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Abstract. Let (X,T,B, µ) be a measure-theoretical dynamical system with

a compatible metric d. Following Boshernitzan, call a point x ∈ X is {nk}-

moving recurrent if

inf
k≥1

d
(
Tnkx, Tnk+kx

)
= 0,

where {nk}k∈N is a given sequence of integers. It was asked whether the set of

{nk}-moving recurrent points is of full µ-measure. In this paper, we restrict our

attention to the doubling map and quantify the size of the set of {nk}-moving
recurrent points in the sense of measure (a class of 2-fold mixing measures)

and Hausdorff dimension.

1. Introduction. For a measure-theoretical dynamical system (X,T,B, µ) with a
probability measure µ and a compatible metric d, Poincaré Recurrence theorem
states a non-trivial recurrence to a measurable set with positive measure. Conse-
quently, µ-almost surely,

lim inf
n→∞

d(Tnx, x) = 0.

In other words, almost every orbit {Tnx}n≥1 returns to a target with the fixed
center x, the starting point, infinitely often. Instead of a target with fixed center
or fixed target, Boshernitzan [4] asked how about the case when the target is also
moving along the time? To state the question clearly, we cite some notation at first.

Problem ([4]). Let {nk}k∈N be a sequence of integers. Define

ψ{nk}(x) := inf
k≥1

d
(
Tnkx, Tnk+kx

)
.
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If ψ{nk}(x) = 0, the point x ∈ X is called {nk}-moving recurrent. Is it true that
µ-almost all points are {nk}-moving recurrent?

In [4], Boshernitzan & Glasner showed that for a minimal dynamical system,
the set of {nk}-moving recurrent points is a dense Gδ set. In some weakly mixing
systems, Grivaux & Roginskaya [9] and Grivaux [10] investigated the arithmetic
properties of the sequence {nk}k∈N to ensure that almost all points are {nk}-moving
recurrent.

In this paper, we restrict our attention to the doubling map Tx = 2x (mod1)
and quantify the size of the set consisting of {nk}-moving recurrent points in the
sense of measure and Hausdorff dimension. The results in the following can be
generalized to β-expansions for all β > 1 with no more additional efforts.

Our first result concerns the size of the set of {nk}-moving recurrent points in
the sense of a class of measures.

Theorem 1.1. Assume that ([0, 1], T, µ) is a 2-fold mixing system. Then for any
sequence of integers {nk}k≥1 tending to infinity as k →∞, µ-almost all points are
{nk}k≥1-moving recurrent.

Remark 1. From its proof in Section 3, it can be seen that Theorem 1.1 is valid
for any 2-fold mixing system. So, in this result, T is not necessarily the doubling
map.

The next results concern a quantitative version of the set of {nk}-moving recur-
rent points in the sense of Hausdorff dimension.

Let {nk}k∈N and {rk}k∈N be two sequences of integers tending to infinity as
k →∞. Define

R({nk, rk}) =
{
x ∈ [0, 1] :

∣∣Tnkx− Tnk+kx
∣∣ < 2−rk for infinitely many k ∈ N

}
,

which consists of {nk}-moving recurrent points with additionally a quantitative
convergent rate.

Theorem 1.2. Let {nk}k∈N and {rk}k∈N be two sequences of integers that tend to
infinity. Then

dimHR({nk, rk}) =
1

1 + b
with b = lim inf

k→∞

rk
nk + k

,

where dimH denotes the Hausdorff dimension of a set.

Theorem 1.3. Let {nk}k∈N be a strictly increasing sequence of positive integers
that tends to infinity. Then

dimH

{
x ∈ [0, 1] : inf

k≥1

∣∣Tnkx− Tnk+kx
∣∣ > 0

}
= 1,

i.e., the set of non {nk}-moving recurrent points is full in the sense of Hausdorff
dimension.

For more results of other kinds of recurrence properties in the sense of measure
and dimension, one is referred to the papers of Fursternberg [6, 7], Hill & Velani
[11], Boshernitzan [3], Akin [1], Barreira & Saussol [2], Glasner [8], Tan & Wang
[13] and the references therein.

2. Preliminaries. In this section, we fix some notation about the dyadic expan-
sions, k-fold mixing systems and a dimensional result about Cantor set for later
use.
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2.1. Notation. Let T be the doubling map defined on [0, 1) by

Tx = 2x− b2xc,

where bξc denotes the integer part of ξ. Then every x ∈ [0, 1) can be expressed
uniquely as a finite or infinite series

x =
ε1(x)

2
+ · · ·+ εn(x)

2n
+ · · · , (1)

where, for n ≥ 1, εn(x) = b2Tn−1xc is called the n-th digit of x. Sometimes we
rewrite (1) as

x =
(
ε1(x), · · · , εn(x), · · ·

)
.

Let Σ = {0, 1} and denote

Σn =
{

(ε1, ε2, · · · , εn) : εj ∈ Σ
}

(Σ0 = ∅),

the collection of all words with length n and Σ∞ the infinite words.
For any finite word (ε1, ε2, · · · , εn) ∈ Σn of length n ≥ 1, call

In
(
ε1, ε2, · · · , εn

)
= cl

{
x ∈ [0, 1) : εj(x) = εj , 1 ≤ j ≤ n

}
a dyadic interval of generation n, where clA denotes the closure of A. It is clear
that a dyadic interval of generation n is an interval of length 2−n.

The concatenation of two finite words σ = (σ1, · · · , σk) ∈ Σk and τ = (τ1, · · · , τm)
∈ Σm is given as

(σ, τ) = (σ1, · · · , σk, τ1, · · · , τm).

2.2. k-fold mixing system. In this short part, we cite the definition of the k-fold
mixing system.

Definition 2.1 ([12]). A measure preserving system (X,B, µ, T ) is k-fold mixing,
mixing of order k or mixing on k + 1 sets if

µ
(
A0

⋂
T−n1A1

⋂
· · ·
⋂
T−nkAk

)
→ µ(A0) · · ·µ(Ak)

as

n1, n2 − n1, n3 − n2, · · · , nk − nk−1 →∞

for any sets A0 · · ·Ak ∈ B.

2.3. Cantor set. To estimate the Hausdorff dimension of a fractal set from below,
it is a very classic way to construct a suitable Cantor subset inside and then apply
the following widely used dimensional result.

Proposition 1 (Falconer [5]). Let [0, 1] = F0 ⊃ F1 ⊃ · · · be a decreasing sequence
of sets, with each Fi a union of a finite number of disjoint closed intervals. Assume
that each interval of Fi contains at least mi+1 intervals of Fi+1 which are separated
by gaps of lengths at least ηi+1. If mi ≥ 2 and ηi > ηi+1 > 0, then

dimH

⋂
i≥1

Fi ≥ lim inf
i→∞

log(m1m2 · · ·mi)

− log(mi+1ηi+1)
.
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3. Proof of Theorem 1.1. It should be noted that the proof presented here only
works for systems with 2-fold mixing property. Recall that what we need to show
is that

µ
({
x ∈ [0, 1) : inf

k≥1

∣∣Tnkx− Tnk+kx
∣∣ = 0

})
= 1.

For any ε > 0 and k ≥ 1, let

Fk(ε) =
{
x ∈ [0, 1) :

∣∣Tnkx− Tnk+kx
∣∣ < ε

}
.

Then set

A(ε) = lim sup
k→∞

Fk(ε).

It is clear that A(ε) is decreasing with respect to ε and⋂
ε>0

A(ε) ⊂
{
x ∈ [0, 1) : inf

k≥1

∣∣Tnkx− Tnk+kx
∣∣ = 0

}
.

Now we show that

µ
( ⋂
ε>0

A(ε)
)

= 1.

Suppose this is not true, then there exists some ε > 0 such that µ
(
A(ε)

)
< 1. Let

B = [0, 1] \A(ε). Since µ(B) > 0, there exists a subset Bε ⊂ B such that µ(Bε) > 0
and |Bε| < ε. This can be done by just partitioning [0, 1] into intervals of length less
than ε.

Remind that here µ is of 2-fold mixing and nk tends to infinity as k →∞. Then
by Definition 2.1 of k-fold mixing, we have

µ
(
Bε
⋂
T−nkBε

⋂
T−nk−kBε

)
→ µ(Bε)

3 > 0

as k →∞. Then it gives that

lim sup
k→∞

(
Bε
⋂
T−nkBε

⋂
T−(nk+k)Bε

)
6= ∅.

Write Gk = Bε
⋂
T−nkBε

⋂
T−nk−kBε, for every k ≥ 1. By the continuity of a

finite measure from above, we obtain that

µ
(

lim sup
k→∞

Gk

)
≥ lim sup

k→∞
µ
(
Gk
)

= µ(Bε)
3 > 0.

Hence there exists a point x ∈ Bε such that
∣∣Tnkx−Tnk+kx

∣∣ < ε holds for infinitely
many k, then x ∈ A(ε). This leads to a contradiction!

4. Proof of Theorem 1.2. The proof of the dimension of R({nk, rk}) is divided
into two parts: upper bound and lower bound.

4.1. Upper bound. The upper bound can be obtained by considering the natural
coverings of R({nk, rk}). Evidently,

R({nk, rk}) =

∞⋂
N=1

∞⋃
k=N

⋃
(ε1,··· ,εnk+k)∈

∑nk+k

Rk(ε1, · · · , εnk+k)

where

Rk(ε1, · · · , εnk+k) =
{
x : εj(x) = εj , 1 ≤ j ≤ nk + k,

∣∣Tnkx− Tnk+kx
∣∣ < 2−rk

}
.
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Now we estimate the length of Rk(ε1, · · · , εnk+k) : for x ∈ Rk(ε1, · · · , εnk+k),∣∣Tnkx− Tnk+kx
∣∣ =

∣∣∣εnk+1

2
+ · · ·+ εnk+k + Tnk+kx

2k
− Tnk+kx

∣∣∣ < 2−rk .

This gives that(
1− 1

2k

)
Tnk+kx ∈

(εnk+1

2
+ · · ·+ εnk+k

2k
− 2−rk ,

εnk+1

2
+ · · ·+ εnk+k

2k
+ 2−rk

)
.

We infer that, for every k ≥ 1,∣∣Rk(ε1, · · · , εnk+k)
∣∣ ≤ 4

2rk
.

As a result, the s-dimensional Hausdorff measure of R({nk, rk}) can be estimated
as

Hs
(
R({nk, rk})

)
≤ lim inf

N→∞

∞∑
k=N

∑
(ε1,··· ,εnk+k)∈

∑nk+k

∣∣Rk(ε1, · · · , εnk+k)
∣∣s

≤ lim inf
N→∞

∞∑
k=N

2nk+k
( 4

2rk

)s
,

which is finite for any s > 1
1+b . The arbitrariness of s yields that

dimHR({nk, rk}) ≤
1

1 + b
.

4.2. Lower bound. We will use Proposition 1 to give the lower bound of the
Hausdorff dimension of R({nk, rk}).

4.2.1. Construction of a Cantor subset. We construct a Cantor set F(∞) such that
for each x ∈ F(∞) ∣∣Tnkx− Tnk+kx

∣∣ < 2−rk (2)

holds for infinitely many k ∈ N.
Let

x =
(
ε1, · · · , εn, · · ·

)
be its dyadic expansion. We pose some restrictions on the digit sequence of x to
ensure the validity of (2). Two cases are distinguished according as rk ≤ k or not.

Case (i). rk ≤ k. We demand

εnk+i = εnk+k+i, 1 ≤ i ≤ rk,

i.e., the block (εnk+1, · · · , εnk+rk) is repeated after the position nk + k. Thus the
(nk + k + rk)-dyadic interval containing x can be expressed as:

Ink+k+rk

(
ε1, · · · , εnk

, εnk+1, · · · , εnk+rk︸ ︷︷ ︸
rk

, εnk+rk+1, · · · , εnk+k, εnk+1, · · · , εnk+rk︸ ︷︷ ︸
rk

)
.

Case (ii). rk > k. We repeat the word (εnk+1, · · · , εnk+k). More precisely, write
rk = (qk − 1)k + tk for some qk ≥ 2 and 0 ≤ tk < k and then demand

εnk+i = εnk+jk+i, 1 ≤ i ≤ k, 1 ≤ j ≤ qk − 1;

εnk+i = εnk+qkk+i, 1 ≤ i ≤ tk.
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In other words, after the position nk, a periodic word with period (εnk+1, · · · , εnk+k)
is followed up to the (nk+k+rk)th position. Thus the (nk+k+rk)-dyadic interval
containing x can be expressed as:

Ink+k+rk

(
ε1, · · · , εnk

,
(
εnk+1, · · · , εnk+k

)qk
, εnk+qkk+1, · · · , εnk+qkk+tk

)
,

where wq means the concatenation of q many words w.
For any k ∈ N, either rk ≤ k or rk > k occurs. So we must meet one case for

infinitely many k. In the sequel, we assume rk ≤ k appears for infinitely many k.
The other case can be treated similarly.

Choose a largely sparse subsequence {ki}i≥1 of N such that

lim
i→∞

rki
nki + ki

= b

with ki � nki−1 + ki−1 + rki−1 , and ki ≥ rki for all i ≥ 1.

For each
(
ε1, · · · , εnki

+ki

)
∈ Σnki

+ki , define

Ji
(
ε1, · · · , εnki

+ki

)
=Inki

+ki+rki

(
ε1, · · · , εnki

, εnki
+1, · · · , εnki

+ki , εnki
+1, · · · , εnki

+rki︸ ︷︷ ︸
rki

)
,

and call it an i-th basic cylinder. This is just a cylinder realizing (2) for k = ki.
It should be reminded that Ji is a dyadic interval of order nki + ki + rki , but it
depends only on the first nki + ki coordinates.

The first generation of the Cantor set.
Denote by Ξ1 half of the words in Σnk1

+k1 such that any two dyadic intervals
Ink1

+k1(w1) and Ink1
+k1(w2), with w1, w2 ∈ Ξ1, are separated by a gap of length

at least 2−nk1
−k1 .

The first generation F(1) is defined as

F(1) =
⋃
J1

(
ε1, · · · , εnk1

+k1

)
,

where the union is taken over all (ε1, · · · , εnk1
+k1) ∈ Ξ1.

Then the first generation consists of m1 = 1
22nk1

+k1 many intervals each of which

are separated by a gap at least η1 = 2−nk1
−k1 .

The second generation of the Cantor set. The second generation is composed of
collections of subintervals of each 1-th basic cylinders J1 ∈ F(1) :

F(2) =
⋃

J1∈F(1)

F(2, J1).

Now we give the definition of F(2, J1) for each J1 ∈ F(1).
Fix an element J1 = J1

(
ε1, · · · , εnk1

+k1

)
∈ F(1) which is a dyadic interval of

order nk1 + k1 + rk1 . Denote by Ξ2 half of the words in Σnk2
+k2−(nk1

+k1+rk1
) such

that any two dyadic intervals

Ink2
+k2(ε1, · · · , εnk1

+k1+rk1
, w1), Ink2

+k2(ε1, · · · , εnk1
+k1+rk1

, w2),

with w1, w2 ∈ Ξ2, are separated by a gap of length at least 2−nk2
−k2 .

Then the collection of intervals F(2, J1) is defined as

F(2, J1) =
⋃
J2

(
ε1, · · · , εnk1

+k1+rk1
, εnk1

+k1+rk1
+1, · · · , εnk2

+k2

)
,
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where the union is taken over (εnk1
+k1+rk1

+1, · · · , εnk2
+k2) ∈ Ξ2.

As a result, each element J1 ∈ F(1) contains m2 = 1
2 · 2

nk2
+k2−(nk1

+k1+rk1
)

elements in F2, which are separated by a gap of length at least η2 = 2−nk2
−k2 .

The inductive step of the construction: Suppose that the i-th generation F(i)
is already defined. With the same construction as F(2), for each Ji ∈ F(i), we
construct F(i+ 1, Ji) and then define

F(i+ 1) =
⋃

Ji∈F(i)

F(i+ 1, Ji).

Still we have that each element Ji ∈ F(i) containsmi+1 = 1
2 ·2

nki+1
+ki+1−(nki

+ki+rki
)

elements in F(i+ 1), which are separated by a gap at least ηi+1 = 2−nki+1
−ki+1 .

The Cantor set. Finally, we obtain a nested sequence
{
F(i)

}
i≥1

composed of

basic cylinders. Then the desired Cantor set is defined as

F(∞) =

∞⋂
i=1

F(i).

It is clear that

F(∞) ⊂ R({nk, rk}).
The dimension of F(∞) is estimated by applying Proposition 1:

dimH F(∞) ≥ lim inf
i→∞

logm1 · · ·mi

− logmi+1ηi+1
≥ lim inf

i→∞

nki + ki
nki + ki + rki

=
1

1 + b
,

where, for the second inequality, we used the fact that
∑i−1
j=1(nkj + kj + rkj ) is

negligible compared with nki .

5. Proof of Theorem 1.3. Recall

E =
{
x ∈ [0, 1] : inf

k≥1

∣∣Tnkx− Tnk+kx
∣∣ > 0

}
is the set in question. We will try to construct a Cantor subset F∞ inside E. Then
Proposition 1 applies.

5.1. A subset Em of E. Fix an integer m ≥ 3 and define

Em =
{
x = (ε1 · · · εn · · · ) : satisfies (3) for any k ≥ 1

and (4) for any i ≥ 0,
}

where (3) and (4) are some restrictions on the digit sequence of the dyadic expansion
of x:

(εnk+k+1, · · · , εnk+k+m) 6= (εnk+1, · · · , εnk+m); (3)

(εnm+im+1, · · · , εnm+im+m) 6= 0m. (4)

We claim that Em ⊂ E. More precisely, given a point x ∈ Em, we assume without
loss of generality that Tnkx ≥ Tnk+kx. One one hand, by (3), it follows that

Tnk+kx =
εnk+k+1

2
+ · · ·+ εnk+k+m

2m
+ · · · ≤ εnk+k+1

2
+ · · ·+ εnk+k+m

2m
+

1

2m

≤ εnk+1

2
+ · · ·+ εnk+m

2m
(by (3)).
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On the other hand, the formula (4) implies that every 2m consecutive digits of x
after the nmth digit contains at least one non-zero terms. Thus

Tnkx =
εnk+1

2
+ · · ·+ εnk+m

2m
+
εnk+m+1

2m+1
+ · · ·+ εnm+3m

23m
+ · · ·

≥ εnk+1

2
+ · · ·+ εnk+m

2m
+

1

23m
.

Combining the above two inequalities together, we conclude that for any x ∈ Em
and any k ≥ nm ∣∣Tnkx− Tnk+kx

∣∣ ≥ 2−3m > 0.

5.2. Cantor subset of Em. We construct a Cantor subset F∞ of Em. The re-
striction (4) can be realized easily, so we only pay close attention on (3).

We partition the natural numbers N into a countable union of disjoint sets ac-
cording to the positions of {nk + k + 1}: N =

⊔
i≥0 Ni, where

N0 =
{
k ∈ N : 1 < nk + k + 1 ≤ nm +m

}
=
{

1, · · · ,m− 1
}

N` =
{
k ∈ N : nm + `m < nk + k + 1 ≤ nm + (`+ 1)m

}
, (` ≥ 1). (5)

Note that m ∈ N1 and that N` may be empty for some ` ≥ 1.

I. Realize (3) for k ∈ N0 and the 0th level of the Cantor subset.
Choose one word (ε1, · · · , εnm+m) ∈ Σnm+m such that

εnk+k+1 6= εnk+1 for all k ∈ N0,

which realizes (3) for all k ∈ N0. The digits of such a word can be chosen one by
one in the following way.

The first step. Denote s1 = max
{
n1 + 1 + 1, n2 + 1

}
. Fix the first s1 digits such

that

εn1+1+1 6= εn1+1.

This ensures the validity of (3) for k = 1.

The second step. Note that n2 + 2 + 1 > s1, which means that the position
n2 + 2 + 1 is after the s1th position. This enables us to choose the next digits up
to the position s2 = max

{
n2 + 2 + 1, n3 + 1

}
such that

εn2+2+1 6= εn2+1.

This ensures the validity of (3) for k = 2.

The (m − 1)-th step. Continue this process: provided that (ε1, · · · , εsm−2) has

been determined, where sm−2 = max
{
nm−2 + (m − 2) + 1, nm−1 + 1

}
. Similarly

nm−1 + (m − 1) + 1 > sm−2 which enables us to choose the next digits up to
sm−1 = max

{
nm−1 + (m− 1) + 1, nm + 1

}
satisfying that

εnm−1+(m−1)+1 6= εnm−1+1.

This ensures the validity of (3) for the last integer in N0, i.e. k = m− 1.
Now we get a word (ε1, · · · , εsm−1

) ∈ Σsm−1 satisfying (3) for all k ∈ N0. Choose
the next digits up to (nm +m)th position satisfying that(

εnm+1, · · · , εnm+m

)
6= 0m,

which realizes (4) for i = 0. The word w0 = (ε1, · · · , εnm+m) is a desired one.
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Define the 0th level of the Cantor subset as

F0 =
⋃
Inm+m(ε1, · · · , εnm+m),

where the union is taken over all elements in Λ0:

Λ0 = {w0}.

II. Realize (3) for k ∈ N1 and the 1th level of the Cantor subset.
It is clear that m ∈ N1, so we write N1 = {m,m+ 1, · · · ,m+ `}.
For each w0 ∈ Λ0, we will choose the next m digits (εnm+m+1, · · · , εnm+2m) such

that (3) is valid for k ∈ N1. (In fact, Λ0 is a singleton. The only reason we said like
this is to illustrate the ideas in constructing F∞.)

Recall the definition of N1: for each k ∈ N1,

nm +m < nk + k + 1 ≤ nm + 2m. (6)

Write

tk = (nm + 2m)− (nk + k), (note: 1 ≤ tk ≤ m) (7)

which is the distance from the position nk+k+1 to nm+2m. Then the inequalities
(6), together with k ≥ m, implies that

nk + 1 ≤ nm +m, moreover nk + tk ≤ nm +m.

This means that for each k ∈ N1, the first nk + tk digits has already been chosen in
the 0th step. So, to ensure (3), we choose (εnm+m+1, · · · , εnm+2m) such that for all
k ∈ N1,

( tk︷ ︸︸ ︷
εnk+k+1, · · · , εnm+2m

)
6=
( tk︷ ︸︸ ︷
εnk+1 · · · εnk+tk

)
. (8)

This is stronger than (3) since tk ≤ m.
The restriction (4) can be realized by avoiding one more case that (εnm+m+1, · · · ,

εnm+2m) = 0m.
As a summary, we have proposed a method to realize (3) for all k ∈ N1 and (4)

for i = 1. Now we arrive at giving the first level of the Cantor set. Let

Λ1 =
{
ξ = (εnm+m+1, · · · , εnm+2m) :ξ 6= 0m and (8) is satisfied for all k ∈ N1

}
.

Then we get a collection of dyadic intervals

F1 :=
{
Inm+2m(w0, ξ) : ξ ∈ Λ1

}
.

Leave out half of the intervals in F1, or equivalently choose half of the elements in
Λ1 (denoted by Ξ1), such that the remaining intervals are separated by a gap at
least 2−nm−2m. Then the first level of the Cantor set is defined as

F1 =
⋃

(εnm+m+1,··· ,εnm+2m)∈Ξ1

Inm+2m

(
w0, (

m︷ ︸︸ ︷
εnm+m+1, · · · , εnm+2m)

)
,

It should be noted that Ξ1 depends on the word w0, but this dependence will
not play a role in the following argument, so will not be addressed explicitly.

Now we count the number of the elements in Ξ1. For each k ∈ N1, to realize (8),
one needs to avoid 2m−tk possible choices of (εnm+m+1, · · · , εnm+2m). Hence

m1 := ]Ξ1 =
1

2
]Λ1 ≥

1

2
· (2m −

∑
k∈N1

2m−tk − 1).
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Recall the definition of tk (7) and note that tk ≥ 1. Moveover since nk is strictly
increasing, tk+1 − tk ≥ 2. As a result,

m1 ≥ 2m−1 − (2m−2 + 2m−4 + · · · )− 1

2
≥ 2m−1

3
− 1 ≥ 2−c · 2m, (9)

for some c > 0. Remember also that all the elements in F1 are separated by a gap
of length at least η1 = 2−nm−2m..

The following is an inductive step.
III. Realize (3) for k ∈ N` and the `th level of the Cantor subset.
One can use completely the same argument as in the first step to construct

F`. Assume that F`−1 has been defined which is a collection of cylinders of order
nm + `m. For each Inm+`m(w0, · · · , w`−1) ∈ F`, we choose Λ` ⊂ Σm to ensure the
validity of (3) for all k ∈ N` and (4) for i = `.

If N` = ∅, choose Λ` = Σm \ {0m}.
If N` 6= ∅, choose Λ` and Ξ` by the same method as we did in the first step with

(w0, · · · , w`−1) taking place the role of w0.
Then define

F`
(
Inm+`m(w0, · · · , w`−1)

)
=
⋃
Inm+(`+1)m(w0, · · · , w`−1, εnm+`m+1, · · · , εnm+(`+1)m)

where the union is taken over all (εnm+`m+1, · · · , εnm+(`+1)m) ∈ Ξ`. Still with the
same argument, we have that

m` := Ξ` =
1

2
]Λ` ≥ 2−c · 2m

Also the elements in F` are separated by a gap at least η` = 2−nm−(`+1)m.
The `th level of the Cantor is then defined as

F` =
⋃

Inm+`m(w0,··· ,w`−1)∈F`−1

F`
(
Inm+`m(w0, · · · , w`−1)

)
The Cantor subset. Finally, we obtain a nested sequence {F`}`≥0 composed of

cylinders. The desired Cantor set is obtained as

F∞ =

∞⋂
`≥0

F`,

which is a subset of Em.

5.3. Hausdorff dimension of F∞. In fact, m` is just the number of the elements
in F` which are contained in a common element in F`−1. Then gaps between the
elements Inm+(`+1)m(w0, · · · , w`) in F` are at least

2−(nm+(`+1)m+m).

So by Proposition 1,

dimHEm ≥ dimH F∞ ≥ lim inf
`→∞

`m− `c
(`+ 1)m+ c+ nm

= 1− c

m
.

Hence

dimHE ≥ dimH

⋃
m≥3

Em ≥ 1.
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