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Abstract. We consider a regular embedded network composed by two curves,

one of them closed, in a convex and smooth domain Ω. The two curves meet

only at one point, forming angles of 120 degrees. The non-closed curve has a
fixed end–point on ∂Ω. We study the evolution by curvature of this network.

We show that the maximal time of existence is finite and depends only on the

area enclosed in the initial loop, if the length of the non-closed curve stays
bounded from below during the evolution. Moreover, the closed curve shrinks

to a point and the network is asymptotically approaching, after dilations and

extraction of a subsequence, a Brakke spoon.

1. Introduction. In this paper we study the evolution by curvature of two curves,
one of them closed, inside a convex, open, smooth domain Ω. At the initial time
the two curves meet only at one point, the 3-point O. At this point O the curves
form angles of 120 degrees (Herring condition). The non-closed curve has one fixed
end–point on the boundary of Ω. We call such a network a spoon-shaped network.

The evolution is the formal L2 gradient flow of the total length, which is the sum
of the lengths of the two curves.

The first short time existence result of a problem similar to ours is due to Bron-
sard and Reitich; the existence of a unique solution for the problem of the evolution
by curvature of three curves, meeting at only one point with prescribed angles,
with Neumann boundary conditions of orthogonal intersection with ∂Ω, was shown
in [3]. If the planar network, with the Herring condition imposed at triple junctions,
is initially close to the equilibrium configuration, global solutions of the flow were
obtained by Kinderlehrer and Liu in [13].

In [17, 15, 12] it was investigated the long time behavior of the evolution by cur-
vature of a triod, that is, a connected network composed by three curves meeting at
a common point with angles of 120 degrees and with fixed end–points on the bound-
ary of a convex domain in R2. In [17] the authors proved that at the first singular
time, either the curvature blows-up or the length of at least one of the three curves
goes to zero. In [15] it is shown that no singularity can arise during the evolution
and this completes the analysis: either the inferior limit of the length of at least
one of the three curves composing the initial triod goes to zero at some time T, or
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the evolution exists for all time and the evolving triod tends to the Steiner configu-
ration connecting the three fixed points on the boundary. The authors mention the
possibility to generalize several of the results to regular networks.

A precise definition of network is given in [16] but the case of network with loops
is not taken into account.

In this paper, with the same technique as in [15], it is studied the simplest
example of a regular network with loops. We call Brakke spoon a spoon-shaped
network composed by a half-line which meets a closed curve shrinking in a self-
similar way during the evolution.

The main result is the following:

Theorem 1.1. Given a spoon-shaped network Γt evolving by curvature in a strictly
convex and open set Ω ⊂ R2, there exists a finite time T such that either the inferior
limit of the length of the non-closed curve goes to zero as t → T , or there exists a
point x0 ∈ Ω such that for a subsequence of rescaled time tj the associate rescaled
network tends to a Brakke spoon as j →∞.

This result can be seen as an analogue of Grayson’s theorem for a closed curve,
which says that an embedded evolving curve in R2 becomes eventually convex with-
out developing singularities and then shrinks to a point (see [6, 7]). A new proof of
this theorem is given in [14].

In Proposition 6, we obtain, up to subsequence, as possible limits, sets that
satisfy the equation k + 〈x|ν〉 = 0 for all x, where k is the curvature and ν is the
unit normal vector. Satisfying the previous equation, the sets shrink homothetically.
The existence and uniqueness of self-similar shrinking solution of a problem similar
to ours is proved in [4]: Chen and Guo consider an equivalent system that describes
the motion by curvature, but they focus on the evolution of a curve symmetric
about the x−axis, and consider the part of the curve in the upper half-plane, which
forms fixed angles with the axis. In Proposition 6, to gain existence of a unique limit
set, without self-intersections, with multiplicity one, with curvature not constantly
zero, we will apply [4, Theorem 3], as our asymptotic solution is one of the Abresch-
Langer curves, symmetric and convex.

2. Definitions and preliminaries. For any C2 curve σ : [0, 1] → R2 we will
denote with s its arclength parameter, defined by s(x) =

∫ x
0
|σx(ξ)| dξ, with τ =

τ(x) = σx
|σx| its unit tangent vector and with ν = ν(x) = Rτ(x) = R σx

|σx| its unit

normal vector, where R : R2 → R2 is the counterclockwise rotation of π/2. The

curvature at the point σ(x) will be k = k(x) = 〈σxx | ν〉
|σx|2

= 〈∂sτ | ν〉 = −〈∂sν | τ〉.
Moreover, we set k = kν.

A curve σ : [0, 1]→ R2 is called regular if σx 6= 0 for all x ∈ [0, 1].

Definition 2.1. Let Ω be a smooth, open and convex subset of R2; a spoon-shaped
network Γ is defined as: Γ = σ1([0, 1])∪σ2([0, 1]), where σ1 and σ2 are two regular,
at least C2 curves contained in Ω: σ1 : [0, 1]→ Ω , with σ1(0) = σ1(1) , σ2 : [0, 1]→
Ω .This network has only one point on the boundary of Ω, σ2(1) = P ∈ ∂Ω, which
we call the end–point of the network.

The two curves intersect each other only at one point σ1(0) = σ1(1) = σ2(0) = O,
the 3−point of the network, moreover O /∈ ∂Ω. At this junction point an angular
condition is required, namely the unit tangent vectors to the curves form angles of
120 degrees, that is, τ1(0)− τ1(1) + τ2(0) = 0 .
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We require that the network is embedded, that means
σ1(x) 6= σ1(y) for x, y ∈ (0, 1), x 6= y ,

σ2(x) 6= σ2(y) for x, y ∈ (0, 1), x 6= y ,

σ1(x) 6= σ2(y) for x, y ∈ (0, 1), x 6= y .

Remark 1. If Ω is not convex, it could happen that during the evolution the
network intersects the boundary of Ω in a point different from the end–point P .
On the other hand, as a consequence of the strong maximum principle for parabolic
equations, this cannot happen if Ω is convex.

The length of the curves is Li =
∫ 1

0
|σix(ξ)|dξ =

∫
σi
ds , the global length of the

network is L = L1 + L2 and we call A the area enclosed in the loop.
The definitions given above of unit tangent vector, unit normal vector and cur-

vature vector are the same for time depending curves γ(x, t).
We define a spoon-shaped network Γt = γ1(x, t)∪ γ2(x, t) as a union of two time

depending curves γ1(x, t) and γ2(x, t) as above, with the same properties of σ1(x)
and σ2(x), for all the times at which they are defined.

For a given initial network Γ0, we define the following evolution problem:

Definition 2.2. We say that a family Γt = γ1(·, t) ∪ γ2(·, t) of spoon-shaped net-
works evolves by curvature in [0, T ) if the functions γ1 : [0, 1] × [0, T ) → Ω and
γ2 : [0, 1]× [0, T )→ Ω are of class C2 in space, C1 in time and satisfy the following
quasilinear parabolic system

γix(x, t) 6= 0 regularity

γ1(x, t) = γ1(y, t) iff x = y or x, y ∈ {0, 1}
γ2(x, t) 6= γ2(y, t) if x 6= y simplicity

γ1(x, t) = γ2(y, t) iff x ∈ {0, 1}, y ∈ {0} intersection only at the 3-point

τ1(0)− τ1(1) + τ2(0) = 0 angles of 120◦ at the 3-point

γ2(1, t) = P fixed end–point condition

γi(x, 0) = σi(x) initial data

γit(x, t) =
γixx(x,t)

|γix(x,t)|2 motion by curvature

(1)
for every x ∈ [0, 1], t ∈ [0, T ) and i ∈ {1, 2}.

Remark 2. We can set an analogous Neumann problem requiring that the end–
point of the non-closed curve γ2(1, t) intersects orthogonally the boundary of Ω.

Often we will denote the flow with Γt and we will describe Γt as a map F : Γ→ Ω
from a fixed standard spoon-shaped network Γ in R2. The evolution will be given
by a map F : Γ× [0, T )→ Ω , so Γt = F (Γ, t) .

Remark 3. In the evolution Problem (1) we define the velocity of the point γi(x, t)
as

vi(x, t) =
γixx(x, t)

|γix(x, t)|2
.

Notice that 〈vi, νi〉 is the curvature of the curve γi.

Lemma 2.3. If γ satisfies the equation

γt =
γxx

|γx|2
= λτ + kν , (2)
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then the following commutation rule holds,

∂t∂s = ∂s∂t + (k2 − λs)∂s . (3)

Proof. The thesis follows by direct computation, see [17], Lemma 2.6.

Lemma 2.4. The evolution of the length of the curves is given by

∂Li
∂t

= −
∫
γi

(ki)2 − λis ds ,

∂L

∂t
= λ1(1, t)− λ1(0, t)− λ2(0, t)−

∫
Γt

k2 ds

and the evolution of the area enclosed in the loop is

∂A

∂t
= −5π

3
. (4)

Proof. The evolution of the length of the curves and of the total length of the
network can be seen as a particular case of a more general situation, studied in [16] or
in [17]. The evolution of the area is an application of the Gauss-Bonnet theorem.

Lemma 2.5. At the 3−point of a smooth spoon-shaped network Γt evolving as in
Problem (1), there hold:

λ1(0, t) =
k1(1, t) + k2(0, t)√

3
,

λ1(1, t) =
k2(0, t)− k1(0, t)√

3
,

λ2(0, t) =
−k1(0, t)− k1(1, t)√

3
, (5)

k1(0, t) =
−λ1(1, t)− λ2(0, t)√

3
,

k1(1, t) =
λ1(0, t)− λ2(0, t)√

3
,

k2(0, t) =
λ1(0, t) + λ1(1, t)√

3
, (6)

which imply

λ1(0, t)− λ1(1, t) + λ2(0, t) = 0 , (7)

k1(0, t)− k1(1, t) + k2(0, t) = 0 .

Hence,
dL

dt
= −

∫
Γt

k2 ds .

Moreover

k1
s(0, t)+λ1(0, t)k1(0, t) = k1

s(1, t)+λ1(1, t)k1(1, t) = k2
s(0, t)+λ2(0, t)k2(0, t) . (8)

Proof. In the system that describes the Problem (1), at the 3−point it is required
the concurrency condition

γ1(1, t) = γ1(0, t) = γ2(0, t) . (9)
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If we differentiate in time (9), we obtain

λ1(1, t)τ1(1, t) + k1(1, t)ν1(1, t) = λ1(0, t)τ1(0, t) + k1(0, t)ν1(0, t) , (10)

λ1(0, t)τ1(0, t) + k1(0, t)ν1(0, t) = λ2(0, t)τ2(0, t) + k2(0, t)ν2(0, t) , (11)

λ2(0, t)τ2(0, t) + k2(0, t)ν2(0, t) = λ1(1, t)τ1(1, t) + k1(1, t)ν1(1, t) . (12)

Taking the scalar product of (10) by τ2(0, t) and by λ2(0, t), of (11) by τ1(1, t)
and by λ1(1, t), of (12) by τ1(0, t) and λ1(0, t) and using the angular condition
τ1(0, t)− τ1(1, t) + τ2(0, t) = 0 we get

−1

2
λ1(0, t)−

√
3

2
k1(0, t) =

1

2
λ1(1, t)−

√
3

2
k1(1, t) ,

√
3

2
λ1(0, t)− 1

2
k1(0, t) =

√
3

2
λ1(1, t) +

1

2
k1(1, t) ,

1

2
λ1(1, t) +

√
3

2
k1(1, t) = −1

2
λ2(0, t) +

√
3

2
k2(0, t) ,

−
√

3

2
λ1(1, t) +

1

2
k1(1, t) = −

√
3

2
λ2(0, t)− 1

2
k2(0, t) ,

1

2
λ2(0, t) +

√
3

2
k2(0, t) =

1

2
λ1(0, t)−

√
3

2
k1(0, t) ,

−
√

3

2
λ2(0, t) +

1

2
k2(0, t) = −

√
3

2
λ1(0, t) +

1

2
k1(0, t) ,

from which we obtain (5) and (6). Summing up the previous conditions we have (7).
Differentiating in time the angular condition at the 3−point τ1(0, t) − τ1(1, t) +
τ2(0, t) = 0, using the commutation rule (3), which implies ∂tτ = (ks + kλ) ν, we
have (8).

2.1. Short time existence.

Definition 2.6. We say that for Problem (1) the compatibility conditions (of ev-
ery order) are satisfied if at the end–point and at the 3–point there hold all the
relations on the space derivatives of the functions σi obtained differentiating (any
number of times) in time the boundary conditions and replacing them with the
space derivatives, given by using the evolution equation (2).

Remark 4. Explicitly, for Problem (1), the compatibility conditions of order 2 are

σ2
xx(1)

|σ2
x(1)|2

= 0 ,

and
σ1
xx(0)

|σ1
x(0)|2

=
σ1
xx(1)

|σ1
x(1)|2

,
σ1
xx(0)

|σ1
x(0)|2

=
σ2
xx(0)

|σ2
x(0)|2

,
σ2
xx(0)

|σ2
x(0)|2

=
σ1
xx(1)

|σ1
x(1)|2

.

Theorem 2.7. If Γ0 is an initial C2+2α network (with 0 < α < 1/2) satisfying
the compatibility conditions of order 2, then, there exists a unique solution Γ ∈
C2+2α,1+α ([0, 1]× [0, T )) of Problem (1).

Proof. The proof is based on the results of [3]. In that paper they consider three
curves lying in a convex and smooth domain Ω ⊂ R2, intersecting at a point with
prescribed angle and meeting the boundary of Ω orthogonally. Linearizing the
problem about the initial data and using a fixed point argument, Bronsard and



514 ALESSANDRA PLUDA

Reitich obtain a C2+2α,1+α ([0, 1]× [0, T )) solution. The proof can be easily adapted
to our situation.

Theorem 2.8. For any initial smooth, regular network Γ0 in a smooth, convex,
open set Ω ⊂ R2 there exists a unique smooth solution of Problem (1) in a maximal
time interval [0, T ).

Proof. See [17], Theorem 3.1.

2.2. Integral estimates. Following the line of proof of [17], we use integral es-
timates to describe the behavior of the evolution of the network. Thanks to the
conditions (5), (6), (7) and (8) at the 3−point and to the Dirichlet condition at the
end–point P , the computation in [17], Section 3, pp.257-263, can be repeated, to
obtain:∫

Γt

|∂jsk|2 ds ≤ C
∫ t

0

(∫
Γξ

k2 ds

)2j+3

dξ + C

(∫
Γt

k2 ds

)2j+1

+ Ct+ C ,

where with ∂jsk
2 we denote the j-th derivative of k2 along a curve with respect to

the relative arclength parameter and C is a constant depending only on j ∈ N and
the initial network Γ0. Passing from integral to L∞ estimates by using Gagliardo-
Nirenberg interpolation inequalities (see [18], equation (2.2), page 125), we have the
following:

Proposition 1. If the lengths of the curves are positively bounded from below and
the L2 norm of k is bounded, uniformly on [0, T ), then the curvature of Γt and
all its space derivatives are uniformly bounded in the same time interval by some
constants depending only on the L2 integrals of the space derivatives of k on the
initial network Γ0.

Remark 5. If the length L1 of the closed curve γ1 is not bounded from below, then
the L2 norm of its curvature k is not bounded. In fact, from previous estimates and

using Hölder inequality, we get 5π
3 = |

∫
γ1 kds| ≤ (L1)

1
2

(∫
γ1 k

2ds
) 1

2

, hence∫
γ1

k2ds ≥ 25π2

9L1
. (13)

Moreover the maximal time T of existence of a smooth flow is finite and

T ≤ 3A0

5π
, (14)

because, in order to avoid the presence of a singularity, the area A(t) has to stay
positive during the smooth evolution, otherwise the L2 norm of the curvature is not
bounded. ¿From (4) we easily obtain (14).

The next theorem follows from Propositions 1 and 5 reasoning as in [17, Theo-
rem 3.18].

Theorem 2.9. If [0, T ), with T < +∞, is the maximal time interval of existence of
a smooth solution Γt of Problem (1), then at least one of the following possibilities
holds:

• lim inf
t→T

L2(t) = 0 ;

• lim sup
t→T

∫
Γt

k2ds = +∞ .
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In the whole paper we will require that the length of the non-closed curve γ2 is
positively bounded from below during the flow, to avoid that the non-closed curve
shrinks to a point faster than the closed one.

3. An isoperimetric estimate. Given the smooth flow Γt = F (Γ, t) we take two
points p = F (x, t) and q = F (y, t) belonging to Γt and we call (ξp,q)i the geodesic
curves contained in Γt connecting p and q.

Then, if p and q are both points of the closed curve γ1, we let A be the area of
the region A in R2 enclosed in the loop and Ai,p,q the area of the open region Ai,p,q
enclosed by the segment [p, q] and one of the geodesic curve (ξp,q)i (see Fig. 1).

When the Ai,p,q is not connected, we let Ai,p,q to be the sum of the areas of its
connected components. We define ψ(Ap,q) as

ψ(Ap,q) =
A

π
sin
( π
A
Ai

)
,

where Ai is the smallest of possible Ai,p,q, depending on the choice of (ξp,q)i.

If p and q are not both points of γ1, we let again Ai,p,q be the area of the open
region Ai,p,q enclosed by the segment [p, q] and one of the geodesic curves (ξp,q)i.
Like before, when the region Ai,p,q is not connected, we let Ai,p,q be the sum of the
areas of its connected components. Differently from the previous case, the possible
Ai,p,q are not disjoint. We call Ap,q the area of the smallest one (see Fig. 1).

We consider the function Φt : Γ× Γ→ R ∪ {+∞} defined as

Φt(x, y) =


|p−q|2
ψ(Ap,q)

if x 6= y, x, y are points of γ1,
|p−q|2
Ap,q

if x 6= y, x, y are not both points of γ1,

4
√

3 if x and y coincide with the 3−point O of Γ ,

+∞ if x = y 6= O,

where p = F (x, t) and q = F (y, t).
Since Γt is smooth and the 120 degrees condition holds, it is easy to check that Φt

is a lower semicontinuous function. Hence, by the compactness of Γ, the following
infimum is actually a minimum

E(t) = inf
x,y∈Γ

Φt(x, y) ,

for every t ∈ [0, T ). We call E(t) “embeddedness measure”. Similar geometric
quantities have already been applied to similar problems in [9], [5] and [11].

The function Φt is locally Lipschitz because the numerator is the square of a
distance function and until the flow exists the denominator never goes to zero.

Remark 6. Following the proof of Theorem 2.1 in [5], we can always find a mini-
mizing pair (p, q) such that Ai is composed only by one connected component.

Remark 7. Following the line of proof by Huisken in [11], in the definition of the
function Φt we distinguish two cases. We introduce the function ψ(Ap,q) when the
two points belong to the closed curve γ1, because we want that Φt is a smooth
function also when Ai is equal to A

2 . As we can exclude the case that Ai has more
that one connected component, as we said in the previous remark, it can happen
that A1 = A2 only when both p and q belong to the closed curve γ1.

In the following computation we only consider the case in which p and q are both
points of the closed curve γ1; for the other situation, see Section 4 of [17].
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P
Ap,q

Ω

γ2

γ1
Op

q
P

A1,p,q

A2,p,q

Ω

γ2

γ1
O

p
q

Figure 1. In the figure are shown two possible situations: in the
first case the point p ∈ γ2 and q ∈ γ1, in the second case p and q
are both point of γ1.

If the network Γt has no self-intersections we have E(t) > 0; the converse is
clearly also true.

Moreover, E(t) ≤ Φt(0, 0) = 4
√

3 always holds, thus when E(t) > 0 the two
points (p, q) of a minimizing pair (x, y) can coincide if and only if p = q = O.

Finally, since the evolution is smooth, it is easy to see that the function E :
[0, T )→ R is continuous.

Since we are dealing with embedded networks, with a little abuse of notation, we
consider the function Φt defined on Γt × Γt and we speak of a minimizing pair for
the couple of points (p, q) ∈ Γt × Γt instead of (x, y) ∈ Γ× Γ.

Proposition 2. The function E(t) is monotone increasing in every time interval
where 0 < E(t) < 1

2 .

Proof. We assume that 0 < E(t) < 1
2 . Since E(t) is a locally Lipschitz function,

to prove the statement it is then enough to show that dE(t)
dt > 0 for every time

t at which this derivative exists (which happens almost everywhere in every time
interval where 0 < E(t) < 1

2 ).
We can exclude the case in which p or q coincides with O, the proof goes like the

one of Lemma 4.2, in [17].
Fixed a minimizing pair (p, q) at time t, we choose a value ε > 0 smaller than

the intrinsic distances of p and q from the 3–point O of Γt and between them.
Possibly taking a smaller ε > 0, we fix an arclength coordinate s ∈ (−ε, ε) and

a local parametrization p(s) of the curve containing in a neighborhood of p = p(0),
with the same orientation of the original one. Let η(s) = |p(s) − q| and Ai(s) =
Ai,p(s),q, since

E(t) = min
s∈(−ε,ε)

η2(s)

ψ(Ap(s),q)
=

η2(0)

ψ(Ap(s),q(0))
,

if we differentiate in s we obtain

dη2(0)

ds
ψ(Ap(s),q(0)) =

dψ(Ap(s),q(0))

ds
η2(0) . (15)

As the intersection of the segment [p, q] with the network is transversal, we have an
angle α(p) ∈ (0, π) determined by the unit tangent τ(p) and the vector q − p.
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We compute

dη2(0)

ds
= −2〈τ(p) | q − p〉 = −2|p− q| cosα(p)

dA(0)

ds
= 0

dAi(0)

ds
=

1

2
|τ(p) ∧ (q − p)| = 1

2
〈ν(p) | q − p〉 =

1

2
|p− q| sinα(p)

dψ(Ap(s),q(0))

ds
=

dAi(0)

ds
cos
( π
A
Ai(0)

)
=

1

2
|p− q| sinα(p) cos

( π
A
Ai(0)

)
.

Putting these derivatives in equation (15) and recalling that η2(0)/ψ(Ap(s),q(0)) =
E(t), we get

cotα(p) = − |p− q|2

4ψ(Ap(s),q(0))
cos
( π
A
Ai(0)

)
= −E(t)

4
cos
( π
A
Ai(0)

)
. (16)

Since 0 < E(t) < 1
2 <

4√
3

we get − 1√
3
< cotα(p) < 0 which implies

π

2
< α(p) <

2

3
π .

The same argument clearly holds for the point q, hence defining α(q) ∈ (0, π) to be
the angle determined by the unit tangent τ(q) and the vector p−q, by equation (16)
it follows that α(p) = α(q) and we simply write α for both.

We consider now a different variation, moving at the same time the points p and

q, in such a way that dp(s)
ds = τ(p(s)) and dq(s)

ds = τ(q(s)).
As above, letting η(s) = |p(s)− q(s)| and A(s) = Ai (p(s),q(s)), by minimality we

have

dη2(0)

ds
ψ(Ap(s),q(s)(0)) =

dψ(Ap(s),q(s)(0))

ds
η2(0) and

d2η2(0)

ds2
ψ(Ap(s),q(s)(0)) ≥

d2ψ(Ap(s),q(s)(0))

ds2
η2(0) . (17)

Computing as before,

dη2(0)

ds
= 2〈p− q | τ(p)− τ(q)〉 = −4|p− q| cosα

dA(0)

ds
= 0

dAi(0)

ds
= −1

2
〈p− q | ν(p) + ν(q)〉 = +|p− q| sinα

d2η2(0)

ds2
= 2〈τ(p)− τ(q) | τ(p)− τ(q)〉+ 2〈p− q | k(p)ν(p)− k(q)ν(q)〉

= 2|τ(p)− τ(q)|2 + 2〈p− q | k(p)ν(p)− k(q)ν(q)〉
= 8 cos2 α+ 2〈p− q | k(p)ν(p)− k(q)ν(q)〉
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d2Ai(0)

ds2
= −1

2
〈τ(p)− τ(q) | ν(p) + ν(q)〉+

1

2
〈p− q | k(p)τ(p) + k(q)τ(q)〉

= −1

2
〈τ(p) | ν(q)〉+

1

2
〈τ(q) | ν(p)〉

+
1

2
〈p− q | k(p)τ(p) + k(q)τ(q)〉

= −2 sinα cosα− 1/2|p− q|(k(p)− k(q)) cosα

d2ψ(Ap(s),q(s)(0))

ds2
=

d

ds

{
dAi(s)

ds
cos
( π
A
Ai(s)

)}∣∣∣∣
s=0

=
d2Ai(0)

ds2
cos
( π
A
Ai(0)

)
− π

A

(
dAi(0)

ds

)2

sin
( π
A
Ai(0)

)
= (−2 sinα cosα− 1

2
|p− q|(k(p)− k(q)) cosα) cos

( π
A
Ai(0)

)
− π

A
|p− q|2 sin2 α sin

( π
A
Ai(0)

)
.

Substituting the last two relations in the second inequality of (17), we get

(8 cos2 α+ 2〈p− q | k(p)ν(p)− k(q)ν(q)〉)ψ(Ap(s),q(s)(0))

≥ |p− q|2
{

(−2 sinα cosα− 1

2
|p− q|(k(p)− k(q)) cosα) cos

( π
A
Ai(0)

)
− π
A
|p− q|2 sin2 α sin

( π
A
Ai(0)

)}
,

hence, keeping in mind that tanα = −4

E(t) cos( πAAi)
, we obtain

2ψ(Ap(s),q(s)(0))〈p− q | k(p)ν(p)− k(q)ν(q)〉

+ 1/2|p− q|3(k(p)− k(q)) cosα cos
( π
A
Ai(0)

)
≥ −2 sinα cosα|p− q|2 cos

( π
A
Ai(0)

)
− 8ψ(Ap(s),q(s)(0)) cos2 α+ |p− q|4 sin2 α

[
− π
A

sin
( π
A
Ai(0)

)]
= −2ψ(Ap(s),q(s)(0)) cos2 α

(
tanα

|p− q|2

ψ(Ap(s),q(s))
cos
( π
A
Ai(0)

)
+ 4

)
+ |p− q|4 sin2 α

[
− π
A

sin
( π
A
Ai(0)

)]
= +|p− q|4 sin2 α

[
− π
A

sin
( π
A
Ai(0)

)]
. (18)

We consider now a time t0 such that the derivative dE(t0)
dt exists and we compute it

with the Hamilton’s trick (see [8]), that is,

dE(t0)

dt
=

∂

∂t
Φt(p, q)

∣∣∣∣
t=t0

for any pair (p, q) such that p, q ∈ Γt0 and |p−q|2
ψ(Ap,q)

= E(t0).
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Considering then a minimizing pair (p, q) for Φt0 with all the previous properties,
by minimality, we are free to choose the “motion” of the points p(t), q(t) “inside”
the networks Γt in computing such partial derivative.

Since locally the networks are moving by curvature and we know that neither p
nor q coincide with the 3–point, we can find ε > 0 and two smooth curves p(t), q(t) ∈
Γt for every t ∈ (t0 − ε, t0 + ε) such that

p(t0) = p and
dp(t)

dt
= k(p(t), t) ν(p(t), t) ,

q(t0) = q and
dq(t)

dt
= k(q(t), t) ν(q(t), t) .

Then,

dE(t0)

dt
=

∂

∂t
Φt(p, q)

∣∣∣∣
t=t0

=
1

(ψ(Ap,q(t)))2

(
ψ(Ap,q(t))

d|p(t)− q(t)|2

dt
− |p− q|2 dψ(Ap,q(t))

dt

)∣∣∣∣
t=t0

.

(19)

With a straightforward computation we get the following equalities,

d|p(t)− q(t)|2

dt

∣∣∣∣
t=t0

= 2〈p− q | k(p)ν(p)− k(q)ν(q)〉

d(A(t))

dt

∣∣∣∣
t=t0

= −5π

3

dAi(t)

dt

∣∣∣∣
t=t0

=

∫
Γp,q

〈k(s) |νξp,q 〉 ds+
1

2
|p− q|〈ν[p,q] | k(p)ν(p) + k(q)ν(q)〉

= 2α− 5π

3
− 1

2
|p− q|(k(p)− k(q)) cosα

dψ(Ap,q(t))

dt

∣∣∣∣
t=t0

=
d(A(t))

dt

∣∣∣∣
t=t0

[
1

π
sin

(
π

A(t0)
Ai(t0)

)]
+ cos

(
π

A(t0)
Ai(t0)

)(
d(Ai(t))

dt

∣∣∣∣
t=t0

− Ai(t0)

A(t0)

d(A(t))

dt

∣∣∣∣
t=t0

)

=
d(A(t0))

dt

[
1

π
sin

(
π

A(t0)
Ai(t0)

)
− Ai(t0)

A(t0)
cos

(
π

A(t0)
Ai(t0)

)]
+
d(Ai(t0))

dt
cos

(
π

A(t0)
Ai(t0)

)
= −5π

3

[
1

π
sin

(
π

A(t0)
Ai(t0)

)
− Ai(t0)

A(t0)
cos

(
π

A(t0)
Ai(t0)

)]
+

(
2α− 5π

3
− 1

2
|p− q|(k(p)− k(q)) cosα

)
cos

(
π

A(t0)
Ai(t0)

)
where we wrote νξp,q and ν[p,q] for the exterior unit normals to the region Ai,
respectively at the points of the geodesic ξp,q and of the segment [p, q].
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Substituting these derivatives in equation (19) we get

dE(t0)

dt
=

2〈p− q | k(p)ν(p)− k(q)ν(q)〉
ψ(Ap,q(t0))

− |p− q|2

(ψ(Ap,q(t0)))2

{
−5π

3

[
1

π
sin

(
π

A(t0)
Ai(t0)

)
− Ai(t0)

A(t0)
cos

(
π

A(t0)
Ai(t0)

)]
+

(
2α− 5π

3
− 1

2
|p− q|(k(p)− k(q)) cosα

)
cos

(
π

A(t0)
Ai(t0)

)}
and, by equation (18),

dE(t0)

dt
≥ − |p− q|2

(ψ(Ap,q))2

{
−5

3
sin
( π
A
Ai

)
+

5π

3

Ai
A

cos
( π
A
Ai

)
+

(
2α− 5π

3

)
cos
( π
A
Ai

)
+
π

A
|p− q|2 sin2(α) sin

( π
A
Ai

)}
.

It remains to prove that the quantity

5

3
sin
( π
A
Ai

)
− 5π

3

Ai
A

cos
( π
A
Ai

)
+

(
5π

3
− 2α

)
cos
( π
A
Ai

)
− π

A
|p− q|2 sin2(α) sin

( π
A
Ai

)
=

5

3
sin
( π
A
Ai

)
− 5π

3

Ai
A

cos
( π
A
Ai

)
+

(
5π

3
− 2α

)
cos
( π
A
Ai

)
− E(t) sin2(α) sin2

( π
A
Ai

)
is positive.

If 0 ≤ Ai
A ≤

1
3 , we have

dE(t0)

dt
≥ 5

3
sin
( π
A
Ai

)
− 5π

3

Ai
A

cos
( π
A
Ai

)
+

(
5π

3
− 2α

)
cos
( π
A
Ai

)
− E(t) sin2(α) sin2

( π
A
Ai

)
≥
(

5π

3
− 2α

)
cos
( π
A
Ai

)
− E(t) sin2(α) sin2

( π
A
Ai

)
≥
(π

3

)
cos
(π

3

)
− E(t) sin2

(π
3

)
> 0 .

If 1
3 ≤

Ai
A ≤

1
2 , we get

dE(t0)

dt
≥ 5

3
sin
( π
A
Ai

)
− 5π

3

Ai
A

cos
( π
A
Ai

)
+

(
5π

3
− 2α

)
cos
( π
A
Ai

)
− E(t) sin2(α) sin2

( π
A
Ai

)
≥ 5

3
sin
( π
A
Ai

)
− 5π

3

Ai
A

cos
( π
A
Ai

)
− E(t) sin2(α) sin2

( π
A
Ai

)
≥ 5

3

(
sin
(π

3

)
− π

3
cos
(π

3

))
− E(t) > 0 .

Now that we have proven the monotonicity of the quantity E(t) also when the two
points p and q belong to a closed curve, taking into account that the computation
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in [17, Section 4] is still valid for the other situation, the two subsequent theorems
follow as in [17] and in [15]:

Proposition 3. If Ω is bounded and strictly convex, there exists a constant C > 0
depending only on Γ0 such that E(t) > C > 0 for every t ∈ [0, T ). Hence, the
networks Γt remain embedded in all the maximal time interval of existence of the
flow.

Lemma 3.1. If Ω is strictly convex, the function E(Γ) defined on the class of C1

networks without self-intersections (bounded or unbounded and with or without end–
points or 3-points), is upper semi continuous with respect to the C1

loc convergence.
Moreover, E is dilation and translation invariant. Consequently, every C1

loc limit

Γ∞ of a sequence of rescaled networks Γ̃t has no self-intersections, has multiplicity
one and satisfies E(Γ∞) > C > 0, where the constant C is given in Proposition 3

4. Monotonicity formula. Now we introduce the Huisken’s monotonicity for-
mula, adapted to our situation.

For every x0 ∈ R2, we define the backward heat kernel relative to (x0, T ) as

ρx0
(x, t) =

e−
|x−x0|

2

4(T−t)√
4π(T − t)

,

and the Gaussian density function Θ : Γ× [0, T )→ R as

Θ (x0, t) =

∫
Γt

ρx0
(x, t)ds .

We call Θ̂(x0) the limit as t → T of Θ (x0, t), that exists and is finite (see [15,
Proposition 2.12]).

The following results can be obtained with minor modifications from [17, Propo-
sition 6.4, Lemma 6.5].

Proposition 4 (Monotonicity Formula). For every x0 ∈ R2 and t ∈ [0, T ) the
following identity holds

d

dt

∫
Γt

ρx0
(x, t) ds = −

∫
Γt

∣∣∣∣ k +
(x− x0)⊥

2(T − t)

∣∣∣∣2 ρx0
(x, t) ds

+

〈
P − x0

2(T − t)

∣∣∣∣ τ(1, t)

〉
ρx0(P, t) ,

where τ(1, t) is the unit tangent vector to γ2(x, t) in the point P .
Integrating between t1 and t2 with 0 ≤ t1 ≤ t2 < T we get∫ t2

t1

∫
Γt

∣∣∣∣ k +
(x− x0)⊥

2(T − t)

∣∣∣∣2 ρx0(x, t) ds dt =

∫
Γt1

ρx0(x, t1) ds−
∫

Γt2

ρx0(x, t2) ds

+

∫ t2

t1

〈
P − x0

2(T − t)

∣∣∣∣ τ(1, t)

〉
ρx0

(P, t) dt .

Lemma 4.1. Setting |P − x0| = d, the following estimate holds∣∣∣∣∣
∫ T

t

〈
P − x0

2(T − ξ)

∣∣∣∣ τ(1, ξ)

〉
ρx0

(P, ξ) dξ

∣∣∣∣∣ ≤ 1√
2π

+∞∫
d/
√

2(T−t)

e−y
2/2 dy ≤ 1/2 .
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Then, for every x0 ∈ R2,

lim
t→T

∫ T

t

〈
P − x0

2(T − ξ)

∣∣∣∣ τ(1, ξ)

〉
ρx0

(P, ξ) dξ = 0 .

We rescale now the flow in its maximal time interval [0, T ). Fixed x0 ∈ R2, let

F̃x0 : Γ× [−1/2 log T,+∞)→ R2 be the map

F̃x0
(p, t) =

F (p, t)− x0√
2(T − t)

t(t) = −1

2
log (T − t)

then, the rescaled networks are given by

Γ̃x0,t =
Γt − x0√
2(T − t)

and they evolve according to the equation

∂

∂t
F̃x0

(p, t) = ṽ(p, t) + F̃x0
(p, t)

where

ṽ(p, t) =
√

2(T − t(t)) · v(p, t(t)) = k̃ + λ̃ = k̃ν̃ + λ̃τ̃ and t(t) = T − e−2t .

Hence we obtained a smooth flow of spoon-shaped networks Γ̃t defined for t ∈
[− 1

2 log T,+∞).
By a straightforward computation ([10], [17, Lemma 6.7]) we have the following

rescaled version of the monotonicity formula.

Proposition 5 (Rescaled Monotonicity Formula). Let x0 ∈ R2 and set

ρ̃(x) = e−
|x|2
2 .

For every t ∈ [−1/2 log T,+∞) the following identity holds

d

dt

∫
Γ̃x0,t

ρ̃(x) dσ = −
∫

Γ̃x0,t

| k̃ + x⊥|2ρ̃(x) dσ +
〈
P̃x0,t

∣∣∣ τ(1, t(t))
〉
ρ̃(P̃x0,t)

where P̃x0,t = P−x0√
2(T−t(t))

.

Integrating between t1 and t2 with −1/2 log T ≤ t1 ≤ t2 < +∞ we get∫ t2

t1

∫
Γ̃x0,t

| k̃ + x⊥|2ρ̃(x) dσ dt =

∫
Γ̃x0,t1

ρ̃(x) dσ −
∫

Γ̃x0,t2

ρ̃(x) dσ (20)∫ t2

t1

〈
P̃x0,t

∣∣∣ τ(1, t(t))
〉
ρ̃(P̃x0,t) dt .

Consequently, we have the analogue of Lemma 4.1, whose proof follows in the
same way, substituting the rescaled quantities.

Lemma 4.2. The following estimate holds∣∣∣∣∫ +∞

t

〈
P̃x0,ξ

∣∣∣ τ(1, t(ξ))
〉
ρ̃(P̃x0,ξ) dξ

∣∣∣∣ ≤√π/2 .
Then, for every x0 ∈ R2,

lim
t→+∞

∫ +∞

t

〈
P̃x0,ξ

∣∣∣ τ(1, t(ξ))
〉
ρ̃(P̃x0,ξ) dξ = 0 .
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5. Proof of Theorem 1.1.

Definition 5.1. We call infinite flat triod a connected planar set composed by
three half-lines intersecting in the origin of R2, forming angles of 120 degrees.

Definition 5.2. We call Brakke spoon a spoon-shaped network which shrinks in a
self-similar way during the evolution.

O

Figure 2. A Brakke spoon.

A Brakke spoon is composed by a half-line which intersects a closed curve, form-
ing angles of 120 degrees and satisfying the equation k+ 〈x|ν〉 = 0 for all point x of
the curve, where k is the curvature and ν the unit normal vector in the point x. This
configuration was mentioned in [2] as an example of evolving network with a loop
shrinking down to a point, leaving a half-line that then vanishes instantaneously.

If we require that this particular spoon-shaped network is embedded, with mul-
tiplicity 1, without self-intersections and with 120 degrees angles at the triple junc-
tion, then it is unique, up to translation, rotation and dilation.

Proposition 6. Assume that the length of the non-closed curve γ2(x, t) is uniformly
bounded away from zero for t ∈ [0, T ). Then, for every x0 ∈ R2 and for every
subset I of [−1/2 log T,+∞) with infinite Lebesgue measure, there exists a sequence
of rescaled times tj → +∞, with tj ∈ I, such that the sequence of rescaled networks

Γ̃x0,tj converges in the C1
loc topology to a limit set Γ∞ which, if not empty, is one

of the following:

• a half-line from the origin with multiplicity one (in this case Θ̂(x0) = 1/2);

• a straight line through the origin with multiplicity one (in this case Θ̂(x0) = 1);
• an infinite flat triod centered at the origin with multiplicity one (in this case

Θ̂(x0) = 3/2);

• a Brakke spoon with multiplicity one (in this case Θ̂(x0) > 3/2).

Moreover, for every sequence of rescaled networks Γ̃x0,tj converging at least in the

C1
loc topology to a limit Γ∞, as tj → +∞, we have

lim
j→∞

1√
2π

∫
Γ̃x0,tj

ρ̃ dσ =
1√
2π

∫
Γ∞

ρ̃ dσ = Θ̂(x0) . (21)

Proof. We assume that we have a sequence of rescaled networks Γ̃x0,tj that con-

verges to a limit Γ∞ as j → ∞ in the C1
loc topology. As in the proof of Propo-

sition 2.19 in [15], we can pass to the limit in the following Gaussian integral:
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limj→∞
1√
2π

∫
Γ̃x0,tj

ρ̃ dσ = 1√
2π

∫
Γ∞

ρ̃ dσ . Consequently,

1√
2π

∫
Γ̃x0,tj

ρ̃ dσ =

∫
Γt(tj)

ρx0
(x, t(tj)) ds = Θ(x0, t(tj))→ Θ̂(x0) ,

as j →∞ and equality (21) follows.
If in the rescaled monotonicity formula (20) we set t1 = − 1

2 log T and we let

t2 go to +∞, considering the result in Lemma 4.2, we get
∫ +∞
−1/2 log T

∫
Γ̃x0,t

|k̃ +

〈x|ν〉 |2ρ̃ dσ dt < +∞ , then
∫
I
∫

Γ̃x0,t
|k̃ + 〈x|ν〉 |2ρ̃ dσ dt < +∞ . Being the last in-

tegral finite and being the integrand a nonnegative function on a set of infinite
Lebesgue measure, we can extract within I a sequence of time tj → +∞ such that

lim
j→+∞

∫
Γ̃x0,tj

|k̃ + 〈x|ν〉 |2ρ̃ dσ = 0 .

It follows that for every ball of radius R in R2, the networks Γ̃x0,tj have curvature
uniformly bounded in L2(BR).

Hence, we can extract a subsequence Γ̃x0,tj (not relabelled) which, after a possible

reparametrization, converges to a limit (possibly empty) network Γ∞ in the C1
loc

topology.
We will call Γ∞ a blow-up limit of Γt around the point x0 (notice that the blow-up

limit could depend on the choice of the subsequence).
If the limit set is not empty, it has multiplicity one thanks to Lemma 3.1. Also

the embeddedness is granted by Proposition 3.
This limit set satisfies the equation

k∞ + 〈x|ν〉 = 0 for all x ∈ Γ∞ , (22)

where k∞ is the curvature of Γ∞ at x, because the integral
∫

Γ̃
|k̃ + 〈x|ν〉 |2ρ̃ dσ is

lower semicontinuous under the C1
loc convergence.

In principle, the limit set is composed of curves in W 2,2
loc , but from the relation

k∞ + 〈x|ν〉 = 0 it follows that k∞ is continuous, since the curves are in C1
loc. By a

bootstrap argument we gain the smoothness of Γ∞.
Now we classify all the possible limit sets that satisfy (22).
By the work of Abresch and Langer [1] the curves componing Γ∞ can be only

lines, half-lines, segments or pieces of curves of Abresch and Langer. If k is iden-
tically zero we can only have a straight line, a half-line or an infinite flat triod. If
the point x0 ∈ R2 is not the end–point P , then Γ∞ has no end–points, otherwise if
the point x0 ∈ R2 is the end-point P , the set Γ∞ is a half-line by the bound from
below on the curve γ2.

Otherwise, if the curvature is not constantly zero, it is proved in [4, Theorem 3]
that there exists a unique possible limit set without self-intersection and with mul-
tiplicity one and it is the Brakke spoon in Definition 5.2.

The value of gaussian density Θ̂(x0) in the first three cases can be obtained by
a direct computation (see [15]), for the last case see Lemma 8.4 in [12].

We define the set of reachable points of the flow by

R =
{
x ∈ R2| there exist pi ∈ Γ and ti ↗ T such that lim

i−→∞
F (pi, ti) = x

}
.

This set R is not empty and compact, if a point x0 /∈ R, it means that the flow
is definitively far from x0, otherwise if x0 ∈ R, for every t ∈ [0, T ) the closed ball
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of radius
√

2(T − t) and center x0 intersects Γt (for the proof see [14]). Hence we

have two possibilities when we consider the blow-up around points of Ω:

• we are rescaling around a point in R and the limit of any sequence of rescaled
network is not empty;

• the blow-up limit is empty.

Fixed x0 ∈ R, repeating the previous arguments, there exists a not relabeled subse-

quence tj → +∞ of rescaled times such that the rescaled networks Γ̃x0,tj converge

in the C1
loc topology to a nonempty limit: a straight line, a half-line, an infinite flat

triod or a Brakke spoon.

Proposition 7. If the sequence of rescaled networks converges to a straight line
or to a half-line, then the curvature of the evolving network is uniformly bounded
for t ∈ [0, T ) in a ball around the point x0. If the sequence of rescaled networks
converges to a infinite flat triod, then the full L2 norm of the curvature of the
evolving network is bounded.

Proof. See [15], Propositions 3.2 and 3.3 and the proof of Theorem 2.4.

Proof of Theorem 1.1. As we have imposed that the length of the non-closed curve
γ2 stays bounded away from zero during the evolution, at the time T of maximal
existence of a smooth flow, only the second case of Theorem 2.9 can happen, that is
lim supt→T

∫
Γt
k2ds = +∞ . By Proposition 6 we know that, for every x0 ∈ R2, there

exists a sequence of rescaled times such that the sequence of corresponding rescaled
networks converges to a limit set Γ∞, which, if not empty, is a half-line from the
origin, a straight line through the origin, an infinite flat triod centered at the origin
or a Brakke spoon. If for every x0 ∈ R the limit set Γ∞ is a half-line, a straight line
or an infinite flat triod, then the curvature is uniformly bounded as t → T thanks
to the previous proposition. This is in contradiction with Theorem 2.9. Hence, it
exists a point x0 ∈ R such that the limit set Γ∞ is a Brakke spoon and at x0 the

gaussian density is Θ̂(x0) > 3/2. This proves the main Theorem.

Corollary 1. If the length of the non-closed curve γ2 is positively bounded from
below, at the maximal time of existence T < +∞ of a smooth solution limt→T A(t) =
0, lim inft→T L1(t) = 0 and lim supt→T

∫
γ1 k

2 ds = +∞ . Moreover T = 3A0

5π where

A0 is the initial area of the region contained in the closed curve γ1.

Proof. ¿From the equation (4) of the evolution of the area enclosed in the loop,
we know that A(t) is decreasing. If the length of the non-closed curve γ2 stays
positively bounded from below during all the smooth evolution of the flow and we
know that at time T < +∞ it appears a singularity, then from Theorem 1.1, the
rescaled flow converges, up to subsequence, to a Brakke spoon. This implies that
the area in the loop goes to zero and lim inft→T L1(t) = 0. Recalling the inequality
(13) we also get that lim supt→T

∫
γ1 k

2 ds = +∞ . Moreover, thanks to the equation
∂A
∂t = −5π

3 , the time in which such singularity appears is given by

T =
3A0

5π
.
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