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Abstract. In this work we introduce a novel model for the tracking of a
thief moving through a road network. The modeling equations are given by

a strongly coupled system of scalar conservation laws for the road traffic and

ordinary differential equations for the thief evolution. A crucial point is the
characterization at intersections, where the thief has to take a routing deci-

sion depending on the available local information. We develop a numerical

approach to solve the thief tracking problem by combining a time-dependent
shortest path algorithm with the numerical solution of the traffic flow equa-

tions. Various computational experiments are presented to describe different
behavior patterns.

1. Introduction. In the past few years, time-dependent models for transportation
problems have been of huge interest for many researchers of various disciplines and
application areas. For instance, these models are most commonly used to analyze
gas or water flow in connected pipe systems [2, 8], evacuation planning [7, 16],
manufacturing systems [9], or vehicular traffic on road networks [4, 19].

The focus of the presented work lies on continuous traffic flow network models
that are coupled with discrete decisions at the junctions. In particular, we deal with
a thief, who has committed a crime and tries to escape. The time a thief needs to
pass a certain street depends on how crowded the street is. Thus, the street density
can be interpreted as a measure (or weight) in the network. The thief starts his
journey at the initial time when the crime was committed and at the location where
the crime took place. From there on, he follows a route which is updated from time
to time depending on the current traffic density at his current position.

The simulation of traffic on roads is made using the Lighthill-Whitham-Richards
(LWR) model [22, 25]. For the simulation of traffic on a network, a model by Co-
clite, Garavello, and Piccoli [4] is used, which extends the LWR model to networks
by incorporating conditions for the coupling of roads. Equipped with the evolution
of density in the network, the path of the thief can be modeled. This is a different
focus compared to other already existing approaches for crime modeling. Short et
al. [27] present an agent-based model for the detection of crime in an urban region.
Due to observations it is known that clusters or hotspots of crime evolve in space
and time on a two-dimensional domain. Consequently, a hydrodynamic limit of the
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discrete model leads to a parabolic system of partial differential equations. Theoret-
ical investigations include local existence and uniqueness results of solutions for the
PDE system [26] and a bifurcation analysis [28] as well. Recent extensions of the
model consider the dynamic deployment of police to changing crime patterns [24, 30]
or crime probabilities with spatial data information to predict residential burglar-
ies [29]. In particular, in [24] variations of Dijkstras shortest path algorithm are
used to calculate the distance between crime locations for a given road network.

However, our intention is to model the probable temporal evolution of a single
thief through a road network once the crime was committed. The dynamic of the
thief is hereby influenced by the load of streets determined by (1). That means for
simulation purposes, that the equations for the traffic and the thief can be solved
independently in the sense that the solution of the traffic model is solved first and
then used as input to solve the thief tracking model. This type of interplay can
be seen as a weakly coupled model, where information flows in one direction only
(in contrast to strongly coupled models where solutions affect each other). Weakly
coupled models are a preliminary step to a more realistic models, where real data
(e.g. from statistics) can be included. Their application is therefore limited and
they mainly serve as motivation to study the coupling of already available models.
However, in a strongly coupled model the thief would influence the solution of the
traffic model. From an application point of view, one may think of carjacking,
manipulated traffic flow systems or disregarding traffic rules.

Psychological components as described in [1] are also omitted so far. Similar
modeling ideas have been already discussed in another context, see [3, 5, 6, 11, 21].
For instance, Delle Monache and Goatin [11] or Lattanzio, Maurizio and Piccoli [21]
presented a model, in which a single slow vehicle influences the surrounding traffic.
The regular vehicles queue up behind it, since overtaking is not possible without
loss of time. The authors use a strongly coupled PDE-ODE model, which is not
the same in the present case, because the solution of the LWR model is not affected
by the thief. In fact, an ODE is required to capture the dependence of the thief’s
velocity on the surrounding traffic density in our approach.

Extending the evolution of the thief’s path to networks, a criterion for the be-
havior of the thief at junctions has to be defined. When the thief arrives at the end
of a road, he has to decide about which of the succeeding roads to pass next. This
decision can be established in numerous ways. For instance, the thief can observe
the traffic on the outgoing roads and either choose that way which has the low-
est density and therefore promises the highest velocity to reach his target or take
the shortest distance to the closest hideout into account. Perturbations of these
decisions are also investigated.

The essential aim of the paper is to present a weakly coupled model for thief
tracking and its numerical simulation. For the numerical study, the model assump-
tions are as simple as possible but not realistic. Since the focus is on numerical
simulations, there is no well-posedness result.

The article is organized as follows: Section 2 is devoted to the thief tracking
model. First, the analysis for a single road strip is made. The model is introduced
theoretically and solutions are given for typical Riemann problems. Furthermore,
the theory is extended to the use on networks. Therefore, coupling conditions for the
traffic as well as for the thief are introduced. Section 3 adds a numerical perspective
on the problem. The computational model is set up, analyzed numerically, and
tested by some meaningful examples. Moreover, an excursus on time-dependent
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shortest path (TDSP) problems borrowed from graph theory is given. We present
different strategies to choose a new path (or road) at intersections. These decisions
rely on the thief’s individual behavior and depend on several criteria. Since the
dynamic of the thief is influenced by the dynamics of the LWR network model
and not vice versa, we use the information on road densities to fully describe the
evolution of the thief on roads and junctions as well. Once the network data is fixed,
we explain how to compute the thief’s time-dependent shortest path to a hideout.
Section 4 contains several computational experiments that assess the characteristics
of the decision criteria in a network.

2. A coupled model for a thief on a road strip. In this section, a model which
enables us to track the path of a thief moving within a road network is designed.
The main traffic on the road behaves according to the LWR model. For this, a
solution ρ(t, x) of the LWR model (1) with appropriate initial conditions ρ0(x) is
assumed to be given:{

ρt(t, x) + fx(ρ(t, x)) = 0, t ∈ R+, x ∈ R,
ρ(0, x) = ρ0(x), x ∈ R, (1)

where ρ is the traffic density and f = ρv(ρ) is the flow function. The relation
v(ρ) = vmax(1− ρ

ρmax
) is the speed of the main traffic depending on ρ, where ρmax

is the jam density and vmax is the free speed.
The approach for tracking a person moving along a single road strip is then

connected to (1). Therefore, the LWR model is coupled to an ordinary differential
equation describing the position of the thief. Moreover, the theoretical background
of the model is addressed. In particular, theoretical results of the ODE are analyzed
for cases in which the conservation law has Riemann initial data.

The velocity of the thief is described by a smooth, decreasing function ω(ρ(t, x)).
Let further y : R+ → R be a function representing the thief’s position on the piece
of road at time t. It is commonly known that the derivation of the position with
respect to time ẏ(t) represents the velocity. Thus, we can establish the Cauchy
problem {

ẏ(t) = ω(ρ(t, y(t))), t ∈ R+,
y(t0) = y0,

(2)

for an appropriate initial position y0. The density ρ(t, y(t)) reveals at the point
x = y(t), where the thief is located at time t.

2.1. Theoretical background. The main purpose of the next paragraph is to
study theoretical properties of the PDE-ODE system (1)-(2). The standard results
from the theory of ODEs do not apply here, since existence and uniqueness results
require a continuous right-hand side of the ODE ẏ = f(t, y). As ω depends on
the solution ρ of the conservation law, which exhibits shock waves and therefore
discontinuities, w can neither be assumed to be continuous nor Lipschitz continuous.
Thus, the theorems of Peano and Picard-Lindelöf are not applicable. The well-
posedness of the problem above was analyzed by Colombo and Marson [5, 6] from
a theoretical point of view. They derived a result by showing forward uniqueness
of Filippov solutions and their Hölder continuous dependence on the initial data of
the ODE. Bretti and Piccoli [3] further provide a convergence result for wave front
tracking approximate solutions. The well-posedness of ODEs ẏ(t) = f(t, y) with
discontinuous right-hand side in general is analyzed by Filippov [14].
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The theoretical embedding of the considered problem (1)-(2) comes with Theo-
rem 2.2 in [6]. According to this theorem, the thief’s velocity function must satisfy

ω(0)− ω(ρ)

ω(0)− f ′(ρ)
∈ [0, 1− α) (3)

for an α ∈ (0, 1).
The violation of this condition results either in the failure of the well-posedness

or in the thief traveling backwards. For the purposes of this work, it is reasonable
to assume that the thief has a speed function which is similar or equal to the main
traffic speed in the LWR model v(ρ) = vmax(1 − ρ

ρmax
). It is not very likely that

an escaping thief behaves like a regular road user, as he is probably faster being on
the run. Thus, his maximum velocity is increased by a parameter k ≥ 1 describing
the factor by which the thief can move faster than the average vehicular traffic:

ω(ρ) = k · vmax
(

1− ρ

ρmax

)
= kv(ρ). (4)

As shown above, (4) satisfies (3). Thus, the problem (1)-(2) is well-posed for
such velocity functions. In general, the velocity function can be adjusted in many
different ways without violating the well-posedness of the problem, e.g. by a fixed
velocity difference k between the thief and the average vehicular traffic. The actual
choice of the thief’s velocity function does not have an increased relevance for our
purposes. Consequently, his velocity is set equal to the main traffic velocity from
here on by setting k = 1 in (4) for simplicity reasons.

2.2. Riemann problems. The solution of the LWR model with Riemann initial
data is well known, e.g. [4]. In the following paragraph, solutions of Riemann prob-
lems for the coupled PDE-ODE model (1)-(2) are investigated. Consider standard
Riemann initial data

ρ0(x) =

{
ρl, if x ≤ 0
ρr, if x > 0

. (5)

Then, two cases are considered for the LWR model (1) are known. If ρl ≤ ρr,
a shock wave results and if ρl > ρr, a rarefaction wave results. Since we intend to
analyze the interaction of the thief’s trajectory with shock and rarefaction waves,
we assume him to be located at point x = −c left to the discontinuity point x = 0,
such that he approaches the wave after some time. Starting at t = 0, the following
system is obtained: {

ẏ(t) = ω(ρ(t, y(t))), t > 0,
y(0) = −c. (6)

Throughout this work, we assign ρmax = vmax = 1 in order to keep the analysis
clear. As a result, the velocity function of the thief looks as follows: ω(ρ) = v(ρ) =
1− ρ and the flow function is f = ρv(ρ) = ρ(1− ρ).

The solution approach for this setting consists of the piecewise solution of the
ODE by considering different initial value problems (IVPs) for the different levels of
ρ, which depend on x and t. The same cases as for the LWR model are considered:

Case 1. (ρl < ρr) The thief departs at x = −c, where ρ(0,−c) = ρl at the initial
time. As ρ is constant on the left of the discontinuity, the ODE ẏ(t) = (1−ρ(t, y(t)))
is independent of t and can be solved by integration:

y1(t) = (1− ρl)t− c = ω(ρl)t− c. (7)
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The solution on the right-hand side of the discontinuity is derived analogously.
However, the integration constant cannot be determined immediately, since the time
when the discontinuity is hit and the corresponding location have to be determined
first in order to obtain an initial condition. Therefore, the location of the disconti-

nuity f(ρr)−f(ρl)
ρr−ρl t and the location of the thief (1− ρl)t− c are set equal and solved

for t∗.
Thus, the complete solution to the Riemann problem (6) under the condition

ρl < ρr looks as follows:

y(t) =

{
(1− ρl)t− c, if t ≤ t∗
(1− ρr)t+ (ρr − ρl)t∗ − c, if t > t∗

, (8)

where t∗ = c

(1−ρl)−
f(ρr)−f(ρl)

ρr−ρl

. Figure 1 illustrates how the thief’s trajectory is

affected by a shock wave.
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Figure 1. Thief trajectory for initial data ρl = 0.1, ρr =
0.6, y(0) = −5.
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Figure 2. Thief trajectory for initial data ρl = 0.9, ρr =
0.5, y(0) = −5.

Case 2. (ρl > ρr) This case is slightly more complex due to the appearance of
the rarefaction wave. There is not a single discontinuity with constant velocity
to both sides of the discontinuity, but there is a transition interval, in which the
density decreases linearly from ρl to ρr. This interval gets larger over time and
the whole wave moves as well. Thus, there are three different pieces an IVP has
to be solved for, one of them with non-constant ρ. As in case 1, the IVP {ẏ(t) =
(1− ρ(t, y(t))), y(0) = −c} for the leftmost part, where ρ(t, x) = ρl, can be solved
via integration.
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Time and location when the left part of the rarefaction wave is reached is deter-
mined analogously to case 1 in order to obtain the initial condition for the second
IVP. The location of the wave’s left end f ′(ρl)t is compared with the location of
the thief and solved for t∗:

f ′(ρl)t
∗ = (1− ρl)t∗ − c.

The corresponding location is then

y∗ = y1(t∗) =
c

ρl
− 2c.

The second IVP is a linear, inhomogeneous IVP. The density ρ(t, x) is not con-
stant in the center of the wave between f ′(ρl)t and f ′(ρr)t:

ρ(t, x) = (f ′)−1

(
x

t

)
=

1− x
t

2
.

The resulting IVP {
ẏ(t) =

1+
y(t)
t

2 , t > t∗,
y(t∗) = y∗

(9)

has the following solution:

y2(t) = t− 2
√
ctρl.

The third IVP is analogous to the first one and so is its solution:

y3(t) = (1− ρr)t+ c3,

where c3 = −c ρlρr .

Finally, the complete solution to (6) can be formulated:

y(t) =


(1− ρl)t− c, if t ≤ t∗
t− 2

√
ctρl, if t∗ < t ≤ t∗∗

(1− ρr)t− c ρlρr , if t > t∗∗
, (10)

where t∗ = c
ρl

and t∗∗ = c ρlρ2r
. Figure 2 illustrates how the thief’s trajectory is

affected by a rarefaction wave. Note that figures 1 and 2 will be used for numerical
comparisons in Section 4.1.

The upcoming section extends the theory and the results of this section to road
networks. Therefore, the situation at junctions is considered in particular.

3. Network extension. Next, the model is applied to road networks by adapting
the coupled PDE-ODE model to the theory of the LWR network model [4] and
appropriate decision rules at nodes for the thief.

For the simulation of a thief’s path in a road network, we first have to adapt the
traffic equations (1) for the use in networks. Compared to the analysis on single
edges, the traffic behavior at junctions has to be considered additionally. This issue
has been studied widely in recent literature. In this paper, the approach of Coclite,
Garavello, and Piccoli [4, 15] is applied. The road network is modeled by a directed
graph G = (V,E), where V describes the set of vertices representing junctions and
E describes the set of edges representing roads. The length of road i is denoted
by li ∈ R+. The sets δ+

n and δ−n describe the set of incoming and outgoing edges,
respectively, for a vertex n ∈ V . Time is captured by the variable t > 0 and the
position on a certain road i is described by x ∈ [0, li]. The traffic on the single edges
is simulated as before using the LWR conservation law (1). In contrast to the single
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edge analysis, edges are bounded by their adjacent junctions at x = 0 and x = li.
For this, boundary conditions have to be imposed for solving the PDE. These are
derived implicitly by the use of coupling conditions.

Consider an arbitrary but fixed vertex n ∈ V . The densities of the incoming
road i and the outgoing road j are denoted by ρ̂i(t) := ρ(li, t) and ρ̄j(t) := ρ(0, t).
An unambiguous requirement to the system at each junction is the conservation
of mass, i.e. the total incoming flow has to be equal to the total outgoing flow.
Otherwise, mass could appear or disappear at a junction. The conservation of flow
is described by the Rankine-Hugoniot relation∑

i∈δ+n

f(ρ̂i(t)) =
∑
j∈δ−n

f(ρ̄j(t)), ∀t > 0, ∀n ∈ V. (11)

For the coupling flows, the notation γ̂i(t) := f(ρ̂i(t)) and γ̄j(t) := f(ρ̄j(t)) is
used. The Rankine-Hugoniot relation does not sufficiently describe the behavior at
a junction. For instance, a coupling flow of zero would always be feasible. As a
consequence, further coupling conditions have to be introduced for reasons of well-
posedness. On the one hand, flow distribution parameters 0 ≤ αji ≤ 1 are used to
describe the distribution of the traffic at a junction. As αji denotes the percentage
of flow that move from the incoming road i to the outgoing road j,

∑
j∈δ−n αji = 1

and

γ̄j(t) =
∑
i∈δ+n

αjiγ̂i(t), ∀j ∈ δ−n (12)

can be stated. On the other hand, an entropy condition

max
∑
i∈δ+n

γ̂i(t) (13)

is imposed in order to maximize the flow at junctions.
For each junction n ∈ V , the boundary densities (ρ̂i, ρ̄j) for the connected roads

i ∈ δ+
n and j ∈ δ−n are derived from the local fluxes (γ̂i, γ̄j), which satisfy the

coupling conditions (11)-(13), see [4].
The admissible boundary flows corresponding to these constraints lie within the

following intervals:

γ̂i ≤ γ̂maxi :=

{
f(ρi(li)), if 0 ≤ ρi(li) ≤ σ
f(σ), if σ ≤ ρi(li) ≤ ρmaxi

(14)

and

γ̄j ≤ γ̄maxj :=

{
f(σ), if 0 ≤ ρj(0) ≤ σ
f(ρj(0)), if σ ≤ ρj(0) ≤ ρmaxj

. (15)

In a nutshell, the behavior of the traffic at junctions according to [4] can com-
pletely be described by formulating the following linear maximization problem:

max
∑
i∈δ+n γ̂i(t)

s.t. γ̄j(t) =
∑
i∈δ+n αjiγ̂i(t), ∀j ∈ δ−n

γ̂i(t) ∈ [0, γ̂maxi (t)], ∀i ∈ δ+
n

γ̄j(t) ∈ [0, γ̄maxj (t)] ∀j ∈ δ−n .

(16)

This linear program contains the maximization of flow (13) as objective function,
it contains the conservation of flow and the traffic distribution rules (12) as a linear
constraint (12), and it makes the flow satisfy the admissible ranges (14)-(15). A
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solution of (16) {γ̂i, i ∈ δ+
n ; γ̄j , j ∈ δ−n } allows for determining the right boundary

densities (ρ̂i, ρ̄j) for (1).

3.1. The thief tracking network model. In order to simulate the path of a
thief escaping from a certain crossing in a road network, the model presented above
has to be combined with a thief behavior framework. The framework combines the
tracking of the thief’s trajectory on the edges with his decisions on which outgoing
edge to choose at the vertices. The thief starts at an initial vertex representing
the crossing where he committed the crime. Then he chooses one of the possible
outgoing edges, passes that edge, and faces another edge choice at the next vertex.
He decides again which edge to pass, and so on. His journey ends when the time
exceeds the predefined time horizon, or when he arrives at one of the predefined
destination vertices D ⊂ V , see Definition 3.1. The required edge passing times are
determined using solutions of the thief tracking ODE (2).

Before introducing the thief tracking model for networks, some notations have to
be clarified in order to provide a clear framework. As before, we consider a network
(V,E). The edge arrival time function ae(t) is the time when a thief arrives at
the end of an edge e ∈ E, if he started at time t. The edge arrival time can
alternatively be referred to as aij(t), where i = α(e) is the start vertex of edge e
and j = β(e) is its destination vertex. The edge arrival time function can be defined
in arbitrarily many ways. Here, the thief tracking ODE (2) is used for determining
the travel time on the edges. The path of a thief can be described in two equivalent
ways: by a sequence of k + 1 vertices V = (n0, . . . , nk) or by a sequence of k edges
E = (e1, ..., ek). Thereby, the sequence A = (a0, . . . , ak) contains the arrival times.
ai describes the arrival time at ni or at the end of ei.

Definition 3.1. Consider a network (V,E) with a set of hideouts D ⊂ V . Let
Tmax(time horizon) be the maximum allowed escape time. A thief is said to be
escaped if the following holds for the path V = (n1, ..., nk), n1, ..., nk ∈ V he has
completed:

(i) The last vertex on the path is a hideout vertex: nk ∈ D
(ii) ak ≤ Tmax

Otherwise, the thief is said to be caught.

Considering a thief progressing through a network, the path and the correspond-
ing arrival times have to be updated each time he crosses a vertex. For a vertex ni,
ai can be written as a composition of multiple edge arrival time functions:

ai = aei(ai−1) = . . . = aei(aei−1( . . . ae1(a0)). (17)

The determination of the edge arrival times ae(t) of a thief traveling through
a network is explained in the following. The thief tracking ODE (2) has to be
adjusted such that it yields the desired output. When the thief leaves a certain
vertex n = α(e) for a chosen edge e ∈ δ−n with destination β(e) at time t0, the
problem of determining the arrival time ae(t0) is as follows:{

ẏ(t) = ω(ρe(t, y(t))), t ∈ [t0, T ],
y(t0) = 0.

(18)

This ODE is solved for values of y within the bounds of the edge, i.e. y ∈ [0, le].
The solution y(t) describes the position of the thief on edge e at time t assuming
that he started at the initial point x = 0 of the edge at time t0. For the arrival time
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at the end of the edge ae(t) it holds that the thief’s position y(ae(t)) corresponds
to the length of the edge le, i.e.

y(ae(t)) = le (19)

must be true for the arrival time. The right-hand side of the ODE ω(ρe(t, y(t)))
representing the thief’s velocity is non-negative, the function representing his po-
sition y(t) is weakly increasing. Moreover, y(t) is a continuous function, which is
intuitively clear thinking of a road user moving through a street. The existence of
an arrival time ae(t) is guaranteed if the right hand side of the ODE is such that
the thief arrives at the end of the road before the time horizon T is exceeded, i.e.
the following must hold for ω:∫ T

t0

ω(ρe(t, y(t)))dt ≥ le.

If an infinite time horizon is considered, the upper bound of the integral must be
set to infinity. Due to the non-strict increase, there might exist a range of times for
which y(t) = le holds. This contradicts the uniqueness of the arrival time. However,
there is only one relevant arrival time, which is expressed as follows:

ae(t0) := min{t ∈ [0, T ] : y(t) ≥ le}.

After clarifying the trajectory of the thief on edges in a network, we will have a
closer look on the thief’s behavior at junctions. Therefore, the criteria applied by
the thief for selecting one of the outgoing edges at a junction are introduced.

3.2. Route decision at junctions. Arriving at the end of an edge, the thief has to
decide which of the successor edges to take next. This decision process is executed
instantaneously when he arrives at the vertex and is assumed not to require time.
The criteria for choosing an appropriate edge are the crucial factor for the thief’s
escaping performance. Five approaches for the decision at a vertex n ∈ V coming
from an incoming edge e ∈ δ+

n are provided in this work. It is assumed that the
thief never returns to the vertex he just came from. Thus, if there is an edge leading
back to the previous vertex, the thief is not allowed to take it. However, if this is
the only outgoing edge from a vertex, the thief can pass that edge to prevent himself
from being stuck at the vertex. Moreover, inflow and outflow edges can never be
passed by the thief since the thief’s hideouts are nodes that can be anywhere in the
system, see Definition 3.1. The set of outgoing edges from a vertex n ∈ V ′ being
accessible for a thief coming from an edge e ∈ E′ with β(e) = n is denoted by

δ̃−e,n :=

{
{k ∈ δ−n } \ {IE ∪OE}, if |{k ∈ δ−n } \ {IE ∪OE}| = 1
{k ∈ δ−n : β(k) 6= α(e)}{IE ∪OE}, otherwise

.

Definition 3.2 (Decision criteria). Let (V,E) be a network. Consider a thief
arriving at a vertex n ∈ V ′ at time ta after passing an edge e ∈ E′. He can choose
the next edge based on one of the following five decision criteria:

(DC1) Random choice among the edges k ∈ δ̃−e,n by assigning a U([0, 1])-distributed
random number to each of the possible edges and taking the minimum out of
them.

(DC2) The integral of the density over the whole edge k at time t is used as an
indicator for the time which is required for passing the edge:
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cDC2
k (t) =

1

lk

∫ l(k)

0

ρk(t, x)dx ∈ [0, 1].

Given the arrival time at the current vertex ta, choose that edge k ∈ δ̃−e,n,

which has minimal cDC2
k (ta).

(DC3) In addition to cDC2
k (t), the distance from the thief’s current location to the

closest destination via edge k is taken into account. Let skij(t) be the length
of the shortest path with respect to length from a vertex i to a vertex j
postulating that edge k ∈ δ−i is chosen first and departure time at i is t. The
following definition describes the distance from n to the closest destination
d ∈ D supposing that edge k is chosen first:

s̃kn(t) := min{sknd(t) | d ∈ D}.

In order to make them comparable, cDC2
k (t) and s̃kn(t) are scaled to the

range [0, 1] by comparing them to the maximum values of cDC2
k (t) and s̃kn(t)

of the set δ̃−e,n, i.e.

c̄DC2
k (t) =

cDC2
k (t)

max{cDC2
i (t)|i ∈ δ̃−e,n}

and s̄kn(t) =
s̃kn(t)

max{s̃in(t)|i ∈ δ̃−e,n}
.

The criterion for choosing an edge k is the arithmetic mean of c̄DC2
k (t) and

s̄kn(t)

cDC3
k (t) =

1

2

(
c̄DC2
k (t) + s̄kn(t)

)
∈ [0, 1].

Given the arrival time at the current vertex ta, choose that edge k ∈ δ̃−e,n
which has minimal cDC3

k (ta).
(DC4) In the setting of (DC2), a random number uk ∼ U([0, 1]) is added to cDC2

k (t):

cDC4
k (t) = cDC2

k (t) + uk ∈ [0, 2].

Given the arrival time at the current vertex ta, choose that edge k ∈ δ̃−e,n
which has minimal cDC4

k (ta).
(DC5) In the setting of (DC3), a random number uk ∼ U([0, 1]) is added to cDC3

k (t):

cDC5
k (t) = cDC3

k (t) + uk ∈ [0, 2].

Note that solutions to (DC2) and (DC3) are unique due to the fact that the
edge with the lowest index is chosen in the case of multiple edges with the same
ranking.

(DC2) is motivated by the aim for high velocity. The velocity function of the
thief is weakly decreasing. Hence, the smaller the density, the faster the thief. By
calculating the integral over the edge, the total density on the edge is captured.

The result describes both the average density and the average velocity on the
edge. However, the edge which is chosen by (DC2) is not necessarily the one that
can be passed with the highest average velocity, since the integral is calculated with
respect to the density at a fixed time. Thus, the fluctuation of the density while the
thief is passing the edge is not captured and the actual passing time is not perfectly
reproduced. In reality, this is a reasonable error, because the thief does not know
how traffic will change. He simply looks at the outgoing edges and chooses the one
which seems to be the least crowded. The main drawback of (DC2) is that the thief
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Figure 3. Illustrative graph for decision approaches.

is not determined towards the hideouts. He makes local decisions at each vertex.
As a consequence, it might get hard to find one of the hideouts. This behavior is
rational in the case of an unprepared, spontaneous crime with the thief not having
any knowledge of the neighborhood.

(DC3) adds an additional perspective to the thief’s decision criterion at junc-
tions. Thereby, the distance to the closest hideout is taken into account. It is
obvious that the thief wants to be at a secure place as fast as possible. Thus, it is
reasonable to take the distance to possible hideouts into account in order to get the
thief out of the system as fast as possible. However, this criterion assumes the thief
to have good knowledge of the area where the crime is committed, and to be able
to orientate quickly. A possible drawback of this approach is that the thief can be
trapped on an edge where the density is at its maximum. This is possible, when
the thief is close to one of the destinations and all other options would result in a
huge detour.

One could even go further and assume the thief to have information about the
densities on all edges in the network. However, this is not evident, since he cannot
observe more than those roads that are incident to his current location. Therefore,
the only available information about other edges is their length, which makes the
thief able to determine shortest paths independently from the traffic volume. An
approach on finding a global shortest path to the hideouts with respect to the
fluctuating densities is presented below.

The criteria (DC4) and (DC5) are the stochastic counterparts of (DC2) and
(DC3). They include a random number uk ∼ U([0, 1]) in order to simulate partly
random decisions.

The differences between the two approaches (DC2) and (DC3) presented above
are outlined in the following by an example in a small network.

Example. This network consists of three branches that force the thief to a single
decision, see Figure 3. The density on the edges is assumed to be constant over the
whole edge and there is no interaction between the edges at the junctions, such that
the densities are constant over time. This enables us to calculate the travel times
on the edges without using (18), since the thief has constant velocity ω = 1 − ρe.
The set of hideout vertices is D = {4, 6, 8}. The thief starts at the first vertex at
t = 0. As the density is 0 on the first edge, he can pass the edge with length 1
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in one time unit. Consequently, the thief is at n = 2 after a time of 1 and has to
decide, which of the edges leading to the vertices 3, 5, or 7 to pass next.

Edge k Avg. Density Distance to Hideout cDC2
k cDC3

k Travel Time

(2→ 3) 0.3 3.5 0.3 1.6 13.93
(2→ 5) 0.4 2.5 0.4 1.51 4.17
(2→ 7) 0.5 2.5 0.5 1.71 3.67

Table 1. Results of the example.

(DC2) selects that edge with the lowest average density. As densities are constant
over the edges, the values for cDC2

k (t) are directly given by the constant value, see
column 4 in Table 1. Consequently, the thief chooses the edge leading to n = 3.
The required time for passing that edge is le/ω = 1/0.7 ≈ 1.43. At n = 3, there
is no further decision, as there is only one predecessor. The thief has to take the
connection (3 → 4), which yields a travel time of ≈ 12.5. The total travel time is
then 13.93, cf. column 6 in Table 1.

For (DC3), the density on the outgoing edges and the residual distance to the
closest hideout are the crucial factors. The scaled densities are c̄DC2

2→3 (1) = 0.3/0.5 =
0.6, c̄DC2

2→5 (1) = 0.8, and c̄DC2
2→7 (1) = 1. The determination of the shortest paths to

the hideouts does not require the use of the Dijkstra algorithm, as there is no further
junction with more than one outgoing edge and only one hideout is reachable for
each choice. The edge lengths can simply be summed up. Hence, the values for the
scaled shortest path lengths are s̄2→3

2 (1) = 1, s̄2→5
2 (1) = (1 + 1.5)(1 + 2.5) ≈ 0.71,

and s̄2→7
2 (1) = (1 + 1.5)(1 + 2.5) ≈ 0.71. Finally, cDC3

2→3 (1) = 1.6, cDC3
2→5 (1) = 1.51,

and cDC3
2→7 (1) = 1.71 is obtained, see column 5 in Table 1. In contrast to approach

(DC2), the thief chooses the edge leading to n = 5 due to the shorter residual
distance to the hideout. The travel time on this edge is 1.67. Adding the travel
time 2.5 on the edge (5 → 6), a total travel time of 4.17 results. This is far less
than the travel time over n = 3 proposed by (DC2).

The connection (2 → 7) is never chosen. However, this route yields the fastest
path to a hideout. Its total travel time for the last two edges is ≈ 3.67.

Note that normally densities fluctuate over time due to the formation of shock
and rarefaction waves and there is an interaction between the edges at the junctions.

3.3. Time-dependent shortest path (TDSP). This section concludes with a
brief introduction of an approach for optimally determining the thief’s route. Even
though the thief is not able to apply this method in reality as it would require
him to have total information, it serves as a performance indicator for the model
above. Therefore, a so-called time-dependent shortest path (TDSP) algorithm is
used. The most famous TDSP algorithm by Dreyfuß [12] uses the same techniques
as the Dijkstra algorithm, but is applicable to time-dependent edge weights. The
major restriction in the method of Dreyfuß is the First-In-First-Out (FIFO) rule.
First-in-first-out means that someone who enters an edge before someone else, has
to arrive at the end of the edge first, supposed that both use the same dynamic edge
weights, i.e. overtaking is not included in the model. Thus, it is never preferable to
wait at a vertex aiming for a lower edge passing time.

The relevant networks for this work, whose edge weights correspond to the model
(1)-(2) do fulfill the FIFO property. Thus, by doing some adaptions to the TDSP
algorithm such that the PDE-ODE model for tracking the thief’s position can be
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integrated, the fastest possible route that the thief can possibly take to reach one of
the destinations can be determined. Therefore, the edge arrival times ae(t) have to
be derived. ae(t) is the time when one arrives the end β(e) of edge e after starting
at its initial point α(e) at time t. Consider a network (V,E) and suppose a solution
ρe(t, x) of the conservation law to be given for each edge e and an appropriate time
horizon T . Imagine the thief having arrived at a vertex n at time t0 and having
chosen edge e to pass next. Then the edge arrival time ae(t0) for edge e can be
determined by solving the IVP (18). From the solution y(t) of this IVP, the arrival
time ae(t0) at the end of the edge can be derived. The actual travel time on the
edge is ae(t0)− t0.

Given that the dynamic edge weights can be determined by solving the ODE
(18), Dreyfuß’ algorithm can be applied without further restrictions. When the
algorithm calls the edge weight function ae(t) at a time t0, (18) has to be solved for
t ≥ t0 with initial condition y(t0) = 0.

Algorithm 1 illustrates the procedure of finding an optimal escape path in pseu-
docode. Besides the density function ρe(t, x), the set of possible destinations D ⊂
V \ {ns}, and the description of the thief’s speed ω(ρ(t, x)), the algorithm requires
a starting vertex ns ∈ V and a departure time ts. An earliest arrival time EAv will
be the output. Moreover, the algorithm returns the descriptions E , V, and A of the
optimal escape path.

Algorithm 1: Time-dependent shortest path (TDSP)

begin
∀n ∈ V : EAn =∞; EAns = ts; S ←− V ;
while S 6= ∅ do

Select na ∈ S with minimal EAna ;
S ←− S \ {na};
for k ∈ δ−na do

solve the ODE {
ẏ(t) = ω(ρk(t, y(t))), t ∈ [EAna , T ]
y(EAna) = 0;

solve y(tc) = lk for tc;

if tc ≤ EAβ(k) then
EAβ(k) = tcurrent;
previous(β(k)) = α(k);

Select d ∈ D with minimal EAd;
Determine E , V, and A recursively via backward induction using previous
and EA.

It can be shown in a straightforward way that Algorithm 1 satisfies the optimality
conditions from Lemma 3.1 in [10] and is therefore correct. Examples of optimal
escape paths are given in the next section, as the resulting paths can be compared
directly to the paths generated by the different decision criteria (DC1)-(DC5).

4. Numerical solution. In the following section, the thief tracking model (2) is
considered from a numerical point of view. Note that ρmax = vmax = 1 is assigned
for this whole section. First, we briefly introduce the algorithm, which is used to
solve the model numerically:
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Step 1. The density values ρji , i = 1, ...,m, j = 1, ..., n approximating equation
(1) are computed on each road and for all time steps using the Staggered
Lax-Friedrichs scheme (20)-(22). The boundary fluxes γ̂, γ̄ at junctions are
found by solving the maximization problem (16).

Step 2. The thief starts his journey at the initial point of a certain road at time
t = 0. The thief’s position y(t) on a road is determined by solving the ODE
(18) with an appropriate solver. When the thief reaches a junction, Definition
(3.2) (Decision Criteria) is applied to determine the road to be passed next.
The calculation ends when the thief arrives at a hideout vertex or t ≥ Tmax.

Before assessing the thief tracking model itself, the staggered Lax-Friedrichs
method is briefly introduced, see [20]. This method is used for the numerical solution
of the LWR network model. The benefit of this method is the direct incorporation
of the boundary conditions by boundary flux values (γ̂i(t), γ̄j(t)) arising from (16)
while the corresponding boundary densities are omitted. This is preferable for the
coupling of roads, as the boundary densities (ρ̂i, ρ̄j) do not have to be determined.

The scheme has the CFL condition max
ρ∈[0,ρmax]

|f ′(ρ)| · 2∆t
∆x ≤ 1 and is described by

ρj+1
0 =

1

4
(3ρj0 + ρj1)− ∆t

2∆x
(f(ρj1) + f(ρj0)− 2γ̄j), (20)

ρj+1
i =

1

4
(ρji−1 + 2ρji + ρji+1)− ∆t

2∆x
(f(ρji+1)− f(ρji−1)), i = 1, ...,m, (21)

ρj+1
m+1 =

1

4
(ρjm−1 + 3ρjm)− ∆t

2∆x
(2γ̂j − f(ρjm)− f(ρjm−1)), (22)

where ρji with i ∈ X = {xi = i ·∆x | i = 0, ...,m} and j ∈ T = {tj = j ·∆t | j =
0, ..., n} describes the density on the grid points.

The right-hand side of the thief tracking ODE (2) reveals a special difficulty
making the solution more complex. Note that y(t) is not given explicitly, but acts
as a parameter for the density function ρ(t, x), which is the solution of the LWR
model (1). For this, the ODE and its solution depend not only on its own initial
value, but also on the setup of the LWR initial value problem. Here, a distinction
has to be made with respect to the way how the LWR model is solved. On the
one hand, ρ(t, x) could be assumed to be an analytical solution, which can for
example be derived for piecewise constant initial data. Such a solution exhibits
rarefaction and shock waves, which results in a discontinuous right-hand side of
the ODE. On the other hand, acting on the assumption that the LWR model is
solved numerically with the staggered Lax-Friedrichs scheme, one faces a piecewise
linear function ρ(t, x), since the solution at the grid points is linearly interpolated.
In this case, the right-hand side is continuous. Both cases combine the fact that
their respective solutions to the LWR model are not generally expressible by a
single equation, which could be inserted in the ODE. Consequently, it is hard to
derive general statements about stability, convergence, and consistency of numerical
solution schemes, as Lipschitz continuity of the right-hand side cannot be stated for
general initial data. The only statement that can be done without any restrictions
is ẏ(t) ∈ [0, 1], since ρ ∈ [0, 1]. As a result, the ODE is bounded and numerical
solutions to the ODE are of bounded variation. Despite the lack of theoretical
background for the existing numerical ODE solution schemes, they still apply to
the underlying problem. As the solvers evaluate the right-hand side of the ODE at
discrete points, there is no problem with piecewise linear functions. Moreover, the
schemes do not recognize discontinuities in ρ(t, x) for the same reason.
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4.1. Performance analysis. A small study is conducted in this paragraph aiming
at evaluating error levels and computation times of different ODE solvers being
applied on various initial data settings of the LWR model. Analytical and numerical
solutions to the LWR model are both used and their impact on the error is compared.
We choose a setting, in which a thief walks along an infinite road. The road has
Riemann initial densities, i.e. there is a single discontinuity at x = 0 which produces
a wave. The thief starts at x = −5 and his trip is observed until he reaches x = 5.
The crucial performance indicator for the respective approaches is the difference in
the arrival times at x = 5 compared with the analytical arrival time (cf. Section 2.2),
since we are particularly interested in the total travel time on an edge. Nevertheless,
truncation errors are considered as well. Two different initial settings for the LWR
model are chosen. The first setting generates a shock wave (ρl = 0.1, ρr = 0.6) while
the second one generates a rarefaction wave (ρl = 0.9, ρr = 0.5). The discretization
for the staggered Lax-Friedrichs scheme is done with step sizes ∆t = 0.05 and
∆x = 0.1.
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Figure 4. Comparison of thief trajectories for ρl = 0.1, ρr = 0.6.
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Figure 5. Zoom on intersection of shock wave.

The results of the study can be viewed in Table 2. To sum up, it can be stated
that the choice of a particular solver is not crucial for the problem. The Figures
4 and 6 show plots of several thief trajectories for a shock and a rarefaction wave,
respectively. The Figures 5 and 7 show zooms on critical regions pointing out where
the numerical solutions differ the most from the analytical solution.

The major insight from the results is that the largest part of the error seems to
come from the numerical solution of the LWR model rather than from the ODE
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Analytical LWR Solution

ρl = 0.1, ρr = 0.6 ρl = 0.9, ρr = 0.5

Solver Arrival Time Deviation Trunc. Error Comp. Time Arrival Time Deviation Trunc. Error Comp. Time

ode23 0.0021 0.0009 0.4174 0.0089 0.0045 0.4071
ode45 0.0066 0.0027 0.3835 0.3106 0.1553 0.3854

Staggered LF Solution

ρl = 0.1, ρr = 0.6 ρl = 0.9, ρr = 0.5

Solver Arrival Time Deviation Trunc. Error Comp. Time Arrival Time Deviation Trunc. Error Comp. Time

ode23 0.1369 0.1094 0.0451 0.0247 0.1180 0.0388
ode45 0.0316 0.1080 0.0532 0.0906 0.1575 0.0314

Table 2. Results of numerical study for the thief tracking ODE.
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solution. Thus, the accuracy of the staggered Lax-Friedrichs scheme is the cru-
cial factor for an accurate solution. In order to state that, another experiment is
conducted. ode23 is applied multiple times to LWR solutions produced by the stag-
gered Lax-Friedrichs scheme, whose mesh size is halved each time. Both ∆x and
∆t must be halved in order to satisfy the CFL condition. We start with ∆x = 0.1
and ∆t = 0.05 like above, and halve the step sizes twice. The results are shown in
Table 3.

It can be clearly seen that the quality of the solution to the ODE depends strongly
on the mesh size used by the staggered Lax-Friedrichs scheme. The improvement
potential of refining the step sizes in the traffic simulation is so remarkable that it
makes the improvement potential of better ODE solvers almost irrelevant. However,
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Staggered LF Solution

Mesh ρl = 0.1, ρr = 0.6 ρl = 0.9, ρr = 0.5

(∆x,∆t) Arr. Time Dev. Trunc. Err. LWR Comp. Time Arr. Time Dev. Trunc. Err. LWR Comp. Time

(0.1,0.05) 0.1369 0.1094 0.0451 0.0247 0.1180 0.0388
(0.05,0.025) 0.1355 0.0548 0.0383 0.0182 0.0702 0.1338

(0.025,0.0125) 0.1345 0.0143 0.0394 0.0103 0.0407 0.4932

Table 3. Quality of solutions with different mesh sizes.

refining the mesh comes at a cost. The computation time of the ODE solution
remains constant as the LWR model is solved beforehand, but the computation
time of the LWR solution is strongly increased when the step size is decreased.
This can be observed in the ‘LWR Comp. Time’ column in Table 3. Furthermore,
as the step sizes are mostly chosen such that the CFL condition is just met, both
discretizations have to be refined in order to satisfy the CFL condition. This effect
is further amplified when dealing with road networks. Hence, there is a trade-off
between solution quality and computation time, which is particularly an issue when
large road networks are simulated as is done in this work.

4.2. Computational experiments. Now, the different decision criteria at junc-
tions are addressed numerically. The main issue of (DC2) is the calculation of the
integral of the density on the outgoing edges at the time, when the thief makes his
decision at the junction. The solution ρ(t, x) of the LWR model produced by the
staggered Lax-Friedrichs scheme is solely provided at the discretization points of
the time grid T and the spatial grid X . As explained above, the solution is linearly
interpolated in order to be able to access ρ-values for arbitrary parameters t and
x. Instead of computing the integral for each spatial cell analytically, the trape-
zoidal rule is used, which is exact for piecewise linear functions. Thus, the following
calculation rule is used:

cDC2
k (t) =

1

lk

∫ l(k)

0

ρk(t, x)dx =
1

2

m−1∑
i=0

(xi+1 − xi)(ρk(t, xi+1)− ρk(t, xi)). (23)

According to (DC2), the edge with minimal cDC2
k (t) is chosen by the thief. If

there are multiple edges with the same ck(t), the one with the smallest index is
chosen. As a result, the solution of the thief’s path is guaranteed to be unique.

(DC3) additionally addresses the distances to the closest destination for the

assessment of the edges, i.e. for each edge k ∈ δ̃−e,n, the distance s̃kn of the shortest
path including k to one of the destinations is additionally considered for the decision.
It is necessary to determine sknd(t) for all destinations d ∈ D in order to find the
distance to the closest d. As the shortest path is defined in terms of length and
not in terms of travel time, the Dijkstra algorithm can be applied here without
restrictions. A problem equivalent to the all sources-all destinations shortest path
problem is solved once at the beginning. The results can be used throughout the
whole process of path simulation as the edge lengths are static.

In the next step, a study is conducted, which aims at analyzing the performance
of the decision criteria in terms of escape time. We aim at giving an illustrative
insight on the dynamics of the thief tracking model in networks. For this, the five
decision criteria (DC1)− (DC5) are applied to a test network which is illustrated
in Figure 8.

The green vertex 19 is the starting vertex, the three red vertices 24, 29, and 34
are hideout vertices. All interior edges are of length 1. Three different simulations
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Figure 8. Test network.

of the traffic are conducted, which differ by the initial densities on the edges. For
the first simulation (a), initial densities are drawn from a U ∼ ([0, 1])-distribution.
For the remaining simulations (b) and (c), the initial densities from simulation (a)
are scaled to [0, 0.5] and [0.5, 1], respectively. The time horizon is set to 100. The
trajectories of the deterministic decision criteria (DC2) and (DC3) are simulated a
single time, whereas the stochastic criteria (DC1), (DC4) and (DC5) are simulated
100 times to gather information about average behavior. If the thief exceeds the
time horizon before arriving a hideout, the information from that iteration is not
used, since the density beyond the time horizon is not valid. As a consequence,
the results are biased because only information from journeys lasting less than 100
time units counts for the results. This issue cannot be resolved having a finite time
horizon. However, a time horizon of 100 proved to be sufficiently large to capture
all escape paths that do not end up on a completely jammed edge. An overview on
the results of those experiments is given in Table 4. The values of the criteria with
random component are average values. The second column contains arrays with
four entries, which show the distribution of the arrivals at the different hideouts.
The fourth entry is the number of times the thief failed to escape within the time
horizon. The third, fourth, and fifth column reveal (average) escape time, speed,
and length of the escape path.

a: Initial Densities ∈ [0, 1] b: Initial Densities ∈ [0, 0.5]

(DCx) Hideout (24, 29, 34,×) Time Distance Speed (DCx) Hideout (24, 29, 34,×) Time Distance Speed

(DC1) (39,22,33,6) 42.99 18.75 0.45 (DC1) (44,19,37,0) 31.00 24.73 0.79
(DC2) (0,0,1,0) 19.91 15 0.75 (DC2) (0,1,0,0) 21.95 18 0.82
(DC3) (1,0,0,0) 9.85 7 0.71 (DC3) (0,0,1,0) 8.28 7 0.84
(DC4) (23,24,51,2) 33.93 19.10 0.58 (DC4) (44,17,39,0) 28.62 23.17 0.81
(DC5) (33,21,45,1) 31.24 16.02 0.53 (DC5) (35,28,37,0) 24.85 19.90 0.80
TDSP (1,0,0,0) 9.85 7 0.71 TDSP (1,0,0,0) 8.25 7 0.85

Table 4. Results of decision criteria performance analysis.

The time-dependent-shortest-path serves as a performance reference. The results
are not surprising. First of all, the hideout vertex 29 is the least popular hideout,
as it is the farthest hideout from the starting vertex. The other hideouts have equal
distance to the starting vertex. Their different popularity results from the different
traffic volume in the area around those hideouts. In simulation (a), the different
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objectives at junctions between the deterministic approaches (DC2) and (DC3)
can be observed. (DC2) has a higher speed, but this comes at the cost of a higher
distance as well as a longer escape time. The more targeted approach (DC3) reveals
shorter escape distances. The crucial indicator is the escape time. (DC3) is able to
escape in less than half the time of (DC2). Here, (DC3) even generates the same
solution as the time-dependent-shortest-path.

The corresponding approaches with random component verify the behaviour of
their deterministic counterparts. It is clear that the performances are worse due
to the partly random choices, but it is remarkable that (DC4)’s results are much
closer to (DC5) than those of (DC2) compared to (DC3) in all aspects. The random
walks produced by (DC1) exhibit the worst performance by far. In 6 of 100 cases,
the thief does not arrive at all within the time horizon. Simulation b’s results
are obviously better due to the initial densities being halved. In each iteration,
even those with (DC1), a hideout is arrived within the time horizon and speed
increases for all (DCx). Moreover, the escape time decreases for all (DCx) except
from (DC2), which is not surprising since (DC2)’s paths do only have a local focus
which can results in huge detours. One would assume that the escape distances
decrease as well for all (DCx). Thus, it is surprising that (DC1), (DC2), (DC4),
and (DC5) have increased average escape distances. In fact, this is a reasonable
result, as (DC1), (DC2), and (DC4) do not take the distance into account for the
decision at junctions. Moreover, the influence of the residual distance is small for
(DC5), when the thief is at the beginning of his path and all outgoing edges have
similar residual distances. Consequently, the effect of the density on the outgoing
edges is decisive for the edge decision leading to the same argumentation for the
increased escape distances than before. Note that in simulation (c), a hideout is not
even reached by the time-dependent shortest path within the time horizon. Hence,
there is no possibility for any decision criterion to reach the hideout before the time
runs out due to the high initial densities which provoke jams on large parts of the
roads.

Figure 9 and Figure 10 show the paths of (DC2) (blue), (DC3)(green), and the
time-dependent-shortest-path (purple) from simulation (a) and (b), respectively.
(DC3) and TDSP generate the same path in simulation (a) (green).

Figure 9. Simulation (a).
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Figure 10. Simulation (b).

To conclude with this study, two characteristic situations are shown up, which
point out the dynamics between the traffic and the thief’s path in an illustrative
way. First, the susceptibility of decision criterion (DC2) for including circles in
its paths is investigated. As we know, (DC2) bases its decisions solely on density.
Thus, it can happen that the thief walks along a circle if the average densities at
the outgoing edges are such that the thief chooses an edge which leads back to an
edge he has already passed. If the fluctuation of the density is very small, it may
even happen that he passes a circle multiple times. The occurrence of the first
circle (19 → 18 → 1 → 20) in (DC2)’s path in simulation (b) (see Fig. 10) is
investigated. Vertex 18 is passed twice. The first time, the thief moves to vertex 1
and returns to 18 via 20 and 19. The two arrival times at vertex 18 are t1 = 1.10
and t2 = 5.64. Figure 11 and 12 illustrate, why the thief decides differently the
second time. At t1 the pink line representing cDC2

18→1(t) is far below the green line
representing cDC2

18→17(t). Thus, the thief chooses the connection (18 → 1). While
he is on the circle, the average density on (18 → 1) increases, whereas the average
density on (18 → 17) is approximately constant. At t2 the green line is slightly
above the pink line, making the thief choose (18→ 17) this time. However, this is
a very tight decision, as the difference is very small. If the thief arrived 0.16 time
units later at t = 5.8, he would go on a second loop on the circle.
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Figure 11. Plot of cDC2
18,x (t).
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Figure 12. Zoom around t=5.64.

Second, it is shown, how a thief can be trapped on an edge. This happens when
a shock wave with negative velocity enters the edge from the right-hand side and
increases the density to 1 while the thief passes the edge. We consider an edge of
length 1, which has a density of 0.4 in the interval [0, 0.8] and a density of 1 in the
interval [0.8, 1] when the thief arrives at the vertex at the left-hand side of the edge.
The average density on the edge is 0.8 ·0.4+0.2 ·1 = 0.52. If all other feasible edges
have higher average densities, the thief will choose that particular edge. While he
passes the edge, the shock wave moves towards him from the end of the edge. Thus,
he hits the shock wave after some time and cannot move forward. Oftentimes, such
a jam does not dissolve within the time horizon. Figure 13 shows the trajectory of
a thief passing the edge. He hits the shock wave after a time of 0.8 and is stuck at
0.48 due to the jam.
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Figure 13. Thief trajecory.

Usually, situations in which a thief is trapped on an edge do not occur using the
TDSP algorithm, whereas it can well happen for all (DCx). However, the network
in simulation (c) is so crowded that entering a completely jammed edge can not
even be avoided by the TDSP algorithm.

5. Conclusion. The present work on the topic of crime modeling adds a new
perspective to the research in the field of continuous problems coupled with discrete
decisions. Therefore, an approach on how to model the escape path of a thief in an
urban road network is provided. On the one hand, the determination of the thief’s
location is a continuous problem since an ODE is introduced describing the velocity
of the thief depending on the current density at his location. The solution of this
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ODE describes the thief’s actual location. As the formulation of the ODE contains
the solution of a PDE, the whole approach is a PDE-ODE coupled system. On the
other hand, the thief has to make discrete decisions on which outgoing edge to pass
next when he arrives at a junction. These decisions are mainly based on the traffic
density on those edges.

In conclusion, this work provides a concrete approach on how to simulate the path
of single road users in a network having the objective to escape. The thief tracking
model is a generally applicable method that could be transferred to other scenarios,
e.g. the description of emergency vehicles. Future research includes strategies to
catch the thief. Göttlich [18, 17] introduced an approach on flow-optimal traffic
light setting by expressing the LWR model with linear constraints and steering the
traffic through binary variables that are used to change the color of the traffic lights.
Expressed by mixed integer constraints, the setting of the binary variables can be
optimized such that the flow is maximized. A similar approach could be used to
place road barriers such that the thief’s path is influenced and he can be caught
easily. Moreover, the thief versus police setting could be refined by including game
theoretical aspects like in the famous game Scotland Yard, compare for instance [13].
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