes
We define the time mapping function T i,j between node i and node j as follows.

1) There exists a path between nodes i and j (for example nodes v2 and vn in
figure 2),

T i,j =

{
T i,i+1 ◦ T i+1,i+2 ◦ · · · ◦ T j−2,j−1 ◦ T j−1,j if i ≺ j

T i,i−1 ◦ T i−1,i−2 ◦ · · · ◦ T j+2,j+1 ◦ T j+1,j if i � j
(32)

Let x be an agent that leaves node j at time t. T i,j (t) is the time that agent x
leaves node j.

2) There does not exist a path between nodes i and j (for example nodes v2 and vx
in figure 2),

T i,j = T i,v0 ◦ T v0,j (33)

Let xj be an agent that leaves node j at t. From definition 3.3 we know that xj
leaves the origin at time T 0,j (t). Let xi be an agent that also leaves the origin at
time T 0,j (t). Then T i,j (t) is the time that agent xi leaves node i.

Definition 3.5. Time mapping operator Ti,j

We define the time mapping operator Ti,j on the set F of time dependent func-
tions as follows:

Ti,j : F → F
f 7→ f ◦ T j,i (34)

We now consider the physical interpretation of T i,j .

3.2.2. Time mapping of model quantities. This section first studies the relationship
between departure curves at different nodes and the time mapping function. We
then define the time mapped versions of the other quantities in the model. The time
mapping operators allow for mapping any quantity from one node to the other. This
definition of a time mapped quantities thus allows any quantity to be defined with
respect to the source node of the network.
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Proposition 4. Physical interpretation of the time mapping function
Let p be a path, and (v0, v1, v2, · · · , vn) be a sequence of consecutive nodes on the

path.

Dvi
p = Dv0

p ◦ T v0,vi ∀vi ∈ p (35)

Let x = Dv0
p (tv0) be an agent on path p that leaves the origin at time tv0 and

tvi = T vi,0 (tv0)∀vi ∈ p.

Dv0
p (tv0) = Dv1

p (tv1) = · · · = Dvi
p (tvi) = · · · = Dvn

p (tvn) (36)

Proof. Proof by induction on the length of the sequence k. If k = 0, the result is
trivial. Let k ∈ [1, i] be an integer. By the induction hypothesis, we assume that the
result is true for to k = i− 1, i.e. D

vi−1
p = Dv0

p ◦ T 0,vi−1 . By the definition of path

delay δv,p, D
vi
p (t+ δvi,p (t)) = D

vi−1
p (t) ,∀t, which means D

vi−1
p = Dvi

p ◦ T vi,vi−1 .

Composing both sides of the equality with T vi−1,vi we get Dvi
p = D

vi−1
p ◦ T vi−1,vi .

Substituting the induction hypothesis and simplifying the results completes the
proof.

Dvi
p = Dvi−1

p ◦ T vi−1,vi

= Dv0
p ◦ T 0,vi−1 ◦ T vi−1,vi

= Dv0
p ◦ T v0,vi

Equation (36) follows directly from equation (35) �

Remark 6. As function T i,j is the inverse of T j,i, the operator Tj,i is the inverse
of Ti,j .

We can now reformulate the first equation of Proposition 4 as follows:

Proposition 5. Time mapping of departure curve Dv
p

Let i and j be two nodes on path p.

Di
p = Ti,j(Dj

p) (37)

Proof. Using definition 3.5 we have,

Ti,j
(
Dj
p

)
= Dj

p ◦ T j,i = Dj
p ◦ T j,0 ◦ T 0,i

= D0
p ◦ T 0,i = Di

p

�

Proposition 6. Time mapping and flows
Let v be a node on path p.

λip = Ti,j
(
λjp
)
· dT

j,i

dt
(38)

Proof. From the definition of flow, λvp =
dDv

p

dt
. The result is obtained by simply

taking the derivative of the equation Di
p = Dj

p ◦ T j,i (from Proposition 5) with
respect to time. �

Remark 7. The time mapping and derivative operators do not commute.

Definition 3.6. Time mapping of delay δij
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Let v be an internal node9. We define the time mapped delay in queue v at node
πv, δ

πv
v as the delay encountered in queue v by an agent leaving node πv:

δπvv
.
= δv (39)

Let i be an arbitrary node and j be an internal node. We define the time mapped
delay in queue j at node i, δij as

δij
.
= Ti,πj

(
δ
πj
j

)
= δ

πj
j ◦ Tπj ,i (40)

Physically, if nodes i and j are on the same branch with i ≺ j (resp. i � j), then
δij (t) is the time that an agent which leaves queue i at time t will be (resp. has
been) delayed at in queue j.

Definition 3.7. Time mapping for capacity

We define the time mapped capacity of a link l, µ
vin
l

l as the capacity encountered
by an agent at queue vin

l in link l

µ
vin
l

l
.
= µl (41)

Let l be an arbitrary link and v an internal node. We define the time mapped
capacity of link l at node v as

µvl
.
= Tv,vin

l

(
µ
vin
l

l

)
= µ

vin
l

l ◦ T v
in
l ,v (42)

Physically, if link l and node v are on the same branch with vin
l ≺ v (resp. vin

l � v),
then µlv (t) is the capacity an agent that leaves queue v at time t encountered (resp.
encounters) at link l.

Proposition 7. Physical interpretation of mapped delay and mapped capacity
Let vj be an arbitrary node, p be a path, and (v0, v1, v2, · · · , vn) be a sequence of

consecutive nodes on the path p. Also, let tvi = T vi,0 (tv0) ,∀vi ∈ p.

δv0
vj (tv0) = δv1

vj (tv1) = · · · = δvivj (tvi) = · · · = δvnvj (tvn) (43)

Let l be an arbitrary link.

µv0

l (tv0) = µv1

l (tv1) = · · · = µvil (tvi) = · · · = µvnl (tvn) (44)

Proof. Let i be an arbitrary node and j be an internal node. From definition (3.6)
for time mapped delay we have.

δij
(
ti
) .

= δj−1
j

(
T j−1,i

(
ti
))

= δj−1
j

(
tj−1

)
Therefore, δvivj (tvi) = δ

vj−1
vj (tvj−1) ,∀vi ∈ p, which proves equation (43). The proof

for equation (44) is identical. �

Definition 3.8. Time mapping of active link and active paths
Let v be an internal node. We define mapped active link γπvv as the active link

for flow exiting node πv at queue v, and mapped active paths Γπvv as the active
paths for flow exiting node πv at queue v.

γπvv
.
= γv ; Γπvv

.
= Γv (45)

9An internal node is a node v which is neither a sink nor the source k ∈ K\({0} ∪ S).
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Let j be an arbitrary node, we define the mapped active link and mapped paths for
flow exiting queue v at node j as

γjv = Tj,πv (γπvv ) ; Γvj = Tj,πv (Γπvv ) (46)

Physically, if node j and node v are on the same branch with j ≺ v (resp. j � v),
then γjv (t) is the active link that an agent leaving node j at time t will encounter
(resp. encountered) at queue v, and Γvj (t) are the corresponding active paths.

Definition 3.9. Time mapped link constraint
Let v be a internal node and l ∈ Lout

v . We define the mapped link constraint cπvv,l
as the link constraint at link l for an agent leaving node πv.

cπvv,l (t)
.
=

∑
p∈Pl λ

πv
p (t)

µl (t+ δv (t))
(47)

=

∑
p∈Pl λ

πv
p (t)

µvl (t+ δv (t))

=

∑
p∈Pl λ

πv
p (t)

µπvl (t)
(48)

Let j be an arbitrary node, we define the mapped link constraint for link l at node
j as

cjv,l
.
= Tj,πv

(
cπvv,l

)
= cπvv,l ◦ Tπv,j (49)

cjv,l (t) =

∑
p∈Pl λ

j
p (t)

µjl (t)
· dT

πv,j

dt
(50)

Physically, if node j and node v are on the same branch with j ≺ v (resp. j �
v), then cjv,l (t) is the link constraint that an agent leaving node j at time t will

encounter (resp. encountered) at link l.

Remark 8. The notation of the link constraint can be simplified for convenience
as follows when time mapped.

cjv,l = cjl (51)

We use the simplified notation in the rest of the discussion.

Proposition 8. The mapping of link constraints and active links is coherent
For all non-sink nodes j ∈ V \S, internal nodes v ∈ V \(S ∪ {0} and time t ∈

(tinitial, tfinal], we have

γjv (t) ∈ arg max
l∈Lout

v

cjl (t) (52)

Proof. Let v be an internal node and let tj be a time. Let tπv = Tπv,j
(
tj
)
. Proving

the proposition is equivalent to proving the following set equality

arg max
l∈Lout

v

cv,l (t
πv ) = arg max

l∈Lout
v

cjl
(
tj
)

(53)

From the definition of the link constraint in equation (20) we have

cv,l (t
πv )

.
=

∑
p∈Pl λ

πv
p (tπv )

µl (tπv + δv (tπv ))
(54)
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By definition of µvl in equation (41), we have µl (t
πv + δv (tπv )) = µvl (tπv + δv (tπv ))

and defining tv
.
= T v,πv (tπv ) = tπv + δv (tπv ), we obtain

µl (t
πv + δv (tπv )) = µvl (T v,πv (tπv )) = µvl (tv). Equation (44) finally gives

µl (t
πv + δv (tπv )) = µjl

(
tj
)

(55)

Moreover, using equation (38) gives λπvp (tπv ) · dT
πv,j

dt

∣∣∣∣
tj

= λjp
(
tj
)
. Summing on all

paths p in Pl, we obtain∑
p∈Pl

λπvp (tπv ) =
1

dTπv,j

dt

∣∣∣∣
tj

·
∑
p∈Pl

λjp
(
tj
)

(56)

Substituting equations (55) and (56) in the right hand side of equation (54) and
using the time mapped link constraint from equation (50), we obtain

cv,l (t
πv ) =

1

dTπv,j

dt

∣∣∣∣
tj

·
[∑

p∈Pl λ
j
p

(
tj
)

µjl (tj)

]
(57)

=
1

dTπv,j

dt

∣∣∣∣
tj

· cjl
(
tj
)

(58)

For all l ∈ Lout
v , cv,l (t

πv ) and cjl
(
tj
)

are proportional (and the proportionality
ratio is independent from l). Therefore, the arg max in equation (53) are the same.
which concludes the proof. �

Definition 3.10. Capacity of the active link
For notational simplicity we denote the capacity of the active link of an agent

that enters queue v at time t as follows:

Qv (t)
.
= µπvγv(t) (t) (59)

= µvγv(t) (t+ δv (t))

= µγv(t) (t+ δv (t)) (60)

Definition 3.11. Time mapped capacity of the active link
Let v be a internal node. We define the time mapped active link capacity Qπvv

as the capacity of link γv as seen by an agent at node πv.

Qπvv
.
= Qv (61)

Let j be an arbitrary node, we define the mapped active link capacity for link γv (t)
as seen by an agent at node j as

Qjv
.
= Tj,πv (Qπvv ) = Qπvv ◦ Tπv,j = Qv ◦ Tπv,j (62)

Physically, if node j and node v are on the same branch with j ≺ v (resp. j � v),
then Qjv (t) is the active link capacity that an agent leaving node j at time t will
encounter (resp. encountered) at link γjv (t).

Definition 3.12. Time mapping of queue state
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Let i be an arbitrary node and j be an internal node. We define the time mapped
queue state of queue j at node i, ηij as the queue state at queue j as seen by an
agent at queue i

ηij
.
= Ti,πv

(
ηπvj
)

= ηπvj ◦ Tπv,i = ηj ◦ Tπv,i (63)

Physically, if queue i and node j are on the same branch with i ≺ j (resp. i � j),
then ηij (t) is the queue state an agent that leaves node i at time t encounters (resp.
encountered) at queue j.

3.3. Global evolution of delay. We now have the necessary tools to define the
evolution of delays at any node of the network with respect to the flows at any
upstream node in the network.

Definition 3.13. First active upstream node
Let v be an internal node. We define the first active upstream node of v as

Υj
v (t) = max

�

{
u|u ≺ v, ηju (t) = 1

}
(64)

For notational convenience we also define the following:

γ̂jv (t)
.
= γj

Υjv(t)
(t) (65)

Γ̂jv (t)
.
= Γj

Υjv(t)
(t) (66)

Q̂jv (t)
.
= Qj

Υjv(t)
(t) (67)

η̂jv (t)
.
= ηj

Υjv(t)
(t) (68)

Theorem 2. Evolution law for delay at an arbitrary internal node v
mapped to any node j

Given an arbitrary internal node v ∈ V \(S ∪ {0}) such that queue v is active, if
the flows at the origin are acceptable departure curves and the model requirements
are satisfied, the evolution law for delay mapped to any upstream node j ∈ V \S is

dδjv
dt

∣∣∣∣
t

=



∑
p∈Γjv(t) λ

j
p (t)

Qjv (t)
− dT 0,j

dt

∣∣∣∣
t

if v is the first active queue ∈ p∑
p∈Γjv(t) λ

j
p (t)

Qjv (t)
−
∑
p∈Γ̂jp(t) λ

j
p (t)

Q̂jv (t)
otherwise

(69)

Proof. Let t be a time and v be a node. Evolution law (25) in Proposition 2 gives

dδv
dt

∣∣∣∣
t

=

∑
p∈Γv(t) λ

πv
p (t)

Qv (t)
− 1 (70)

By the definition of the time mapping functions we have, δπvv (t)
.
= δv (t) , Qπvv (t)

.
=

Qv (t) ,Γπvv (t)
.
= Γv (t). Thus, equation (70) becomes:

dδπvv
dt

∣∣∣∣
t

=

∑
p∈Γπvv (t) λ

πv
p (t)

Qπvv (t)
− 1 (71)

Case 1: If node v is not the first active node of path p and Υv (t) exists.
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Let for an arbitrary node j, tj = T j,πv (t). Since all the nodes between Υv (t)
and πv are inactive by the definition of Υv (t) (note that Υv (t) may be equal to
πv), we have

tΥv(tπv ) = tπv = t (72)

Furthermore, since η̂πvv (t) = 1, and the full capacity discharge of active links (as-
sumption 3), we have

∑
p∈Γ̂πvv (t)

λΥv(t)
p (t) = Q̂πvv (t) (73)

∑
p∈Γ̂πvv (t)

λπvp (t) = Q̂πvv (t) (74)

Thus: ∑
p∈Γ̂πvv (t) λ

πv
p (t)

Q̂πvv (t)
= 1 (75)

By replacing the constant 1 in equation (71) with the above result we get,

dδπvv
dt

∣∣∣∣
t

=

∑
p∈Γπvv (t) λ

πv
p (t)

Qπvv (t)
−
∑
p∈Γ̂πvv (t) λ

πv
p (t)

Q̂πvv (t)
(76)

This gives us the result for j = πv. We will now map this result to any node
j ∈ V \S. By definition of time mapping, we have

δjv = δπvv ◦ Tπv,j (77)

Taking its derivative with respect to time, we obtain

dδjv
dt

=

[
dδπvv
dt

◦ Tπv,j
]
· dT

πv,j

dt
(78)

dδjv
dt

∣∣∣∣
t

=

[∑
p∈Γ

πv
v ◦Tπv,j(t) λ

πv
p ◦ Tπv,j(t)

Qπvv ◦ Tπv,j(t) −

∑
p∈Γ

πv
Υvt
◦Tπv,j(t) λ

πv
p ◦ Tπv,j (t)

QπvΥv(t) ◦ Tπv,j (t)

 · dT
πv,j

dt

∣∣∣∣
t

(79)

Equation (38) on flow mapping gives(
λπvp ◦ Tπv,j(t)

)
· dT

πv,j

dt

∣∣∣∣
t

= λjp (t) (80)

Substituting this result and the simple time mapping transformations of λ and Q
into equation (79) gives the final result

dδjv
dt

∣∣∣∣
t

=

∑
p∈Γjv(t) λ

j
p (t)

Qjv (t)
−
∑
p∈Γj

Υv(t)
(t) λ

j
p (t)

QjΥv(t) (t)
(81)

=

∑
p∈Γjv(t) λ

j
p (t)

Qjv (t)
−
∑
p∈Γ̂jv(t) λ

j
p (t)

Q̂jv (t)
(82)
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Case 2: If node v is the first active node of path p, we leave the constant 1 in
equation (71) and follow the same remaining steps as in case 1 to obtain the result.

dδjv
dt

∣∣∣∣
t

=

∑
p∈Γjv(t) λ

j
p (t)

Qjv (t)
− dT 0,j

dt

∣∣∣∣
t

(83)

�
Applying Theorem 2 with j = 0, we see that the delays with respect to the flows

at the origin δ0
v are solutions to the ordinary differential equations in definition 3.14.

Definition 3.14. Time mapped delay evolution differential equation

• If v is not an active node and the flow on its active link γv0 is within capacity,

then
dδ0
v

dt
= 0.

• If v is an active node or its active link γv0 is over capacity, then

dδ0
v

dt

∣∣∣∣
t

=



∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

− 1

if v is the first active queue ∈ p∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

−
∑
p∈Γ̂0

v(t) λ
0
p (t)

Q̂0
v (t)

otherwise

(84)

where the time mapping functions are redefined from delays as follows:

T j,0 =
∑

0≺i4j

δ0
i (85)

Proposition 9. Delay evolution does not depend on departure curves
All the time mapped quantities in equations (84) can be computed using only the

initial delays, departure curve at the origin and the link capacities. It does not
require the departure curves for any internal nodes v ∈ V \v0.

Proof. The time mapping function only depends on the delay functions from
definition 3.1. The time mapped flows can be obtained using the time mapping
function using Proposition 6. The other time mapped quantities are by definition
constructed using the time mapping function as given in section 3.2.2. �

3.4. Equivalence of departure curves and delays. We prove Theorem 1 on
the existence and uniqueness of Problem 1 by first showing the equivalence between
Problem 1 and Problem 2 (defined below), and then proving the existence and
uniqueness of Problem 2 in the next section.

Problem 2: General delay problem
Input. An arborescence (V,L) with source v0 and sink set S, capacities µl (t) ,∀l ∈
L, t ∈ [tinitial, tfinal], departure functions from the source Dv0

p ∈ D(tinitial, tfinal)
∀p ∈ Pv0

and initial delays δv (tinitial) ≥ 0, ∀v ∈ V \(S ∪ {v0})
Question. Does a solution to the time mapped delay function from definition 3.14
for each node v ∈ V \v0 exist and is it unique?

Theorem 3. Problem (1) and problem (2) are equivalent

Administrator
打字机
comes directly from the definition of a segment of constant constrain
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Proof. The inputs to both problems are identical. Therefore, we only need to prove
that the existence of a solution to one problem implies a unique and feasible corre-
sponding solution to the other problem.

(⇒) Suppose first that Problem 1 admits a solution.
By the definition of delay,

δv (t) = [Dv
p ]−1

(
Dπv
p (t)

)
− t, (86)

By the definition of time mapped delay we obtain,

δ0
v (t) = δπvv ◦ Tπv,0 (t) (87)

= δ0
v

(
[Dv

p ]−1
(
D0
p (t)

))
(88)

= δv
(
[Dv

p ]−1
(
D0
p (t)

))
, (89)

which can be made a function of only Dv
p by equation (86).

Theorem 2 then ensures that the delay functions thus defined satisfy the time
mapped delay evolution from definition 3.14, i.e. a feasible solution to problem 2.
Furthermore, the solution is unique from equation (89), since Dv

p is a strictly in-
creasing function.

(⇐) Suppose now that Problem 2 admits a solution δ0
v (t). We can build the corre-

sponding departure curves Dv
p (t) as follows.

D0
p (t) = δ0

0 (t) (90)

The inverse departure curve [D0
p]
−1 (x) can be constructed from D0

p (t), since the
departure curve is strictly increasing.

[Dv
p ]−1 (x) = [D0

p]
−1 (x) + T v,0

(
[D0

p]
−1 (x)

)
(91)

The departure curve Dv
p (t) can also be constructed from [Dv

p ]−1 (x) due to the
strictly increasing nature of the functions.

We now show that the departure curves thus defined are feasible departure curves,
i.e. a feasible solution to problem 1.

1. D0
p is continuous and piecewise C1 because λ0

p is piecewise continuous. Fur-

thermore, since T j,0 is strictly increasing for all nodes j, Dv
p is continuous and

piecewise C1.
2. The capacity constraint on links is imposed by equation (84) due to Proposi-

tion 8.
3. The FIFO condition is satisfied by construction since the delay δ0

v is not a
function of the path p.

4. The full capacity discharge of the active queues is also imposed by by equation
(84) due to Proposition 8.

3.5. Existence and uniqueness of the time mapped delay evolution. This
section proves Theorem 4 on the existence and uniqueness of the solution to Prob-
lem 2.
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Theorem 4. Existence and uniqueness of the solution to problem (2)
The solution to problem (2) exists and is unique on the time interval of the

problem [tinitial, tfinal], if the following conditions are satisfied.

1. the path flows at the origin λ0
p (t) are piecewise polynomial,

2. link capacities µl are piecewise constant over time.

The proof of this theorem is fairly technical and requires several definitions and
lemmas. Theorem 1 is a direct corollary of this result due to to Theorem 3 on the
equivalence of the two problems.

The main goal of the proof of Theorem 4 is to show that there are a finite number
of possible transitions, and to integrate equation (84) across the transitions. The
next definitions and lemmas enables to establish these properties.

Definition 3.15. Depth of a node d (v)
We define the depth d (v) of a node v as the number of links on the unique path

from the origin v0 to node v

Definition 3.16. Link constraint comparators B(cl1 ,cl2 ) (t) and Bcl (t)

Given a node v and two distinct links (l1, l2), we define the boolean comparator
B(cl1 ,cl2 ) (t) as follows:

B(cl1 ,cl2 ) (t) =

 1 if

∑
p∈Pl1

λ0
p(t)

µ0
l1

(t)
>

∑
p∈Pl2

λ0
p(t)

µ0
l2

(t)

0 otherwise
(92)

Given a node v and link l ∈ Lout
v , we define the boolean comparator Bcl (t) as

follows:

Bcl (t) =

{
1 if

∑
p∈Pl

λ0
p(t)

µ0
l (t)

> 1

0 otherwise
(93)

Definition 3.17. Time segment of constant link constraint J
A time segment J is a segment of constant link constraint if and only if

1. for each l ∈ L, the boolean Bcl (t) is constant on J ,
2. for each pair of nodes (l1, l2) ∈ L, the boolean B(cl1 ,cl2 ) (t) is constant on J .

3. for each l ∈ L, the time mapped link capacity µ0
l (t) is constant on J .

Lemma 10. Under the assumptions on flows and capacities, there are a finite
number of segments of constant link constraint

Proof. Consider a pair of links (l1, l2). Since capacities are piecewise constant
and flows are piecewise polynomial, there are a finite number of segments on which
the capacities are constant and flows are polynomial. On any such a segment,∑

p∈Pl1
λ0
p(t)

µ0
l1

(t)
and

∑
p∈Pl1

λ0
p(t)

µ0
l1

(t)
−

∑
p∈Pl2

λ0
p(t)

µ0
l2

(t)
are polynomials. Therefore, the num-

ber of times each expression crosses zero is bounded by the degree of the polyno-
mial, which implies that there are a finite number of segments of constant link
constraint. �

Lemma 11. Constant active link
If J is a segment of constant link constraint, the active link γ0

v of any node v is
constant on J .

Proof. The result comes directly from the definition of a segment of constant
constraint. �
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Definition 3.18. Solution of depth n
A solution of problem (2) for depth n is a set of solutions δv for all nodes v such

that d(v) < n. It can be rigorously defined because the equations for δv only depend
on variables associated with nodes of depth less than n.

Definition 3.19. Elementary time segment T e (v)
Given a node v and a solution of depth d(v) − 1 (if v is not the origin), an

elementary segment for node v is a time segment T e (v) such that

• T e(v) is a segment of constant constraint,
• If v is not the origin, for each node j ∈ V such that d (j) < d (v), the node

state ηj (t) is constant on T e(v).

Lemma 12. Single transition of node state on an elementary segment
If there exists a solution to problem (2) up to depth d(v − 1), and if T e(v) =

[t0, tf ] is an elementary segment for node v, then there is a solution δ0
v of the

problem and node v admits at most one transition in T e(v).

Proof. As for each node j ∈ V such that d (j) < d (v), the node state ηj (t) is
constant on T e(v), the first active upstream node Υv is constant over time. More-
over, as T e(v) is a segment of constant constraint, Lemma 11 gives that active
link γv and first active upstream link γ̂v are constant on T e(v), and the sign of∑

p∈Γ0
v(t) λ

0
p (t)

Q0
v (t)

−
∑
p∈Γ̂0

v(t) λ
0
p (t)

Q̂0
v (t)

is constant on T e(v).

Let us now consider the following four cases:

1. B(cγ̂v ,cγv ) (t0) = 1, η0
v (t) = 1 =⇒ dδ0

v

dt

∣∣∣∣
t

> 0 and since the queue state is

already active no transition will occur.

2. B(cγ̂v ,cγv ) (t0) = 1, η0
v (t) = 0 =⇒ dδ0

v

dt

∣∣∣∣
t

> 0 and the queue state will

immediately transition to being active η0
v (t) = 1. No further transitions will

occur as shown above.

3. B(cγ̂v ,cγv ) (t0) = 0, η0
v (t) = 1 =⇒ dδ0

v

dt

∣∣∣∣
t

≤ 0 and the queue at node v

starts dissipating. There will be a transition in the queue state to inactive
η0
v (t) = 0 if the queue dissipates by time tf and the queue state will remain

active otherwise.

4. B(cγ̂v ,cγv ) (t0) = 0, η0
v (t) = 0 =⇒ dδ0

v

dt

∣∣∣∣
t

≤ 0 and the only possibility is the

strict equality case and the queue state remains inactive.

�

Lemma 13. Unique solution on an elementary segment
Let T e(v) be an elementary segment for node v. Assuming a solution of depth

d(v)− 1 (if v is not the origin), then solution of equation (84) for node v exists is
unique on T e(v).

Proof. By Lemma 12, there can be at most one state transition of node v in
T e(v). This splits T e(v) into at most two sub-segments where ηv = 0 or ηv = 1.
From Lemma 11 we have that active link γv and the first active upstream link Υv

are constant on T e(v). Therefore, the quantities Γv, Γ̂v, Qv and Q̂v are constant on
T e(v). Equation (84) states that
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• If v is not an active node (ηv = 0) and the flow on its active link γv is within

capacity, then
dδ0
v

dt
= 0.

• If v is an active node (ηv = 1) or it’s active link γv is over capacity,

dδ0
v

dt

∣∣∣∣
t

=



∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

− 1

if v is the first active queue ∈ p∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

−
∑
p∈Γ̂0

v(t) λ
0
p (t)

Q̂0
v (t)

otherwise

(94)

As all the variables in equation (94) other than the flow λ0
p (t) are constant during

an elementary segment T e(v) and the flow λ0
p (t) is continuous in t for all t ∈ T e(v),

we can show that equation (94) admits a unique solution on the interval T e(v) by
the Picard-Lindelöf theorem. �

We have now all the ingredients to prove Theorem 4.
Proof of Theorem 4: We will prove the following proposition: The time interval
of interest (tinitial, tfinal] can be partitioned into a finite set of elementary segments,
and the solution to problem (2) exists and is unique

The proof is done inductively over the depth of the network. If the network con-
tains a single node v0, [tinitial, tfinal] is an elementary segment for v0, (tinitial, tfinal] ∈
T e (v0) and there is a unique solution by Lemma 13. By the induction hypothesis, let
us now assume that (tinitial, tfinal] can be partitioned into a finite number of elemen-
tary segments with respect to all nodes of depth n and that the solution exists and is
unique. Let t0, t1, · · · , tm be times such that En = {(ti, ti+1],∀i ∈ [0,m− 1]} is the
set of elementary segments for nodes of depth n, and let δv for all v ∈ {V |d(v) ≤ n}
be the unique solution of depth n.

Let Kn be the non-empty set of nodes of depth n, and let v ∈ Kn be a node in
this set. Lemma 12 gives that for each v ∈ Kn, there is at most one state transition
on (ti, ti+1]. Let Fn(v) be the set of times at which these transitions occur for
node v. Since there are m elementary segments, there can at most be |Fn (v) | ≤ m
transitions. If Fn is the set of times at which the transitions for all nodes of depth
n happen, |Fn| ≤ m ·Kn.

Let {t′0, t′1, · · · , t′m′} = {t0, t1, · · · , tm} ∪Fn be the m′ segments created by split-
ting En at each of the state transitions for nodes of depth n. The total number of
segments m′ satisfies m′ ≤ m · (Kn + 1), since |Fn| ≤ m ·Kn. By the definition of
the t′i, for each i ∈ [0,m′] we have

• for all v ∈ Kn, ηv is constant on (t′i, t
′
i+1],

• (t′i, t
′
i+1] is a segment of constant constraint J , since it is subset of an elemen-

tary segment, which is already by definition a segment of constant constraint.

Thus, [t′i, t
′
i+1] is an elementary segment for all nodes of depth (n+1). Furthermore,

by Lemma 13, this implies that there is an unique solution to all nodes of depth
n+ 1, which concludes the proof. �

This also completes the proof of Theorem 1.
Proof of Theorem 1. Problem 1 is equivalent to Problem 2 by Theorem 3 and
Problem 2 admits a unique solution by Theorem 4. �
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In some applications, it is also important to be able to computing the total
delay experienced by an agents that takes a particular path. A provides analytical
expressions for the total delay along a path.

4. Applications. The solution to problem (1) models the flows in the network
given the departure time functions at the origin and the initial delays by providing
the departure time functions for all the other nodes in the network. The solution
can be obtained by first solving problem (2), which provides the agent delay func-
tion at each node. Practically, problem (2) easier to directly solve than problem
(1), because it corresponds to an explicit automaton that is easy to implement for
numerical simulations.

Given a discretization time step ∆t and the initial conditions δv (0), algorithm 1
gives a numerical solution to the discretized problem (2). The algorithm numerically
integrates the ordinary differential equation (ODE) given in equation (84) over time
to obtain the solution. The algorithm relies on the fact that each discretized time
step is an elementary segment, because the path flows and capacities are assumed
to be constant (discrete approximation) during each time step.

Algorithm 1 Calculate approximate solution of problem (2)

solveDelays(sourceFlow: λ0, initialDelays: δ0[0], capacities: µ)
for l ∈ Lout

0 do
for t = 1 to T do
update(vout

l , t, 1, 0)
end for

end for

update(node: v, timeStep: t, lastActiveConstraint: ω̂)
if v 6∈ S then

∆0
0,v[t] = ∆0

0,πv [t] + δ0
v [t− 1]

for l ∈ Lv do
µ0
l [t] = µl(t+ ∆0

0,v[t])

c0l [t] =

∑
p∈Pl λ

0
p[t]

µ0
l [t]

end for
γv[t] = arg maxl∈Lout

v
cv,l (t)

Γv[t] = Pγv(t)

ωv[t] =

∑
p∈Γv[t] λ

0
p[t]

µ0
l [t]

δ0
v [t] = max (0, (ωv − ω̂) ·∆t)

for l ∈ Loutv do
if δ0

v [t] > 0 then
update(vout

l , t, ωv)
else
update(vout

l , t, ω̂)
end if

end for
end if
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4.1. Single route with multiple bottlenecks. The first case we will study is
that of a simple single path network with multiple queues due to several capacity
bottlenecks, as illustrated in figure 3. This network can be modeled as a tree with
a single sink, i.e. a single path. Thus, we will remove the path index from the
notation in this section. Each internal node v has a unique child, thus the internal
nodes can be indexed by the integers v0, · · · , vn and the unique path of the tree
is [v0, v1, · · · , vn, vs]. Moreover, as they model a succession of queues on the same
road, we can assume that the capacity of each link (vi, vi+1) is constant and equal
to capacity of the corresponding road segment ∀v, µvi,vi+1

= µ. From Theorem 5,
we know that the evolution of delay is given by

d∆0
p

dt

∣∣∣∣∣
t

=


∑
p′∈Γ̃0

p(t) λ
0
p′ (t)

Q̃0
p (t)

− 1 if p has an active queue

0 otherwise

(95)

v0 v1 v2 vi vn vs

Figure 3. Multiple bottlenecks on a road.

Since, the link with the smallest capacity will always be the last active link
µ̃ = min(µvi,vi+1

):

d∆0

dt

∣∣∣∣
t

=


λ0(t)

µ̃
− 1 if there is an active queue

0 otherwise
(96)

Thus, the evolution of total delay is equivalent to the evolution law for one queue
of capacity µ̃, and the network can be simplified to a unique internal node v followed
by a link of capacity µ̃.

If the capacity of the links is time varying and µ̄(t) is the capacity of the most
constrained link that the agent entering the network at time t is subjected to,

d∆0

dt

∣∣∣∣
t

=


λ0(t)

µ̄(t)
− 1 if p has an active queue

0 otherwise

(97)

4.2. Off-Ramp bottleneck. The next application is to compute the the dynamics
of a congested freeway off-ramp, using the off-ramp model presented by Newell [38].
This example shows the versatility of the proposed framework, since Newell’s the
model includes non-FIFO dynamics at the off-ramp. This is accommodated by
introducing an additional node and state dependent capacities on two links. The
description of the model is as follows. As seen in figure 4(a), there are two flows
λh and λe that enter the network, which has a capacity of µh. Therefore, λh (t) +
λe (t) ≤ µh. The exiting flow λe is restricted by a capacity constraint of µe at the
exit. There are four possible states of queuing dynamics that can occur based on
the flow values. Figure 5 illustrates the transitions between the states.
Case 1: λe ≤ µe. If λe (t) ≤ µe, no queues will form in the network and there will
be no delay.
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Figure 4. Off-Ramp model with its four states - (a) state ∅ (b)
state Qe (c) state (Qe, Qh) (d) state Qh. See figure 5 for a illus-
tration of the state transitions.

Case 2: λe > µe and λh ≤ µr. If λe (t) > µe, an exit queue will start forming at
the entrance to the exit as seen in figure 4(b), which will then restrict the capacity
of the freeway from µh to µr.
Case 3: λe > µe, λh > µr and µr

λh
· λe ≥ µe. If the freeway flow λh > µr, then

a second freeway queue will start forming behind the exiting agent queue, as seen
in figure 4(c), since the freeway demand is greater than the new reduced freeway
capacity µr. This second freeway queue will contain both freeway and exiting
agents and therefore the flow exiting the queue will be subject to the first-in-first-
out (FIFO) condition. As a result, since the freeway flow λh is restricted to a rate
of µr, the exiting agent flow at the freeway queue will be restricted to λ′e = µr

λh
· λe.

Case 4: λe > µe, λh > µr and µr
λh
· λe < µe. Now, if λ′e < µe, then the off-ramp

queue will start decreasing since the flow is less than the capacity and the queue will
disappear. Thus, in this case, an off-ramp bottleneck created a second bottleneck
that in turn removed the off-ramp bottleneck, which is an unstable equilibrium.
Therefore, as explained in [38], there will be a single queue of both freeway and
exiting agents that occurs at the off-ramp, as seen in figure 4(d), and the freeway
flow through the bottleneck will be λouth = µe

λe
·λh according to the FIFO condition.
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�h > µh

µr

�h
· �e < µe

Qe;

Qh

queue e

queue h

queue e
Qe, Qh

queue appears
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�e > µe > �e · µr
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�e · µr

�h
� µe

queue h

�e > µe and

Figure 5. State transitions in the off-ramp model. The four states
∅, Qe, (Qe, Qh) and Qh correspond respectively to the cases (a),
(b), (c) and (d) from figure 4.

The uniqueness and existing properties hold even with the state dependent ca-
pacities, since the flows are assumed to be piecewise polynomial and therefore lead
to a finite number of state transitions. This implies that the link capacities are
piecewise constant. Therefore, we can solve for the delays in this network using
algorithm 1. Furthermore, this subnetwork can be part of a larger network over
which we wish to compute the system delays.

Figure 6 shows the flow and delay profiles for a numerical example of the off
ramp network with the following link capacities: µE = 5, µH = 30 and µ = 45. We
can observe the following state transitions during the simulated time window.

• At t=92 Appearance of exiting agent queue.
• At t=121 Appearance of freeway queue.
• At t=222 Disappearance of exiting agent queue.
• At t=372 Disappearance of freeway queue.

One interesting observation is that freeway congestion caused by the exiting
agent bottleneck persists well beyond the time at which the exiting agent queue
disappears.

5. Conclusion. This article presented a mathematical framework for modeling
traffic flow through a network with a single source and multiple sinks. The model
satisfies the standard laws of flow dynamics and is shown to lead to a well-posed
dynamics problem with an unique solution. The main benefit of this framework is
the ability to analytically prescribe the delays at each junction as a function of the
boundary flows at any other upstream junction and the delay over any sub-path with
respect to the boundary flow at the source node of the sub-path. This is a critical
requirement when solving control and optimization problems over the network, since
solving an optimization problem over simulation models is generally intractable in
terms of computational complexity. The versatility of computing the delays as a
function of the inflow at any point in the network is achieved though a mathematical
framework for time mapping the delays. An algorithm for computing a discrete
approximation of the system numerically is also provided. The application of the
framework is illustrated using two examples, a single path consisting of multiple
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Figure 6. Simulation of states and delays (δE , δH) as functions of
time t, given the incoming flows at the off ramp, and road param-
eters: µE = 5, µH = 30 and µ = 45

bottlenecks and a diverge junction with complex junction dynamics. The main
limitation of this framework is the requirement that the network only have a single
source. The time mapping framework presented can however be generalized to
any non-cyclic (tree) network. Thus, the next step would be to introduce merging
dynamics into the model to obtain a more general network model.
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Definition A.1. Total delay of a path p
We define the total delay ∆0

p encountered on a path p at time t as the total delay
encountered by agent on path p that enters on the network at t throughout its entire
path to the sink node.

∆0
p (t) = [D

vpN
p ]−1

(
D0
p (t)

)
− t (98)

where vpN is the last non-sink node on path p. We define the time mapped total
delay ∆j

p as the total delay in path p as seen by an agent that is at node j at time
t.

∆j
p = Tj,0

(
∆0
p

)
(99)

Proposition 14. Total delay ∆j
p as a function of queue delay δ

The time mapped total delay ∆j
p encountered on a path is equal to the sum of delay

encountered by the agent on its path.

∆j
p

(
tj
)

=
∑

v∈Vp\({0}∪S)

δjv
(
tj
)

(100)

where tj is the time that the agent is at node j.

Proof. Let ti = T i,j
(
tj
)
. We obtain the result as follows using the definition of

delay and a series of time mappings.

LHS = ∆j
p

(
tj
)

= Tj,0
(
∆0
p

(
tj
))

= ∆0
p

(
T 0,j

(
tj
))

= ∆0
p

(
t0
)

= [D
vpN
p ]−1

(
D0
p

(
t0
))
− t0

RHS =
∑

v∈Vp\({0}∪S)

δjv
(
tj
)

=
∑

v∈Vp\({0}∪S)

δπvv (tπv )

=
∑

v∈Vp\({0}∪S)

[Dv
p ]−1

(
Dπv
p (tπv )

)
− tπv

=
∑

v∈Vp\({0}∪S)

[Dv
p ]−1

(
Dπv
p (tπv )

)
− [Dπv

p ]−1
(
Dπv
p (tπv )

)
=

∑
v∈Vp\({0}∪S)

[Dv
p ]−1

(
D0
p

(
t0
))
− [Dπv

p ]−1
(
D0
p

(
t0
))

= [D
vpN
p ]−1

(
D0
p

(
t0
))
− [D0

p]
−1
(
D0
p

(
t0
))

= [D
vpN
p ]−1

(
D0
p

(
t0
))
− t0

Definition A.2. Active link of the last active queue of a path p at time t (ap (t))
Let p be a path and t be the time that an agent departs node j. We define the last
active queue of the path p time mapped to passing node j at time t as

ajp (t) = max
�

{
v ∈ Vp|ηjv (t) = 1

}
(101)
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For notational convenience we also define the following:

γ̃jp (t) = γj
ajp(t)

(t) (102)

Γ̃jp (t) = Γj
ajp(t)

(t) (103)

Q̃jp (t) = µj
γ̃jp(t)

(t) (104)

Theorem 5. Evolution law for total delay ∆0
p

Let p be a path, t be a time. The evolution law for total delay at time t is

d∆0
p

dt

∣∣∣∣∣
t

=


∑
p′∈Γ̃0

p(t) λ
0
p′ (t)

Q̃0
p (t)

− 1 if p has an active queue

0 otherwise

(105)

Proof. Taking the derivative of equation (100) for j = 0, we obtain

d∆0
p

dt

∣∣∣∣∣
t

=
∑

v∈Vp\(S∪{0})

dδ0
v

dt

∣∣∣∣
t

(106)

=
∑

{v|v∈Vp\(S∪{0}),γ0
v(t)=1}

dδ0
v

dt

∣∣∣∣
t

(107)

Note that γ0
v (t) = 1 implies node v is active when the source flow at time t reaches

node v. From Theorem 2 with j = 0 we have,

dδ0
v

dt

∣∣∣∣
t

=



∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

− 1

if v is the first active queue ∈ p∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

−
∑
p∈Γ̂0

v(t) λ
0
p (t)

Q̂0
v (t)

otherwise

(108)

Plugging this into equation (107) gives a telescopic series, since it only considers

the active nodes of the path and Q̃0
p (t) gives the capacity of the last active link of

path p. Thus, we obtain

d∆0
p

dt

∣∣∣∣∣
t

=

∑
p′∈Γ̃0

p(t) λ
0
p′ (t)

Q̃0
p (t)

− 1 (109)

If p does not contain an active queue there is no queuing in the path, which means
there is no change in the queue length and therefore no change in the delay. �

Remark 9. Note that this theorem can be extended to any subpath pij ∈ p such
that

d∆i
pi,j

dt

∣∣∣∣∣
t

=

∑
p′∈Γ̃ipij

(t) λ
i
p′ (t)

Q̃ipij (t)
− 1 (110)
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