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Abstract. In this paper we analyze emergent collective phenomena in the

evolution of opinions in a society structured into few interacting nodes of a
network. The presented mathematical structure combines two dynamics: a

first one on each single node and a second one among the nodes, i.e. in the

network. The aim of the model is to analyze the effect of a network structure
on a society with respect to opinion dynamics and we show some numerical

solutions addressed in this direction, i.e. comparing the emergent behaviors of

a consensus-dissent dynamic on a single node when the effect of the network
is not considered, with respect to the emergent behaviors when the effect of a

network structure linking few interacting nodes is considered. We adopt the
framework of the Kinetic Theory for Active Particles (KTAP), deriving a gen-

eral mathematical structure which allows to deal with nonlinear features of the

interactions and representing the conceptual framework toward the derivation
of specific models. A specific model is derived from the general mathematical

structure by introducing a consensus-dissent dynamics of interactions and a

qualitative analysis is given.

1. Introduction. The phenomenon of evolution of opinions in a society is a fasci-
nating field of research for applied and theoretical mathematicians because of the
intrinsic complexity of the system at hand and due to the fact that the princi-
pal actors are individuals, whose behavior is heterogeneous in a population and
sometimes not fully rational [6]. The basic interactions in these phenomena are
modeled as binary exchanges of opinions between individuals, although the access
to internet and others global resources is an important phenomenon that cannot be
disregarded. This last aspect determines the fact that individuals are often influ-
enced by global trends in the opinions, in addition to the influence exerted by direct
interactions with other individuals and this fact represents a source of nonlinearities
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for the representative mathematical model [7]. Many modeling approaches try to
reduce the intrinsic structural complexity of systems like these composed of a large
number of interacting individuals; e.g. agent-based models or microscopic ones.
Most of the time, in sociological applications, the populations are modeled as ho-
mogeneously distributed in space, however many real world applications suggest to
consider the populations distributed in networks, considering that the interactions
between nodes can play an important role in the overall dynamics [5]. A concep-
tual framework toward a mesoscopic approach to opinion formation including the
presence of a network can be found in [19].

To pursue the objective of modeling opinion formation among a large number of
individuals structured into a network, we have applied in this paper the methods
of the KTAP theory [2] and the percentage of randomness always connected to in-
dividual behavior is introduced by the fact that the possibility to change opinion,
although regulated by well–defined interaction rules, is given in probability. The
founding idea of the kinetic models is that a system composed of a sufficiently large
number of agents may be described using the laws of statistical mechanics as it
happens in a physical system composed of many interacting particles [22], how-
ever considering that the main actors are not particles but living beings and this
is reflected into their interaction rules. Starting from the modelization of the mi-
croscopic dynamics, kinetic models can be derived and allows one to derive general
informations on the model and its asymptotic behavior. For example in the case of
a market, each trade is an interaction where a fraction of money goes from one agent
to another one [12] while in opinion dynamic interactions consist in exchanging in-
formations inducing to change, in probability, one’s opinion. Many applications of
the kinetic theory are related to the field of opinion formation (see, as an exam-
ple [9, 11, 25]), while relations with others approaches and with the macroscopic
limit can be found in [3, 10, 18]. As well explained in [2], a philosophical change
is unfolding in the socio-economic field of study in order to depict emergent collec-
tive behaviors arising from individual interactions. It is a common opinion in the
scientific literature that a key point is the revisitation of the concept of rational
socio-economic behavior going beyond that of bounded rationality [24] by modeling
an heterogeneous distribution of strategies among individuals; another key point is
that of modeling nonlinear interactions in the sense that the outcome of interactions
are not depending only on the microstate of the interacting individuals but also on
the probability distribution function defined on the microstates. We considered
these features in the proposed model.

The paper is composed of six more sections. Sec. 2 introduces the general
mathematical structure modeling the opinion evolution in a network in which each
node represents an homogeneous distributed population. The modeling assumption
is that individuals interact each other within each node exchanging informations
and may change their opinion due to these interactions; moreover individuals “feel”
the mean opinion of other nodes and may change their opinion also due to this
influence. These dynamics are sources of nonlinearities for the model. The output
of the interactions is given in probability. The general mathematical structure
allows both for continuous or discrete opinion distributions allowing for two possible
pictures: discrete - continuous (for the nodes and for the opinion respectively) or
discrete - discrete. In Sec. 3 and Sec. 4 we derive, from the early introduced general
structure, a specific model of opinion formation based on a dynamic of consensus–
dissent governed by two thresholds introduced on the distance between individual
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opinions within each node and on the distance between individual opinions and
mean opinions on each node, respectively. It can be considered as a generalization
of the bounded confidence model of statistical physics [9, 13, 26, 27]. In Sec. 5 a
qualitative analysis of the model is presented. Some numerical results are showed
in Sec. 6 regarding a discrete opinion variable and focusing on the influence of the
network structure on the long time distributions. The influence of the network,
inducing consensus toward a mean opinion value, is showed in two different cases.
Finally, some research perspectives are discussed in Sec. 7.

2. A mathematical representation of opinion formation in a network. In
this section we introduce a general mathematical structure modeling the evolution
of opinion distributions in a large system of individuals with an heterogeneous dis-
tributed opinion about a certain issue, supposing that the opinion is expressible as
a real number. Moreover, we suppose that the global population is clustered into
different groups which will be considered as nodes of a network in our model and
individuals are homogeneously distributed within each node. The same dynamic
of interactions is assumed on each node, but the parameters and/or the initial
conditions, may differ from one node to another. Each individual may change his
opinion due to interactions with other individuals and due to the influence of sources
of informations, such as social networks, represented by the mean opinion on the
other nodes. We adopt a mesoscopic approach by means of the KTAP theory, that
however may be related to a microscopic (individually based) approach (see e.g.
[4, 14, 15, 20] and references therein). Before dealing with the representation of the
overall system, it is useful providing some definitions related to the scaling problem.
We are considering individuals (active particles in the following) whose microstate
is characterized only by a variable representing individual’s opinion due to the
assumption of space homogeneity; microscopic interactions consist in exchanging
opinion and the output consists in a new opinion state, given in probability. The
general framework which we are going to introduce allows for both a continuous
or discrete representation of the variable describing the opinion of the active parti-
cles. A probability distribution characterizes the mesoscopic system and the related
moments are the macroscopic variables representing the mean opinion within the
considered population (first moment) or, in general, other macroscopic quantities
(higher moments). The mesoscopic approach allows one to deal with a tractable
system of equations, although retaining the features of heterogeneity of opinion dis-
tribution on a population and the nonlinearity features consisting of dependances
of individual’s opinion on the mean one, or other macroscopic variables.

The nodes of the network are characterized by a discrete variable j, while the
opinion is represented by the variable u. The discrete variable j and the opinion
variable u take values in J ⊂ N and U ⊂ R1, respectively. The variable u itself can
be either discrete (then U is a discrete set – a subset of N) or continuous (then U is
a measurable bounded set in R1); where inf U and sup U corresponds to the case
of maximum disagreement and of maximum agreement regarding a certain issue,
respectively.

Keeping this in mind we propose a general compact setting that may also serve
for other various applications (cf. [4, 20]). Each individual (called here “active
particle”) is characterized by a variable

u = (j, u) ∈ U = J × U ,
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describing the node to which the active particle belongs (j ∈ J ) and its opinion
(u ∈ U). In the general setting (U, µ) is a space with a σ–finite measure µ; then
U is a product of a discrete set J and a Lebesgue–measurable subset U ⊂ R1 (a
closed bounded interval in the discrete–continuous picture or a bounded discrete
set in the discrete–discrete one) and the measure µ = µ1 ⊗ µ2 is a product of the
counting measure µ1 and the counting measure (in the discrete-discrete picture) or
the Lebesgue measure (in the discrete-continuous picture) µ2. The simulations that
we perform on a specific example refer to the discrete–discrete case.

We are interested in the time evolution of the probability function

f = f(t,u) , f : R1
+ ∪ {0} ×U→ R1

+ ∪ {0} . (1)

Therefore f is a non-negative function, such that∫
U

f(t,u) dµ(u) = 1 , ∀ t ≥ 0 . (2)

The time evolution of the probability function (1) is defined by the adequate
kinetic equation which is derived later on.

According to the KTAP terminology [2], the test active particle is an entity
representative of the system, whose micro–state is represented by the node to which
it belongs j and his activity (here the opinion variable) u, i.e. u = (j, u), and his
microstate is acquired, in probability, by the candidate active particle, represented
by the variable u∗ = (j∗, u∗). The field active particle is assumed to trigger the
interactions and his micro–state is represented by the variable u∗ = (j∗, u∗).

We model the effects on the candidate active particle due to the following phe-
nomena:

1. binary interactions with field active particles within the node to which the
candidate active particle belongs;

2. influence of the mean opinion of each node different to the one to which the
candidate active particle belongs.

The phenomenon of migration among the nodes is not considered into the model.
The mathematical model is given by the kinetic equation

∂tf(t,u) = J(f, f)(t,u) + JE [f ](t,u) (3)

where each term on the right hand side represents the gain and loss in the mi-
crostates due to the two different phenomena listed above, respectively; in partic-
ular the bilinear operator J corresponds to interactions involving pairs of active
particles whilst JE is a nonlinear operator (square brackets are used to indicate
a nonlinear dependance) corresponding to the influence of mean opinions on the
candidate active particle. Following [2] the interactions are specified in relation to
the particular dynamics involving the variables.

In order to derive explicit expressions for Eq. (3) we need to specify the following
quantities:

• η(u∗,u
∗) — rate of interactions between active particles in a node;

• B(u∗ → u |u∗,u∗) — transition probability function defining the probability
for a candidate active particle characterized by u∗ to move to u due to an
interaction with a field active particle characterized by u∗ whithin the node
to which the candidate active particle belongs;
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• ηE(u∗; k, f, t) — rate of transitions of the active particles due to the influence
of the mean opinion, at the instant t, on another node k, k 6= j∗, where
u∗ = (k∗, u∗);

• BE(u∗ → u |u∗; k, f, t) — transition probability function defining the proba-
bility for a candidate active particle characterized by u∗ to move to u due to
an influence of the mean opinion in another node k at the instant t.

The operators determining the gain and loss in the microstates in Eq. (3) assume
the form

J(f, f)(t,u) =
∫
U2

B(u∗ → u |u∗,u∗) η(u∗,u
∗)f(t,u∗)f(t,u∗) dµ(u∗) dµ(u∗)

−f(t,u)
∫
U

η(u,u∗)f(t,u∗) dµ(u∗) ,

JE [f ](t,u) =
∑

k ∈ J
k 6= j

( ∫
U

BE(u∗ → u |u∗; k, f, t) ηE(u∗; k, f, t)f(t,u∗) dµ(u∗)

−ηE(u; k, f, t)f(t,u)
)
,

where u = (j, u).
Note that considering the fact that the solutions are a priori probability densities

one may unify the terms J(f, f) and JE [f ] in one term J [f ] that, as in the general
case of KTAP, refers not only to binary interactions but also to nonlinear dependence
on some moments. Let

A(u∗ → u |u∗,u∗; f, t) =

=



1

a(u∗,u∗; f, t)

{
B(u∗ → u |u∗,u∗) η(u∗,u

∗)

+
∑

k ∈ J
k 6= j

BE(u∗ → u |u∗; k, f, t) ηE(u∗; k, f, t)
}

if a(u∗,u
∗; f, t) > 0

0 if a(u∗,u
∗; f, t) = 0

(4)
and

a(u,u∗; f, t) = η(u,u∗) +
∑
k ∈ J
k 6= j

ηE(u; k, f, t) ,

with the natural assumptions that

η(u,u∗) ≥ 0 and ηE(u; k, f, t) ≥ 0

for all u = (j, u), k, u∗ = (j∗, u∗) and t > 0.
Assuming the above notation, the equation

∂tf(t,u) = J [f ](t,u) , t > 0 , u ∈ U , (5)
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where

J [f ](t,u) =

∫
U2

A(u∗ → u |u∗,u∗; f, t)a(u∗,u
∗; f, t)f(t,u∗)f(t,u∗) dµ(u∗) dµ(u∗)

−f(t,u)
∫
U

a(u,u∗; f, t)f(t,u∗) dµ(u∗) ,

is equivalent to Eq. (3) (if Eq. (2) is satisfied). Equations of the type (5) may be
related to individually–based models — cf. Refs. [4, 20].

In the present paper we are going to consider only the case when the individuals
do not change their nodes and the interactions between different nodes are only
defined by the operator JE . Therefore we assume that

B(u∗ → u |u∗,u∗) = δj,j∗B̃(u∗ → u |u∗, u∗), (6)

for all u = (j, u), u∗ = (j∗, u∗), u∗ = (j∗, u∗), where δj,j∗ is the Kronecker delta;

BE(u∗ → u |u∗; k, f, t) = δj,j∗B̃E(u∗ → u |u∗; f(t, k, .)), (7)

for all u = (j, u), u∗ = (j∗, u∗),where f(t, k, .) indicates the dependence on the
moment of f(t, k, .). Moreover, for simplicity we assume

η(u,u∗) = δj,j∗ η̃,

for all u = (j, u), u∗ = (j∗, u∗), where η̃ is a positive constant;

ηE(u; k, f, t) =
{ ηE(u; f(t, k, .)), if k 6= j

0 if k = j

for all u = (j, u) . Under these assumptions Eq. (3) can be rewritten in the form

∂tf(t, j, u) = J(f, f)(t, j, u) + JE [f ](t, j, u) , (8)

where the operator

J(f, f)(t, j, u) = η̃
∫
U2

B̃(u∗ → u |u∗, u∗) f(t, j, u∗)f(t, j, u∗) dµ2(u∗) dµ2(u∗)

−η̃ f(t, j, u)
∫
U
f(t, j, u∗) dµ2(u∗)

describes the interactions inside a fixed node j ∈ J ; whereas the operator

JE [f ](t, j, u) =
∑
k ∈ J
k 6= j

(∫
U

B̃E(u∗ → u |u∗; f(t, k . )) ηE(u∗; f(t, k, .))

f(t, j, u∗) dµ2(u∗)− ηE(u; f(t, k, .)) f(t, j, u)
)

describes the influence of different nodes (i.e. in the network). All functions depend
only on the indicated variables. We assume that

B̃ ≥ 0, B̃E ≥ 0 (9)

and ∫
U

B̃(u∗ → u |u∗, u∗)dµ2(u) = 1, (10)
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for all u∗, u
∗ in U ; ∫

U

B̃E(u∗ → u |u∗; f(t, k . ))dµ2(u) = 1, (11)

for all u∗ in U and f(t, k, .) integrable such that ηE(u∗; f(t, k, .)) > 0. Under these
assumptions it is clear that not only

∫
U

f(t,u)dµ(u) is (formally) conserved in time

but also
∫
U
f(t, j, u)dµ2(u) is, for each j ∈ J . Equation (8) defines a particular case

of the general structure (5).

3. Consensus-dissent dynamics in a separate node. In this section we derive,
from the general mathematical structure defined in the previous section, a class of
opinion dynamic models based on specific assumptions regarding the dynamic of
the interactions. In particular, we model a process based on a consensus-dissent
dynamic, in the case in which active particles are influenced only by binary en-
counters with other active particles; a basic point is that this process is triggered
by a threshold. In fact, the consensus dynamic happens when the opinion distance
between the interacting active particles is below a given threshold and the dissent
dynamic when the opinion distance between the interacting active particles is above
it. In the consensus dynamic the post-interaction opinion distance is shorter then
the pre-interaction one; basically, the active particles approach each other due to
the interaction. In the dissent dynamic the post-interaction opinion distance is
greater then the pre-interaction one; basically the active particles move away from
one another. One may interpret this quantity in the sense that the greater is the
threshold the greater is the propensity to reach a fair compromise in the population.

3.1. Dynamic of interactions between pairs of active particles. To avoid
cumbersome notations, throughout the paper we adhere to the following convention:
if we write an interval [c1, c2] ⊂ R1, c1 < c2, we have in mind [c1, c2] ∩ U .

A general model for the transition probability functions assuming a consensus–
dissent interaction dynamic is introduced in the following.

1. In the consensus dynamic, the transition probability related to binary en-
counters between active particles represents the probability that the candidate
active particle changes its opinion due to interactions with a field active par-
ticle, in order to reach a fair compromise; it applies when the opinion distance
between candidate active particle and field one is below a given threshold d.
Let 0 < d ≤ max U −min U ; when 0 < |u∗ − u∗| ≤ d, the post–interaction
opinion of the candidate active particle is, in probability, nearer to the opin-
ion of the field active particle, then it is in the interval between the candidate
active particle opinion and the field active particle one. The transition prob-
ability characterizing this dynamics is as follows

B̃(u∗ → u |u∗, u∗)

=


β(u;u∗, u

∗) if u ∈
[

min
{
u∗, u

∗},max
{
u∗, u

∗}]
0 if u ∈ U \

[
min

{
u∗, u

∗},max
{
u∗, u

∗}]
, (12)

where β(u;u∗, u
∗), for given u∗ and u∗, is a given probability density (with re-

spect to u) on the interval between min
{
u∗, u

∗} and max
{
u∗, u

∗}. The most
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appropriate probability density β(u;u∗, u
∗) depends on the specific applica-

tions, the simplest one being the uniform probability density on the interval
between min

{
u∗, u

∗} and max
{
u∗, u

∗} , i.e.

β(u;u∗, u
∗) =

1

µ2

([
min

{
u∗, u∗

}
,max

{
u∗, u∗

}])
for each u ∈

[
min

{
u∗, u

∗},max
{
u∗, u

∗}]. A rather more complicate form

for the functions β1 and β2 could be that one modelling a decreasing effect
with the opinion distance candidate-field active particles.

2. In the dissent dynamic, the transition probability related to binary encoun-
ters between active particles represents the probability that the candidate
active particle changes its opinion due to interactions with a field active par-
ticle, determining a kind of radicalization of its opinion in the sense that the
post interaction opinion is nearer to the bound of the interval than the pre
interaction one; it applies when the opinion distance between candidate active
particle and field one is above the given threshold d.

Then, when |u∗ − u∗| > d, the post-interaction opinion of the candidate
active particle is, in probability, farther from the opinion of the field active
particle, then it is in the interval between the candidate active particle opinion
and the bound of U . A mathematical formulation for the transition probabil-
ity characterizing this effect is the following

B̃(u∗ → u |u∗, u∗)

=


β1(u;u∗, u

∗) if u ∈ [min U , u∗] , and u∗ ≤ u∗

β2(u;u∗, u
∗) if u ∈ [u∗,max U ] , and u∗ > u∗

0 otherwise

, (13)

where β1 and β2, for given u∗ and u∗, are given probability densities on the
intervals [min U , u∗] (for u∗ ≤ u∗) and [u∗,max U ] (for u∗ ≥ u∗), respec-
tively and measure the attitude of the candidate active particle to increase
the distance between its opinion and the field active particle one. The most
appropriate probability densities β1 and β2 depend on the specific applica-
tions, the simplest ones being the uniform distribution on [min U , u∗] for β1

and the uniform distribution on [u∗,max U ] for β2.

4. Consensus–dissent dynamics in a network. As already remarked in the in-
troduction, the possibility to access informations on internet or using other sources,
such as the media or social networks, determines the fact that individuals may be
influenced by global opinion trends, giving rise to a stream effect. In the previ-
ous section we have modeled a consensus-dissent interaction dynamic in a separate
node. In the present section we model the case in which a finite number of nodes
interact by means of the mean opinion on each node. In this case, in addition to
the consensus-dissent dynamic introduced in the previous section and regarding the
interactions within a node, we consider an analogous consensus-dissent dynamic
regarding the influence of the mean opinions of the nodes on the active particles in
the network. Then, the outputs of the interactions depend now on two thresholds:
the first threshold is related to the opinion distance between the candidate active
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particle and the field one, and it is considered whenever interactions within each
node are considered. The second threshold regards the distance between the candi-
date active particle’s opinion and the mean opinion of a node and it is considered
whenever interactions involving the network are considered. This threshold repre-
sents, in this case, a sort of propensity of the active particles to be influenced by the
mean opinion of other populations. In the consensus dynamic the post-interaction
opinion distance between the candidate active particle and the mean opinion on
a node is shorter then the pre-interaction one, while in the dissent dynamic the
the post-interaction opinion distance between the candidate active particle and the
mean opinion on a node is greater then the pre-interaction one. Regarding the rate
of transition, we assume here that ηE is a given positive constant.

Given the node, the mean opinion is the first moment with respect to the opinion
variable is

Ej(f, t) =

∫
U

uf(t, j, u)dµ2(u) . (14)

1. In the consensus dynamic the transition probability related to the influence
of the mean opinion of a node on the candidate active particle represents the
probability that the candidate active particle changes its opinion due to this
influence, in order to reach a fair compromise; it applies when the opinion
distance between candidate active particle opinion and the mean opinion of
the k-th node is below a given threshold D.

Let 0 < D < maxU − minU . If 0 < |u∗ − Ek| ≤ D, for some k ∈ J ,
the post-interaction opinion of the candidate active particle is, in probability,
nearer to the mean opinion on a node and we assume

B̃E(u∗ → u |u∗; f(t, k, .))

=


γ(u;u∗,Ek) if u ∈

[
min

{
u∗,Ek

}
,max

{
u∗,Ek

}]
0 if u ∈ U \

[
min

{
u∗,Ek

}
,max

{
u∗,Ek

}]
(15)

where γ(u;u∗,Ek), for given u∗ and Ek is a probability density on[
min

{
u∗,Ek},max

{
u∗,Ek}

]
and measures the attitude of the candidate ac-

tive particle to decrease the distance between its opinion and the mean one of
the k-th node. The most appropriate probability density γ(u;u∗,Ek) depends
on the specific applications.

2. In the dissent dynamic the transition probability related to the influence
of the mean opinion of a node on the candidate active particle represents the
probability that the candidate active particle changes its opinion due to this
influence, determining a kind of radicalization of its opinion; it applies when
the opinion distance between the candidate active particle’s opinion and the
mean one on a node is above the given threshold D.

Then, when |u∗−Ek| > D we model a dissent from the mean opinion on a
node, introducing the following probability density

B̃E(u∗ → u |u∗; f(t, k, .)) , (16)
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=


γ1(u;u∗,Ek) if u ∈ [minU , u∗] , and u∗ ≤ Ek

γ2(u;u∗,Ek) if u ∈ [u∗,maxU ] , and u∗ > Ek

0 otherwise

, (17)

where γ1 and γ2, for given u∗ and u∗, are given probability densities on the
intervals [min U , u∗] (for u∗ ≤ Ek) and [u∗,max U ] (for u∗ > Ek), respectively,
and measure the attitude of the candidate active particle to increase the dis-
tance between its opinion and the mean opinion of another node different to
the one to which it belongs. Specific probability densities γ1 and γ2 depend
on the problem at hand.

Keeping the above definitions in mind, we assume that ηE = ηE(u; f(t, k, .)) is a
regular (at least Lipschitz continuous) function of |u− Ek| and such that

• ηE takes value 0 on the sets |u− Ek| ≤ δ and D − δ ≤ |u− Ek| ≤ D + δ;
• ηE takes a positive constant value η̃E on the sets 2δ ≤ |u− Ek| ≤ D − δ and
D + δ ≤ |u− Ek|, where δ is a small number.

Remark 1. In the discrete–discrete case, i.e. when U is a discrete set, we consider
the following version of Eq. (8)

∂tf(t, j, u) = η̃
∑

u∗,u∗∈U
B̃(u∗ → u|u∗, u∗) f(t, j, u∗)f(t, j, u∗)

−η̃ f(t, j, u)
∑
u∗∈U

f(t, j, u∗)

+
∑
u∗∈U

f(t, j, u∗)
∑
k 6=j

(
B̃E(u∗ → u|u∗; f(t, k, .) ηE(u∗; f(t, k, .))

−f(t, j, u) ηE(u∗; f(t, k, .))
)
, j ∈ J , u ∈ U ,

(18)

where all the functions depend only on the indicated variables.

5. Qualitative analysis. For a bounded set U we define the Banach space L1(µ)
equipped with the norm

‖f‖ =

∫
U

|f(u)|dµ(u). (19)

Theorem 5.1. Let f0 ≥ 0, f0 ∈ L1(µ) be initial data such data

‖f0‖ = 1. (20)

Assume that

• A(u∗ → u|u∗,u∗; f, t) ≥ 0;

•
∫
U

A(u∗ → u|u∗,u∗; f, t)dµ(u) = 1, for all u,u∗,u
∗ ∈ U, f ∈ L1(µ) and

t > 0;

• a(u,u∗; t) ≥ 0 for all u,u∗ ∈ U and t > 0;
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• A(u∗ → u|u∗,u∗; f, t) and a(u,u∗; t) are continuous function of t > 0 for all
u, u∗, u∗ ∈ U and f ∈ L1(µ);

• A(u∗ → u|u∗,u∗; f, t) is locally Lipschitz-continuous functions of f ∈ L1(µ)
that is for each f ∈ L1(µ) there exist a neighborhood N of f and a constant
c > 0 such that∫
U

|A(u∗ → u|u∗,u∗; f1, t)−A(u∗ → u|u∗,u∗; f2, t)|dµ(u) ≤ c‖f1 − f2‖

for all fi ∈ N , i = 1, 2. Then, for any t > 0, there exists a unique solution
f = f(t) ∈ L1(µ) of Eq. (5) with initial data f0. Moreover

f(t) ≥ 0 , (21)

and

‖f(t)‖ = 1 , (22)

for any t > 0.

Proof. The result follows in a standard way. The local Lipschitz continuity provides
the local (in time) existence and uniqueness. Moreover, the solution corresponding
to the nonnegative initial data is nonnegative and satisfies (21). Therefore the
solution may be prolonged to any t > 0 and (21), (22) are satisfied.

Remark 2. From Theorem 5.1 the corresponding result for Eq. (8) follows. Under
the Assumptions in Section 2., for the solution to Eq. (8) not only∫

U

f(t,u) dµ(u) =

∫
U

f(0,u) dµ(u) , t > 0

is conserved, but also∫
U

f(t, j, u) dµ2(u) =

∫
U

f(0, j, u) dµ2(u) , t > 0, j ∈ J .

Therefore we may refer to f(t, j, . ), for all t > 0, j ∈ J , as the probability density
under the suitable descaling. This approach is used in the numerical simulations.

6. Simulations looking for asymptotic opinion trends. In this section we
present some numerical solutions of the system of equations regarding the model of
consensus-dissent opinion dynamic introduced in the previous section, with the aim
to investigate the following features:

• influence of the threshold on the opinion trends on each separate node when-
ever the network is not taken into consideration and comparison with the
results obtained in the case in which the nodes are connected into a network;

• influence of the initial opinion distribution on the opinion trendson on each
separate node whenever the network is not taken into consideration and com-
parison with the results obtained in the case in which a small network is
considered;

• sensitivity of the model to the threshold in a separate node whenever the net-
work is not taken into consideration and comparison with the results obtained
in the case in which a small network is considered.
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The aforesaid features are analyzed through three case studies. To fix ideas one
can think that the nodes are geographical; as an example, each one could represent
the distribution of opinions regarding a central issue in a population belonging to
a country. In order to show the main features of the proposed class of models, in
the numerical simulations we have adopted uniform probability distributions for
both the binary interaction between active particles and for the influence of the
mean opinion on active particles in the network. We have considered a network
with three nodes. The opinion variable is taken as discrete and takes value in the
set U = {1, . . . , 7} for each node. In all simulations the encounter rate inside each
node, i.e. for binary encounter between active particles, takes the constant value
η = 0.6 and the encounter rate for the network, i.e. for the influence of the mean
opinion on the active particles, takes the constant value η0

E = 0.2.

6.1. Case I: Effect of the threshold on the asymptotic opinion trend and
the effect of the network. We simulate the evolution of an initial uniform dis-
tribution of opinion in three separate nodes characterized by different values for
the threshold regarding binary encounters between pairs of active particles. If one
would follow the example of geographical nodes each one representing a country,
this would mean that each country has a different propensity to reach a fair compro-
mise, although they start with the same opinion distributions initially. In particular
a low value for the threshold (d1 = 1) on the first node is assumed, a medium value
(d2 = 3.5) on the second node and an high value (d3 = 5) on the third node are
assumed. A medium value for the threshold in the network, i.e. D = 3.5 is as-
sumed. In the first set of simulations (Fig.1) we do not consider interactions among
the nodes with the aim to compare the results with the second set of simulations
(Fig.2) where on each node we take the same values for the parameters and the
same initial conditions as the previous one apply but the nodes arenow interacting
with a consensus-dissent dynamics.

The comparison of the results obtained in the case of separate nodes (Fig.1)
with those obtained with the nodes of a network (Fig.2) show that the effect of the
network is to induce consensus (compare Fig.1b and Fig.2b) toward the mean value
for the opinion in the node with a medium value for the threshold. Furthermore,
one can notice that Fig.1 refers to three separate nodes and the first moment is
conserved whilst Fig.2 refers to the same nodes as in Fig.1 but which are now
connected in a network; one can observe that in this case the first moment on each
node is not conserved due to the effect of the network.

6.2. Case II: Effect of the initial opinion profile on the asymptotic one and
the effect of the network. We simulate the evolution of an initial not uniform
distribution of opinion in three nodes characterized by the same medium value
(d = 3.5) on each of them for the threshold regarding binary encounters between
pairs of active particles. If one would apply again the example of geographical nodes
each one representing a country, this would mean that each country has in these
simulations the same propensity to reach a fair compromise, although they have
different opinion distributions initially. In the first set of simulations (Fig.3) we
do not consider interactions among the nodes with the aim to compare the results
with the second set of simulations (Fig.4) where the same conditions apply except
for the fact that the nodes are now interacting and the network has the threshold
D = 3.5.
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Figure 1. Separate nodes. Initial uniform distribution and dif-
ferent threshold for each separate node.

Fig.4 shows a consensus toward a medium value for the opinion distribution
in all nodes, which is not present when the nodes are not interacting (see Fig.3).
This phenomenon may be related to the one known in literature as unconditonal
consensus, i.e. when all the initial configurations tend to an emerging limit state
[21].
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Figure 2. Network. Initial uniform distribution and different
thresholds on each node in a network.

6.3. Case III: Sensitivity of the long time distribution to the threshold.
In this last set of simulations we plot the long time distribution as function of the
threshold varying in the interval [0, 6]. In Fig.5 the long time distribution obtained
from an initial uniform distribution in a separate node is plotted as function of
the threshold varying from the minimal value to the maximal one; one observes a
transition from a polarization toward the opposite extreme values to a consensus
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Figure 3. Separate nodes. Different initial distributions and
medium threshold (d = 3.5) on each separate node.

toward a mean opinion value when the threshold approaches a medium value. In
Fig.6. the long time opinion distribution is plotted, regarding a node of a network
with three interacting nodes starting with the same initial opinion distributions.

As a result, in a separate node, when the threshold approaches a medium value,
the long time distribution changes from polarization toward the opposite extreme
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Figure 4. Network. Different initial distributions and medium
threshold on each node (d = 3.5) and in the network (D = 3.5).

values of the opinion, to consensus toward the mean value of the opinion (Fig.5).
In a node of a network, the long time distribution changes from polarization toward
the opposite extreme values of the opinion to consensus toward the mean value
of the opinion in correspondence of a smaller value for the threshold (Fig.6) with
respect to the one previously obtained (Fig.5). From this simulation one can argue
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that in the model the effect of the network is such that the polarization toward a
mean opinion value is reached for a lower value of the threshold with respect to a
separate node with the same dynamic of interactions. We remember here that the
threshold represents the propensity of the population to reach a fair compromise
and one can argue that this propensity is enhanced when the nodes are interacting
in a network.

7. Conclusions and research perspectives. The particular conditions deter-
mining different trends for the long time distributions are presented in the tables
at the end of the paper summarizing the results of the showed simulations.

Some perspectives on the research presented in the paper regard both analytical
and modeling problems. With respect to the first viewpoint, we think that the
analysis of the asymptotic behavior of the solutions including the identification of
possible equilibrium states deserves attention and may open interesting mathemat-
ical problems.
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As documented in [17], an active research field regards the distributions of opin-
ions with respect to the public consensus on the European Union (EU) within and
among the member states; on this issue the change in the shape of the distribution
with respect to the simple analysis of a change in the mean value of the distribution
is claimed, due also to the consideration that different distribution shape may have
different political implications. In our framework the long time opinion distribu-
tion is influenced also by the shape of the opinion distribution on other nodes of a
network which may be representative of the different union member states.

Another point of interest may be that of the analysis of the interactions of dif-
ferent dynamics, e.g. opinion dynamics and economic one. The modeling of in-
teractions among different group of interests, e.g citizens, political institutions and
competing groups [1], is an active research field in socio-economic studies (see [1]
and references therein) and our opinion is that the mathematical framework pro-
posed may be of interest in the development of new models enlighting the role of
the network in these socio-economic contexts [16].
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