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Abstract. The Escalator Boxcar Train method (EBT) is a numerical method
for structured population models of McKendrick – von Foerster type. Those

models consist of a certain class of hyperbolic partial differential equations and
describe time evolution of the distribution density of the structure variable de-

scribing a feature of individuals in the population. The method was introduced

in late eighties and widely used in theoretical biology, but its convergence was
proven only in recent years using the framework of measure-valued solutions.

Till now the EBT method was developed only for scalar equation models. In

this paper we derive a full numerical EBT scheme for age-structured, two-sex
population model (Fredrickson-Hoppensteadt model), which consists of three

coupled hyperbolic partial differential equations with nonlocal boundary con-

ditions. It is the first step towards extending the EBT method to systems of
structured population equations.

1. Introduction.

1.1. Problem formulation. The Escalator Boxcar Train (EBT) algorithm is a
numerical method for solving structured population models. It is based on repre-
senting the solution as a sum of masses localised in discrete points and tracing their
evolution due to transport and growth. The algorithm has been used in applications
for a long time [4], however convergence of the scheme was shown only recently in
ref. [1] (without the rate of the convergence), and later in ref. [6] (the rate of the
convergence) using the metric space approach proposed in ref. [7, 8]. So far the
method has been established only for single equation models. The aim of this paper
is to derive the EBT algorithm for a system of structured population equations.

We focus on the Fredrickson-Hoppensteadt model, which is a two-sex population
model with age as a structure variable. The model was originally formulated in
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ref. [5] and later developed in ref. [11]. The model consists of three population
equations with structure coupled through nonlocal boundary terms and a nonlocal
and nonlinear source term. Functions um(t, x) and uf (t, x) describe the distribution
of males and females, while uc(t, x, y) is the number of couples at time t. Structural
variables x and y denote the age of males and females, respectively. The following
system of equations describes the dynamics of the population of males, females and
couples:

∂tu
m(t, x) + ∂xu

m(t, x) + cm(t, x)um(t, x) =0,

um(t, 0) =

∫
R2

+

βm(t, x, y)uc(t, x, y)dxdy,

um(0, x) =um0 (x),

∂tu
f (t, y) + ∂yu

f (t, y) + cf (t, y)uf (t, y) =0,

uf (t, 0) =

∫
R2

+

βf (t, x, y)uc(t, x, y)dxdy,

uf (0, x) =uf0 (x),

(1)

∂tu
c(t, x, y) + ∂xu

c(t, x, y) + ∂yu
c(t, x, y) + cc(t, x, y)uc(t, x, y) =T (t, x, y),

uc(t, x, 0) = uc(t, 0, y) =0,

uc(0, x, y) =uc0(x, y).

Functions cm, cf and cc describe the rate of disappearance of individuals. In the
case of males and females disappearance equals death, while in the case of couples
it equals divorce or death of one of spouses. Functions βm and βf are birth rates
of males and females. In the general case the functions may depend nonlinearly on
ecological pressure, which is usually modelled by a nonlocal operator depending on
the distribution of males, females and couples. However, in this paper we restrict
our considerations to the case where disappearance and birth rates depend only on
time and on the structure variable.

The marriage function T models the number of new marriages of males and
females of age x and y, respectively, at time t. It depends nonlinearly on the distri-
bution of individuals. The choice of this function is a subject of ongoing discussions,
see [9], [10], [16], [13], due to the properties like heterosexuality, homogeneity, consis-
tency or competition. In this paper we follow the formulation proposed in ref. [12],
namely:

T (t, x, y) =F (t, um(t, x), uf (t, x), uc(t, x, y))

Θ(x, y)h(x)g(y)Um(t, x)Uf (t, y)

γ +
∫∞

0
h(x)Um(t, x)dx+

∫∞
0
g(y)Uf (t, y)dy

,
(2)

Function Θ(x, y) describes the marriage rate of males of age x and females of age
y, while Um(t, x) =

[
um(t, x)−

∫∞
0
uc(t, x, y)dy

]
is the number of unmarried males

and Uf (t, y) =
[
uf (t, y)−

∫∞
0
uc(t, x, y)dx

]
is the number of unmarried females.

Function h ∈ L1(R+) ∩ L∞(R+) describes the distribution of eligible males on the
marriage market. Function g is of the same regularity and describes the distribution
of eligible females on the marriage market.
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1.2. EBT method for a scalar equation. Before moving to the derivation of
the numerical scheme for system (1), we briefly discuss the analytical and numerical
results for a simpler model of the McKendrick - von Foerster type [14]:

∂tu(t, x) + ∂x(b(t, x)u(t, x)) + c(t, x)u(t, x) =0,

u(t, xb) =

∫ ∞
xb

β(t, x)u(t, x)dx,

u(0, x) =u0(x),

(3)

which is a one-sex population model with structure variable x. The function b(t, x)
is the rate at which the individuals change their state. In particular case, when
x represents age, function b(t, x) equals one. One of the many numerical methods
applied to this problem is the Escalator Boxcar Train introduced in ref. [4].

EBT method is based on representing the solution as a sum of masses (cohorts)
localised in discrete points and tracing their spatio–temporal evolution using the
following algorithm:

d

dt
xi(t) = b(t, xi(t)), for i = B + 1, . . . , J,

d

dt
mi(t) = −c(t, xi(t))mi(t), for i = B + 1, . . . , J,

(4)



xB(t) =

{
πB(t)
mB(t) + xb, if mB(t) > 0,

xb, otherwise,

d

dt
πB(t) = b(t, xb)mB(t) + ∂xb(t, xb)πB(t)

−c(t, xb)πB(t),

d

dt
mB(t) = −c(t, xb)mB(t)− ∂xc(t, xb)πB(t)

+
∑J
i=B β(t, xi(t))mi(t),

mB(tk) = 0,
πB(tk) = 0.

(5)

The procedure consists in solving the system of ordinary differential equations
(ODEs) (4)-(5) on a sufficiently short time interval [tk, tk+1], iteratively with respect
to k = 0, 1, . . .. The details of the EBT algorithm are discussed in Section 2 for
system (1) and therefore we omit them at this stage.

As mentioned before, the rate of convergence of the method for a nonlinear
version of model (3) has been recently shown in ref. [6]. The results are based on
Lipschitz semiflows in metric spaces developed in ref. [3] and applied to structured
population models in ref. [8].

Definition 1.1. Let (E, ρ) be a metric space. A Lipschitz semiflow is a semigroup
S : [0, δ]× [0, T ]× E → E satisfying

ρ(S(t; τ)µ, S(s; τ)ν) ≤ L(ρ(µ, ν) + |t− s|),
where s, t ∈ [0, δ], τ, s+ τ, t+ τ ∈ [0, T ] and µ, ν ∈ E.

The idea of the proof of convergence presented in ref. [6] consists in considering
the system (3) (under the assumption that b, c, β ∈ Cα([0, T ]; W1,∞(R+)) as a
semiflow in a space of nonnegative Radon measures (M+(R+)) equipped with the
Lipschitz bounded distance, defined below.
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Definition 1.2. Let µ, ν ∈ M+(R+). The distance function ρF : M+(R+) ×
M+(R+)→ [0,∞] is defined by

ρF (µ, ν) := sup
{∫

R+

ψd(µ− ν)
∣∣ ψ ∈ C1(R+), ‖ψ‖W 1,∞ ≤ 1

}
, (6)

where ‖ψ‖W 1,∞ = max{‖ψ‖∞, ‖∂xψ‖∞}.

The metric ρF is a distance derived from the dual norm of W 1,∞, with the space
W 1,∞ equipped with its usual norm, i.e.

‖γ‖W 1,∞ = max{‖γ‖L∞ , ‖∂xγ‖L∞},
see ref. [15] and [18].

The solution to the system (4)-(5) is interpreted as an element of the space of
nonnegative Radon measures given by the formula

µn(t) =

J∑
B(t)

mi(t)δ{xi(t)}, (7)

which means that µn(t) is a linear combination of Dirac deltas with masses localised
in points xi(t).

The proof of convergence of the ETB scheme is based on the following proposi-
tion, the proof of which is a modification of the proof presented in ref. [2].

Proposition 1. Let S : E × [0, δ]× [0, T ]→ E be a Lipschitz semiflow. For every
Lipschitz continuous map [0, T ] 3 t 7→ νt ∈ (E, ρ) the following estimate holds:

ρ(νt, S(t; 0)µ0) ≤ L
∫

[0,T ]

lim inf
h→0

ρ(νt+h, S(h; τ)νt)

h
dτ, (8)

where ρ is a corresponding metric.

Application of Proposition 1 reduces the proof of the convergence of the measure
given by formula (7) to the solution of the model (3) to the estimate of the right
hand side of inequality (8). In ref. [6] it was proven analytically and confirmed
numerically that the method is of the first order.

1.3. Organisation of the paper. This paper is devoted to derivation of a corre-
sponding EBT method for the two-sex age-structured population model (1). The
convergence of the method follows from stability results obtained in ref. [17] and its
proof is deferred to a forthcoming paper. Section 2 is devoted to derivation of the
EBT algorithm for the two-sex population model. In Section 3, we provide well-
posedness results for the structured population model and for the EBT scheme, and
discuss a sketch of the convergence proof.

2. Derivation of the EBT algorithm for the two-sex population model.
This section is devoted to the formal derivation of the EBT scheme for system (1).
We assume that the solution uf , um i uc to system (1) are continuously differentiable
with respect to time and twice time continuously differentiable with respect to
the structure variables. Additionally, the solution itself and its first derivative
with respect to time and first and second derivatives with respect to the structure
variables are assumed to be bounded. The same regularity is assumed on all model
coefficients appearing in the underlying system (1).

The first step of the EBT method is grouping the initial distribution of males,
females and couples into the so-called cohorts, with the grouping performed with
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respect to the age of the individuals. While in the case of males and females the
groups form one-dimensional intervals including individuals of certain age, in the
case of couples we deal with two-dimensional intervals to take into account the age
of both partners. Each cohort is characterised by two quantities: the mass and its
location. The mass (mm(t), mf (t), mc(t)) is the number of individuals or cou-
ples within the cohort at time t, and its location (xm(t), yf (t) and (xc(t), yc(t)),
respectively) is the average value of the structure variable over the underlying co-
hort. Cohorts are evolving in time along the characteristic lines of the underlying
problem. We wish to track how masses and locations of cohorts change in time.
Once individuals or couples are assigned to a certain cohort they remain there till
disappearance (death or split-up in case of couples). The influx of new couples is de-
scribed with marriage function, while the influx of new males and females is given
in the boundary conditions. Each time step can be treated as an internalisation
moment, where a new boundary cohort appears. In case of couples the boundary
cohorts are empty and in case of individuals the masses in boundary cohorts result
from the boundary conditions.

Following this argument, we start with introducing the initial cohorts. At time

t = 0 we impose space mesh points lmi (0) and lfj (0), where i, j = B0, . . . , J in such

a way that lmB0
(0) = lfB0

(0) = 0. We define J − B0 initial intervals for males and
females

Ωmi+1(0) =
[
lmi (0), lmi+1(0)

)
, Ωfj+1(0) =

[
lfj (0), lfj+1(0)

)
, i, j = B0, . . . , J − 1,

and (J −B0)2 two-dimensional intervals for couples

Ωc(i+1)(j+1)(0) = Ωmi+1(0)× Ωfj+1(0), i, j = B0, . . . , J − 1.

The above partitioning requires the condition that the supports of initial functions

um0 , uf0 and uc0, which are the initial distributions of individuals and couples, are
contained in the sums of all corresponding cohorts that is

supp(um0 ) ⊂ Ωm(0) =

J⋃
i=B0+1

Ωmi (0), supp(uf0 ) ⊂ Ωf (0) =

J⋃
j=B0+1

Ωfj (0),

supp(uc0) ⊂ Ωc(0) =

J⋃
i,j=B0+1

Ωcij(0).

Bearing in mind that the cohorts evolve in time, we write {Ωi(t)}Ji=B0+1,

{Ωfj (t)}Jj=B0+1, {Ωcij(t)}Ji,j=B0+1 and understand that functions lmi (t) and lfi (t) are
characteristics defined by the transport operators, thus they satisfy differential equa-

tions d
dt l

m
i (t) = 1 and d

dt l
f
j (t) = 1 and are straight lines:

lmi (t) = t+ lmi (0), i = B0, . . . , J,

lfj (t) = t+ lfj (0), j = B0, . . . , J.

We impose a mesh on the time variable t ∈ [0, T ) in such a way that t0 = 0 and⋃N
n=0[tn, tn+1) = [0, T ). For 0 ≤ t < t1, we define boundary cohorts ΩmB0

(t) =

[0, lmB0
(t)), ΩfB0

(t) = [0, lfB0
(t)) and ΩcB0B0

(t) = ΩmB0
(t)×ΩfB0

(t), ΩciB0
(t) = Ωmi (t)×

ΩfB0
(t), ΩcB0j

(t) = ΩmB0
(t) × Ωfj (t), where i, j = B0 + 1, J . Mesh points tn, where

tn = 1, . . . , N , are called internalisation moments.
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Altogether, we have J − B0 + 1 initial cohorts for males and females and (J −
B0 + 1)2 initial cohorts of couples.

At each point tn, we define Bn = B0 − n and lBn
(t) = t− tn for tn ≤ t < tn+1.

Now, for t ∈ [tn, tn+1), we define internal cohorts:

Ωmi+1(t) = [lmi (t), lmi+1(t)), for i = Bn−1 . . . , J − 1

Ωfj+1(t) = [lmj (t), lfj+1(t)), for j = Bn−1 . . . , J − 1

Ωc(i+1)(j+1)(t) = Ωmi+1(t)× Ωfj+1(t), for i, j = Bn−1 . . . , J − 1

and boundary cohorts:

ΩmBn
(t) = [0, lmBn

(t))

ΩfBn
(t) = [0, lfBn

(t))

ΩcBnBn
(t) = ΩmBn

(t)× ΩfBn
(t)

ΩciBn
(t) = Ωmi (t)× ΩfBn

(t), for i = Bn−1 . . . , J − 1

ΩcBnj(t) = ΩmBn
(t)× Ωfj (t), for j = Bn−1 . . . , J − 1.

This means that at each internalisation moment tn we are adding new boundary
cohorts to account for the influx of new individuals. At the same time boundary
cohorts from the previous time interval [tn−1, tn) became internal ones on [tn, tn+1).

It is essential to observe that at time step tn we deal with J − B0 + n+ 1 male
and female cohorts and (J −B0 + n+ 1)2 couple cohorts.

For tn ≤ t < tn+1 masses and their locations are defined as follows:
mm
i (t) =

∫
Ωm

i (t)
um(t, x)dx, i = Bn, . . . , J

xmBn
(t) =

{
0 if mm

Bn
(t) = 0,

Πm
Bn

(t)

mm
Bn

(t) , otherwise

xmi (t) = 1
mm

i (t)

∫
Ωm

i (t)
xum(t, x)dx, i = Bn + 1, . . . , J

(9)



mf
j (t) =

∫
Ωf

j (t)
uf (t, y)dy, j = Bn, . . . , J

yfBn
(t) =

 0 if mf
Bn

(t) = 0,
Πf

Bn
(t)

mf
Bn

(t)
, otherwise

yfj (t) = 1

mf
j (t)

∫
Ωm

j (t)
yuf (t, y)dy, j = Bn + 1, . . . , J

(10)

and{
mc
ij(t) =

∫
Ωc

ij(t)
uc(t, x, y)dxdy, i, j = Bn, . . . , J

(xci (t), y
c
j(t)) = 1

mc
ij(t)

∫
Ωc

ij(t)
(x, y)uc(t, x, y)dxdy, i, j = Bn, . . . , J,

(11)

where Πm
Bn

(t) =
∫

Ωm
Bn

(t)
xum(t, x)dx and Πf

Bn
(t) =

∫
Ωf

Bn
(t)
yuf (t, y)dy.

Let us notice that we deal with 3 unknowns, thus 3 equations, for each male and
female cohort and with 2 unknowns for each couple cohort. Knowing the amount
of cohorts explicitly we deduce that at each time step tn we have 3(J −B0 +n+ 1)
equations for males and females and 2(J − B0 + n + 1)2 equations for couples.
Consequently, at tn ≤ t < tn+1 we have 8 + 2(J −B0 + n) equations more then we
had at tn−1 ≤ t < tn.

As our aim is to track the dynamics of the above functions describing masses and
their locations, we wish to derive the appropriate system of ordinary differential
equations. To shorten the notation, from now on, we assume that t ∈ [tn, tn+1)
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and we write B instead of Bn. Let us start with formulating ODEs for masses and
locations of male individuals and symmetric results for female individuals and then
move to the more demanding case of the couples. We start with differentiating
mm
i (t), xmi (t), i = B + 1, . . . , J , and boundary functions mm

B (t) and Πm
B (t):

d

dt
mm
i (t)

=

∫
Ωm

i (t)

∂tu
m(t, x)dx+

d

dt
li(t)u

m(t, li(t))−
d

dt
li−1(t)um(t, li−1(t))

=

∫
Ωm

i (t)

∂tu
m(t, x)dx+ um(t, li(t))− um(t, li−1(t))

=

∫
Ωm

i (t)

∂tu
m(t, x)dx+

∫
Ωm

i (t)

∂xu
m(t, x)dx

=−
∫

Ωm
i (t)

cm(t, x)um(t, x)dx,

d

dt
mm
B (t)

=

∫
Ωm

B (t)

∂tu
m(t, x)dx+

d

dt
lB(t)um(t, lB(t))

=

∫
Ωm

B (t)

∂tu
m(t, x)dx+

d

dt
lB(t)um(t, lB(t))− um(t, 0) + um(t, 0)

=

∫
Ωm

B (t)

∂tu
m(t, x)dx+

∫
Ωm

B (t)

∂xu
m(t, x)dx+

∫
R2

+

βm(t, x, y)uc(t, x, y)dxdy,

=−
∫

Ωm
B (t)

cm(t, x)um(t, x)dx+

∫
R2

+

βm(t, x, y)uc(t, x, y)dxdy.

To differentiate the location function xmi (t), for i = B + 1, . . . , J , we check how
the first moment x̄mi (t) =

∫
Ωm

i (t)
xum(t, x)dx evolves.

d

dt
x̄mi (t)

=

∫
Ωm

i (t)

x∂tu
m(t, x)dx+ li(t)u

m(t, li(t))− li−1(t)um(t, li−1(t))

=

∫
Ωm

i (t)

x∂tu
m(t, x)dx+

∫
Ωm

i (t)

∂x(xum(t, x))dx

=

∫
Ωm

i (t)

x∂tu
m(t, x)dx+

∫
Ωm

i (t)

x∂xu
m(t, x)dx+

∫
Ωm

i (t)

um(t, x)dx

=−
∫

Ωm
i (t)

xcm(t, x)um(t, x)dx+

∫
Ωm

i (t)

um(t, x)dx.

Having d
dt x̄

m
i (t) calculated, it is easy to differentiate the location functions for

the internal cohorts:

d

dt
xmi (t)

=
d

dt

[
x̄mi (t)

mm
i (t)

]
=

d
dt x̄

m
i (t)mm

i (t)

[mm
i (t)]

2 −
x̄mi (t) ddtm

m
i (t)

[mm
i (t)]

2



130 PIOTR GWIAZDA, KAROLINA KROPIELNICKA AND ANNA MARCINIAK-CZOCHRA

=
−1

mm
i (t)

∫
Ωm

i (t)

xcm(t, x)um(t, x)dx+
1

mm
i (t)

∫
Ωm

i (t)

um(t, x)dx

+
1

mm
i (t)

1

mm
i (t)

∫
Ωm

i (t)

xu(t, x)dx︸ ︷︷ ︸
=xm

i (t)

∫
Ωm

i (t)

cm(t, x)um(t, x)dx

=
1

mm
i (t)

∫
Ωm

i (t)

[xmi (t)− x]cm(t, x)um(t, x)dx+
1

mm
i (t)

∫
Ωm

i (t)

um(t, x)dx.

We also need to differentiate the first moment, Πm
B (t), in the boundary cohort:

d

dt
Πm
B (t)

=
d

dt

∫
ΩB(t)

xum(t, x)dx

=

∫
Ωm

B (t)

x∂tu
m(t, x)dx+ lB(t)um(t, lB(t))− 0 · um(t, 0) + 0 · um(t, 0)

=

∫
Ωm

B (t)

x∂tu
m(t, x)dx+

∫
Ωm

B (t)

∂x(xum(t, x))dx,

=

∫
Ωm

B (t)

x∂tu
m(t, x)dx+

∫
Ωm

B (t)

x∂xu
m(t, x)dx+

∫
Ωm

B (t)

um(t, x)dx,

=−
∫

Ωm
B (t)

xcm(t, x)um(t, x)dx+

∫
Ωm

B (t)

um(t, x)dx.

Because we need to obtain the closed form of the schemes, we use the following
facts that hold for i = B + 1, . . . , J :∫

Ωm
i (t)

(xmi (t)− x)um(t, x)dx = 0, (12)∫
Ωm

i (t)

f(x)um(t, x)dx = f(xmi (t))mm
i (t) +O

(
max

x∈Ωm
i (t)
|x− xmi (t)|2

)
, (13)

for f ∈ C2(R+).

While the first one can be easily justified based on the definition of xmi (t)∫
Ωm

i (t)

[xmi (t)− x]um(t, x)dx =xmi (t)

∫
Ωi(t)

um(t, x)dx−
∫

Ωi(t)

xum(t, x)dx

=xmi (t)mm
i (t)−mm

i (t)xmi (t) = 0,

(14)

the proof of the second one requires equation (12) and the first order Taylor ap-
proximation∫

Ωm
i (t)

f(x)um(t, x)dx =

∫
Ωm

i (t)

f(xmi (t))um(t, x)dx

+
d

dx
f(xmi (t))

∫
Ωm

i (t)

[x− xmi (t)]um(t, x)dx

+

∫
Ωm

i (t)

O
(
|x− xmi (t)|2

)
um(t, x)dx

= f(xmi (t))mm
i (t)
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+ ‖um(t, ·)‖L1(Ωm
i (t)) · O

(
max

x∈Ωm
i (t)
|x− xmi (t)|2

)
.

Furthermore, we observe that∫
Ωc

ij(t)

(
x− xcij(t)
y − ycij(t)

)
uc(t, x, y)dxdy =

(
0

0

)
, (15)

∫
Ωc

ij(t)

(
f1(x, y)

f2(x, y)

)
uc(t, x, y)dxdy =

(
f1(xcij(t), y

c
ij(t))

f2(xcij(t), y
c
ij(t))

)
mc
ij(t) (16)

+O

(
max

(x,y)∈Ωc
ij(t)
|(xcij(t)− x, ycij(t)− y)|2

)
for f1, f2 ∈ C2(R2

+). Equality (16) holds because∫
Ωc

ij(t)

(
f1(x, y)

f2(x, y)

)
uc(t, x, y)dxdy

=

∫
Ωc

ij(t)

(
f1(xcij(t), y

c
ij(t))

f2(xcij(t), y
c
ij(t))

)
uc(t, x, y)dxdy

+

∫
Ωc

ij(t)

[ ∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

]
(xcij(t), y

c
ij(t))

(
x− xcij(t)
y − ycij(t)

)
uc(t, x, y)dxdy

+

∫
Ωc

ij(t)

O

(
max

(x,y)∈Ωc
ij(t)
|(xcij(t)− x, ycij(t)− y)|2

)
uc(t, x, y)dxdy

=

(
f1(xcij(t), y

c
ij(t))

f2(xcij(t), y
c
ij(t))

)
mc
ij(t)

+O

(
max

(x,y)∈Ωc
ij(t)
|(xcij(t)− x, ycij(t)− y)|2

)
· ‖uc(t, ·, ·)‖L1(Ωc

ij(t))

Now we are ready to derive the system of equations for the male population:

d

dt
mm
i (t)

=−
∫

Ωm
i (t)

cm(t, x)um(t, x)dx

=− cm(t, xmi (t))mm
i (t) +O

(
max

x∈Ωm
i (t)
|x− xmi (t)|2

)
,

(17)

d

dt
xmi (t)

=
1

mm
i (t)

∫
Ωm

i (t)

[xmi (t)− x]cm(t, x)um(t, x)dx

+
1

mm
i (t)

∫
Ωm

i (t)

um(t, x)dx

=
1

mm
i (t)

[xmi (t)− xmi (t)]cm(t, xmi (t))mm
i (t)

(18)
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+
1

mm
i (t)

mm
i (t) +O

(
max

x∈Ωm
i (t)
|x− xmi (t)|2

)
,

=1 +O
(

max
x∈Ωm

i (t)
|x− xmi (t)|2

)
,

d

dt
mm
B (t)

=−
∫

Ωm
B (t)

cm(t, x)um(t, x)dx+

∫
R2

+

βm(t, x, y)uc(t, x, y)dxdy

=−
∫

Ωm
B (t)

cm(t, 0)um(t, x)dx−
∫

Ωm
B (t)

∂xc
m(t, 0)(x− 0)um(t, x)dx

+

∫
Ωm

B (t)

O
(
|x|2
)
um(t, x)dx+

∫
R2

+

βm(t, x, y)uc(t, x, y)dxdy

=− cm(t, 0)mm
B (t)− ∂xcm(t, 0)Πm

B (t) +O
(

max
x∈Ωm

B (t)
|x|2
)

+

J∑
i,j=B

βm(t, xcij(t), y
c
ij(t))m

c
ij(t)

+

J∑
i,j=B

‖uc(t, ·, ·)‖L1(Ωc
ij(t))O

(
max

(x,y)∈Ωc
ij(t)
|(xcij(t)− x, ycij(t)− y)|2

)

=− cm(t, 0)mm
B (t)− ∂xcm(t, 0)Πm

B (t) +O
(

max
x∈Ωm

B (t)
|x|2
)

+

J∑
i,j=B

βm(t, xcij(t), y
c
ij(t))m

c
ij(t)

+ max
i,j=B,...,J

O

(
max

(x,y)∈Ωc
ij(t)
|(xcij(t)− x, ycij(t)− y)|2

)

(19)

and finally

d

dt
Πm
B (t)

=−
∫

Ωm
B (t)

xcm(t, x)um(t, x)dx+

∫
Ωm

B (t)

um(t, x)dx,

=mm
B (t)− cm(t, 0)Πm

B (t) +O
(

max
x∈Ωm

B (t)
|x|2
)
.

(20)

As we mentioned before, one can easily conclude that the system of ODEs for
the female population is of similar form, namely

d

dt
mf
j (t)

=−
∫

Ωf
j (t)

cf (t, y)uf (t, y)dy

=− cf (t, yfj (t))mf
j (t) +O

(
max
y∈Ωf

j (t)
|y − yfj (t)|2

)
,

(21)
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d

dt
yfj (t)

=
1

mf
j (t)

∫
Ωf

j (t)

[yfj (t)− y]cf (t, y)uf (t, y)dy

+
1

mf
j (t)

∫
Ωf

j (t)

uf (t, y)dy

=
1

mf
j (t)

[yfj (t)− yfj (t)]cf (t, yfj (t))mf
j (t)

+
1

mf
j (t)

mf
j (t) +O

(
max
y∈Ωf

j (t)
|y − yfj (t)|2

)
,

=1 +O

(
max
y∈Ωf

j (t)
|y − yfj (t)|2

)
,

(22)

d

dt
mf
B(t)

=−
∫

Ωf
B(t)

cf (t, y)uf (t, y)dy +

∫
R2

+

βf (t, x, y)uc(t, x, y)dxdy

=−
∫

Ωf
B(t)

cf (t, 0)uf (t, y)dy −
∫

Ωf
B(t)

∂xc
f (t, 0)(y − 0)uf (t, y)dy

+

∫
Ωf

B(t)

O
(
|y|2
)
uf (t, y)dy +

∫
R2

+

βf (t, x, y)uc(t, x, y)dxdy

=− cf (t, 0)mf
B(t)− ∂xcf (t, 0)Πf

B(t) +O

(
max

y∈Ωf
B(t)
|y|2
)

+

J∑
i,j=B

βf (t, xcij(t), y
c
ij(t))m

c
ij(t)

+

J∑
i,j=B

‖uc(t, ·, ·)‖L1(Ωc
ij(t))O

(
max

(x,y)∈Ωc
ij(t)
|(xcij(t)− x, ycij(t)− y)|2

)

=− cf (t, 0)mf
B(t)− ∂xcf (t, 0)Πf

B(t) +O

(
max

y∈Ωf
B(t)
|y|2
)

+

J∑
i,j=B

βf (t, xcij(t), y
c
ij(t))m

c
ij(t)

+ max
i,j=B,...,J

O

(
max

(x,y)∈Ωc
ij(t)
|(xcij(t)− x, ycij(t)− y)|2

)

(23)

and finally

d

dt
Πf
B(t)

=−
∫

Ωf
B(t)

ycf (t, y)uf (t, y)dy +

∫
Ωf

B(t)

uf (t, y)dy,
(24)
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=mf
B(t)− cf (t, 0)Πf

B(t) +O

(
max

y∈Ωf
B(t)
|y|2
)
.

To obtain the system of equations for dynamics of populations of couples we need
to apply a similar treatment for masses and their locations.

d

dt
mc
ij(t)

=
d

dt

∫ lmi (t)

lmi−1(t)

∫ lfj (t)

lfj−1(t)

uc(t, x, y)dydx

=

∫ lmi (t)

lmi−1(t)

d

dt

[∫ lfj (t)

lfj−1(t)

uc(t, x, y)dy

]
dx

+
d

dt
lmi (t)

[∫ lfj (t)

lfj−1(t)

uc(t, lmi (t), y)dy

]
− d

dt
lmi−1(t)

[∫ lfj (t)

lfj−1(t)

uc(t, lmi−1(t), y)dy

]

=

∫ lmi (t)

lmi−1(t)

{[∫ lfj (t)

lfj−1(t)

∂tu
c(t, x, y)dy

]

+
d

dt
lfj (t)uc(t, x, lfj (t))− d

dt
lfj−1(t)uc(t, x, lfj−1(t))

}
dx

+

∫ lfj (t)

lfj−1(t)

uc(t, lmi (t), y)dy −
∫ lfj (t)

lfj−1(t)

uc(t, lmi−1(t), y)dy

=

∫
Ωc

ij(t)

∂tu
c(t, x, y)dx+

∫
Ωm

i (t)

uc(t, x, lfj (t))dx−
∫

Ωm
i (t)

uc(t, x, lfj−1(t))dx

+

∫
Ωf

j (t)

uc(t, lmi (t), y)dy −
∫

Ωf
j (t)

uc(t, lmi−1(t), y)dy

=

∫
Ωc

ij(t)

∂tu
c(t, x, y)dx+

∫
Ωc

ij(t)

∂xu
c(t, x, y)dy +

∫
Ωc

ij(t)

∂yu
c(t, x, y)dx

=

∫
Ωc

ij(t)

[T (t, x, y)− cc(t, x, y)uc(t, x, y)] dxdy.

As previously, to differentiate the locations function (xcij , y
c
ij)(t) = 1

mc
ij(t)∫

Ωij(t)
(x, y)uc(t, x, y)dxdy we start with its first moment, that is (x̄cij , ȳ

c
ij)(t) =∫

Ωij(t)
(x, y)uc(t, x, y)dxdy

d

dt
(x̄cij , ȳ

c
ij)(t)

=
d

dt

∫ lmi (t)

lmi−1(t)

∫ lfj (t)

lfj−1(t)

(x, y)uc(t, x, y)dydx

=

∫ lmi (t)

lmi−1(t)

d

dt

[∫ lfj (t)

lfj−1(t)

(x, y)uc(t, x, y)dy

]
dx

+
d

dt
lmi (t)

[∫ lfj (t)

lfj−1(t)

(lmi (t), y)uc(t, lmi (t), y)dy

]
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− d

dt
lmi−1(t)

[∫ lfj (t)

lfj−1(t)

(lmi−1(t), y)uc(t, lmi−1(t), y)dy

]

=

∫
Ωc

ij(t)

(x, y)∂tu
c(t, x, y)dxdy +

∫
Ωm

i (t)

(x, lfj (t))uc(t, x, lfj (t))dx

−
∫

Ωm
i (t)

(x, lfj−1(t))uc(t, x, lfj−1(t))dx

+

∫
Ωf

j (t)

(lmi (t), y)uc(t, lmi (t), y)dy −
∫

Ωf
j (t)

(lmi−1(t), y)uc(t, lmi−1(t), y)dy

=

∫
Ωc

ij(t)

(x, y)∂tu
c(t, x, y)dxdy

+

∫
Ωc

ij(t)

(1, 0)uc(t, x, y)dxdy +

∫
Ωc

ij(t)

(x, y)∂xu
c(t, x, y)dxdy

+

∫
Ωc

ij(t)

(0, 1)uc(t, x, y)dxdy +

∫
Ωc

ij(t)

(x, y)∂yu
c(t, x, y)dxdy

=

∫
Ωc

ij(t)

(x, y) [T (t, x, y)− cc(t, x, y)uc(t, x, y)] dxdy +

∫
Ωc

ij(t)

(1, 1)uc(t, x, y)dxdy.

As the derivation of the closed form for couples goes in line with reasoning for the
male and female populations, we apply equations (15) and (16). We omit details
concerning approximation of particular functions, because similar calculations were
performed in the case of male population.

For a generic marriage function T (t, x, y) we are not able to obtain the closed
form, and most we can conclude is:

d

dt
mc
ij(t) =− cc(t, xcij(t), ycij(t))mc

ij(t) +

∫
Ωc

ij(t)

T (t, x, y)dxdy

d

dt
(x̄cij(t), ȳ

c
ij(t)) =

∫
Ωc

ij(t)

(x, y)T (t, x, y)dxdy

− (xcij(t), y
c
ij(y))cc(t, xcij(t), y

c
ij(t))m

c
ij(t) + (1, 1)mc

ij(t)

Hence, in further investigations we consider a specific marriage function given in
equation (2). To obtain the desired form of ODEs describing dynamics of couples,
we need to approximate the integral of the underlying function over cohort Ωcij(t):∫

Ωc
ij(t)

F (t, um(t, x), uf (t, x), uc(t, x, y))dxdy

=

∫
Ωc

ij(t)

[
Θ(x, y)h(x)g(y)Um(t, x)Uf (t, y)

]
dxdy

γ +
∫∞

0
h(x)Um(t, x)dx+

∫∞
0
g(y)Uf (t, y)dy

,

(25)

where, as previously, Um(t, x) =
[
um(t, x)−

∫∞
0
uc(t, x, y)dy

]
and Uf (t, y) =[

uf (t, y)−
∫∞

0
uc(t, x, y)dx

]
. To obtain the approximation of the first order with

respect to the structure variables, we apply formulas (12)-(16). Observe that the de-
nominator of function F does not depend on structure variables and hence, there is
no need of integrating it over Ωcij(t). Let us start with the integral of the numerator.
It consists of four parts which can be approximated separately:
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∫
Ωc

ij(t)

Θ(x, y)h(x)g(y)um(t, x)uf (t, y)dxdy

=Θ(xmi (t), yfj (t))h(xmi (t))g(yfj (t))mm
i (t)mf

j (t)

+O( max
x∈Ωm

i (t)
|x− xmi (t)|2) +O( max

y∈Ωf
j (t)
|y − yfj (t)|2)

∫
Ωc

ij(t)

Θ(x, y)h(x)g(y)um(t, x)

∫ ∞
0

uc(t, z, y)dzdxdy

=

J∑
v=B

Θ(xmi (t), ycvj(t))h(xmi (t))g(ycvj(t))m
m
i (t)mc

vj(t)+

+ max
v=B,...,J

O

(
max

(x,y)∈Ωc
vj(t)
|(xcvj(t)− x, ycvj(t)− y)|2

)
∫

Ωc
ij(t)

Θ(x, y)h(x)g(y)uf (t, y)

∫ ∞
0

uc(t, x, z)dzdxdy

=

J∑
w=B

Θ(xciw(t), yfj (t))h(xciw(t))g(yfj (t))mf
j (t)mc

iw(t)+

+ max
w=B,...,J

O
(

max
(x,y)∈Ωc

iw(t)
|(xciw(t)− x, yciw(t)− y)|2

)
∫

Ωc
ij(t)

Θ(x, y)h(x)g(y)

∫ ∞
0

uc(t, x, z)dz

∫ ∞
0

uc(t, z, y)dzdxdy

=

J∑
v,w=B

Θ(xciw(t), ycvj(t))h(xciw(t))g(ycvj(t))m
c
vj(t)m

c
iw(t)

+ max
v,w=B,...,J

O
(

max
(x,y)∈Ωc

vw(t)
|(xcvw(t)− x, ycvw(t)− y)|2

)
To give the idea how the approximations are obtained, we present calculations

of the third part:∫
Ωc

ij(t)

Θ(x, y)h(x)g(y)uf (t, y)

∫ ∞
0

uc(t, x, z)dzdxdy

=

∫ lmi (t)

lmi−1(t)

h(x)

∫ ∞
0

uc(t, x, z)dz

∫ lfj (t)

lfj−1(t)

Θ(x, y)g(y)uf (t, y)dydx

=

∫ lmi (t)

lmi−1(t)

h(x)

∫ ∞
0

uc(t, x, z)dz

·
[
Θ(x, yfj (t))g(yfj (t))mf

j (t) + ‖uf (t, ·)‖L1(Ωf
j (t)) · O(|y − yfj (t)|2)

]
dx

=

J∑
w=B

∫ lmi (t)

lmi−1(t)

∫ lfw(t)

lfw−1(t)

uc(t, x, z)dz

·
(
h(x)

[
Θ(x, yfj (t))g(yfj (t))mf

j (t) + ‖uf (t, ·)‖L1(Ωf
j (t))O(|y − yfj (t)|2)

])
dx
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=

J∑
w=B

h(xciw(t))[Θ(xciw(t), yfj (t))g(yfj (t))mf
j (t)]mc

iw(t)

+

J∑
w=B

h(xciw(t))Θ(xciw(t), yfj (t))g(yfj (t))mf
j (t) · ‖uc(t, ·, ·)‖L1(Ωc

ij(t))

· O
(

max
(x,y)∈Ωc

iw(t)
|(xciw(t)− x, yciw(t)− y)|2

)
+

J∑
w=B

‖uf (t, ·)‖L1(Ωf
j (t))O(|y − yfj (t)|2) · ‖uc(t, ·, ·)‖L1(Ωc

iw(t))

· O
(

max
(x,y)∈Ωc

iw(t)
|(xciw(t)− x, yciw(t)− y)|2

)
=

J∑
w=B

h(xciw(t))[Θ(xciw(t), yfj (t))g(yfj (t))mf
j (t)]mc

iw(t)

+ max
w=B,...,J

O
(

max
(x,y)∈Ωc

iw(t)
|(xciw(t)− x, yciw(t)− y)|2

)
Let us define

Nij(t)

=Θ(xmi (t), yfj (t))h(xmi (t))g(yfj (t))mm
i (t)mf

j (t)

+

J∑
v=B

Θ(xmi (t), ycvj(t))h(xmi (t))g(ycvj(t))m
m
i (t)mc

vj(t)

+

J∑
w=B

Θ(xciw(t), yfj (t))h(xciw(t))g(yfj (t))mf
j (t)mc

iw(t)

+

J∑
v,w=B

Θ(xciw(t), ycvj(t))h(xciw(t))g(ycvj(t))m
c
vj(t)m

c
iw(t)

(26)

and observe that Nij(t) denotes the approximation of the numerator of formula
(25). We can easily conclude that N̄ij(t), defined below, denotes an approximation
the numerator of formula (25) multiplied by vector (x, y):

N̄ij(t)

=(xmi (t), yfj (t))Θ(xmi (t), yfj (t))h(xmi (t))g(yfj (t))mm
i (t)mf

j (t)

+

J∑
v=B

(xmi (t), ycvj(t))Θ(xmi (t), ycvj(t))h(xmi (t))g(ycvj(t))m
m
i (t)mc

vj(t)

+

J∑
w=B

(xciw(t), yfj (t))(Θ(xciw(t), yfj (t))h(xciw(t))g(yfj (t))mf
j (t)mc

iw(t)

+

J∑
v,w=B

(xciw(t), ycvj(t))Θ(xciw(t), ycvj(t))h(xciw(t))g(ycvj(t))m
c
vj(t)m

c
iw(t).

(27)

The denominator of formula (25) is made up of two parts, which we approximate
separately:
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∫ ∞
0

h(x)

[
um(t, x)−

∫ ∞
0

uc(t, x, z)dz

]
dx

=

J∑
i=B

h(xmi (t))mm
i (t)−

J∑
i,j=B

h(xcij(t))m
c
ij(t)

+ max
i=B,...,J

O
(

max
x∈Ωm

i (t)
|xmi (t)− x|2

)
+ max
i,j=B,...,J

O

(
max

(x,y)∈Ωc
ij(t)
|(xcij(t)− x, ycij(t)− y)|2

)

∫ ∞
0

g(y)

[
uf (t, y)−

∫ ∞
0

uc(t, z, y)dz

]
dy

=

J∑
j=B

g(yfj (t))mf
j (t) +

J∑
i,j=B

g(ycij(t))m
c
ij(t)

+ max
j=B,...,J

O

(
max
y∈Ωf

j (t)
|yfj (t)− y|2

)

+ max
i,j=B,...,J

O

(
max

(x,y)∈Ωc
ij(t)
|(xcij(t)− x, ycij(t)− y)|2

)
Let us write

Dij(t)

=γ +

J∑
i=B

h(xmi (t))mm
i (t)−

J∑
i,j=B

h(xcij(t))m
c
ij(t)

+

J∑
i=B

g(yfj (t))mf
j (t)−

J∑
i,j=B

g(ycij(t))m
c
ij(t),

(28)

and understand that Dij(t) is an approximation of the denominator of formula (25).

Now
∫

Ωc
ij(t)

F (t, um(t, x), uf (t, x), uc(t, x, y))dxdy is approximated by
Nij(t)
Dij(t) , while∫

Ωc
ij(t)

(x, y)F (t, um(t, x), uf (t, x), uc(t, x, y))dxdy is approximated by
N̄ij(t)
Dij(t) .

Having the approximations, we obtain equations for mass and location of couples:

d

dt
mc
ij(t) =− cc(t, xcij(t), ycij(t))mc

ij(t) +
Nij(t)

Dij(t)
+ h.o.t

d

dt
(x̄cij(t), ȳ

c
ij(t)) =

[
(1, 1)− (xcij(t), y

c
ij(y))cc(t, xcij(t), y

c
ij(t))

]
mc
ij(t)

+
N̄ij(t)

Dij(t)
+ h.o.t,

(29)

where h.o.t stands for higher order terms, which are of second order.
After neglecting higher order terms in equations (17)-(24), we are able to present

the numerical scheme for masses and locations for the males, females and couples:
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d
dtm̂

m
i (t) = −ĉm(t, x̂mi (t))m̂m

i (t), i = B + 1, . . . , J,

d
dt x̂

m
i (t) = 1, i = B + 1, . . . , J,

d
dtm̂

m
B (t) = −ĉm(t, 0)m̂m

B (t)− ∂xĉm(t, 0)Π̂m
B (t)

+
∑J
i,j=B β

m(t, x̂cij(t), ŷ
c
ij(t))m̂

c
ij(t),

d
dt Π̂

m
B (t) = m̂m

B (t)− ĉm(t, 0)Π̂m
B (t),

x̂mB (t) =

{
0 if m̂m

B (t) = 0,
Π̂m

B (t)
m̂m

B (t) , otherwise,

(30)



d
dtm̂

f
j (t) = −ĉf (t, ŷfj (t))m̂f

j (t), j = B + 1, . . . , J,

d
dt ŷ

f
j (t) = 1, j = B + 1, . . . , J,

d
dtm̂

f
B(t) = −ĉf (t, 0)m̂f

B(t)− ∂y ĉf (t, 0)Π̂m
B (t)

+
∑J
i,j=B β

f (t, x̂cij(t), ŷ
c
ij(t))m̂

c
ij(t),

d
dt Π̂

f
B(t) = m̂f

B(t)− ĉf (t, 0)Π̂f
B(t),

ŷfB(t) =

{
0 if m̂f

B(t) = 0,
Π̂m

B (t)

m̂f
B(t)

, otherwise,

(31)

and

d
dtm̂

c
ij(t) = −ĉc(t, x̂cij(t), ŷcij(t))m̂c

ij(t) +
N̂ij(t)

D̂ij(t)
, i, j = B, . . . , J,

d
dt (ˆ̄xcij(t), ˆ̄ycij(t)) =

[
(1, 1)− (x̂cij(t), ŷ

c
ij(y))ĉc(t, x̂cij(t), ŷ

c
ij(t))

]
m̂c
ij(t) +

ˆ̄Nij(t)

D̂ij(t)
,

(x̂cij(t), ŷ
c
ij(t)) =

{
0 if m̂c

ij(t) = 0,
(ˆ̄xc

ij(t),ˆ̄ycij(t))

m̂c
ij(t) , otherwise,

(32)

where N̂ij(t),
ˆ̄Nij(t) and D̂ij(t) are given by (26), (27) and (28), respectively, except

that all the locations of the cohorts and their masses are replaced with relevant
variables with hats.

Observe that the right hand side of the last but one equation, e.i. for d
dt (ˆ̄xcij(t),

ˆ̄ycij(t)), consists of terms only of the form m̂c
ij(t)G(x̂cij(t)).

Above differential equations need to be supplemented with the initial condi-
tions at the beginning of the interval [tn, tn+1). Let us start with ODEs for
the males and females. For equations evolving in the interval [t0, t1) the initial

conditions for our scheme x̂mi (0), m̂m
i (0), ŷfj (0), m̂f

j (0), for i, j = B0, . . . , J , are

known based on the initial conditions of the original problem, while m̂m
B0

(0) = 0

and Π̂m
B0

(0) = 0. For the corresponding ODEs evolving in [tn, tn+1), where 0 <

n < N , we take x̂mi (tn) = limt→t−n x̂
m
i (t), m̂m

i (tn) = limt→t−n m̂
m
i (t), ŷfj (tn) =

limt→t−n ŷ
f
j (t), m̂f

i (tn) = limt→t−n m̂
f
i (t), for i, j = Bn, . . . , J and as previously

m̂m
Bn

(tn) = Π̂m
Bn

(tn) = 0 and m̂f
Bn

(tn) = Π̂f
Bn

(tn) = 0.
In the case of couples, equations evolving in the interval [t0, t1) are supple-

mented with the following initial conditions: m̂c
B0B0

(0) = m̂c
iB0

(0) = m̂c
B0j

(0) = 0,

(x̂cB0B0
(0), ŷcB0B0

(0)) = (0, 0), (ˆ̄xcB0j
(0), ˆ̄ycB0j

(0)) = (0, 0), for j = B0, . . . , J and

(ˆ̄xciB0
(0), ˆ̄yciB0

(0)) = (0, 0), for i = B0, . . . , J .
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3. Well-posedness and convergence of the method.

3.1. Well-posedness of the structured population model. Existence, unique-
ness and Lipschitz continuity with respect to initial data and model parameters
of a nonlinear version of model (1) were established in ref. [17] using the frame-
work of nonnegative Radon measures (M+(R+) × M+(R+) × M+(R2

+), d), for
d = d1 + d1 + d2 with Lipschitz bounded distance

di(µ1, µ2) = sup

{∫
Ri

+

ϕd(µ1 − µ2) : ϕ ∈ C1(Ri+;R) and ‖ϕ‖W 1,∞ ≤ 1

}
, i = 1, 2.

It was shown in ref. [17] that, under the assumption that

cf , cm, βf , βm, h, g ∈ C([0, T ]; W1,∞(R+))

and

cc,Θ ∈ C([0, T ]; W1,∞(R2
+)),

a Lipschitz semigroup of solutions is generated in the sense of Definition 1.1.

3.2. Solvability of the EBT algorithm. Proof of solvability of the EBT method,
i.e. existence and uniqueness of solutions of system (30)-(31), is not straightforward,
because of the specific definition of the dynamics of the cohorts involving quotients
of the variables with denominator which is not necessarily separated from zero.
Similar problem for the EBT algorithm for a scalar structured population model
was solved in ref. [6]. The strategy proposed in ref. [6] can be applied also in our
case.

It consists in considering the problem in a restricted domain, in which the right-
hand side is locally bounded and locally Lipschitz-continuous, which yields local
in time existence and uniqueness of solutions. The main difficulty is in showing
that the solutions remain in the restricted domain locally in time, i.e. the values of
(ˆ̄xcij(t), ˆ̄ycij(t)) remain in a cone

(0, 0) ≤ (ˆ̄xcij(t), ˆ̄ycij(t)) ≤ (C1(t), C2(t)) · m̂c
ij(t), (33)

for certain Ci(t), i = 1, 2, which is equivalent to proving the following inequalities:

0 ≤
ˆ̄xcij(t)

m̂c
ij(t)

, (34)

ˆ̄xcij(t)

m̂c
ij(t)

≤ C1(t). (35)

While the first inequality is obvious, the second one needs justification. Let us

remind that x̂cij(t) =
ˆ̄xc
ij(t)

m̂c
ij(t) and take C1(t) = t + C, where C is a constant. Then,

the inequality (35) is equivalent to x̂cij(t)− t ≤ C.
Equation (29) yields

d

dt

(
x̂cij(t)− t

)
=

1

m̂c
ij(t)D̂ij(t)

[
ˆ̄Nij(t) ·

(
1

0

)
− x̂cij(t)N̂ij(t)

]
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=
1

m̂c
ij(t)D̂ij(t)

[
(x̂mi (t)− x̂cij(t))Θ(x̂mi (t), ŷfj (t))h(x̂mi (t))g(ŷfj (t))m̂m

i (t)m̂f
j (t)

+ (x̂mi (t)− x̂cij(t))
J∑

v=B

Θ(x̂mi (t), ŷcvj(t))h(x̂mi (t))g(ŷcvj(t))m̂
m
i (t)m̂c

vj(t)

+

J∑
w=B

(x̂ciw(t)− x̂cij(t))(Θ(x̂ciw(t), ŷfj (t))h(x̂ciw(t))g(ŷfj (t))m̂f
j (t)m̂c

iw(t)

+

J∑
v,w=B

(x̂ciw(t)− x̂cij(t))Θ(x̂ciw(t), ŷcvj(t))h(x̂ciw(t))g(ŷcvj(t))m̂
c
vj(t)m̂

c
iw(t)

]
.

Taking
x̂cimax(t) = argmaxw=B,...,J x̂

c
iw(t),

we obtain

d

dt
(x̂cimax(t)− t) ≤ 0 for x̂cimax(t) ≥ x̂mi (t) = C̃ + t.

Note that d
dt (x̂cimax(t)− t) = d

dt (x̂cimax(t)− x̂mi (t)) and therefore |x̂c
imax(t)− x̂m

i (t)|+

≤ |x̂c
imax(0) − x̂m

i (0)|+. Finaly 0 ≤ x̂cij(t) ≤ Ĉ + t. For further details of the proof,
we refer to ref. [6].

3.3. Remarks on the convergence of the method. The essential step in the
proof of the convergence of the numerical method is the stability result for the Lips-
chitz semigroup presented in ref. [17], where the metric space (E, ρ) from Definition
1.1 is understood as (M+(R+)×M+(R+)×M+(R2

+), d), for d = d1 + d1 + d2 and

di(µ1, µ2) = sup

{∫
Ri

+

ϕd(µ1 − µ2) : ϕ ∈ C1(Ri+;R) and ‖ϕ‖W 1,∞ ≤ 1

}
, i = 1, 2.

As reported above, equation (1) is associated with a Lipschitz semigroup, [17].
Therefore, due to Proposition 1, the remaining step in the proof of convergence
boils down to the estimate of the tangential condition, which is the right hand side
of the estimate (8). To identify the missing part of the proof, let us define two
continuous operators, projection and extension, in the following way:

P : (M+(R+)×M+(R+)×M+(R2
+), d)→ R4(J−B0+n+1) × R3(J−B0+n+1)2

E : R4(J−B0+n+1) × R3(J−B0+n+1)2 → (M+(R+)×M+(R+)×M+(R2
+), d),

given by the formula

P (um(t, ·), uf (t, ·), uc(t, ·, ·))

=((xmi (t),mm
i (t)), (yfi (t),mf

i (t)), (xcij(t), y
c
ij(t),m

c
ij(t)))

E((xmi (t),mm
i (t)), (yfi (t),mf

i (t)), (xcij(t), y
c
ij(t),m

c
ij(t)))

=

 J∑
i=B(t)

mm
i (t)δ{xm

i (t)},

J∑
j=B(t)

mf
j (t)δ{yfj (t)},

J∑
i=B(t)

J∑
j=B(t)

mc
ij(t)δ{xc

ij(t),ycij(t)}

 .

One observes that P ◦E = Id, while the E ◦ P does not need to be the identity.
From the derivation of the method we obtain immediately an estimate for the tan-

gential condition between P (um(t, ·), uf (t, ·), uc(t, ·, ·)) and (x̂mi (t), m̂m
i (t)), (ŷfi (t),

m̂f
i (t)), (x̂cij(t), ŷ

c
ij(t), m̂

c
ij(t)) in the finite dimensional space of the approximation,
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with the appropriate accuracy. To present the rigorous proof of the convergence
of the method we need the estimate of the condition of tangentiality between(
um(t, ·), uf (t, ·), uc(t, ·, ·)

)
and

(∑J
i=B(t)m

m
i (t)δ{xm

i (t)},
∑J
j=B(t)m

f
j (t)δ{yfj (t)},∑J

i,j=B(t)m
c
ij(t)δ{xc

ij(t),ycij(t)}

)
in the space of measures equipped with an appropri-

ate distance. Similar proof was carried out in ref. [6]. Due to the lengthy of technical
calculations needed in this step, a complete proof is deferred to a forthcoming paper.
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