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Abstract. We consider a SIS system with nonlocal diffusion which is the

continuous version of a discrete model for the propagation of epidemics on a

metapopulation network. Under the assumption of limited transmission, we
prove the global existence of a unique solution for any diffusion coefficients.

We investigate the existence of an endemic equilibrium and prove its linear
stability, which corresponds to the loss of stability of the disease-free equi-

librium. In the case of equal diffusion coefficients, we reduce the system to a

Fisher-type equation with nonlocal diffusion, which allows us to study the large
time behaviour of the solutions. We show large time convergence to either the

disease-free or the endemic equilibrium.

1. Introduction. In this paper, we propose to consider a new model for the spread
of epidemics on heterogeneous networks, which we formally derive from a discrete
model proposed in [17, 18]. Each node of the network corresponds to a patch of the
metapopulation and is characterised by its degree x > 0. In contrast with [17, 18],
the degree is viewed here as a continuous variable and the structure of the network
is encapsulated in its degree distribution. We assume namely that the density of
this distribution is given by a smooth function p : R+ → R+ which satisfies

∀x ≥ 0, p(x) ≥ 0, p(0) = 0 and

∫ ∞
0

p(x) dx = 1. (1.1)

The condition p(0) = 0 corresponds to a connected network, with no isolated patch.
Moreover, we restrict to the case of uncorrelated network, as will be explained below.
This continuous approximation has already been used in the context of complex
networks (see [5], [6]) but to our knowledge it has not appeared when coupled with
epidemic process. For any nonnegative measurable function φ : R+ → R+, we
denote by 〈φ〉 ∈ [0,∞] its mean value on the network defined by

〈φ〉 =

∫ ∞
0

φ(x) p(x)dx. (1.2)
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We assume that the mean value of the degree is finite, so that

there exists m ∈ (0,∞) such that m = 〈x〉 =

∫ ∞
0

x p(x)dx. (1.3)

Let us denote by S(x, t) (resp. I(x, t)) the density of susceptible (resp. infected)
individuals of degree x ≥ 0 at time t ≥ 0. In our model, their evolution in time is
given by the solution of the following nonlinear and nonlocal system

(C)



∂S

∂t
= I (µ− βS)−DS

(
S − x

m
s(t)

)
x > 0, t > 0

∂I

∂t
= I (−µ+ βS)−DI

(
I − x

m
i(t)
)

x > 0, t > 0

S(x, 0) = S0(x), x ≥ 0
I(x, 0) = I0(x), x ≥ 0,

with s(t) and i(t) given by

∀t > 0, s(t) = 〈S(., t)〉, i(t) = 〈I(., t)〉. (1.4)

The constant µ > 0 is the recovery rate of the epidemics. The function β = β(x, t)
is the transmission rate which according to standard epidemiological modelling is
of one of the following forms, either

(H1) limited transmission

β(x, t) =
β0

N(x, t)
, (1.5)

where N(x, t) is the total density of individuals of degree x at time t defined
by

N(x, t) = S(x, t) + I(x, t) (1.6)

or
(H2) nonlimited transmission

β(x, t) = β0,

where β0 > 0 is a given constant. In this paper, we deal with the case of limited
transmission and assume in the sequel that β is given by (1.5). The companion
paper [13] is devoted to the analysis of the model under the assumption of nonlimited
transmission (H2).

This system is obtained as a continous version of the discrete SIS metapopulation
model proposed in [17].

The classical compartmental models of epidemiology, among which the most basic
are the SIS and SIR models (see [9], [4]) usually assume homogeneous, well-mixed
population. More recently, there is a vast literature devoted to epidemic models
in the case where the population is displaying heterogeneous properties, regarding
either its geographical distribution and density or its epidemic parameters, such
as the transmission coefficient (see [11]). Simultaneously the recent years have
witnessed an impressive body of works investigating complex networks using the
tools and methods of statistical physics (see [14] for a survey). The main interest
lies in understanding dynamical processes taking place on those networks and the
impact of the topology of the network on their qualitative behaviour.

One of the main topic of interest concerns epidemic networks that have attracted
a lot of attention (see [11], [16], and [15] for a recent review).

Our work originated from a series of papers by R.Pastor-Satorras, A.Vespignani,
V. Collizza which focuses on the propagation of epidemics in “metapopulation”.
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The concept of metapopulation has been introduced in ecology by R. Levins in
[12] and metapopulation dynamics has been studied subsequently ([7], [8]). It aims
at describing a population in which individuals are spatially distributed in their
habitat, thus forming subpopulations. Here the metapopulation is mapped onto a
network, where nodes correspond to patches of subpopulations that migrate along
the edges. The epidemic transmission takes place in each patch.

Following ([1], [2], [3]), J. Saldana proposed in [17] and [18] a discrete model for
the propagation of epidemics in a heterogeneous network, with the additional feature
that reaction and diffusion processes take place simultaneously. This assumption
allowed him to derive a time-continuous model.

In this paper, we propose to consider a continuous version of this model, where
both time and degree take values in R+. The resulting model is a system of differ-
ential equations with nonlocal diffusion. We show that it retains the main features
of the discrete ones, while providing rigorous and more precise results.

Let us namely describe the results contained in this paper. In section 2, we
present the discrete model and recall the results obtained in [17, 18, 19]. In sec-
tion 3, we show that the system (C) admits a unique, global in time solution for
any diffusion coefficients DS , DI > 0 and for any smooth, nonnegative initial data
(S0, I0) with finite mean values. The result is obtained using fixed point methods
and a priori estimates on the solutions. In section 4, we prove the existence of an
endemic equilibrium (EE) if and only if β0 > µ. We then prove that the disease-free
equilibrium (DFE) is linearly stable as long as the (EE) does not exist and that it
loses its stability as soon as the (EE) does exist, in which case the latter is stable.
Next in section 5, we study large-time asymptotics of the solutions to (C). In the
case where (DFE) is linearly stable, we prove that it is also the limit of any solution
of system (C) for large time. Next in the case of equal diffusion coefficients, we
reduce the system to a Fisher-type equation with nonlocal diffusion. By using a
comparison principle satisfied by this equation, we obtain the large-time behavior
of the solutions to System (C) and prove that (EE) is globally asymptotically stable
whenever it exists.

2. The discrete model. Our model is based on a model for the spread of infectious
diseases in heterogeneous metapopulations proposed in [17] and [18] that we briefly
recall here.

The author considers a biological population living in separated patches that are
connected by pathways (roads, transportation lines, etc...). This is mapped onto
a network, whose nodes are the patches and whose edges are the links connecting
them. Such a network is called a metapopulation - a “population of populations” -
network.

His model is based on previous descriptions of complex network using methods
of statistical physics ([14], [16]), more precisely on a model proposed in ([1], [2], [3]).
Applying a formalism from statistical mechanics to complex networks, the novelty
of these models is to focus on the degree, as the main variable. Let us recall that
the degree of a node is defined in graph theory as an integer which is the number
of its nearest neighbors measured by the number of edges attached to it. The main
assumption is that, after taking statistical averages on configurations, the density
of individuals of a certain type, whether susceptibles or infected, in a node of degree
k only depends on k.

Precisely, the complex network is characterized by the degree distribution of its
nodes. The topology of the network is encoded in the probability distribution of
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degrees (p(k)), k ∈ N that satisfies

∀k ≥ 0, p(k) ≥ 0 and

∞∑
0

p(k) = 1,

with a finite mean value m > 0 defined by

m =

∞∑
0

k p(k) <∞.

Diffusion is modeled as a migration process along the edges, which tends to bal-
ance the outflow from the node of degree k and the inflow from the neighboring
nodes of degree j. Hence it depends on the degree correlation function in the net-
work, (p(j|k))j≥0 for each k ≥ 0, defined as the conditional probability distribution

of a neighboring node of a node of degree k. Note that p(j|k)kp(k) is the prob-
ability that an edge departing from a node of degree k is connected to a node of
degree j. Therefore this quantity is a symmetric function of (j, k), which imposes
the consistency condition

∀(j, k) ∈ N2, kp(j|k)p(k) = jp(k|j)p(j). (2.1)

In order to consider the epidemic process taking place on the network, it is assumed
that each node contains two types of individuals: susceptibles S and infected I. The
epidemic transmission occurs in the nodes. In the case of the classical SIS model,
it corresponds to the bosonic reactions scheme

S + I
β−→ 2I, I

µ−→ S,

where µ > 0 is the recovery rate and β > 0 is the transmission rate.
In the papers ([17]), [19]), the additional assumption is that reaction and diffusion

occur simultaneously, which allows the author to derive the following system. Let
Sk(t) (resp. Ik(t)) denote the (statistical) density of susceptibles (resp. infected) in
a node of degree k. Combining reaction in the nodes and diffusion along the edges,
Saldana’s model proposes the following time-evolution model for (Sk, Ik), for any
fixed k ∈ N,

∂Sk
∂t

= Ik (µ− βkSk)−DS

Sk − k∑
j

p(j|k)
1

j
Sj


∂Ik
∂t

= Ik (−µ+ βkSk)−DI

Ik − k∑
j

p(j|k)
1

j
Ij

,
where DS > 0 (resp. DI > 0) is the diffusion coefficient of susceptible (resp.
infected) individuals.

J. Saldana then focuses on the particular case of “uncorrelated networks”, where
p(j|k) is independent of k. In view of the consistency condition (2.1), it is therefore

given by p(j|k) = jp(j)
m . In this case, the above model simplifies into
∂Sk
∂t

= Ik (µ− βkSk)−DS

(
Sk −

k

m
〈S〉
)

∂Ik
∂t

= Ik (−µ+ βkSk)−DI

(
Ik −

k

m
〈I〉
)
,
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where
〈S〉 =

∑
k≥0

p(k)Sk, 〈I〉 =
∑
k≥0

p(k)Ik

are the mean values of Sk and Ik on the network. The results established in ([17],
[18]) concern the existence of equilibria and their linear stability, which is investi-
gated using matrix analysis. The authors also carry out Monte-Carlo simulations in
[19] in order to test the effects of different probability distributions on the existence
and stability of the equilibria.

The system (C) considered here is the formal continuous limit of the above
system. Namely, we replace k ∈ N by x ∈ R+, and assume that the network’s
degree distribution is a density p satisfying (1.1). Denoting by S(x, t) (resp. I(x, t))
the corresponding number of susceptibles (resp. infected) individuals at time t ≥ 0
and defining the mean values by (1.2) yields the evolution system (C).

3. Existence and uniqueness of a solution to system (C). In the sequel, we
consider a couple of initial data (S0, I0) satisfying the following assumptions.

Assumption 1. The initial data S0 : R+ → R+ and I0 : R+ → R+ are smooth,
nonnegative functions on R+ satisfying S0(0) = 0 and I0(0) = 0.

Assumption 2. Let s0 = 〈S0〉 and i0 = 〈I0〉 be the mean values of S0 and I0
respectively. Assume that 0 < s0, i0 <∞.

Under these assumptions, we show that system (C) admits a unique, global in
time solution and establish the following theorem

Theorem 3.1. There exists a unique solution (S, I) to System (C) on R+ × R+.

Proof. We denote by n(t) the mean value of the functions N(., t) at time t ≥ 0 so
that in view of (1.6) and (1.4)

n(t) = 〈N(., t)〉 =

∫ ∞
0

N(x, t) p(x)dx = s(t) + i(t) (3.1)

and by n0 = s0 + i0 > 0 the initial total mean population.

3.1. A priori estimates. We first establish a priori estimates on the solutions of
(C).

Proposition 1. Assume that (S0, I0) satisfy assumptions 1 and 2 above. Let (S, I)
be a smooth solution to system (C) on R+ × R+. The following properties are
satisfied.

(i) The function n is constant in time: ∀t > 0, n(t) = n0

(ii) ∀t > 0, ∀x > 0, I(x, t) > 0
(iii) ∀t > 0, ∀x > 0, S(x, t) > 0
(iv) ∀t > 0, S(0, t) = I(0, t) = 0

Remark 1. For definiteness it is assumed that β(x, t)S(x, t) = 0 in system (C)
whenever N(x, t) = 0. However it follows from Proposition 1 that N(x, t) > 0 for
all t > 0 and x > 0.

Proof. To establish (i), note that in view of the definitions of s(t) and i(t) in (1.4)
and of m in (1.3), we have that for all t > 0,

〈S(., t)− x

m
s(t)〉 = 〈I(., t)− x

m
i(t)〉 = 0.
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Adding up the two equations in system (C) shows that N = S + I satisfies for all
x > 0,

∀t > 0,
∂N

∂t
(x, t) = −DS

(
S(x, t)− x

m
s(t)

)
−DI

(
I(x, t)− x

m
i(t)
)

so that since the function N is smooth,

n′(t) =
d

dt

(∫ ∞
0

N(x, t) p(x) dx

)
= 〈∂N(., t)

∂t
〉 = 0

for all t > 0. Hence the function n is constant in time,

∀t ≥ 0, n(t) = n(0) = s0 + i0 = n0.

To establish (ii), note that the function I satisfies for all x > 0

∀t > 0,
∂I

∂t
= I (−µ+ βS −DI) +DI

x

m
i(t). (3.2)

Let us first show that

∀t ≥ 0, i(t) > 0 (3.3)

Let us denote A = {t ≥ 0 / ∀s ∈ [0, t], i(s) > 0}. Since i0 > 0, by continuity
there exists ε0 > 0 such that [0, ε0] ⊂ A.

Let us define T ∗ = sup(A) so that T ∗ ≥ ε0 > 0. If we assume by contradiction
that A is bounded by above, then T ∗ <∞, A = [0, T ∗) and i(T ∗) = 0.

We define the functions f and F by

∀x > 0, ∀t > 0, f(x, t) = −(µ+DI) + β(x, t)S(x, t) and F (x, t) =

∫ t

0

f(x, s)ds

so that in view of (3.2), we have that

∂
(
e−F I

)
∂t

= e−F
(
∂I

∂t
− fI

)
= e−FDI

x

m
i(t).

Hence we have that

∂
(
e−F I

)
∂t

(x, t) > 0 for all t ∈ (0, T∗) and x > 0.

Since I(x, 0) ≥ 0, we deduce that for all x > 0 and 0 < t < t′ < T ∗,

0 ≤ I(x, 0) < e−F (x,t)I(x, t) < e−F (x,t′)I(x, t′) (3.4)

so that I(x, t) > 0 for t ∈ (0, T ∗) and x > 0. Letting t′ → T ∗, this implies that
I(x, T ∗) > 0 for all x > 0, which contradicts i(T ∗) = 0. Hence T ∗ = ∞ which
proves (3.3). We then argue as above and deduce (ii) from (3.4).

To establish (iii), note that the function S satisfies for all x > 0

∀t > 0,
∂S

∂t
= S (−βI −DS) + µI +DS

x

m
s(t). (3.5)

Since by (ii), we have that I ≥ 0 on R+×R+, we follow the same method as in the
proof of (ii) to show that s(t) > 0 for all t ≥ 0 and to conclude that S(x, t) > 0 for
all t > 0 and x > 0.

To establish (iv), note that α(t) = I(0, t) satifies (3.2) with x = 0 which is the
linear equation α′ = f(0, t)α. Since α(0) = 0 by Assumption 1, it follows that
α(t) = 0 for all t ≥ 0. Next using (3.5) with x = 0, we prove similarly that
S(0, t) = 0 for all t ≥ 0.
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3.2. Fixed point procedure. Let (s, i) be a given couple of continuous nonneg-
ative functions defined on R+ with (s(0), i(0)) = (s0, i0). To this couple (s, i), we
associate the following evolution system

(
Ĉ
)


∂Ŝ

∂t
= Î

(
µ− β̂(x, t)Ŝ

)
−DS

(
Ŝ − x

m
s(t)

)
x > 0, t > 0

∂Î

∂t
= Î

(
−µ+ β̂(x, t)Ŝ

)
−DI

(
Î − x

m
i(t)
)

x > 0, t > 0

Ŝ(x, 0) = S0(x), x ≥ 0

Î(x, 0) = I0(x), x ≥ 0

and denote by
(
Ŝ, Î

)
its solution. We prove below that it is defined on R+ × R+.

We also define
∀x > 0, ∀t > 0, N̂(x, t) = Ŝ(x, t) + Î(x, t)

and, in view of (1.5), we assume here that β̂(x, t) = β0

N̂(x,t)
(with the convention

that β̂(x, t)Ŝ(x, t) = 0 whenever N̂(x, t) = 0). Next we define the functions
(
ŝ, î
)

by

∀t > 0, ŝ(t) = 〈Ŝ(., t)〉, î(t) = 〈Î(., t)〉 (3.6)

and n̂ = ŝ+ î.

Note that
(
Ŝ, Î

)
is a solution of (C) if and only if ŝ = s and î = i so that the

existence of a solution to (C) relies on the existence of a fixed point to the operator

(s, i)→ (ŝ, î).

3.2.1. A priori estimates on
(
Ŝ, Î

)
. The well-posedness of system

(
Ĉ
)

follows from

classical results on system of odes. To establish global existence of a solution
(
Ŝ, Î

)
on R+, we first prove the following a priori estimates of the solutions and obtain
upper bounds in the next lemma. Define

d = min(DI , DS), D = max(DI , DS) (3.7)

Lemma 3.2. Let T > 0 be given and consider 2 smooth nonnegative functions (s, i)

defined on R+ such that (s(0), i(0)) = (s0, i0). Let (Ŝ, Î) be a smooth solution to

system (Ĉ) on R+ × [0, T ]. Then the following properties are satisfied.

(i) ∀t ∈ [0, T ], ∀x > 0, Î(x, t) ≥ 0

(ii) ∀t ∈ [0, T ], ∀x > 0, Ŝ(x, t) ≥ 0

(iii) ∀t ∈ [0, T ], Î(0, t) = Ŝ(0, t) = 0
(iv) ∀t ∈ [0, T ], ∀x ∈ R+,

0 ≤ N̂(x, t) ≤ N+(x, t) = N(x, 0)e−dt +
D

d

x

m
(1− e−dt) max

s∈[0,T ]
n(s) (3.8)

Proof. To establish (i), note that Î satifies for all x > 0

∀t ∈ [0, T ],
∂Î

∂t
= Î

(
−µ−DI + β̂Ŝ

)
+DI

x

m
i(t)

with i(t) ≥ 0 so that

∀t ∈ [0, T ],
∂Î

∂t
≥ Î

(
−µ−DI + β̂Ŝ

)
and Î(., 0) = I0 ≥ 0.
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It is standard to deduce that Î(., t) ≥ 0 for all t ∈ [0, T ].

To establish (ii), note that the function Ŝ satisfies for all x > 0

∀t ∈ [0, T ],
∂Ŝ

∂t
= Ŝ

(
−β̂Î −DS

)
+ µÎ +DS

x

m
s(t). (3.9)

with s(t) ≥ 0 and Î ≥ 0 on R+ × [0, T ] by (i). Thus

∀t ∈ [0, T ],
∂Ŝ

∂t
≥ Ŝ

(
−β̂Î −DS

)
with Ŝ(., 0) = S0 ≥ 0.

As for (i), it is then standard to deduce that Ŝ(., t) ≥ 0 for all t ∈ [0, T ].
The proof of (iii) is the same as the one of Proposition 1 (iv).

Finally, note that N̂ satisfies for all x > 0

∀t ∈ [0, T ],
∂N̂

∂t
= −DS

(
Ŝ − x

m
s(t)

)
−DI

(
Î − x

m
i(t)
)
. (3.10)

so that

∀t ∈ [0, T ],
∂N̂

∂t
≤ −dN̂ +D

x

m
n(t) (3.11)

for all x > 0. A straightforward integration yields that for all x > 0

∀t ∈ [0, T ], 0 ≤ N̂(x, t)edt ≤ N(x, 0) +D
x

m

∫ t

0

edsn(s)ds

which yields (iv) and completes the proof of Lemma 3.2.

Finally note that it follows from the estimates below that for all x > 0, Î(x, .)

and Ŝ(x, .) are bounded on [0, T ] for any fixed T > 0. This implies the existence of

a unique global solution
(
Ŝ, Î

)
to system

(
Ĉ
)

on R+.

3.2.2. Proof of the contraction. In this section, we consider any fixed T > 0 and
define the set

E = {(i, n) ∈ C0([0, T ],R2), (i(0), n(0)) = (i0, n0) and ∀t ∈ [0, T ], 0 ≤ i(t) ≤ n(t)},

where C0([0, T ],R2) is equipped with the norm ‖ (f, g) ‖ = sup
t∈[0,T ]

e−λt (|f(t)|+ |g(t)|)

for a suitable λ > 0. This set is a closed, convex subset of C0([0, T ],R2). The
corresponding function s : [0, T ]→ R+ is then defined by s+ i = n on [0, T ].

Proposition 2. We define

φ : E −→ C0([0, T ],R2)

(i, n) 7−→
(̂
i, n̂
)
,

Then φ(E) ⊂ E and φ is a contraction in E.

Proof. We first show that φ(E) ⊂ E. Let us consider (i, n) ∈ E. Since s = n− i, we

have that s, i ≥ 0 on [0, T ]. Thus by Lemma 3.2, it follows that î, ŝ ≥ 0 on [0, T ].

Therefore n̂ = î+ ŝ ≥ î ≥ 0 on [0, T ] so that
(̂
i, n̂
)
∈ E.

Next, let us consider (i1, n1) ∈ E (resp. (i2, n2) ∈ E) and denote by
(
Ŝ1, Î1

)
(resp.

(
Ŝ2, Î2

)
) the corresponding solutions of system

(
Ĉ
)

and define accordingly
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for j = 1, 2

∀x > 0, ∀t ∈ [0, T ], N̂j(x, t) = Ŝj(x, t) + Îj(x, t) and β̂j(x, t) =
β0

N̂j(x, t)
.

Define next the functions y and z for all (x, t) ∈ R+ × [0, T ] by

y(x, t) =
(
Î2 − Î1

)
(x, t), z(x, t) =

(
N̂2 − N̂1

)
(x, t).

We establish the following estimates on y and z.

Lemma 3.3. There exists C > 0 such that for all (x, t) ∈ R+ × [0, T ],∣∣∣∣∂y∂t
∣∣∣∣+

∣∣∣∣∂z∂t
∣∣∣∣ ≤ C(|y|+ |z|) + C

x

m
(|i2 − i1| (t) + |n2 − n1| (t)) (3.12)

Proof. In a first step, we prove that for all (x, t) ∈ R+ × [0, T ],∣∣∣∣∂y∂t
∣∣∣∣ ≤ C1(|y|+ |z|) +DI

x

m
|i2 − i1| (t) (3.13)

with C1 = 2β0 + µ+DI .

Note that Îj (j = 1, 2) satisfies

∂Îj
∂t

= Îj

(
−µ+ β̂jŜj

)
−DI

(
Îj −

x

m
ij(t)

)
.

Thus, if we define ∆ by

∀(x, t) ∈ R+ × [0, T ], ∆(x, t) =
(
β̂2Ŝ2Î2 − β̂1Ŝ1Î1

)
(x, t)

then y satisfies on R+ × [0, T ]

∂y

∂t
= ∆− (µ+DI)y +DI

x

m
(i2(t)− i1(t)) , (3.14)

We omit (x, t) and rewrite

∆ =
β0

N̂1N̂2

(
N̂1Ŝ2Î2 − N̂2Ŝ1Î1

)
=

β0

N̂1N̂2

(
Î1Î2(Ŝ2 − Ŝ1) + Ŝ1Ŝ2(Î2 − Î1)

)
so that, since 0 ≤ Îj , Ŝj ≤ N̂j for j = 1, 2,

|∆| ≤ β0

(
|Ŝ2 − Ŝ1|+ |Î2 − Î1|

)
.

Thus, using that
∣∣∣Ŝ2 − Ŝ1

∣∣∣ ≤ |y|+ |z|, we deduce from (3.14) that∣∣∣∣∂y∂t
∣∣∣∣ ≤ (2β0 + µ+DI) |y|+ β0 |z|+DI

x

m
|i2 − i1| (t)

which yields (3.13).

In a second step, we prove a similar differential inequality on z = N̂2 − N̂1 and
show that for all (x, t) ∈ R+ × [0, T ],∣∣∣∣∂z∂t

∣∣∣∣ ≤ D(|y|+ |z|) +D
x

m
(|i2 − i1| (t) + |n2 − n1| (t)) (3.15)

with D = max(DI , DS).
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Note that adding up the two equations in system (Ĉ) shows that N̂j (j = 1, 2)
satisfies

∂N̂j
∂t

= − DS(Ŝj −
x

m
sj(t))−DI(Îj(x, t)−

x

m
ij(t))

= − DS(N̂j −
x

m
nj(t))− (DI −DS)(Îj(x, t)−

x

m
ij(t)).

By substraction, it follows that

∂z

∂t
= −DSz − (DI −DS)y +DS

x

m
(n2 − n1)(t) + (DI −DS)

x

m
(i2 − i1)(t)

which yields (3.15) using that 0 ≤ DS , |DI −DS | ≤ D.
Adding up (3.13) and (3.15), we obtain (3.12) for a suitable C > 0, which

completes the proof of Lemma 3.3.

Let us define the functions A and F for (x, t) ∈ R+ × [0, T ] by

A(x, t) = C
x

m
[|i2 − i1|(t) + |n2 − n1|(t)]

and

F (x, t) =

∫ t

0

∣∣∣∣∂y∂t (x, τ)

∣∣∣∣+

∣∣∣∣∂z∂t (x, τ)

∣∣∣∣ dτ
so that A,F ≥ 0 and F (x, 0) = 0. Since y(., 0) = z(., 0) = 0, it follows that

∀(x, t) ∈ R+ × [0, T ], |y(x, t)|+ |z(x, t)| ≤ F (x, t) (3.16)

so that the inequality (3.12) implies that

∀(x, t) ∈ R+ × [0, T ],
∂F

∂t
(x, t) ≤ CF (x, t) +A(x, t). (3.17)

By Gronwall’s lemma, this implies that

∀(x, t) ∈ R+ × [0, T ], F (x, t) ≤
∫ t

0

eC(t−s)A(x, s)ds.

Since for all s ∈ ×[0, T ],

|i2(s)− i1(s)|+ |n2(s)− n1(s)| ≤ eλs‖(i2 − i1, n2 − n1)‖,

it follows that if we choose λ > C,

∀(x, t) ∈ R+ × [0, T ], F (x, t) ≤ C x

m
‖(i2 − i1, n2 − n1)‖e

λt − eCt

λ− C
which in view of (3.16) implies that for all (x, t) ∈ R+ × [0, T ],

|y(x, t)|+ |z(x, t)| ≤ C x

m
‖(i2 − i1, n2 − n1)‖e

λt − eCt

λ− C
(3.18)

Multiply (3.18) by p(x) and integrate on [0,∞) to obtain that∫ ∞
0

|y(x, t)| p(x)dx+

∫ ∞
0

|z(x, t)| p(x)dx ≤ C‖(i2 − i1, n2 − n1)‖e
λt − eCt

λ− C

Note that by definition of î and n̂, we have that for all t ∈ [0, T ],∣∣∣̂i2(t)− î1(t)
∣∣∣ =

∣∣∣∣∫ ∞
0

y(x, t)p(x)dx

∣∣∣∣ ≤ ∫ ∞
0

|y(x, t)| p(x)dx
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and similarly

|n̂2(t)− n̂1(t)| = |
∫ ∞

0

z(x, t)p(x)dx| ≤
∫ ∞

0

|z(x, t)|p(x)dx

so that for all t ∈ [0, T ],

e−λt
[
|̂i2(t)− î1(t)|+ |n̂2(t)− n̂1(t)|

]
≤ C[‖ (i2 − i1, n2 − n1) ‖1− e(C−λ)t

λ− C
.

Hence

‖
(̂
i2 − î1, n̂2 − n̂1

)
‖ ≤ C

λ− C
‖ (i2 − i1, n2 − n1) ‖.

We finally choose λ > 2C and define k = C
λ−C so that 0 < k < 1 and

‖
(̂
i2 − î1, n̂2 − n̂1

)
‖ ≤ k‖ (i2 − i1, n2 − n1) ‖,

which proves that φ is a contraction in E.

In conclusion, we established that φ admits a unique fixed point, i.e. a couple
of functions i : [0, T ] → R+ and n : [0, T ] → R+ with 0 ≤ i ≤ n on [0, T ] such

that î = i and n̂ = n on [0, T ]. It follows that ŝ = n̂ − î = s on [0, T ]. Hence the

corresponding function pair (Ŝ, Î) = (S, I) satisfies system (C) on [0, T ]. This holds
for an arbitrary T > 0, thus proving the existence of a unique, global solution to
system (C) on R+, which completes the proof of Theorem 3.1.

4. Equilibria: Existence and linear stability. In this section, we are concerned
with equilibrium solutions to system (C). Such a solution is given by a couple of
nonnegative, C1 functions

(S∗, I∗) : R+ → R2
+ such that for all x > 0, N∗(x) = S∗(x) + I∗(x) > 0

which satisfies system (C∗) on R∗+

(C∗)

{
I∗(x) (µ− β∗(x)S∗(x)) = DS

(
S∗(x)− x

ms
∗)

I∗(x) (−µ+ β∗(x)S∗(x)) = DI

(
I∗(x)− x

m i
∗) .

with

s∗ =

∫ ∞
0

S∗(x) p(x) dx and i∗ =

∫ ∞
0

I∗(x) p(x) dx, (4.1)

where β∗(x) =
β0

N∗(x)
for all x > 0.

4.1. DFE and EE. The disease-free and endemic equilibria are defined as follows.

Definition 4.1. For a given n0 > 0, any equilibrium solution such that 〈N∗(x)〉 =
n0 is of one of the two following types,

• The disease-free equilibrium (DFE), given by

∀x ≥ 0, I∗(x) = 0, S∗(x) = n0
x

m
,

• An endemic equilibrium (EE), which is a nonnegative solution (S∗(x), I∗(x))
of system (C∗) on R∗+ such that i∗ > 0, s∗ ≥ 0 and s∗ + i∗ = n0.

We prove the following result.
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Theorem 4.2. There exists an endemic equilibrium if and only if β0 > µ.
In this case, for any n0 > 0, there exists a unique endemic equilibrium such that

〈N∗(x)〉 = n0 given by

I∗(x) = i∗
x

m
, S∗(x) = s∗

x

m
(4.2)

with
i∗ = n0(1− µ

β0
), s∗ = n0

µ

β0
. (4.3)

Proof. Adding the two lines of system (C∗) shows that any solution satisfies

∀x ≥ 0, DSS
∗(x) +DII

∗(x) = a
x

m
(4.4)

with a = DSs
∗ + DI i

∗. Taking the limit at x = 0 implies that S∗(0) = I∗(0) = 0.
Therefore we define the C0 functions σ : R∗+ → R+ and τ : R∗+ → R+ by

∀x > 0, S∗(x) =
x

m
σ(x), I∗(x) =

x

m
τ(x) (4.5)

Substituting (S∗, I∗) in (4.4) and in the second equation of system (C∗) yields the
following system (c∗) on R∗+,

(c∗)

{
DSσ(x) +DIτ(x) = a

τ(x)(µ+DI − β0
σ(x)

σ(x)+τ(x) ) = DI i
∗,

with
s∗ = 〈 x

m
σ(x)〉, i∗ = 〈 x

m
τ(x)〉 and a = DSs

∗ +DI i
∗. (4.6)

From the first equation in system (c∗), we deduce that

∀x > 0, σ(x) =
a

DS
− DI

DS
τ(x)

with the second equation in system (c∗) reading

τ(x)[(µ+DI)τ(x) + (µ+DI − β0)σ(x)] = DI i
∗[σ(x) + τ(x)]. (4.7)

Thus substituting the above expression of σ reduces equation (4.7) to a quadratic
equation with constant coefficients for τ(x). Therefore the only possible solutions
are constant so that there exist (σ, τ) ∈ R2

+ such that

∀x > 0, σ(x) = σ and τ(x) = τ.

Note that in view of (4.6) and the definition of m = 〈x〉, it follows that

s∗ = 〈 x
m
σ(x)〉 = σ〈 x

m
〉 = σ and i∗ = 〈 x

m
τ(x)〉 = τ.

Coming back to equation (4.7), this yields

i∗[(µ+DI)i
∗ + (µ+DI − β0)s∗] = DI i

∗[s∗ + i∗]

which, using that i∗ > 0 and s∗ + i∗ = n0, simplifies as

(µ+DI)n0 − β0s
∗ = DIn0

so that s∗ and consequently i∗ are given by (4.3). The corresponding (EE) is given
by (4.2) under the necessary and sufficient condition β0 > µ.

Remark 2. Note that in the case of nonlimited transmission, the necessary and
sufficient condition of existence of an (EE) reads n0 ≥ N , where N also depends on
the structure of the network, through the probability distribution p (see [13]), and
not only on the epidemic parameters β0 and µ as in the case considered here.
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4.2. Linear stability. We address here the issue of linear stability of the equilibria
defined above. The results stated here on the continuous model coincide with the
ones obtained by Saldana on the discrete model in [17] and [18].

Let (S∗(x), I∗(x)) be an equilibrium solution to system (C), with s∗ = 〈S∗〉,
i∗ = 〈I∗〉 and n0 = s∗ + i∗. The linearized system around (S∗(x), I∗(x)) is given
for all x > 0 by

(L)


∂f

∂t
= −β0 (I∗/N∗)

2
f +

(
µ− β0 (S∗/N∗)

2
)
g −DS

(
f − x

m
F (t)

)
∂g

∂t
= β0 (I∗/N∗)

2
f +

(
−µ+ β0 (S∗/N∗)

2
)
g −DI

(
g − x

m
G(t)

)
,

with initial data (f(x, 0), g(x, 0)) = (f0(x), g0(x)) and where we used the notation

∀t ≥ 0, F (t) = 〈f(., t)〉, G(t) = 〈g(., t)〉. (4.8)

We also define the functions h : R+ × R+ → R and H : R+ → R by

∀t ≥ 0, h(., t) = f(., t) + g(., t) and H(t) = 〈h(., t)〉. (4.9)

We make the assumption that f0, g0 : R+ → R are C1 with∫ ∞
0

(|f0(x)|+ |g0(x)|) p(x)dx <∞ and 〈f0〉+ 〈g0〉 = 0. (4.10)

Note that this last assumption is imposed by the conservation law for the total mean
density n(t) = s(t) + i(t) in system (C) and the corresponding following property
for system (L).

Lemma 4.3. Let (f, g) be a smooth solution to the linearized system (L) on R+ ×
R+. Then

∀t > 0, H(t) = H(0).

Proof. Using that for all t > 0

〈f(., t)− x

m
F (t)〉 = 〈g(., t)− x

m
G(t)〉 = 0

and that h satisfies

∀t > 0,
∂h

∂t
= −DS

(
f − x

m
F (t)

)
−DI

(
g − x

m
G(t)

)
it follows that

H ′(t) =
d

dt

(∫ ∞
0

h(x, t) p(x) dx

)
= 〈∂h(., t)

∂t
〉 = 0

for all t > 0 which proves that the function H is constant in time.

This lemma shows that orbital stability imposes lim
t→∞

H(t) = H(0) = 0 which

is condition (4.10). In this case, any solution (f, g) to (L) with (f0, g0) satisfying
(4.10) has the property that

∀t ≥ 0, H(t) = F (t) +G(t) = 0. (4.11)

We’ll make use of the auxiliary following result.

Lemma 4.4. For any α ∈ R, the solution of the linear nonlocal equation

∂φ

∂t
= αφ−D(φ− x

m
〈φ(., t)〉), x > 0, t > 0 (4.12)
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is given for all x > 0 and t > 0 by

φ(x, t) = (φ(x, 0)− x

m
〈φ(., 0)〉)e(α−D)t +

x

m
〈φ(., 0)〉eαt. (4.13)

Moreover,

∀t > 0, 〈φ(., t)〉 = 〈φ(., 0)〉eαt. (4.14)

Proof. Let us define for all x > 0 and t > 0

Φ(t) = 〈φ(., t)〉 and φ̃(x, t) = φ(x, t)− x

m
Φ(t).

Multiplying (4.12) by p(x) and integrating on R+ shows that Φ′(t) = αΦ(t) for all

t > 0 which yields (4.14). Next we deduce from equation (4.12) that ∂φ̃
∂t = (α−D)φ̃

so that

∀x > 0,∀t > 0, φ̃(x, t) = (φ(x, 0)− x

m
〈φ(., 0)〉)e(α−D)t

which implies that φ(x, t) = φ̃(x, t) + x
mΦ(t) is given by (4.13) in view of (4.14).

We investigate below the linear stability of the (DFE) and of the (EE). To this
end, let us define for all x > 0 and t > 0

f̃(x, t) = f(x, t)− x

m
F (t) and g̃(x, t) = g(x, t)− x

m
G(t). (4.15)

4.2.1. Disease free equilibrium. We consider the above linearized system (L0) in the
case that I∗(x) = 0 and S∗(x) = N∗(x) = n0

x
m , namely

(L0)


∂f

∂t
= (µ− β0)g −DS

(
f − x

m
〈f(., t)〉

)
∂g

∂t
= (−µ+ β0)g −DI

(
g − x

m
〈g(., t)〉

)
and establish the following result.

Proposition 3. Let (f0, g0) satisfy (4.10) with 〈f0〉 6= 0. Then

lim
t→∞

f(x, t) = lim
t→∞

g(x, t) = 0 if and only if β0 < µ.

Thus the disease free equilibrium is linearly stable if and only if there is no endemic
equilibrium.

Proof. The function g satisfies

∂g

∂t
= (−µ+ β0)g −DI(g −

x

m
〈g(., t)〉). (4.16)

Using Lemma 4.4 with α = β0 − µ and the expression (4.13), we have that for all
x > 0 and t > 0,

g(x, t) = (g0(x)− x

m
〈g0〉)e(β0−µ−DI)t +

x

m
〈g0〉e(β0−µ)t.

Consequently, we have

[∀x ≥ 0, lim
t→∞

g(x, t) = 0] if and only if β0 − µ < 0.

Since F (t) +G(t) = 0 by (4.11), it follows in view of (4.10) and (4.14) that

∀t > 0, F (t) = 〈f0〉e(β0−µ)t.
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The first equation of (L0) yields

∂f̃

∂t
= −DS f̃ + (µ− β0)g̃

= −DS f̃ + (µ− β0)(g0(x)− x

m
〈g0〉)e(β0−µ−DI)t

If β0 − µ < 0, a straightforward computation shows therefore that lim
t→∞

f̃(x, t) = 0

which in view of the above expression of F (t) shows that

∀x ≥ 0, lim
t→∞

f(x, t) = 0.

4.2.2. Endemic equilibrium. We consider here the linearized system (L∗) around
the endemic equilibrium (S∗(x), I∗(x)) given by (4.2), which reads as follows.

(L∗)


∂f

∂t
= −β0(1− µ

β0
)2f + µ(1− µ

β0
)g −DS(f − x

m
F (t))

∂g

∂t
= β0(1− µ

β0
)2f − µ(1− µ

β0
)g −DI(g −

x

m
G(t)).

We establish the following result.

Proposition 4. Let (f0, g0) satisfy (4.10) with 〈f0〉 6= 0. Then

lim
t→∞

f(x, t) = lim
t→∞

g(x, t) = 0 if and only if β0 > µ.

Thus as soon as there exists an endemic equilibrium, it is linearly stable

Proof. Replacing f = h− g and using that F (t) +G(t) = 0 for all t > 0, we obtain
the equivalent linear system (E∗) for the functions (g, h),

(E∗)


∂g

∂t
= (µ− β0)g +

(β0 − µ)2

β0
h−DI(g −

x

m
G(t))

∂h

∂t
= −DSh− (DI −DS)(g − x

m
G(t)).

Let us multiply the first equation of the system (E∗) by p(x) and integrate on
R+. Since H(t) = 〈h(., t)〉 = 0, we obtain that G′(t) = (−β0 + µ)G(t) so that
G(t) = 〈g0〉e(µ−β0)t. Thus G → 0 when t → ∞ if and only if −β0 + µ < 0.
Assuming that this necessary condition of stability is satisfied, let us consider the
equivalent system (Ẽ) for the functions (g̃, h),

(Ẽ)


∂g̃

∂t
= (µ− β0 −DI)g̃ + (β0−µ)2

β0
h,

∂h

∂t
= −DSh− (DI −DS)g̃.

Hence (Ẽ) is an homogeneous linear system of the form Y ′ = AY , with Y = (g̃, h)
and the constant matrix A given by

A =

 µ− β0 −DI
(β0 − µ)2

β0

DS −DI −DS


Note that since µ− β0 < 0, Tr(A) = µ− β0 −DI −DS < 0 and

det(A) = DSµ
(β0 − µ)

β0
+DIDS +DI

(β0 − µ)2

β0
> 0,
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which implies that both eigenvalues of A are strictly negative. Thus for all x ≥ 0,
h(x, t), g̃(x, t) → 0 when t → ∞. This implies that g(x, t) = g̃(x, t) + x

mG(t) → 0
and f(x, t) = h(x, t)−g(x, t)→ 0 when t→∞ at an exponential rate for x bounded
in R+.

5. Large time asymptotic behaviour. Confirming the linear stability results
proved in section 4, we show below that the (DFE) is globally asymptotically stable
as long as the (EE) does not exist and that if the (EE) does exist, it is globally
asymptotically stable in the case DS = DI .

Precisely, we consider any initial data (S0, I0) satisfying the assumptions 1 and
2 and denote by n0 = 〈S0〉 + 〈I0〉 the total mean density. We make the additional

assumption that N(x,0)
x is bounded so that there exists k ≥ 1 such that

∀x ≥ 0, 0 ≤ N(x, 0) ≤ kn0
x

m
. (5.1)

Let (S, I) be the corresponding solution to system (C) on R+ ×R+. We first show
in the next Lemma that it is sufficient to obtain the limiting behavior of I(x, t) as
t→∞.

Lemma 5.1. Assume that the initial data (S0, I0) satify assumptions 1 and 2 and
(5.1). Then the following properties hold.

1. There exists C ≥ 1 such that for all x ≥ 0 and for all t ≥ 0,

0 ≤ N(x, t) ≤ Cn0
x

m
. (5.2)

2. For any fixed x ≥ 0, we have that

lim
t→∞

(I(x, t)− x

m
i(t)) = 0 ⇒ lim

t→∞
(N(x, t)− n0

x

m
) = 0

⇒ lim
t→∞

(S(x, t)− x

m
s(t)) = 0

Proof. 1. Note that it follows from (3.8) applied to N = N̂ that for all x, t > 0,

0 ≤ N(x, t) ≤ N(x, 0)e−dt + n0
D

d

x

m
(1− e−dt), (5.3)

with d and D defined in (3.7). Thus if C = max(k, Dd ), using (5.1), we have
that

0 ≤ N(x, t) ≤ max(N(x, 0), n0
D

d

x

m
) ≤ Cn0

x

m
,

which proves (5.2).

2. Assume that for some fixed x ≥ 0, lim
t→∞

(I(x, t)− x

m
i(t)) = 0 so that for all

ε > 0, there exists A > 0 such that

∀t ≥ A, |I(x, t)− x

m
i(t)| ≤ ε. (5.4)

Note that N satisfies

∂N

∂t
= −DS(S − x

m
s(t))−DI(I −

x

m
i(t)).

We substitute S(x, t) = (N − I)(x, t) and s(t) = n0 − i(t) and rewrite this
equation as

∂N

∂t
= −DS(N − n0

x

m
)− (DI −DS)(I − x

m
i(t)). (5.5)
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By integration on [t, 2t] after multiplication by eDSt, we obtain that

e2DSt(N(x, 2t)− n0
x
m ) = eDSt(N(x, t)− n0

x
m )

+(DS −DI)
∫ 2t

t
eDSτ (I(x, τ)− x

m i(τ))dτ.

Using (5.2), there exists C̃ > 0 such that

∀x ≥ 0, |N(x, t)− n0
x

m
| ≤ C̃n0

x

m

and using (5.4), we have that for all t ≥ A ,∣∣∣∣∫ 2t

t

eDSτ (I(x, τ)− x

m
i(τ))dτ

∣∣∣∣ ≤ ε

DS
e2DSt

Hence

|N(x, 2t)− n0
x

m
| ≤ C̃e−DStn0

x

m
+ ε

∣∣∣∣1− DI

DS

∣∣∣∣
which proves that

lim
t→∞

(
N(x, t)− n0

x

m

)
= 0

and consequently

lim
t→∞

(
S(x, t)− s(t) x

m

)
= 0.

Based on this lemma, in the sequel we only consider the asymptotic behavior of
I(x, t) at t→∞. The equation for I reads

∂I

∂t
= I(−µ+ βS)−DI(I −

x

m
i(t))

with i(t) = 〈I(., t)〉. Since β =
β0

N(x, t)
and S(x, t) = N(x, t)−I(x, t), it is equivalent

to
∂I

∂t
= I(−µ+ β0 −

β0

N(x, t)
I)−DI(I −

x

m
i(t)). (5.6)

Integrating this equation on R+ after multiplication by p(x) shows that

∀t > 0, i′(t) = (−µ+ β0)i(t)−
∫ ∞

0

β0

N(x, t)
I2(x, t)p(x)dx. (5.7)

In the sequel, we distinguish the two cases 0 < β0 ≤ µ and β0 > µ.

5.1. Convergence to the (DFE). We assume here that 0 < β0 ≤ µ and establish
the following result.

Proposition 5. For all x ≥ 0,

lim
t→∞

I(x, t) = 0, lim
t→∞

S(x, t) = n0
x

m
. (5.8)

Proof. Since I(x, t), N(x, t) ≥ 0 for all (x, t) ∈ R+ × R+, it follows from (5.7) that

∀t ≥ 0, 0 ≤ i(t) ≤ i+(t),

where i+(t) = i(0)e(β0−µ)t is the solution of i′+(t) = (−µ + β0)i+(t) with i+(0) =
i(0). Thus in view of (5.6),

∀t ≥ 0, ∀x ≥ 0, 0 ≤ I(x, t) ≤ I+(x, t),
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where I+(x, t) is the solution of

∂I+
∂t

= I+(β0 − µ−DI) +DI
x

m
i(0)e(β0−µ)t. (5.9)

with I+(x, 0) = I0(x). A straightforward computation yields

∀(x, t) > 0, I+(x, t) = (I0(x)− i(0)
x

m
)e(β0−µ−DI)t + i(0)

x

m
e(β0−µ)t.

Consequently, if β0 − µ < 0, it follows that for all x ≥ 0

lim
t→∞

I(x, t) = lim
t→∞

I+(x, t) = 0

at an exponential convergence rate ≥ β0 − µ.
In the limit case β0 = µ, the proof is modified as follows. First note that (5.6)

reads in this case
∂I

∂t
= − β0

N(x, t)
I2 −DI [I −

x

m
i(t)] (5.10)

and in view of (5.7), the function i satisfies

∀t > 0, i′(t) = −
∫ ∞

0

β0

N(x, t)
I2(x, t)p(x)dx.

By Schwarz’s inequality,∫ ∞
0

I(x, t)p(x)dx ≤
(∫ ∞

0

I2(x, t)

N(x, t)
p(x)dx

)1/2(∫ ∞
0

N(x, t)p(x)dx

)1/2

or equivalently, since i(t) ≥ 0 and n(t) = 〈N(., t)〉 = n0,

∀t > 0, i(t)2 ≤ n0

(∫ ∞
0

I2(x, t)

N(x, t)
p(x)dx

)
. (5.11)

it follows that

∀t > 0, i′(t) ≤ −β0

n0
i(t)2 < 0 (5.12)

which proves that

∀t > 0, 0 ≤ i(t) ≤ n0

β0t+ n0

i0

and lim
t→∞

↘ i(t) = 0. (5.13)

Next it follows from (5.10) that

∀t ≥ 0, ∀x ≥ 0, 0 ≤ I(x, t) ≤ I+(x, t),

where I+(x, t) is the solution of

∂I+
∂t

= −DII+ +DI
x

m
i(t) (5.14)

with I+(x, 0) = I0(x). Thus

(eDItI+(x, t))t = DIe
DIt

x

m
i(t).

After integration on [t, 2t] with t > 0 for any fixed x ≥ 0, we use (5.13) and obtain
that

e2DItI+(x, 2t) = eDItI+(x, t) +
x

m

∫ 2t

t

DIe
DIsi(s)ds

≤ eDItI+(x, t) +
x

m
i(t)

∫ 2t

t

DIe
DIsds ≤ eDItI+(x, t) +

x

m
i(t)e2DIt
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which proves that for all x ≥ 0

0 ≤ I+(x, 2t) ≤ e−DItI+(x, t) +
x

m
i(t).

Since I+(x, t) is bounded by I0(x) +DI
x

m
i0t, this implies that

lim
t→∞

I(x, t) = 0 (5.15)

for all x ≥ 0, with a convergence rate smaller than 1
t by (5.13).

From property 2 in Lemma 5.1, we then obtain the limit of S(., t) as t → ∞
stated in (5.8) which completes the proof of Proposition 5.

5.2. Convergence to the (EE). We assume here that β0 > µ and establish the
following result.

Proposition 6. Assume that DI = DS and suppose that (5.1) holds. Then for all
x ≥ 0,

lim
t→∞

I(x, t) = I∗(x) = i∗
x

m
(5.16)

lim
t→∞

S(x, t) = S∗(x) = s∗
x

m
, (5.17)

with (i∗, s∗) given in (4.3).

Proof. Since I(0, t) ≡ 0 for all t ≥ 0, we make a change of functions and define the
C1 function u : R+ × R+ → R+ by

∀x ∈ R+, ∀t ≥ 0, I(x, t) = i∗
x

m
u(x, t). (5.18)

Similarly since N(0, t) ≡ 0 for all t ≥ 0, we define a C1 function w : R+×R+ → R+

by

∀x ∈ R+, ∀t ≥ 0, N(x, t) = n0
x

m
w(x, t). (5.19)

Let us also consider the distribution probability q defined on R+ by

∀x ≥ 0, q(x) =
xp(x)

m

and associate to any function v : R+ → R with v ∈ L1(R+, q(x)dx) its mean value
with respect to q denoted by

〈v〉q =

∫ ∞
0

v(x)q(x)dx. (5.20)

In view of (5.6) and of (4.3), the function u satisfies

∂u

∂t
= (β0 − µ)u

(
1− u

w

)
−DI(u− 〈u(., t)〉q), t > 0, x ≥ 0. (5.21)

We now restrict to the case DI = DS . In this case, equation (5.5) reduces to

∀x > 0, ∀t > 0,
∂N

∂t
= −DI(N −

x

m
〈N(., t)〉) = −DI(N − n0

x

m
).

Hence we obtain that for all x > 0 and t > 0,

N(x, t) = (N(x, 0)− n0
x

m
)e−DIt + n0

x

m
. (5.22)
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Consequently by definition of w in (5.19), we have that

∀x > 0, ∀t ≥ 0, w(x, t) =

(
N(x, 0)

n0
x
m

− 1

)
e−DIt + 1,

so that in view of (5.1),

∀x ∈ R+, |w(x, t)− 1| ≤ (k + 1)e−DIt. (5.23)

Thus for any fixed ε ∈ (0, 1), there exists T ε > 0 such that

∀t ≥ T ε, ∀x ∈ R+,
1

1 + ε
≤ w(x, t) ≤ 1

1− ε
. (5.24)

In the sequel, we prove that

∀x ∈ R+, lim
t→∞

u(x, t) = 1 (5.25)

which is equivalent to (5.16). To establish this result, we study below the properties
of (5.21). This leads us to consider the following nonlocal initial-value problem

(NL)

{
∂f

∂t
= −D(f − 〈f〉q) + φ(f), x ≥ 0, t ∈ (0, T ]

f(x, 0) = f0(x), x ≥ 0,

where f0 ∈ L1(R+, q(x)dx). Here we assume that φ : R→ R is a C1 function such
that φ(0) = 0.

5.2.1. Comparison principle. For any T > 0, let us define

XT = {v ∈ C1(R+ × [0, T ],R), v(., t) ∈ L1(R+, q(x)dx) for all t ∈ [0, T ]}

By definition, a solution f to (NL) on R+ × [0, T ] belongs to XT . We establish a
comparison principle for Problem (NL).

Theorem 5.2. For any v ∈ XT , define the function N [v] : R+ × [0, T ]→ R by

N [v] :=
∂v

∂t
+D(v − 〈v(., t)〉q)− φ(v),

(i) Assume that f ∈ XT and satisfies

∀x ≥ 0, ∀t ∈ (0, T ], N [f ](x, t) ≥ 0 (5.26)

∀x ≥ 0, f(x, 0) ≥ 0 with 〈f(., 0)〉q > 0. (5.27)

Then

∀x ≥ 0, ∀t ∈ (0, T ], f(x, t) > 0.

(ii) Consider two functions (f−, f+) ∈ X2
T such that for all x ≥ 0,

∀t ∈ [0, T ], N [f−](x, t) ≤ N [f+](x, t) (5.28)

f−(x, 0) ≤ f+(x, 0) with 〈f−(., 0)〉q < 〈f+(., 0)〉q (5.29)

Then

∀x ≥ 0, ∀t ∈ (0, T ], f−(x, t) < f+(x, t).

Proof. It relies on the following strong positivity principle in the linear case.
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Lemma 5.3. Let c : R+× [0, T ]→ R be a continous function, with T > 0. For any
v ∈ XT , define the function L[v] : R+ × [0, T ]→ R by

L[v] =
∂v

∂t
+D(v − 〈v(., t)〉q)− c(x, t)v,

for all x ≥ 0 and t ∈ [0, T ]. Assume that f ∈ XT satisfies (5.27) and that

∀x ≥ 0, ∀t ∈ (0, T ], L[f ](x, t) ≥ 0. (5.30)

Then for all x ≥ 0 and t ∈ (0, T ], f(x, t) > 0.

Proof. Let us define K(x, t) =
∫ t

0
(D − c(x, s))ds for all x ≥ 0 and for all t ∈ [0, T ].

It follows from (5.30) that for all x ≥ 0 and for all t ∈ (0, T ],

∂

∂t
[eK(x,t)f(x, t)] ≥ DeK(x,t)〈f(., t)〉q. (5.31)

We consider the set

E = {t ∈ [0, T ], ∀s ∈ [0, t], 〈f(., s)〉q > 0}.

Since 〈f(., 0)〉q > 0 by (5.27), there exists ε0 ∈ (0, T ) such that [0, ε0] ⊂ E. Let us
define T ∗ = sup(E) so that T ∗ ≥ ε0 > 0. In view of (5.31), we have that

∀t ∈ (0, T ∗),
∂

∂t
[eK(x,t)f(x, t)] > 0,

so that the function t→ eK(x,t)f(x, t) is strictly increasing on [0, T ∗). Thus for all
(x, t) ∈ R+ × (0, T ∗), f(x, t) > 0. Moreover,

∀(x, t) ∈ R+ × [ε0, T
∗), eK(x,t)f(x, t) ≥ eK(x,ε0)f(x, ε0) > 0

Letting t→ T ∗, this implies that f(x, T ∗) > 0 for all x ∈ R+. Hence 〈f(., T ∗)〉q > 0
which proves that T ∗ = T . Thus f(x, t) > 0 for all t > 0 and x ∈ R+.

We now complete the proof of Theorem 5.2.

(i) Since φ(0) = 0, we define a continuous function g : R+ → R by

∀v ∈ R+, φ(v) = vg(v).

Thus in view of (5.26), f satisfies (5.30) with c(x, t) = g(f(x, t)). Using (5.27),
we conclude from Lemma 5.3 that ∀x ≥ 0 and ∀t > 0, f(x, t) > 0.

(ii) Note that it follows from (5.28) that the function f = f+ − f− satisfies

∀x ≥ 0, ∀t ∈ (0, T ],
∂f

∂t
+D(f − 〈f〉q)− c(x, t)f ≥ 0

where

c(x, t) =


φ(f+(x, t))− φ(f−(x, t))

f(x, t)
if f(x, t) 6= 0

φ′(f−(x, t)) if f(x, t) = 0.

In view of (5.29), the conclusion follows again from Lemma 5.3.
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5.2.2. Construction of sub-supersolutions to the nonlocal Fisher equation. In the
sequel, we consider the particular case of a Fisher-type, monostable nonlinearity.
Namely, let φ : [0, 1]→ R be a C1 function such that

φ(0) = φ(1) = 0 with φ′(0) > 0, φ′(1) < 0, (5.32)

a typical example of which given by

∀u ∈ [0, 1], φ(u) = λu(1− u) (5.33)

with λ > 0. Note that equation (5.21) is of this type if w is replaced by 1. We first
extend φ to a C1 function φ : R→ R that satisfies

φ < 0 on (−∞, 0) ∪ (1,∞), φ > 0 on (0, 1) (5.34)

∃C0 > 0 such that for all f ∈ R, φ(f) ≤ C0(1− f) (5.35)

Next we establish the following result which lies at the core of the proof.

Proposition 7. Let φ : R → R be a C1 function satisfying (5.32)-(5.34)-(5.35).
Let f0 : R+ → R+ be a continuous, nonnegative function with 〈f0〉q > 0.

Let f be the solution of (NL) on R+ × R+. Then

∀x ≥ 0, lim
t→∞

f(x, t) = 1

Proof. In view of (5.32), we have the following properties.

∃C1 > 0 such that for all f ∈ [0, 1/2], φ(f) ≥ C1f, (5.36)

∃C2 > 0 such that for all f ∈ [0, 1], 0 ≤ φ(f) ≤ C2f, (5.37)

It follows from Theorem 5.2 (i) that

∀x ≥ 0, ∀t > 0, f(x, t) > 0. (5.38)

Let us denote by i(t) = 〈f(., t)〉q the average value of f so that i(t) > 0 for all t > 0.
We establish the proof in two steps.

Step A. We prove that

∀x ≥ 0, lim inf
t→∞

f(x, t) ≥ 1. (5.39)

The proof relies on the construction of 2 successive subsolutions to (NL). The first
subsolution guarantees that f(x, t) is bounded from below by a strictly positive
constant uniformly on R+ at some time T > 0. After time T , the solution of
the ODE with a strictly positive initial data provides a second subsolution that
converges to 1 as t→∞.

Remark 3. Note that since 0 ≤ u ≤ w, it follows from (5.23) that the function u
is bounded. In this case, a strictly positive lower bound for u can be obtained using
the standard comparison principle for ODE. In contrast, the proof below does not
require the function f(x, t) to be bounded in x.

We first choose an integer n ∈ N large enough so that

n > D and n > 2 + 2
D

C1
(5.40)

and choose An > 0 large enough so that∫ An/2

0

q(x)dx ≥ 1− 1

n
. (5.41)
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In view of (5.38), f(x, 1) > 0 for all x ≥ 0 so that we can define mn > 0 by

mn = min
x∈[0,An]

f(x, 1) > 0

and choose δn > 0 small enough so that

0 < δn < min(mn,
1

8
). (5.42)

Next we consider a smooth function ψn : R+ → R+ such that

ψn ∈ C∞(R+), ψn ≥ 0 and ψ′n ≤ 0 on R+ (5.43)

∀x ∈ [0, An/2], ψn(x) = δn and ∀x ≥ An, ψn(x) = 0 (5.44)

so that by construction using (5.41) we have that

δn(1− 1

n
) ≤ δn

∫ An/2

0

q(x)dx ≤ 〈ψn〉q ≤ δn. (5.45)

Moreover in view of the definition of δn in (5.42), we have that

∀x ≥ 0, f(x, 1) > ψn(x). (5.46)

Next we prove the following lemma.

Lemma 5.4. Define Tn = n
D

1
4δn

, then Tn > 2 and

∀x ≥ 0,∀t ∈ [1, Tn], f(x, t) ≥ ψn(x) +D
δn
n

(t− 1). (5.47)

Proof. Note that Tn > 2 nD > 2 by (5.40)-(5.42) and let us define the function
f− : R+ × [1, Tn]→ R+ by

∀t ∈ [1, Tn], ∀x ≥ 0, f−(x, t) = ψn(x) +D
δn
n

(t− 1).

We prove below that

∀x ≥ 0,∀t ∈ [1, Tn], N [f−](x, t) ≤ 0. (5.48)

In view of the definition of ψn and of (5.42), we have that

∀x ≥ 0, 0 ≤ ψn(x) ≤ δn < 1/8, (5.49)

so that for all t ∈ [1, Tn] and for all x ≥ 0,

0 ≤ f−(x, t) ≤ δn +D
δn
n
Tn ≤ δn +

1

4
≤ 3

8
<

1

2
(5.50)

which shows that
∀t ∈ [1, Tn], ∀x ≥ 0, φ(f−(x, t)) ≥ 0. (5.51)

We have that for all (x, t) ∈ R+ × [1, Tn],

N [f−](x, t) = D
δn
n

+D(ψn(x)− 〈ψn〉q)− φ(f−(x, t)).

We distinguish two cases depending on the values taken by ψn(x).

1st case 0 ≤ ψn(x) ≤ δn(1− 2
n ). Using (5.45) and (5.51), we have that

N [f−](x, t) ≤ D
δn
n

+Dψn(x)−D〈ψn〉q − φ(f−(x, t))

≤ D
δn
n

+Dδn(1− 2

n
)−Dδn(1− 1

n
) = 0.
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2nd case δn(1− 2
n ) ≤ ψn(x) ≤ δn. Using (5.36) and (5.50), we have that

∀x ≥ 0,∀t ∈ [1, Tn], φ(f−(x, t)) ≥ C1f−(x, t) ≥ C1ψn(x)

so that in view of (5.45)

N [f−](x, t) ≤ D
δn
n

+Dψn(x)−D〈ψn〉q − C1ψn(x)

≤ D
δn
n

+Dδn −Dδn(1− 1

n
)− C1ψn(x)

≤ 2D
δn
n
− C1δn(1− 2

n
)

≤ δn
n

(2D − nC1 + 2C1) < 0

by choice of n in (5.40).

Thus we have established inequality (5.48). Using (5.46), we conclude from the
comparison principle stated in Theorem 5.2 that

∀t ∈ [1, Tn], ∀x ≥ 0, f(x, t) ≥ f−(x, t)

which is inequality (5.47) and completes the proof of Lemma 5.4.

Since ψn ≥ 0 on R+, it follows that

∀x ≥ 0, f(x, Tn) ≥ f−(x, Tn) ≥ Dδn
n

(Tn − 1) =
1

4
−Dδn

n
>

1

8
. (5.52)

Let us now consider the solution of the ODE{
dy

dt
= φ(y(t)), t > Tn

y(Tn) = 1
8 ,

so that it follows from the comparison principle for (NL) that

∀t ∈ [Tn,∞), ∀x ≥ 0, f(x, t) ≥ y(t). (5.53)

Since lim
t→∞

y(t) = 1, passing to the limit implies (5.39) and concludes step A.

Step B. Next we prove that

∀x ≥ 0, lim sup
t→∞

f(x, t) ≤ 1 (5.54)

It relies on the construction of a supersolution to (NL).
Note that using property (5.35), we have that

∀t ≥ 0, ∀x ≥ 0, f(x, t) ≤ f+(x, t), (5.55)

where f+ is the solution of

(NL+)

{
∂f+

∂t
= −D(f+ − 〈f+〉q) + C0(1− f+), x ≥ 0, t > 0

f+(x, 0) = f0(x), x ≥ 0.

We compute f+ explicitely. Note that g = f+ − 1 satisfies

∀t > 0, ∀x > 0,
∂g

∂t
= −D(g − 〈g(., t)〉q)− C0g

Thus the function φ = x
mg satisfies equation (4.12) with α = −C0 where the mean

value is taken with respect to the probability distribution p defined by q(x) = x
mp(x)
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for x ≥ 0, since 〈φ(., t)〉p = 〈g(., t)〉q. It follows from (4.13) that for all x > 0 and
t > 0,

φ(x, t) = (φ(x, 0)− x

m
〈φ(., 0)〉p)e−(C0+D)t +

x

m
〈φ(., 0)〉pe−C0t

so that

f+(x, t) = (f0(x)− 〈f0〉q)e−(C0+D)t + (〈f0〉q − 1)e−C0t + 1.

Hence

∀x ≥ 0, lim
t→∞

f+(x, t) = 1

which implies (5.54) in view or (5.55).

5.2.3. Conclusion. To complete the proof of (5.25), note that it follows from equa-
tions (5.21) and (5.24) that

∀x ≥ 0, ∀t ≥ T ε, ∂u

∂t
≤ −D(u− 〈u(., t)〉q) + (β0 − µ)u(1− (1− ε)u)

and that

∀x ≥ 0, ∀t ≥ T ε, ∂u

∂t
≥ −D(u− 〈u(., t)〉q) + (β0 − µ)u(1− (1 + ε)u).

Thus we apply Theorem 5.2 (ii) to conclude that

∀x ≥ 0, ∀t ≥ T ε, u−(x, t) ≤ u(x, t) ≤ u+(x, t), (5.56)

where u− is the solution of{
∂u−
∂t

= −D(u− − 〈u−(., t)〉q) + (β0 − µ)u−(1− (1 + ε)u−) x ≥ 0, t ≥ T ε

u−(x, T
ε) = u(x, T ε), x ≥ 0

and u+ is the solution of{
∂u+

∂t
= −D(u+ − 〈u+(., t)〉q) + (β0 − µ)u+(1− (1− ε)u+) x ≥ 0, t ≥ T ε

u+(x, T
ε) = u(x, T ε), x ≥ 0.

Note that v+ = (1− ε)u+ satisfies{
∂v+

∂t
= −D(v+ − 〈v+(., t)〉q) + φ(v+) x ≥ 0, t ≥ T ε

v+(x, T ε) = (1− ε)u(x, T ε), x ≥ 0,

with φ(v) = (β0 − µ)v(1− v). We perform a time-translation and rewrite

∀t ≥ 0,∀x ≥ 0, v+(x, t+ T ε) = f+(x, t),

where f+ is a solution of system (NL) on R+ × R+ with initial data

f+(x, 0) = (1− ε)u(x, T ε).

Thus applying the result of Proposition 7 to f+ yields that

∀x ≥ 0, lim
t→∞

f+(x, t) = 1.

Since in view of (5.56), we have that

∀x ≥ 0, ∀t ≥ T ε, u(x, t) ≤ v+(x, t)

1− ε
=
f+(x, t− T ε)

1− ε
,

it follows that

∀ε ∈ (0, 1), lim sup
t→∞

u(x, t) ≤ 1

1− ε
.
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A similar argument about u− yields finally

∀ε ∈ (0, 1),
1

1 + ε
≤ lim inf

t→∞
u(x, t) ≤ lim sup

t→∞
u(x, t) ≤ 1

1− ε
which proves (5.25).

Remark 4. Note that equation (5.21) as well as more generally the nonlocal dif-
fusion equation

∂u

∂t
= −D[u− 〈u(., t)〉q] + φ(x, u), t > 0, x ≥ 0 (5.57)

can be interpreted as the gradient flow for the nonlocal energy functional

E[u] =

∫ ∞
0

[
D

2
(u− 〈u〉q)2 + Φ(x, u)] q(x)dx,

where the potential Φ is defined by ∂Φ
∂u (x, u) = −φ(x, u). Namely, if u the solution

of (5.57) on R+ × [0, T ], then

∀t ∈ [0, T ],
d

dt
E[u(., t)] = −

∫ ∞
0

ut(x, t)
2q(x)dx ≤ 0.
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