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Abstract. Recent incidents such as the Asiana Flight 214 crash in San Fran-
cisco on July 6, 2013 have brought attention to the need for safer aircraft

evacuation plans. In this paper we propose an emergency aircraft evacuation

model inspired by Particle Swarm Optimization (PSO). By introducing an
attraction-replusion force from swarm modeling we considered realistic behav-

iors such as feeling push-back from physical obstacles as well as reducing gaps

between passengers near emergency exits. We also incorporate a scaled emo-
tion quantity to simulate passengers experiencing fear or panic. In our model

elevating emotion increases the velocity of most passengers and decreases the

effect of forces exerted by nearby passengers. We also allow a small percentage
of passengers to experience a sense of panic that slows their motion. Our first

simulations model a Boeing 737-800 with a single class of seats that are dis-

tributed uniformly throughout the aircraft. We also simulate the evacuation of
a Boeing 777-200ER with multiple service classes. We observed that increasing

emotion causes most passengers to move more quickly to the exits, but that
passengers experiencing panic can slow down the evacuation. Our simulations

also suggest that blocking exits in locations with high seat density significantly

delays the evacuation.

1. Introduction. On July 6, 2013, Asiana Airlines Flight 214 crashed at San Fran-
cisco International Airport, which resulted in three deaths and 181 injures. [17] Ac-
cording to the European Transport Safety Council in 1996, there are approximately
1500 people who die each year in air transport accidents. About 270 of them die
“due to the effects of smoke, toxic fumes, heat and resulting evacuation problems”
instead of the direct result of impact.[12] This report exposed the need to redesign
aircraft for improved passenger safety.

Researchers have been looking into this issue since as early as the 1960s. A reg-
ulation referred to as the “90-second rule” was published by the Federal Aviation
Administration to provide criteria on the egress time of safety evacuation to air-
plane manufacturers. The regulation requires a demonstration be conducted with
only illumination of the exit path and slides with a specific mix of participants.
During the demonstration “all passengers and crew must be evacuated from the
aircraft to the ground within 90 seconds” and not more than 50 percent of the
emergency exits may be used.[4] To meet these strict standards, researchers have
conducted studies to gauge whether airplane designs are qualified, ranging from
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recruiting volunteers to participate in full-scale evacuation certification demonstra-
tions to the development of computer simulations in recent years.[4] In 1993, The
Office of Technology Assessment (OTA) estimated that running a single real-sized
airplane evacuation costs more than one million dollars.[4] In addition, an average
of 6% of the participants suffer injuries, such as bone fractures and paralysis during
the demonstrations.[4] Moreover, to ensure the accuracy of the result, repetition
is required, but the real-life demonstrations are unlikely to be repeated under the
exact same conditions. Since a complete version of a human airplane evacuation
experiment is difficult to implement both in economic and social aspects, using
computer models to simulate the behaviors of passengers offers a better solution.

The current models of emergency building and airplane evacuations can be cat-
egorized as two basic types: a macroscopic approach and a microscopic approach.
The macroscopic approach treats evacuees as a fluid and focuses more on the gen-
eral movements over a large population. These fluid-dynamic models offer better
predictions of a large crowd’s behavior, since “at medium and high densities, the
motion of pedestrian crowds shows some striking analogies with the motion of fluids
and granular flows.”[10] One example is the network flow model developed by Cova
et al. in [2] for lane-based evacuation routing to solve traffic delay at intersections
by minimizing the cost of each node along the flow. Another example is the Gen-
eral Purpose Simulation System (GPSS), which controls the passenger flow rates
by statistical information from experimental data to simulate aircraft emergency
evacuations.[8]

On the other hand, the microscopic approach tracks the behavior of each passen-
ger as they move toward the exits. Multiple microscopic models have been proposed
that emphasize different elements that can affect the egress time. Many of these
models discretize the space into cells or nodes that can represent open spaces and
obstacles, such as seats and aisles in an airplane. One of the most widely used egress
models, EXODUS, was developed to help individuals avoid fire hazards, heat, and
toxic gases by assigning different costs to the nodes along the path and minimiz-
ing a cost function.[6, 7] Sharma et al. proposed a multi-agent system based on
AvatarSim. It uses a combination of three models (social force model, geometric
model and fuzzy logic-based model) to incorporate the influence of the environment
and the interactions between agents.[20] Liu et al. developed a cellular automata
model that takes passengers’ physical characteristics such as waist size, gender,
age, and disabilities into account and allows evacuees to identify and choose the
least crowded and shortest route on a discrete node map.[13] As for the continuous
domain, Particle Swarm Optimization was introduced to simulate pedestrian evac-
uation by minimizing a fitness function which represents “the sum of the distances
between each pedestrian and the set of exits.” [11, 22] In addition to these fac-
tors, the emotion of passengers such as fear and panic could play a significant role
in airplane emergency evacuation. Miyoshi et al. incorporated emotion into their
model and quantified the panic level by calculating the remaining time, frequency
of waiting and the difficulty of finding an exit as agent moves from cell to cell on a
discrete grid.[16] In [21], Tsai et. al. developed a simulation tool called ESCAPES
to model the effect of emotional interactions during airport evacuations.

In this paper, we propose an aircraft evacuation simulation that is inspired by
elements of Particle Swarm Optimization (PSO), but also incorporates the spread
of emotion based on the interactions between agents. Different from the models
that utilize nodes or cells, PSO uses a continuous domain which allows passengers
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to infringe on each others’ space and more accurately simulate an evacuation. In
addition, the nature of the PSO algorithm allows randomness in the model in order
to produce more realistic movements of the agents. For our model, we designed an
aircraft potential function to represent a more complicated terrain that consists of
chairs and seats rather than simply using a fitness function that computes the sum
of the distances between agents and exits as in the pedestrian evacuation models.
Also, by incorporating different states of swarm behavior, our model factors in the
attraction and repulsion between agents.[1, 3] Based on these simulations, we will
present a comparison of performances of passengers evacuating from different exit
locations with or without the influence of emotion. The goal of this paper is to
study how this emotion impacts individuals and the entire group as they attempt
to exit the aircraft. We hope that our models will lead to increased understanding
of how panicked crowds behave in evacuation situations which could lead to better,
safer evacuation procedures.

2. Particle Swarm Optimization. The development of swarm modeling is mo-
tivated by examples in nature in which organisms congregate in large numbers such
as flocks of birds, schools of fish or crowds of people. These large populations are
comprised of individuals who are influenced by the group motion as well as their
individual will. Over the years, researchers have been interested in modeling vari-
ous swarm behaviors. For example, in 2007, Cucker and Smale offered a model for
both continuous and discrete time to justify that “the state of the flock converges
to one in which all birds fly with the same velocity.”[3] In the same year, Chuang
et al. further developed individual-based and continuum swarm models and ana-
lyzed their linear stabilities focusing on the swarming problems over generations.[1]
Particle Swarm Optimization (PSO) is also an effective method to model swarm
intelligence. The PSO algorithm describes how populations adapt to their environ-
ment and share information with each other. PSO is “a method for optimization of
continuous nonlinear functions” that was first introduced by Eberhart and Kennedy
and can be used for simulating social behaviors.[5]

PSO is widely used to simulate how an initial swarm propagates in the design
space toward the optimal solution over a number of iterations (moves). The main
feature of this algorithm that has inspired our model is that each individual incor-
porates information about both the local and global landscape that is assimilated
and shared by all members of the swarm to determine their direction of motion.
We begin by describing a sample PSO algorithm as outlined in [9]. After initial
position and velocities are specified, the position xik and velocities vik are updated
at each iteration, where k is the number of iterations and i is the index of particle.

The velocity of each particle is affected by three factors, namely inertia, particle
memory, and swarm influence. The first part of the velocity update equation in-
cludes an inertia term to describe the tendency that a particle would continue to
move with the same speed and in the same direction as previous iteration. The par-
ticle memory factor describes how each particle records its optimal position along
its individual trajectory and the tendency to move to its personal best position.
Finally, when updating the swarm influence term, the personal best positions of the
entire swarm are compared at each iteration, and the optimal one among them is
stored as the global best position. All the particles share knowledge of this global
best point and are attracted to it. These three main factors are present in the
velocity and corresponding position updates from [9],
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xik+1 = xik + vik+1 ∆t

vik+1 = w vik + c1 U
1
k (pi − xik) + c2 U

2
k (pgk − xik).

(1)

Here, w is the inertia factor and c1 and c2 are the strengths of the self-confidence
and swarm confidence terms respectively. The term pi represents the best position
of particle i over all previous moves and pgk represent the global best position at the
current move k. U1

k and U2
k are uniform random variables on [0, 1] that allow for

variability in choice between following individual will versus the swarm influence.
We note that with larger w, particles are more likely to maintain their current

velocity even if better fitness values are discovered. Thus, greater w values are more
suitable for searching a larger portion of the domain because particles are less likely
to be trapped by local extremes. On the contrary, smaller w values correspond to
a smaller probability of finding the global best position because particles are more
likely to be attracted to the current best position. This behavior is favored when
local search is preferred. By increasing c1, particles are more likely to trust their
own knowledge and move toward their personal best positions as opposed to paying
attention to the entire swarm’s movement. A larger c2 corresponds to a larger
opportunity for the swarm to find the local/global optimal position.

3. Modified PSO for airplane evacuation. The Particle Swarm Optimization
(PSO) algorithm as described in [9] models the position and velocity of agents
moving toward a specific goal. Each agent then moves according to its knowledge
of its own previous best position and the group’s current best position. To better fit
real-life scenarios such as the Asiana plane crash, we modified the PSO algorithm.
The main differences between this revised version and the original PSO algorithm
are reflected in the individual particle local search term, the global search term, and
the attraction-repulsion term.

The goal of each individual is to move toward one of the optimal locations as soon
as possible, in this case, the airplane emergency exits. In our model, each agent’s
position is compared to a fitness function that describes the current environment.
The static environment is modeled by a potential function that describes the lay-
out of the airplane that includes the exits and physical barriers such as the seats.
The seats and other physical barriers are represented by large values in the fitness
function to prevent individuals from moving through them. Any dangerous regions
are designated as global maximums and exits are represented as global minimums.
The seating areas are tilted downward toward the aisle which represents the natural
inclination of passengers to leave their seats and move into the aisle. The aisles are
sloped downward toward the nearest exit, which represents the emergency lights
that guide passengers to the exit rows. Finally the exit rows are sloped downward
toward the exits. We first modeled a Southwest Airlines Boeing 737-800 due to its
uniform seat arrangements. This aided us in designing more complex aircraft such
as the Boeing 777-200ER used in Asiana Flight 214. Figure 1 shows a section of
the potential function that describes a Boeing 737.

In this way, it is intuitive for the particles to choose their paths. The local search
for each particle is calculated by finding the gradient of the potential function at its
position. The gradient of the potential function from Figure 1 is pictured in Figure
2. We scale the gradient by the hill function

h(∇f) =
∇f

h0 + |∇f |
, (2)
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Figure 1. The potential function for a section of a Boeing 737
measured in inches.

where ∇f is the gradient of the plane potential function and h0 is the value of |∇f |
so that h attains half of its maximum value.[14, 15] This helps prevent extreme
values that would cause particles to move at an unreasonable velocity.
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Figure 2. Gradient field corresponding to the potential function
in Figure 1.
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The global best position is also calculated differently from the previous PSO
algorithm. In the original PSO algorithm, the particles explore the designed region,
compare with a fitness function, and share the location of the individual with the
best position with the entire swarm at each iteration. An airplane contains multiple
exits which can serve as the global best position. Therefore in our model, passengers
are attracted to the closest emergency exit instead of the position of the passenger
at the global minimum. In this way, agents do not have to detect the global best
positions themselves and could avoid moving toward a global minimum point that
is further away from them. We believe global knowledge of the exit locations is
reasonable since they are clearly marked throughout the airplane and on safety
information cards that are available to the passengers upon boarding the aircraft.
We can reduce visibility or knowledge of the exit locations by reducing the influence
of the global fitness term. To prevent extreme values, the global best term is also
scaled by a hill function

h(u) =
u

c0 + |u|
(3)

where u = pgk − xik and c0 is the value of |u| so that h attains half of its maximum
value.

In the original PSO model particles converge very quickly and tend to cluster
together, but in airplane evacuations, people tend to stay close but cannot occupy
the same space. Therefore, instead of only considering the current motion, parti-
cle memory influence, and swarm influence when updating the velocities, we also
incorporated a particle attraction-repulsion force between agents. Specifically, we
adapted the D’Orsogna-Bertozzi model with self-propulsion for attraction and re-
pulsion from [1]. The attraction-repulsion force that each agent i feels is given
by

ui =

Ni∑
j=1

(
CAe

−
|rij |
LA − CRe−

|rij |
LR

)
rij
|rij |

. (4)

where rij is the displacement from agent i to agent j and Ni is the number of
neighboring agents to i.

In this way, the attraction force helps fill in the gaps between evacuees and the
repulsion force prevents agents from occupying the same space. Agents in our model
are particles with a fixed radius. The attraction length LA is designed to be 48 in,
which suggests that agents start attracting one another when they are within the
distance about the diameter of two agents. The repulsion length LR is set as 24
in; when two agents are about half the diameter of an agent apart from each other,
they begin to repel. The balance between CA and CR is 1:6.

The equations that model the discrete movements of individual agents in our
modified PSO algorithm are given below. The position and velocity of the kth
iteration of the ith particle are denoted xik and vik respectively.

xik+1 = xik + vik+1 ∆t

vik+1 = w vik + c1 U
1
k h
(
∇f(xik)

)
+ c2 U

2
k h(pgk − xik)

− c3

Ni∑
j=1

(
CAe

−
|rij |
LA − CRe−

|rij |
LR

)
rij
|rij |

.

(5)

The constant c3 controls the strength of the attraction-repulsion term.
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3.1. Boeing 737 simulations. The Boeing 737-800 has only a single Economy
Class that consists of 175 standard seats with 17 inch width and 32 inch pitch and
eight emergency exits located at the front (two exits), middle (four exits) and back
(two exits). There are 28 rows and most commonly each row has six seats with three
on each side of an aisle in the middle as shown in Figure 3. Our first evacuation
model assumes that each seat is filled and that all exits are available. Using a
∆t = 0.05 seconds, the passengers move at a walking speed of approximately 4 ft/s
when unimpeded. We display still frames from our simulation in Figure 4.

Figure 3. Seating arrangement for Boeing 737-800.[18]

In this simulation particles successfully avoid the seats and the repulsion force
effectively prevents the particles from crashing into each other. All of the agents
escape from the plane within 54 seconds with 95% exiting within 47 seconds and
90% within 42 seconds. From the data we have seen that the last five percent of
agents consume more time to exit. This could be attributed to the fact that agents
are attracted to each other and the remaining agents feel a smaller attractive force
when agents exit the aircraft and their locations are deleted from the simulation.
During the simulation we observed that the agents seated in rows 7 and 8 as well as
rows 21 and 22 have to make a choice whether to go to the front or the back exits.
Also, when agents arrive at the front, middle or back of the plane, it takes some
time for them to decide whether to move to the port or starboard exits depending
on the distance between their locations and the exits. The last agents to exit the
plane are the ones seated in the window seats at the last rows before the exits, rows
2, 14, 16 and 28. These agents are attracted to the global minimum, the emergency
exit, but must follow the local gradient in the opposite direction to exit the row
of seats and then proceed to the emergency exit. The passengers in the window
seats also experience the repulsion force from passengers that are already in the
aisle which keeps them in the seating area until there is a clear path.

4. Revised PSO model with emotion. The final component we included in our
model is spread of emotion such as fear throughout the group of passengers on the
plane. As previously mentioned, researchers such as Miyoshi et al. have delved into
the development of models with emotional factors. In [16], Miyoshi et al. used an
autonomous agent and multi-agent model (AAMAS) as the fundamental basis and
added emotion parameter L that depends on the remaining time t, frequency of
waiting q and difficulty of finding an exit s. They assumed that when L reaches
threshold crisis level L0, the passengers would exhibit non-adaptive behaviors, such
as forcing themselves into an occupied cell. The D’Orsogna-Bertozzi model with
self-propulsion for attraction and repulsion in [1] and the Cucker-Smale model for
alignment in [3] offer us great insights into updating the emotion factor and deciding



638 JUNYUAN LIN AND TIMOTHY A. LUCAS

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

120

t = 1 t = 200

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

120

t = 400 t = 800

Figure 4. Snapshots of the Boeing 737 simulation with no emo-
tion at t = 1, 200, 400 and 800 iterations.

how the emotion affects agent mobility. To that end we added a variable qi that
stores the amount of emotion an individual feels during the simulation. The value
of qi ranges from 0 (calm) to 1 (extreme fear) and is updated according to the
agents’ surroundings. We assumed when an agent encounters a source of danger,
their emotion level is elevated to 1. Also, we assumed that agents would adjust their
emotions to conform with their neighbors’ and in the absence of emotional stimuli,
qi gradually decays to zero over time. To update a passenger’s emotion level we
first considered adapting the Cucker-Smale alignment model in [3] so that

qik+1 = γqi +
1

Ni

N∑
j=1

(
1

1 + |rij |2

)α
(qi − qj) (6)

where Ni is the number of neighboring agents to agent i. Ultimately, we considered
a simpler model,

qik+1 =
1

Ni

N∑
j=1

g(qi − qj), (7)

where

g(q) =

{
β q q > 0
1
2β q q < 0

(8)

and β is a constant that controls how rapidly emotion spreads. In this way, a
difference in emotion with nearby agents will influence an individual’s emotional
state and thus emotion will spread throughout a crowd.

In our model, the level of emotion affects the behavior of an agent in two ways.
First we assume that an increase in fear will increase the velocity of an agent. We
also assume that an increase in fear in an agent will increase the force exerted on
other agents and decrease the repulsion from partial obstacles such as airplane seats.
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Our updated model to include emotion appears below.

xik+1 = xik + vik+1 ∆t

vik+1 = w vik + c1 U
1
k h
(
∇f(xik)

)
+ c2 U

2
k h(pgk − xik)

− c3

Ni∑
j=1

CAe
−

|rij |
LA − CRe−

|rij |
LR

1 + qi − qj
rij
|rij |

qik+1 =
1

Ni

Ni∑
j=1

g(qi − qj).

(9)

4.1. Boeing 737 simulations with emotion. In order to provide stimulus for
an emotional response by the passengers, we assumed that there is a fire that
blocks the two middle exits on one side of the aircraft. The fire spreads slowly
into the exit row in the middle of the plane. The agents closest to that fire change
color from blue to pink indicating their emotional response to the danger. The
color changes from blue to dark pink to light pink as the q value increases from
values close to 0 to values close to 1. Compared to particles’ behaviors from the
non-emotional PSO model, particles near the spreading fire in the emotional PSO
simulation significantly increase their speed and rush directly to the global fitness
point. We observed that agents with a high emotion factor move faster and the space
between agents decreases. On average it takes 50 seconds for all of the passengers
to evacuate the aircraft with 95% exiting within 42 seconds and 90% within 36
seconds. With the last 5% of agents being relativity far from the source of danger,
the emotion factor has a less significant effect on agent’s motion, leaving them
“wandering” out of the airplane. Overall, we have observed that given the same
aircraft and corresponding potential function, agents in simulations with emotion
exit the aircraft more quickly than agents in simulations without emotion. Figure 5
shows the still frames from this simulation. The fire is represented by the red area
in the figure which spreads over time.

5. Asiana flight 214 case study. In this section, we take a closer look at Asiana
Flight 214 in particular, and hope to use this model as a template that we can apply
to other airplane models in the future. Compared to the Boeing 737 model, this
aircraft consists of multiple classes, business and economy, with a larger number of
rows and aisles. For the Boeing 777 model, we implemented simulations both with
and without an emotion factor using the same revised PSO algorithm.

5.1. Boeing 777 simulation without emotion. We designed the potential func-
tion for the simulations according to the layout of a Boeing 777-200ER C which was
used for Flight 214. A diagram of the aircraft is displayed in Figure 6. That flight
carried a total of 291 passengers (19 business class and 272 economy class). In the
front business class, there are four rows and each row has seven seats (two each on
the side and three seats in the middle) and two aisles. Each seat in business class
is 20.2 inches wide and has a 62 inch pitch.[19] The economy class consists of two
parts, the first and second economy classes. The first economy class has 18 rows,
and each row has nine seats (three groups of three seats separated by two aisles)
with the exception of the first and last rows (eight seats and six seats respectively).
The second economy class has 14 rows with the same seating arrangement as the
1st economy class except for the first and last two rows (three seats, seven seats
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Figure 5. Snapshots of the Boeing 737 simulation with emotion
at t = 1, 200, 400 and 800 iterations. The passenger color changes
from blue to light pink as the emotion value increases from 0 to 1.

and five seats respectively). Each seat in economy class is 18 inches wide and has
a 33 inch pitch.[19] There are eight exits altogether, located in the front, between
business and first economy classes, between first and second economy classes and
the back of the plane. The complexity of the potential function that describes the
plane adds more difficulty for the agents to move around. As a result, we decreased
the global search parameter c2 to prevent agents from getting stuck in the seating
area or aisles.

Figure 6. Seating arrangement for Boeing 777-200ER.[19]

Besides the previously mentioned lag time for agents seated in the middle rows
of each class to decide between front exits and back exits, and for agents to choose
between the port exits and starboard exits, we also observe that the evacuees seated
in the middle seats of each row take time to choose from taking the port aisle or
the starboard aisle. The agents in the middle rows are equidistant to the port
and starboard exits, and in case of a tie between the closest exits, choose a side
randomly. The total evacuation time for simulations without emotion is on average
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72 seconds for the entire swarm to exit, 54 seconds for 95%, and 48 seconds for
90%. The last agents to exit the plane are initially located in the window seats in
the last rows before the emergency exits for the same reasons as described in the
previous Boeing 737 simulations. The only exception is at the very front of the
plane where the density of passengers is lower and the window passengers did not
have to wait behind as large a number of passengers in the aisle. The still frames
from this simulation are in Figure 7.

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

160

180

t = 1 t = 200

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

160

180

t = 400 t = 800

Figure 7. Snapshots of the Boeing 777 simulation without emo-
tion at t = 1, 200, 400 and 800 iterations.

5.2. Boeing 777 simulation with emotion. Based on the same potential air-
plane function, we created a simulation where one of the exits between first and
second economy classes is blocked and on fire. The fire then spreads along the aisle,
driving the agents who would normally take that blocked exit to the exit on the
opposite side of the aircraft. As with the Boeing 737 simulation with emotion, the
agents with higher emotion level move faster and more aggressively. On average, all
of the passengers exit within 63 seconds. Within 49 seconds 95% evacuate and 90%
evacuate within 42 seconds. The agents near the blocked exit take the longest to
escape since they have to travel extra distance to the other side of the plane to find
an open emergency exit. The still frames from this simulation are shown in Figure
8. The fire is represented by the red area in the figure which spreads over time.

6. Evacuation simulations with blocked exits. In some cases, not all of the
exits are available to the agents in emergency evacuations. Reasons could range from
the exits being physically blocked by obstacles to the exit doors being damaged and
unable to open. Therefore, it is necessary for us to consider the cases where not all
of the exits are accessible. We will consider simulations where either one or both
exits in a particular row are blocked for both the Boeing 737 and 777 configurations.
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Figure 8. Snapshots of the Boeing 777 simulation with emotion
at t = 1, 200, 400 and 800 iterations. The passenger color changes
from blue to light pink as the emotion value increases from 0 to 1.

Tables 1 and 2 display the average evacuation times for the Boeing 737 with
various configurations of blocked exits both with and without emotion. Because
the Boeing 737 is symmetric, for both the simulations with and without emotion,
blocking the front or the back exit essentially yields the same result. From the
data we can see that by blocking the middle exits it takes slightly more time for
all of the agents to evacuate. This reflects that the middle exits are utilized more
than the front or the back exits. If one of the middle exits is blocked, agents have
to travel to other exits to escape which causes more congestion in the middle of
the plane and slows down the egress process. The evacuation times for the Boeing
737 simulations with emotion are more robust and it takes less time to achieve full
evacuation. The average maximum velocity increases by 5-15% and the average
time for all passengers to escape with a single exit blocked decreases from 55 to 50
seconds. The data again suggest that the middle exits have a larger effect on overall
egress time. The decrease in evacuation time is also less significant when exits are
blocked on both sides of the aircraft.

As for the Boeing 777 model, the complexity of the travel classes makes the
analysis of blocking different exits more significant. Tables 3 and 4 display the
average evacuation times for the Boeing 737 with various configurations of blocked
exits both with and without emotion. The front exit or back exit being blocked
creates less lag time compared to the others, because only some of passengers seated
in the business class or second economy class take these exits. Both the second exit
and third exit are used more heavily; hence, blocking either of them slows the
evacuation. In particular, if the second pair of exits is blocked, more passengers are
directed toward the third exit which has the highest density of passengers and the
evacuation time is the longest. Similar to the Boeing 737 model, the evacuation
times with emotion are slightly less and the maximum velocity of passengers is up
to 5% faster.
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Exits Blocked
Evacuation Time (s)

Maximum Velocity (ft/s)
90% 95% 100%

None 42.8 47.6 53.9 7.8
Single Front Exit 42.8 47.7 54.7 7.6
Single Rear Exit 43.4 47.9 54.4 7.7
Pair of Wing Exits 44.5 50.9 57.0 7.7
Both Front Exits 65.3 75.5 92.9 7.7
Both Rear Exits 63.7 74.8 91.9 7.8
All Wing Exits 77.3 81.1 94.6 7.8

Table 1. Average evacuation times for Boeing 737 without emotion.

Exits Blocked
Evacuation Time (s)

Maximum Velocity (ft/s)
90% 95% 100%

Single Front Exit 38.2 42.1 47.7 8.2
Single Rear Exit 39.15 44.25 51.5 8.3
Pair of Wing Exits 36.4 41.7 49.6 9.1
Both Front Exits 61.1 71.2 86.8 8.7
Both Rear Exits 61.9 71.2 91.1 8.3
All Wing Exits 75 80.2 92 9.1

Table 2. Average evacuation times for Boeing 737 with emotion.

Exits Blocked
Evacuation Time (s)

Maximum Velocity (ft/s)
90% 95% 100%

None 43.4 49.9 64.7 7.9
Single Front Exit 44.2 50.8 65.1 7.7
Single Second Exit 44.2 50.8 65.1 7.7
Single Third Exit 44.8 50.5 66.0 7.8
Single Rear Exit 44.4 50.7 65.5 7.8
Both Front Exits 45.1 59.7 72.7 7.6
Both Second Exits 77.3 93.2 121.7 7.6
Both Third Exits 78.5 88.4 116 7.8
Both Rear Exits 53.8 64.4 87.6 7.8

Table 3. Average evacuation times for Boeing 777 without emotion.

7. Variable responses to emotion. In our model we assumed that emotion
would increase the velocity of passengers and increase the force exerted on other
passengers. While fear may motivate some passengers to speed up and become more
pushy, other passengers may feel a sense of panic which causes them to slow their
motion and become more passive. To recreate this effect we randomly assigned a
small percentage of passengers to become susceptible to a panic response. If the
emotion factor increases above a certain threshold, say q = 0.5, the panic response
causes these passengers to slow down and exert a smaller force on nearby passen-
gers. This panic response continues until the emotion factor returns to a level below
the threshold.
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Exits Blocked
Evacuation Time (s)

Maximum Velocity (ft/s)
90% 95% 100%

Single Front Exit 42.9 47.6 60.1 8.0
Single Second Exit 43.1 48.9 62.9 8.0
Single Third Exit 41.5 48.6 62.8 7.6
Single Rear Exit 39.6 47.0 62.1 7.5
Both Front Exits 41.4 47.1 61.7 8.1
Both Second Exits 76.5 91.1 118.8 8.3
Both Third Exits 76.3 87.8 111.9 7.8
Both Rear Exits 49.4 57 80.5 7.7

Table 4. Average evacuation times for Boeing 777 with emotion.

We observed in simulations that passengers who experience a panic response
move more slowly and block passengers from moving into the aisles and progressing
toward the emergency exits. Tables 5 and 6 show average evacuation times for 95%
of passengers from both the Boeing 737 and 777 aircraft with various configurations
of blocked exits and 5%, 10% and 20% of passengers susceptible to a panic response
for q ≥ 0.5. For both plane configurations the egress time is increased as the
percentage of passengers that are susceptible to panic increases. For many of the
configurations of blocked exits for the Boeing 737 and 777 the evacuation times are
comparable to the simulations without emotion when only 5% of passengers are
susceptible to a panic response.

Exits Blocked
95% Evacuation Time (s)

5% Panic 10% Panic 20% Panic
Single Front Exit 44.1 51.8 68.4
Single Rear Exit 45.2 53.4 66.4
Pair of Wing Exits 43.5 64.3 83.5
Both Front Exits 75.0 89.5 98.3
Both Rear Exits 90.6 101.1 105.4
All Wing Exits 73.5 82.8 92.3

Table 5. Average evacuation times for 95% of passengers from a
Boeing 737 with 5%, 10% and 20% of passengers susceptible to a
panic response for q ≥ 0.5.

8. Conclusions. In summary, we have adapted features of the particle swarm opti-
mization (PSO) algorithm to model emergency aircraft evacuations. The flexibility
of our code has allowed us to consider models of both a Boeing 737 and Boeing 777
aircraft. We considered different configurations of blocked exits and discovered that
blocking exits in high density areas of the aircraft slowed evacuation times consider-
ably. This suggests that passengers in the first economy class of a Boeing 777 should
be directed to prefer exits at the front of the aircraft where the passenger density
is much lower. Also, our simulations suggest that in order to expedite evacuations,
future aircraft designs should consider the arrangement of emergency exits relative
to the density of passengers. By adding an emotional component, we modeled the
response of passengers to both external stimuli and other emotionally charged pas-
sengers which increased the speed of evacuation. Our simulations also showed that
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Exits Blocked
95% Evacuation Time (s)

5% Panic 10% Panic 20% Panic
Single Front Exit 49.9 52.5 55.8
Single Second Exit 50.4 65.4 74.0
Single Third Exit 51.5 57.75 69.4
Single Rear Exit 47.5 59.2 65.1
Both Front Exits 48.1 52.3 54.3
Both Second Exits 89.1 90.7 118.15
Both Third Exits 89.8 92.2 59.1
Both Rear Exits 57.6 59.1 63

Table 6. Average evacuation times for 95% of passengers from a
Boeing 737 with 5%, 10% and 20% of passengers susceptible to a
panic response for q ≥ 0.5.

passengers who experience a panic response that slows their motion will extend the
time it takes to complete an emergency evacuation. In the future we would like to
consider adding passenger characteristics such as varying passenger radius or the
rate and severity of response to emotional stimuli. All of these modifications to our
PSO model would be helpful in creating more realistic simulations that can inform
evacuation plans and aircraft designs.
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