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Abstract. By a simple extension of the bounded confidence model, it is pos-

sible to model the influence of a radical group, or a charismatic leader on the

opinion dynamics of ‘normal’ agents that update their opinions under both,
the influence of their normal peers, and the additional influence of the radical

group or a charismatic leader. From a more abstract point of view, we model

the influence of a signal, that is constant, may have different intensities, and
is ‘heard’ only by agents with opinions, that are not too far away. For such a

dynamic a Constant Signal Theorem is proven. In the model we get a lot of
surprising effects. For instance, the more intensive signal may have less effect;

more radicals may lead to less radicalization of normal agents. The model is

an extremely simple conceptual model. Under some assumptions the whole
parameter space can be analyzed. The model inspires new possible explana-

tions, new perspectives for empirical studies, and new ideas for prevention or

intervention policies.

1. Introduction. In the following we define, analyze, and interpret a model, that
tries to cover some important aspects of an opinion dynamics under the influence of a
radical group or a charismatic leader.1 The basic structure and central components
are the following: There is an ongoing exchange of opinions among ‘normal’ agents.
The normals are neither members of the radical group, nor are they charismatic.
There is an ongoing opinion exchange among the normals. A dynamical system
describes the normals’ updating of their opinions. Radical groups or charismatic
leaders influence that dynamical system with their ‘very radical’ and somehow ‘very
strong messages’: Their messages are an additional input for the normals’ updating
of their opinions.

Our radicals and charismatic leaders are highly stylized figures. Each of them
is characterized by just one assumption: A radical group has, compared to normal
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agents, a comparatively stable in-group consensus on an extreme opinion. A charis-
matic leader counts for normal agents, that actually are under his/her influence,
much more than other normal agents.

That are informal statements. To make them precise, requires, that we first
explicitly formulate the dynamical systems that describes the normals’ opinion dy-
namics.

1.1. The BC model. For the ongoing and underlying opinion dynamics of normals
we will use the so called bounded confidence model (for short: BC -model). It is a
high-dimensional dynamical system. The basic idea is: Agents take seriously those
others, whose opinions are not too far away from their own opinion. Stated more
precisely, the assumptions are:

1. There is a set of n agents; i, j ∈ I.
2. Time is discrete; t = 0, 1, 2, . . . .
3. Each individual starts with a certain opinion, given by a real number; xi(t0) ∈

[0, 1].
4. The profile of opinions at time t is X(t) = x1(t), . . . , xi(t), . . . , xj(t), . . . , xn(t).
5. Each agents i takes into account only ‘reasonable’ others. Reasonable are those

individuals j whose opinions are not too far away, i.e. for which |xi(t)−xj(t)| ≤
ε, where ε is the confidence level that determines the size of the confidence
interval.

6. The set of all others, that i takes into account at time t, is:

I
(
i,X(t)

)
= {j

∣∣|xi(t)− xj(t)| ≤ ε}. (1)

7. The agents update their opinions. The next period’s opinion of agent i is the
average opinion of all those, which i takes seriously:

xi(t+ 1) =
1

#
(
I
(
i,Xt)

) ∑
j∈I
(
i,X(t)

)xj(t). (2)

The BC-model was extensively analyzed in [10]. It received a lot of attention.
For a survey see [15]. There are variants and alternatives (see [6], [12], [19], [3], [1]).
The best understood and most used linear alternative is the so called DeGroot-
model (see [7]). In that model the agents assign weights to others. The weights
are independent of the opinion distance to others. Updating, then, is weighted
averaging. – Throughout the following, we always assume the BC-dynamics. The
effects of other underlying opinion dynamics should be studied. But we can’t do
that here.

1.2. A group of radicals. For the modified BC-model we now assume that there
are two groups of agents: The first group, the normals, have opinions from the
interval [0, 1], they all have a strictly positive, constant, and symmetric ε > 0. The
second group, the radicals, have all the same opinion R, more or less close to the
upper bound of the unit interval, e.g. R = 0.9, or even holding the most extreme
position R = 1.0. (Alternatively, we might locate the radical position R close to the
lower bound of our opinion space. Whatever we do, for the following it does not
matter.) The radicals stick to their opinion: Their opinion is R, and that forever.
The size of the radical group will matter. We refer to the number of radicals by
#R.

Normals update according to equation (2). Now the modification comes: When-
ever the radicals are in a normal agent i’s confidence interval, i.e. whenever |xi(t)−
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Figure 1. 50 normals, the same random start distribution of nor-
mals in both runs, ε = 0.2, R = 0.9 . Left : no radicals. Right : 5
radicals.

R| ≤ ε, then the whole group of radicals is in I
(
i,X(t)

)
. Since the radical group

has #R members, the radical position R is #R-times in I
(
i,X(t)

)
.

Figure 1 shows two single runs with the same uniform start distribution for
50 normal agents with ε = 0.2. In the left figure there are no radicals. Light grey
vertical lines between neighboring opinions indicate that their distance is not greater
than ε. As a consequence they influence each other mutually. In the right figure a
group of 5 radicals is added. Their opinion is R = 0.9. The black horizontal line
is their trajectory. The dark grey area indicates that part of the opinion space, in
which all normals, given the size of their confidence interval, are under the direct
influence of the radicals. Dark grey vertical lines indicate the existence and length
of a chain of direct or indirect influence of radicals on normals: Normals in the dark
grey area are directly influenced by the radicals. But the radicals’ influence does
not end there. A normal j outside that area is indirectly influenced by a normal i
inside the area of direct radical influence if |xi(t)− xj(t)| ≤ ε. Agent j, then, may
influence other agents k outside the area of direct radical influence with opinions not
further away than ε, and so forth. Figure 1 shows a far reaching indirect influence
of the radical group for the first 3 periods: The chain of radical influence pervades
the whole opinion profile, i.e. the radicals influence all normals. In period 4 that
chain breaks. An upper part of the opinion profile converges towards the radical
position. Below, the normals end up (obviously in finite time!) in a cluster. That
cluster is far away from the radical position R. However, compared to the dynamics
without the 5 radicals (see Figure 1 left) the lower cluster’s final position is shifted
in the direction of the radical position. Obviously indirect radical influence matters.

1.3. Charismatic leaders and constant signals in general. Charismatic lead-
ership has many forms. It may use all sorts of communication channels. To be
maintained, it may require continuous success (in terms of the given context). We
abstract away all these facets, except for one: a charismatic leader counts for nor-
mal agents, that are under his/her influence, much more than other normal agents.
Reduced to this effect, we do not need any further extension of the modified model;
a re-interpretation is sufficient: We consider a radical group with #R members as
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one person (a kind of ‘super agent’) that counts #R-times for normals, given the
charismatic leader is within their confidence interval. Thereby, the radicals’ group
size #R turns into a kind of degree of charismaticity. Since this (‘reduced’) type of
charismaticity is not bound to extreme positions, R may now be any value in the
interval [0, 1].2

The ease of this re-interpretation is an eye-opener. There are much more possible
applications of our conceptual model—once we look at it from a more abstract point
of view. We can formulate that abstract point of view in a certain language: the
language of signals. In that language the very essence of our framework is this:

1. Period by period there is a constant signal R ∈ [0, 1].
2. In each period the signal can be sent #R times; #R = 1, 2, . . . . We refer to

#R as the strength or intensity of the signal.
3. The signal is received by an agent i, if and only if the signal is within i’s

confidence interval, i.e. |xi(t)−R| ≤ ε.
4. If the signal is received by an agent i, then, in addition to all opinions of other

agents j ∈ {j
∣∣|xi(t)− xj(t)| ≤ ε} the signal counts in i’s updating procedure

according to the strength of the signal, i.e. #R-times.
5. Updating is averaging over all what counts.

The dynamics of opinions under the influence of a radical group or a charismatic
leader are instances of such a framework. But there are more. For instance, a group
of dogmatists: They stick to their opinion forever, but their opinion R need not be
an extreme opinion. Or a campaign: Using this or that channel of communication,
a message R is sent with this or that campaign intensity. In abstract terms, the
following is a study on the effects of a distance depending constant signal of a certain
intensity on an underlying BC-dynamics.

Our study has both, a rigorous analytical, and an experimental part, that is based
upon computer simulations. The analytical part consist of a theorem, the Constant
Signal Theorem, and its proof. The theorem says, that for any confidence level ε
and signal intensity #R, the system converges to a stable segregation of the normal
agents into those, who approach the radical position R, and a clustering in finite
time of all the other normal agents. The theorem is fundamental for what follows.
Since the theorem holds, each single run, shown in a figure above or below, is an
illustration.3 However, the theorem doesn’t say anything about the exact numbers
of normals, that end up at R—everything is possible, from none to all. Nor does it
say something about the cluster structure of all the normals, that ‘escape the signal’.
Though fundamental, we put the theorem and its proof in an appendix. The main
focus of this paper is on one decisive number : the number of normals that end up
at R. In terms of radicalization: Our focus is the number of normals that end up
radicalized. Since no rigorous analytical results are available, simulation will be
our method. To make the article a bit more vivid (and seductive), we describe and
present all results in the language of one of the application instances: an opinion
dynamics under the influence of a group of radicals. The transfer to other instances
is left to the reader.

2If R actually is an extreme value, our conceptual model can also be interpreted as covering a

situation of a radical group with a radical leader.
3For instance, figure 1: According to the Appendix, the chain of influence at period t is given

by the set J(t). Therefore, in figure 1, J(t) = I for t = 1, 2, 3 and J(4) is the upper part of
the opinion profile. Figure figure 1 illustrates the segregation as stated in the Constant Signal

Theorem, where J = J(4) and T = 4.
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Figure 2. Dynamics for 50 agents and a confidence level ε = 0.23.
Top: Random uniform start distribution. Bottom: Expected value
start distributions. For t = 0 the ith opinion is i/51.

There are other models, that study processes of radicalization (see [5] and the
follow-up studies), or the incremental establishment of charismatic leaders (see [2]).
Our approach differs: We take the group of radicals as given. Our model is extremely
simple. Basically we will be able, to compute for the whole parameter space the
number of finally radicalized normals. These numbers and the patterns therein are
macro effects. Our approach will allow, to lay bare in all detail the cogs and wheels,
working on an underlying micro layer, that – via surprising, but understandable
mechanisms – bring about all the surprising macro-effects. To get an understanding,
we go for simplicity—and that with the hope, to get ‘a feeling’ for what might go
on in the real world.4

In the next section we will explain the details of our simulation strategy. Section
3 will give a complete overview for the case in which the radicals hold the most
extreme position, i.e. R = 1.0. In section 4 we explore and explain the most
surprising effects, that we found in section 3. Section 5 shows what happens, if
R becomes less and less radical, and moves direction center of the opinion space.
In section 6 we draw conclusions, discuss and interpret our results under different
perspectives, and, finally, outline a research agenda.

4Our approach is very much in the spirit of what is called analytical sociology, or the study of

social mechanisms.
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2. The simulation strategy. It is very natural to think, that final numbers of
radicalized normals crucially depend upon the number of radicals compared to the
number of normals (hopefully the ratio), the confidence level ε, and the radicals’
position R. Under this working hypothesis, our model has only few parameters and
we should be able to answer our questions for major parts of the parameter space.
One possible simulation strategy, then, is the following—and it is the one we will
use: Let’s assume we have 50 normal agents and the most extreme radical position
that is possible, i.e. R = 1.0. Two parameters are left: The number of radicals,
and the confidence level ε. Now we put a grid on the two dimensional parameter
space: In 50 steps of size 0.01 the confidence level of normals increases from 0.01 to
0.5 on the x-axis. On the y-axis the number of radicals increases in 50 steps from
1 to 50 (then the group of radicals has as many members as the group of normals).
We run simulations for each of the 50× 50 parameter constellations 〈ε,#R〉. Once
a run has stabilized, we do the relevant statistics. A run is considered stabilized, iff
the opinion profiles X(t) and X(t+1) are almost the same. More precisely, we stop
a run if for all agents i it holds that |xi(t+ 1)− xi(t)| ≤ 10−5. As to statistics, we
will focus on one number only: the number of normals that finally hold an almost
radical position. And we consider a normal agent i’s opinion as almost radical iff
|xi(t)−R| ≤ 10−3.

2.1. Getting rid of randomness. The opinion and influence dynamics given by
the equation (2) is completely deterministic. But it seems to be clear, that, unavoid-
ably, at a certain point randomness comes into our simulation design: To find for
a parameter constellation 〈ε,#R〉 the number of finally radicalized normals seems
to require averaging over a sufficiently high number of repeated runs—and all the
runs will have to start with a random start profile, e.g. based upon a uniform
start distribution. – Natural as it is, we will not do that. For each of our 50 × 50
parameter constellations 〈ε,#R〉 there will be just one run, and that run will not
start with a random profile. All 50×50 parameter constellations will start with the
same very special, but in a certain sense ‘typical’ start distribution of n opinions
of the n normals (in our case always 50 normals): Let’s call an opinion profile an
ordered profile iff for all i ≤ (n− 1) it holds that xi(t) ≤ xi+1(t). In all runs we use
the specific ordered start profile X(0) for which

xi(0) =
i

n+ 1
,∀i = 1, ..., n (3)

holds. In such an ordered and equidistant start profile the ith opinion is exactly
there, where it will be at the average over infinitely repeated uniform random dis-
tributions of n opinions. Or in other words: Equation 3 gives the expected value of
the ith opinion of a uniform random distribution of n opinions. Consequently, it
also realizes the expected distances between neighboring opinions of such a random
distribution. We refer to that type of regular and equidistant start distribution as
the expected value distribution.

In our case with always 50 normals, the expected value start distribution implies
that for t = 0 the ith opinion is i/51. Figure 2, top, shows a dynamics starting
with a random uniform distribution of 50 opinions. Figure 2, bottom, is the cor-
responding dynamics based upon the expected value distribution for 50 opinions.
(The confidence level is in both cases ε = 0.23.)
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By using for all parameter constellations 〈ε,#R〉 the same equidistant start profile
X(0), we get completely rid of randomness: Nowhere in our simulation design is
any random element. Everything is deterministic.

On the one side, the expected value distribution is representative. On the other
side, the equidistant structure of the profile may make us blind for important effects,
that are caused by the variation of distances between neighboring opinions as they
are typical for random distributions. However, there is a major advantage of using
the expected value start distribution all the time: Imagine, we find in the grid
of 50 × 50 parameter constellations 〈ε,#R〉 some interesting effects, e.g. counter
intuitive (non-)monotonicities. Then, the exclusive use of the one expected value
distribution has a nice consequence: We can go straight into the unique single runs
that generated the perplexing macro-effect. And the inspection of these runs may
help to understand what is going on—at least that is the hope. Soon it will turn
out, that this hope is not an illusion.

The next section presents for the grid of 50×50 parameter constellations 〈ε,#R〉
the number of normals that ends up at the radicals’ position R. It is assumed that
R is the most extreme position, i.e. R = 1. But R may be less extreme. To get the
complete overview, we will therefore – in another section – use the same 50 × 50
‘grid approach’ to analyze the effects if the radical position (or more general: the
signal) R moves towards direction 0.5, i.e. direction center of the opinion space
[0, 1].

There are other models of radicalization. Normally they are more complicated
than ours (cf. e.g. [5], [2]). That makes a rigorous and in depth analysis difficult.
We go for extreme simplicity to get a complete understanding, including the micro
level that brings about the figures on the macro level, like, e.g. the numbers of
finally radicalized agents.

2.2. An enemy within: The floating point arithmetic. Before we can do,
what we plan to do, we have to realize and to remove a major technical obstacle.
Our computational tasks – time consuming, but in principle easy to solve for human
beings – may well be too difficult for a computer: To compute the BC-dynamics
requires – and that again and again – to decide questions of the type: Is |xi(t) −
xj(t)| ≤ ε ? The usual floating point arithmetic5 approximates real numbers. Only
a subset of real numbers can be exactly represented. The data format called “real” is
not really a continuum—it has holes all over. As a consequence, if agent j’s opinion
is exactly the upper or lower bound of agent’s i’s confidence interval, that may cause
a numerical error. Such an error is not only ‘theory’, it is reality: For xi(t) = 0.6,
xj(t) = 0.4, and ε = 0.2, the critical question is, whether or not |0.6 − 0.4| ≤ 0.2.
A question that a 10 years old child can answer—a computer program, that uses
the data formats called real, float, or double and then makes use of the built-in and
hard-wired floating point arithmetic may get it wrong ! It may well be the case, that
the answer to the question whether |0.6− 0.4| ≤ 0.2 differs from the answer to the
question whether |0.4− 0.6| ≤ 0.2. The numerical results of algorithms that in the
world of real real numbers are logically equivalent, may be different.

Figure 3, top, shows an obvious numerical disaster, produced by a NetLogo pro-
gram of the BC-dynamics. The dynamics starts with the profile

X(0) = 〈0, 0.2, 0.4, 0.6, 0.8, 1〉.

5The details are defined by the IEEE 754 standard.
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Figure 3. Dynamics for 6 agents and a confidence level ε = 0.2.
Top: Completely wrong trajectories. Bottom: Correct dynamics.
For t = 0 the ith opinion is i/(n− 1).

We assume ε = 0.2. Thus, the profile is an equidistant start profile in which ε
actually is the equidistance. Given that start profile, in the first updating step, no
opinion except for 0 and 1 should change. All other opinions xi(0) have exactly
one opinion above in their confidence interval, namely xi+1(0) = xi(0) + 0.2. Ad-
ditionally, below, the opinion xi−1(0) = xi(0) − 0.2 is in their confidence interval.
Trivially, we should have xi(1) = xi(0) in all these cases. But the program gets
it wrong for xi(0) = 0.4 and xi(0) = 0.6. Due to obvious arithmetical errors the
dynamics is corrupted by the very first updating step. The disaster is not a specific
NetLogo-disaster. Any programing language, that uses floating point arithmetic,
would get into trouble, though the errors may have another form.6

The disaster is caused by the fact that opinions are distributed in such a way that
most of them are exactly at the lower or upper bound of the confidence interval of
neighboring opinions above or below. In that situation a minor misrepresentation at
an order of magnitude of ≤ 10−12 may have consequences at an order of magnitude
of 10−1. In figure 3, top, it has: For the opinions 0.4 and 0.6 the program gets it
completely wrong and both change: 0.4 downwards, 0.6 upwards. Then in period
1 another error occurs in the lower segment of the profile where the lower cluster

6The Programming Guide of NetLogo is very explicit about these problems. It even shows the
example that for 0.1 + 0.1 + 0.1 one gets the result 0.30000000000000004. The problem is, that

most readers and programmers do not understand the possibly dramatic consequences of such

errors.
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of finally stabilized opinions starts to evolve. Given that the first error has already
happened, we now should have |x3(1) − x1(1)| = |x1(1) − x3(1)| = 0.2 = ε. As a
consequence, in the lower segment of the profile all opinions should be within the
confidence interval of all others. Therefore, in the next period the segment should
collapse into one opinion cluster, as it does in the corresponding upper segment
of the profile. But that does not happen in the lower segment. Instead, there is a
second numerical error of the same type as before: The two opinions x1(1) and x3(1)
at the lower or upper bound of each other’s confidence interval are not correctly
classified as within their respective confidence intervals. As a consequence, the three
opinions do not collapse into one single cluster in the next period.

These observations and considerations demonstrate an important point: Given,
we have an expected value start distribution according to equation 3, then in a
correctly computed dynamics there will always be a mirror symmetry with respect
to the horizontal line y = 0.5. However, the second numerical error in our example
above makes very clear, that mirror symmetry is only a necessary, but not a suf-
ficient condition for the numerical correctness of the computation: Without error
two, we would have mirror symmetry—but with a built-in error one.

Figure 3, bottom, shows the correct trajectories for our example. They are again
generated by a NetLogo program. But this time we use a computational trick:
All computations are based upon a confidence level ε that is infinitesimally bigger
than 0.2. The increase is sufficiently big, that the floating point arithmetic detects
correctly all elements that have to be elements of the sets I

(
i,X(t)

)
. At the same

time it is small enough to guarantee, that only these opinions are in the sets. In
short: By a slightly wrong ε, we get the right result.

Numerical errors caused by opinions right on the bounds of confidence, are fre-
quent. To see that, one can use what we call ε-diagrams. Their very essence is to
visualize for one and the same start distribution X(0) the effects of an stepwise
increasing ε on the final, completely stabilized cluster structure. Figure 4 is an ε-
diagram: On the x-axis there are increasing values of ε. They increase in steps
of 1/100 from 0 to 0.4. For each of the 41 ε-values the run starts with the same
expected value start distribution. We assume 49 agents. Thus, the ith opinion in
the start profile is always i/50. As an intended consequence we get, that, given the
specific step size of the increasing ε values, again and again, and often in numerous
cases, the start opinions of X(0) are right on the bounds of confidence of other
opinions. For each of the 41 ε-values we run the dynamics until it is stabilized in
the sense X(t + 1) = X(t). The y-axes of an ε-diagram is used to indicate the
final stabilized positions of the opinions in the run for the specific ε value. Since
opinions cluster, there are always much less than 49 such positions. What looks
like trajectories, are horizontal lines, that, step by step, connect the final positions
of the ith opinion for the stepwise increasing confidence level ε. Colors indicate the
ranks in the profile.

Thinking it through, it is easy to see: If X(0) is an expected value start distri-
bution, then an ε-diagram for that start distribution has to be completely mirror
symmetric with respect to y = 0.5. Additionally, for an odd number n of opinions,
there is always an opinion xi(0) = 0.5, the center opinion (with the rank 0.5·(n+1) ).
If a run is computed correctly, then the center opinion never changes: It starts at
0.5, and stays there forever—whatever the value of ε may be. In the ε-diagram in
figure 4 the center opinion is painted black. With the symmetry considerations in
mind, figure 4 reveals a major numerical disaster: The computations are correct for
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Figure 4. ε-diagram for an expected value start distribution with
49 opinions. Black : The final positions of the 25th opinion in the
middle of the ordered profile. Any deviation of the black line from
0.5 and any deviation from a mirror symmetry around 0.5 of the
whole diagram, is a sufficient condition, that numerically some-
thing somewhere went wrong in the computation of the underlying
unique single runs based upon a certain ε.

very small ε values, when – given the distance 1/50 between neighboring opinions
in X(0) – ε is so small, that no one is in the confidence interval of anyone else, and,
therefore, nothing happens. The computations may be correct for ε ≥ 0.21. But for
the huge ε range in-between, the computer got it badly wrong—and that for sure.
Bleak as it is, the floating point arithmetic is for the BC-model a kind of enemy
within.7

How, then, can we dare to do, what we plan to do? We plan, first, to use one
and the same equidistant expected value start distribution for all 50 × 50 〈ε,#R〉
parameter constellations. And, second, as to ε, we plan an increase by steps of
1/100. Isn’t that a recipe for disaster like the one above? Not necessarily, but we
have to be very, very cautious! Different from the disaster above, we will use an
expected value start distribution based on n = 50 (and not n = 49 as before). For
n = 50 we get an equidistance of 1/51 = 0.0196078431372549. Given that distance,
none of the 50 opinions in X(0) is for any ε = 0.01, 0.02, ..., 0.4 at the bounds of
confidence of any other opinion. That has consequences—and they are reassuring:
Figure 5 shows the ε-diagram for an expected value start distribution with n = 50.
As it seems, a perfect symmetry. Since n is an even number, there are now two
center opinions: x25 and x26, both painted black, and, again, both in perfect mirror
symmetry with respect to the line y = 0.5. Of course, as shown above, symmetry is
only a necessary condition. We can’t be perfectly sure that nowhere – maliciously
camouflaged by symmetry – the enemy within has done some numerical damage.
But, additionally, it seems (by visual inspection) that there isn’t any ε in figure 5
with a broken symmetry. We consider that as an indicator that the numerical risks

7Arguably there is no other model that is more vulnerable to that enemy: For n agents and
under the assumption, that it is not critical to find out that each agent i’s opinion is within

i’s confidence interval, the model still requires in each period n(n − 1) decisions of the type
|xi(t)−xj(t)| ≤? ε. A major fraction of them has the potential for disaster. – As to other models

cf. [17].
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Figure 5. ε-diagram for an expected value start distribution with
50 opinions. Black: The final positions of the 25th and the 26th
opinions. Mirror symmetry around 0.5 as a necessary, though not
sufficient condition for numerical correctness, seems to be fullfilled.

of our plan are sufficiently small.8 In the following we will take the remaining risk.
That it is there, should be kept in mind all the time.

3. Under the influence of most extreme radicals: An overview with some
surprises. Result of the computation of single runs for the 50 × 50 parameter
constellations 〈ε,#R〉 is an array of numbers. It is much easier to detect patterns
and structures in colored landscapes rather than in an array of numbers (even if
they are only integers—as in our case). Therefore (as a kind of phase diagram)
figure 6 shows, indicated by color, the number of normals that finally end up at the
radical position R = 1.0. For ease of reference, we refer by the capital letters A, B,
C, D, E, and F to certain regions of the parameter space, as they are partitioned
by the black lines (two vertical, one horizontal).

On the y-axes the number of radicals increases stepwise. Therefore, sudden
dramatic color changes in vertical direction are dramatic changes in the number of
radicalized normals that – ceteris paribus – are caused by just one more radical.
Correspondingly, a dramatic color change in horizontal direction is – ceteris paribus
– a dramatic change in the number of radicalized normals caused by a tiny increase
of ε by 1/100.

In the following we inspect region-wise our parameter space (discretised by 50×50
grid of parameter constellations 〈ε,#R〉). We start with the three vertical regions.
There our question is, how the number of normals that end up at the radical posi-
tion, depends upon the number of radicals. Then an inspection of the two horizontal
region follows. Our question there, is, how the radicalization of normals depends
upon confidence levels.

1. In the region F ∪C, i.e. a region with higher confidence levels ε, the number of
radicalized normals monotonically increases as #R increases. But for all ε <

8There are other strategies to fight the numerical problems caused by floating point arithmetic.
We could use the trick in figure 3. Random start distributions would minimize the problem
as well. But random start distributions would, then, require repeated runs for each parameter
constellations. For an understanding of all the strange effects, that we will find in the next chapter,

we could not directly go into the unique single runs that produced them. As a consequence,
understanding would become much more difficult.
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Figure 6. x-axis: the confidence level increases in 50 steps of size
0.01 from 0.01 to 0.5. y-axis: the number of radicals increases from
1 to 50. Colors indicate the number of normals that end up at the
radical position which is here assumed to be R = 1.0. The total
number of normals is always 50.

0.5, there is a sudden jump: One more radical, and the number of radicalized
normals jumps from none to all. Obviously there is an ε depending threshold
#∗R of radicals, such that, first, for that threshold no normal ends up at the
radical position, while, second, for #∗R + 1 all normals end up at the radical
position.

2. In the region E ∪B, i.e. a region with middle-sized confidence levels we find
jumps of all sorts and directions: In region E there are – again in vertical
direction – jumps from none to all: One more radical, and, instead of none,
all normals end up at the radical position R. But, additionally, in region
E and B there are jumps in the opposite direction: One more radical, and
instead of all, significantly less (about half of the normals, or even less) end
up radical.

By careful inspection of region E ∪B in figure 6 one can verify: With the
exception of one of the ε values (the exception will be discussed later), it holds
for the middle-sized confidence levels in region E ∪B:
(a) For all of them exists an threshold #∗R for none-to-all jumps.
(b) For all of them exists another ε depending threshold #∗∗R of radicals, such

that, first, for that threshold all normals end up at the radical posi-
tion, while, second, for #∗∗R + 1 significantly less normals become radical.
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Obviously, there is a second type jumps, now working into the opposite
direction.

(c) In region E the second threshold #∗∗R equals #∗R + 1. As a consequence,
two steps of adding just one more radical causes the dramatic change from
none to all, and then back to about half of the normals being radicalized.

(d) For the thresholds #∗∗R that are in region B, the jump from all to sig-
nificantly less comes later—but it comes: There is always a number of
radicals such that just one more reduces the number of radicalized nor-
mals from all to about less than the half.

There is one exception from observation (a) to (b): For step 28 on the
y-axis (ε = 0.28) there is a threshold #∗∗R , but no threshold #∗R. To be frank:
We do not know the reason. May be it is simply as it is—in the non-linear
BC-dynamics often minor differences matter. The missing threshold may
be a hint, that the exact position pattern of the thresholds #∗R is a more
complicated issue than it looks under our 50 × 50 grid of 〈ε,#R〉 parameter
constellations. A grid that is finer with regard to ε could give an answer. And
finally, bleak as it is: The missing threshold #∗R may be the consequence of
numerical problems that – despite of our precautionary measures – are still
there.

Leaving the one exception aside and summing up: E ∪ B, a region of
middle-sized confidence levels, is a region with sudden ups (from none to all)
and downs (from all to significantly less) radicalized normals. Along certain
lines in the parameter space the sensitivity to tiny changes is extreme. The
predominant phenomenon is, that the number of radicalized normals is not
monotonically increasing with an increasing number of radicals. Just one more
radical may lead to much less radicalization. In the more abstract language
of signals: Intensifying a signal that convinces too little, may convince even
less.

Even in the smooth non-red areas of region B the radicalization of normals
is clearly not monotonically increasing with regard to #R. On the contrary:
In the left part of that area the radicalization of normals is slightly decreasing
as the number of radicals increases.

3. The region D ∪ A is the region of smaller confidence levels ε. Again, for an
increasing #R, there are certain threshold values where jumps occur. But
they are not jumps from none to all. Nevertheless, they are jumps from none
to a significant proportion. In the right part of D the sudden increase is
more drastic than in the left part. Again there is a striking effect: Above
the jumps from none to a significant proportion, the number of radicalized
normals clearly decreases as the number of radicals increases. In the language
of another intended interpretation: In this part of the parameter space more
charismaticity attracts less normals to the position of the leader. The more
intensive campaign for R, convinces less and less of R. Or the other way
round: Less would have more effect.

4. Horizontally, i.e. with regard to #R, we distinguish two regions. There is
an upper region with a major number (or proportion) of radicals, the region
A∪B∪C. It is a region with always more than 10 radicals, i.e. a radical group
size of more than 1/5 of the number of normals, or, respectively, more than
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1/6 of the whole population.9 Given such a major #R, if ε increases, there
always exists a threshold ε∗ such that for ε∗ + 0.01 the number of radicalized
normals jumps from about 1/3 to all. The upward jumps are compatible with
monotonicity. However, careful color inspection of the area to the left of the
thresholds ε∗ clearly shows (especially clear for the middle sized confidence
levels in region B) that, with increasing confidence levels, #R – slightly and
smoothly – first increases, but then decreases (again slightly and smoothly).
In sum, for major numbers of radicals, as to the figures of radicalized normals,
there is no general monotonicity with respect to the size of their confidence
interval.

There are two regions in the whole parameter space, that behave very
smooth: the regions A and C. Both belong to the upper horizontal region
with a major number of radicals that we inspect right now. In region C,
i.e. for higher confidence levels, for any #R all normals end up radicalized.
In region A, i.e. for smaller confidence levels, it is the normals’ confidence
level that matters—not #R: The radicalization of normals increases as their
ε increases. In the bottom right area of A the number of the radicals has a
bit effect: The number of normals, that end up at R, slightly decreases as #R

increases.
However, a warning side remark: Figure 6 shows the number of normals

that become radical. We consider a normal agent i as “radical”,“radicalized”,
“ending up at the radical position” etc. iff |xi(t)−R| ≤ 10−3. Therefore, even
if #R has (almost) no effect on the number of – in this sense – radicalized
normals, it may nevertheless have (and often has) a major effect on the mean
or median opinion of the normals’ opinions, the cluster structure etc., which
we do not analyze here.

In region A and C the number of radicals has very little or no effect on
the radicalization of normals. In region B that is different, and #R seriously
matters: The exact location (though not the existence) of the threshold ε∗

depends upon the number of radicals: As they become more, the jumps occur
more to the right, i.e. they require higher confidence levels.

5. The lower horizontal region, i.e. D∪E∪F , is a region with minor numbers of
radicals (not more than 1/6 of the whole population of normals plus radicals).
In terms of jumps it is the wildest region: In E and F we find (as in B)
thresholds ε∗ such that for ε∗+ 0.01 the number of radicalized normals jumps
from less than a half or even none to all. But, additionally, there are values
ε∗∗, such that for ε∗∗+ 0.01 the number of radicalized normals jumps from all
to zero. The most striking point is, that in E both threshold values are hori-
zontally next to each other, i.e. ε∗∗ = ε∗ + 0.01. Obviously, the radicalization
of normals reacts in E, i.e. an area with both, a minor number of radicals
and a middle-sized confidence level, extremely sensitivity with regard to both
initial conditions, the confidence level and the number of radicals.

However, there is again a conspicuity in area E, now in vertical direction:
For all #R > 2 except for #R = 6, 7, 8 there exists a threshold ε∗ (as defined
above). Again we do not know the reason. The same considerations, as
mentioned above in the corresponding case for ε = 0.28, apply (see the second
observation).

9If one counts the cells up to the horizontal line, the result is 10. Note: The y-axis’ origin is 1
(and the x-axis origin is 0.01).
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In area D we find for an increasing ε a lot of jumps in both directions: from
some to none and from none to some. The jumps are less dramatic than in
region E, but they are there. For a description one might introduce thresholds
that correspond ε∗ and ε∗ but have reduced requirements.

To sum up, with respect to the confidence level, the whole region D∪E∪F
is a region of non-monotonicity, jumps up and jumps down.

What are the main results of our inspection? There are two ‘smooth’ areas
in the parameter space, the areas A and C. But in all other areas we find the
thresholds ε∗, ε∗∗, #∗R, and #∗∗R (in D we observe corresponding thresholds with
reduced requirements). We can draw a line through the parameter constellations
that are ε- or #R- thresholds of the defined sort. To account for details that we may
have missed by the discretization of ε, we draw the line with a pen, that is not very
much sharpened. As to the two cases of conspicuity, we do some interpolation. And
we draw the line ‘by hand’, meaning using a graphics program, but without any
numerical calculation of the line. The result is given in figure 7. The thick white
lines indicate, where in the parameter space – and that in a completely deterministic
dynamical system – the number of radicalized normals is highly sensitive to the
initial conditions, either ε, or #R, or both. (In other words: The line displays,
where in the parameter space the so called butterfly effects occur.) If extremely
high sensitivity to initial conditions is the hallmark of chaos, then it is clear: Along
the thick white lines we face chaos. We will call these lines sensitivity-lines.

Let’s call a region of our partitioned 〈ε,#R〉-parameter space wild iff, first, we
have in that region a non-monotonicity (both, decreasing and increasing) with re-
spect to one or both parameters, and, second, the region is pervaded by a sensitivity-
line. Under that definition we can distinguish two wild regions: In vertical direction
the region E ∪B, a region of middle-sized confidence levels; in horizontal direction
the region D ∪ E ∪ F , a region of comparatively small numbers of radicals.

For all regions, wild or not, immediately “Why is it, that ...?”- questions arise.
Why is it, that in region C neither the number of radicals, nor the confidence
level has any effect on the number of radicalized normals? Whatever the specific
parameter constellation in that region, all normals end up radical—but why? Why
is it, that in region A, a region where the number of radicals is above 1/6 of the whole
population, radicalization of normals is not very much influenced by the number of
radicals. Obviously, it is the confidence level of normals that matters—but why?

In the following we will not answer question about the smooth regions. We will
focus on the wild ones. We will make expeditions into the vertical and the horizontal
wild region and try to understand, how ‘in the deep’ some completely deterministic
mechanisms create the wild ‘radicalization landscape’, that figure 6 displays.

4. Expeditions into the wild parameter regions. It now comes to the point,
where our approach starts to pay off: First, we computed one and only one run for
each of our 50 × 50 grid of parameter constellations 〈ε,#R〉. Second, each of the
50× 50 runs started with the same expected value start distribution of 50 normals,
distributed in the opinion space according to equation (3). That approach (strange
as it may look at first glance) has two consequences: First, whenever we want to
understand what causes certain effects in our radicalization landscape, we can go
into unique single runs. No statistical analysis of 100 or so randomly started runs is
necessary. Second, since, additionally, all the single runs start with the same start
distribution of normals, we can, by comparison of single runs, on the level of single
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Figure 7. Thick and curvy white line: The sensitivity-line.
Dashed white lines: Route of the northern and eastern expedi-
tion into the wild parameter space regions. Black numbers in the
landscape: Positions of the explananda, that we discuss in chapter
4.

agents directly observe the effects of changes of ε or #R. Especially, if we inspect
single-run-sequences of small stepwise changes, we directly observe the working of
the ‘forces in the deep’ that generate the surface of our radicalization landscape—
and that should be a good starting point for an identification and understanding of
the mechanisms that bring about the puzzling landscape.

In the following we will go on two expeditions into the wild regions of our pa-
rameter space: One direction north in E ∪ B, one direction east in D ∪ E ∪ F .
The dashed white lines in figure 7 are our routes. In both directions we will try to
understand, at least, to get a feeling for the mechanics underneath.

4.1. Expedition 1: Going north in E∪B. Our first expedition starts at ε = 0.31.
It goes direction north. The vertical white dashed line is the route, on which we will
cross two sensitivity lines. For each of the points that we pass on the 50×50 grid of
〈ε,#R〉 constellations, we have unique single runs with the same start distribution.
50 periods turn out to be sufficient to know the final stabilized pattern and the
number radicalized normals therein. Therefore, we can generate a sequence of 50
pictures, one for each 〈ε,#R〉 constellation that we pass. Each of the pictures
displays the trajectories of all 50 agents. The time scale on the x-axis is always the
same: 50 periods. Going strictly north implies, that ε is kept constant. Therefore,
whatever is changing in the sequence of pictures, it is the consequence of one factor
only: the number of radicals.
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Figure 8. Explanandum 1. Bottom #R = 10. Top: #R = 11.
ε = 0.31. One more radical causes a jump from none to all of the
normals ending up at the radical position.

It is easy to visualize the effects of an increasing #R by an animation. In this
article we do not have the space to show the pictures for all #R on the route north.
But we can show, what is going on underneath, when we pass the sensitivity-lines—
and especially these passages ask for explanation.

Figure 8 displays the first explanandum: The jump from none to all normals be-
ing radicalized, if the number of radicals increases from 10 to 11. For an explanation
we start in figure 8 bottom, i.e. the dynamics under the influence of 10 radicals. As
the dark grey vertical lines indicate, there is up to period 7 (we start with period
0) a chain of direct or indirect influence of the 10 radicals even on the most distant
normals. Soon 3 opinion clusters emerge among the normals. The cluster in the
middle functions as a bridge between the upper and the lower cluster. The upper
cluster is in the dark grey area of the opinion space, and that is the area of direct
influence of the radicals. Thus the upper cluster of normals is a bridge between
the radical group and other two clusters of normals, which, period by period, move
direction R. But that works only for a while: As the lower cluster of normals moves
upward, at a certain point the upper normal cluster has both, the middle and the
lower cluster within its confidence interval. Their combined influence on the upper
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cluster is strong enough to pull the upper cluster completely out of the area of di-
rect influence of the radicals. The consequence is, that no bridge between radicals
and normals exists any longer. However, the radicals had an effect on the normals:
Without radicals the normals would end up at a 0.5-consensus. With 10 radicals
(1/5 of the number of normals, 1/6 of the whole population) it is about 0.64.

Now we add just one radical, analyze the trajectories in figure 8 top, and compare
it with what we see in figure 8 bottom: With the one more radical, again, the three
clusters of normals evolve. However, it takes a few periods more until the upper
cluster gets under the direct influence of both clusters below, which, therefore, both
are moving direction R a bit longer, before, then, that period comes. When it
comes, the upper cluster makes – as in the case with one radical less – a steep move
away from the radical’s position. But different from the case with #R = 10, the
upper cluster does not get out of the area of direct influence of radicals. From that
moment onwards everything is lost: Though now further away from the radical
position, the upper cluster continues to function as a bridge between all other
normals and the radicals. After two more periods the bridge isn’t necessary any
longer: Now all normals are under the direct influence of the radicals—and that
is a point of no return: From now on (and as one cluster) all normals irreversibly
move and converge – though in infinite time – to the radical position.

The inspection of the underlying dynamics resolves the puzzling effect in the
radicalization landscape: The sudden jump from none to all at the sensitivity-line
is due to what we might call a positive bridging effect : For #R = 10 a cluster evolves
that for a while functions as a bridge between the radicals and all other normals.
But then the bridge breaks down and, additionally, the upper cluster gets out of the
area of direct radical influence. For #R = 11 the bridge to the radicals continues to
function until it becomes superfluous. The functioning of the bridge is critical and
accounts for the difference between none or all of the normals ending up radical.

Figure 9 displays the second explanandum: The sudden drop down from all
normals being radicalized to only 1/3, and that by increasing the number of radicals
from 13 to 14. We start our analysis in figure 9, bottom. What we see there, is very
similar to figure 8, top. Based on what we saw there, we understand the positive
bridging effects that are (still) at work in the dynamics in figure 9, bottom. But
the one more radical in figure 9, top, causes dramatically different trajectories: the
middle cluster of normals (blue in color) is somehow ‘blown up’: One of the ‘former
members’ joins the upper cluster, all others join the lower cluster. For some periods
the radicals still influence even the most distant normals. But there is no evolution
of a bridging cluster in-between the two clusters of normals. The distance between
the two clusters enlarges. As a consequence, the radicals’ chain of influence breaks
and becomes very short afterwards. More than 2/3 of the normals form a cluster
at about 0.45, i.e. even slightly lower than the center of the opinion space.

Decisive for the sudden jump downwards is, that the one more radical causes a
rupture in a segment of the normals’ opinion profile that, without the additional
radical, would have become a bridging cluster. – Obviously, there are not only
positive bridging effects. In our explanation of the second explanandum a negative
bridging effect is at work: Under one more radical a former bridge to the radi-
cals ceases to exist. And that causes a dramatic reduction in terms of radicalized
normals.

We can’t analyze here the details of the mechanics, that works underneath the
radicalization landscape on our route further north, i.e. once we have passed a
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Figure 9. Explanandum 2. Bottom: #R = 13. Top: #R = 14.
ε = 0.31. One more radical causes a jump down from all to less
than one third of the normals ending up at the radical position.

second time a sensitivity-line. Only so much: The number of radicalized normals
goes up to a maximum of 19, fluctuates for a while between 18 and 19, and ends
for #R = 50 with 18 radicalized normals. All explanations of these figures, their
small range, and their fluctuations, they are all about the details of how the blue
cluster, that for #R = 13 functions as a bridge between the upper and the lower
cluster of normals (see figure 9, bottom), is ‘blown up’, disassembled, and ruptured
into pieces, if we add one more radical, and another one, and so forth.

4.2. Expedition 2: Going east in D ∪ E ∪ F . Our eastward expedition into
the wild region D ∪ E ∪ F starts at #R = 5. The horizontal dashed line in figure
7 is the route. Going strictly east, implies, that the number of radicals is kept
constant. Whatever is changing now, it is again the consequence of one factor only:
the normals’ confidence level ε. As a consequence, further east in the region, the
direct influence of radicals reaches further down in the opinion space. The region
is pervaded by sensitivity-lines. Three times we pass them. Again we will focus on
the mechanics, that is working underneath there, where we pass the lines. In the
subsection above we had two explananda; now we get three three more.
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Explanandum 3 are the sudden jumps for ε = 0.16, 0.17, 0.18: As ε increases by
a tiny 0.01, the number of normals that end up radical, drops down from 13 to zero.
If ε increases by another 0.01, then that number jumps up to 28, i.e. more than
1/2 of all normals. Figure 10 shows the unique single runs that cause the butterfly
effects.

For an explanation we start with the trajectories in figure 10, bottom, i.e. the
case ε = 0.16. Three clusters of normals evolve from the start distribution. Only
the upper cluster converges to the radical position. The chain of radical influence
breaks twice. First the 5 radicals loose their influence on the lower cluster. Then,
one period later, they loose their influence on the cluster in the middle. With an
ε = 0.17 the radicals, again, soon loose their influence on the lower cluster, but
they continue to influence that segment of the opinion profile, from which before
the cluster in the middle evolved. In-between the upper and the former middle
cluster two more cluster evolve. The upper cluster functions as the decisive bridge
between the radicals above and three clusters of normals below. The 5 radicals
are about as many as the members of the cluster of normals, that evolves right
below the upper cluster. For a while that is – given the confidence level – the only
cluster of normals with an influence on the upper cluster. For a while the upward
and downward forces, that pull on the upper cluster and the cluster right below,
are equally strong. As a consequence, both clusters move almost horizontally. But
nevertheless, both are decisive bridges in the chain of radicals’ influence on normals.
At the same the two lower clusters, that still are under the influence of radicals,
move upwards, join, and become a cluster of a major size. One period later the
upper cluster, that still is a decisive bridge in the chain of radical influence, gets into
the confidence interval of the joint lower cluster, which, therefore, makes a steep
upward move. But confidence is a symmetric matter. As a consequence, the upper
cluster makes a steep downward move. By that move the upper cluster leaves the
area of direct influence of the radicals. The decisive bridge for the radicals’ influence
ceases to exist. Instead of 13 as before, none of the normals ends up radicalized.
Without any radicals, the normals would have ended up in three clusters. With a
group of 5 radicals, they end up polarized.

If ε increases by another 0.01 the cluster, that is second from above, gets early
under an ongoing direct radical influence, moves upward, and pulls the two clusters
below upward as well. Again, all clusters in the upper segment join. But under
the increased ε that happens now in the region of direct radical influence. As a
consequence all 28 members of the upper segment end up radicalized.

Explanandum 4 are the sudden jumps for ε = 0.26, 0.27, 0.28: For an increasing
ε the number of finally radicalized normals jumps from 22 to all and than to zero.
Figure 11 shows the underlying sequence of single runs. For ε = 0.26 the chain of
radical influence breaks in period 8, when the one agent, that before was a bridge
to the evolving upper cluster, joins the lower cluster. For ε = 0.27 exactly that
agent forms together with his next neighbor above a cluster, that is a bridge to
the upper cluster of normals, which itself is a bridge to the radicals. All normals
finally join into one cluster. They do that in the area of direct radical influence.
Figure 11 shows the dynamics up to period 50. It will take some more time until
all normals have become radicalized. But the point of no return was passed long
before and they all converge to R. In all three runs in figure 11 the upper cluster
in the first periods predominantly moves downward, away from R. For the ε values
0.26 and 0.27 that downward movement is stopped and then reversed. For ε = 0.28
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Figure 10. Explanandum 3. Bottom ε = 0.16. Middle: ε = 0.17.
Top: ε = 0.18. In all runs #R = 5. A tiny increase of ε has major
effects.

that does not work any longer: The tiny increase of ε makes the pull downward
the stronger force. As a result the upper cluster leaves the area of direct radical
influence. Thereby the decisive bridge to the radicals ceases to exist and none of the
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Figure 11. Explanandum 4. Bottom ε = 0.26. Middle: ε = 0.27.
Top: ε = 0.28. In all runs #R = 5. A tiny increase of ε has major
effects.

normals ends up radicalized. It is remarkable how little impact the 5 radicals have
on the final consensus of the normals: Without any radical it would be a consensus
at 0.5; with 5 radicals it is about 0.58.
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Figure 12. Explanandum 5. Bottom ε = 0.42. Top: ε = 0.43. In
both runs #R = 5. A tiny increase of ε has major effects.

Explanandum 5 is the sudden jump from none to all for the ε-values 0.42 and 0.43.
Figure 12 shows the single runs. In both runs, due to their now very high ε-values,
all 50 opinions are very soon very close to each other. Though a bit compressed, we
can again distinguish and observe several evolving clusters. The upper one makes a
steep move downwards in both runs. For ε = 0.42 the upper cluster leaves the area
of direct radical influence in period 3 by a tiny margin. But the effect is major: The
bridge to the radicals is broken. For ε = 0.43 the upper cluster is kept, again by
a tiny margin, within the area of radical influence, that now reaches a bit further
down. The sudden and sharp change to an upward movement of the upper cluster
in period 3 is an interplay of two factors: First, due to the very high ε-value, all 50
opinions are already very close to each other. Therefore, second, the relative impact
of the 5 radicals, which directly influence the upper, but not the lower cluster, is
high. Kept in the area of the radicals’ direct influence, the upper cluster continues
to function as a bridge to the radicals. Soon after that bridge becomes superfluous:
all normals are in the area of the radicals’ direct influence. As in figure 11, middle,
in period 50 of figure 12, top, the normals do not yet count as radicalized in the
technical sense that |xi(t)−R| ≤ 10−3. But soon they will.
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Further east, for even higher ε-values, it is basically the same as for ε = 0.43:
For a while the upper cluster is a bridge between all other normals and the radicals.
Once all normals have passed the point of no return, and entered the area of direct
radical influence, the bridge becomes superfluous.

What carry we home from our expeditions? At five locations in the radicalization
landscape we dissected the cogs and wheels, that – working in the depth – bring
about the puzzling surface structure. We laid open and made visible the micro
layer. At each location we gave an explanatory sketch for the macro effects right
there. What are the lessons? The most important are these:

1. A prominent role in all explanations of sudden jumps of the number of finally
radicalized normals have bridges from normals to radicals. They require, as a
kind of pier, normals (cluster or single) that, given a confidence level ε,
(a) are themselves inside the area of direct radical influence,
(b) are within the confidence interval of other normals, that are outside the

area of direct radical influence.
Let’s call such bridges “type-R bridges”. They are decisive for any influence
of radicals outside their limited area of direct influence (which is determined
by the normals’ confidence level). Type-R bridges allow for indirect influence
of radicals on normals.

There is a second type of bridges, bridges from normals to normals. They
require (again as a kind of pier) normals (cluster or single), that, given a
confidence level ε,
(a) are themselves inside the confidence interval of at least two other normals

(cluster or single),
(b) that themselves are outside each other’s confidence interval.
Let’s call this type of bridge “type-N bridge”.

What we have seen, then, is, that via an uninterrupted chain of bridges,
starting with a type-R bridge and then prolongated by a number of type-N
bridges, the radicals may have an influence even on normals that are far away
from the radical position. But, except for the group of radicals, the piers of
our bridges can move over time—and that may destroy a bridge, whether of
type-R or type-N . At the same time new piers for new bridges may evolve.
Lesson: Understanding the radicalization landscape is an understanding of
types, evolution, and breakdown of bridges in a dynamical network.

2. The probably most striking puzzles are sudden jumps down from all to none,
or significantly less radicalized normals—and that caused by an increasing #R

or ε. Such jumps occur in the explananda 2, 3, and 4. In explanandum 2 the
effect is due to one more radical; in explanandum 3 and 4 it is due to a tiny
increase of ε.

In explanandum 2 the one more radical causes a pull upwards, that, via a
type-R bridge, disrupts a former and essential type-N bridge. The movable
pier of the type-N bridge moves steeply directions R. Thereby the bridging
capacity, given by ε, is over-streched, and the type-R-bridge breaks down
(see figure 9). In explanandum 3 and 4 – cases with increased confidence
levels – it is different: The increased confidence level is sufficient to pull the
movable pier of the type-R bridge out of the area of direct radical influence.
And that means: breakdown as a type-R bridge (see figure 10, bottom and
middle; figure 11, middle and top). Obviously, the additional radical and
the increasing ε damage an otherwise functioning chain of bridges in different
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ways. There is a reason behind: An increasing number of radicals causes a
stronger pull upwards. What an increasing confidence level does, is directly
visible in the ε-diagram 10 shown in figure 5—exactly our case of 50 normals,
but without radicals, i.e. without an upward pull: Obviously an increasing
ε causes a stronger contraction direction center of the opinion space. The
upper half of the opinion profile is pulled downwards, the lower half is pulled
upwards. But note (and that makes understanding often difficult): The two
forces are interlinked : ε controls the strength of the contracting force, but it
also controls what is in the direct reach of the force pulling upwards, whatever
the strength of that force may be.

An increasing number of radicals may have the effect, that the upward
pull disrupts piers of type-N bridges and/or attracts too fast the pier of a
type-R bridge. An increase of ε causes a stronger contraction. That may
sweep along a former pier of a type-R bridge, and the former pier gets outside
the area of direct radical influence. In both cases the breakdowns of bridges
depends upon thresholds. Therefore they are sudden events. In both cases
the breakdown of bridges may stop the radicals’ influence on major fractions
of normals. As to the numbers of radicalized normals, even jumps from all
to none are possible. Lesson: We can explain the sudden jumps downward in
terms of effects on type-R and type-N bridges in an opinion profile, that is
exposed to two interlinked forces, that get stronger: the first pulls upwards,
the second contracts the range of the profile. If the forces get stronger, they
may destroy decisive bridges of influence.

3. Sudden jumps upwards is another puzzling effect. Such jumps occur in the
explananda 1, 3, 4, and 5. In explanandum 1 the effect is due to one more
radical; in explananda 3 to 5 it is due to a tiny increase of ε. In explanandum
1 the pier of a type-R bridge is no longer pulled downwards outside the area
of direct radical influence (see figure 8). In explanandum 3 it is the same (see
figure 10, middle and top). In explanandum 4 the tiny increase of ε lets a
type-N -bridge evolve (see figure 11, bottom and middle). In explanandum 5
the pier of a type-N bridge no longer leaves the area of direct radical influence.
Lesson: Obviously we can explain the sudden jumps downwards in terms of
effects of the interlinked forces for type-R or type-N bridges. If the forces get
stronger, bridges that before broke down, may keep functioning, or piers for
new bridges may evolve.

That are some lessons. Many questions are left open, for instance with regard
to the special shape of sensitivity-lines. To answer them will require further future
expeditions into the wild region of the parameter space.

5. If R moves direction center. So far we assumed that R = 1.0. What, if the
radical position is less radical, or, as a kind of limiting case, even in the center,

10ε-diagrams are a powerful instrument to better understand the effects of an increasing ε for
a given start distribution. Using that instrument, one can easily proof by example the following

proposition: Given arbitrary start profiles of a BC-dynamics, it is not generally true, that the
final range of the profile or the final number of clusters monotonically decreases as ε increases.
– Often it is true, but sometimes not. It is possible, that we get consensus for a certain ε, and
then polarization again for a slightly bigger ε—and that pattern can go on several times, until,
above a certain ε-threshold, the final result is always consensus. It is easy to find such examples

for expected-value start distributions. But they exist as well for random distributions. The
proposition refutes a belief and intuition that is very common.
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i.e. R = 0.5? Probably such a position would no longer count as “radical”. But
recall, that the formal description of our model allows for different interpretations—
radicals and radicalization processes is only one. Other interpretations regard a
charismatic leader, a groups of dogmatists, campaigning and advertising of all sorts,
in short: anything, where a constant signal, with this or that intensity, influences
an ongoing opinion dynamics driven by the BC-mechanism.

A very natural way to get an overview, is, to do for all values R = 1.0, 0.99, . . . ,
0.5, what we have done above for R = 1.0. As a result we get 51 phase diagrams of a
type as we know it from figure 6. The sequence of phase diagrams can be visualized
by an animation, that – it is a pity – we can’t show here. However, figure 13 shows
the phase diagrams for R =1.0, 0.95, 0.9, 0.8, 0.65, 0.5.

By careful visual inspection of the sequence it becomes clear:

1. As the radical position (or: the signal) R moves direction center of the opinion
space, both, the horizontal and the vertical wild region, shrink. The horizontal
wild region finally (i.e. for R ≤ 0.65) disappears completely. From the vertical
wild region E ∪B, a very narrow vertical stripe of middle sized ε-values is left
(the remains of region B, nothing is left from E). There one more radical (or:
an increase in the intensity of the signal by one unit) causes a sudden jump
down in the numbers of radicalized normals (or: normals convinced by the
signal).

2. As R moves direction center, the landscape is more and more vertically struc-
tured, i.e. more and more it is the size of ε, that really matters—whatever the
number of radicals (or: the intensity of the signal).

3. The landscape becomes more and more monotonic. The number of radicalized
normals (or: normals convinced by the signal) is more and more monotonically
increasing with respect to the confidence level ε. With respect to #R (the
number of radicals or the intensity of the signal) the number of radicalized
(or: convinced) normals is finally decreasing in a narrow vertical stripe of
middle-sized epsilon-values and constantly low to left, or constantly 50, i.e.
all normals, to the right of that stripe.

4. As R moves direction center, the landscape is finally shaped by a big jump
that happens along a more and more vertical line for ever smaller confidence
levels ε.

All these observations ask for explanations. There is reason to believe, that all
explanations can be found by the type of exploration and analysis, that we did for
R = 1. But we can’t do that here.

6. Conclusions and perspectives. This paper investigates the impact of a con-
stant signal R on a group of agents (‘normals’) who interact by bounded confidence.
None of the agents does influence the signal, that constantly has the value R. But
the signal has a direct influence on agent i at time t, iff |R − xi(t)| ≤ ε. Thus,
the signal is only ‘heard’ directly, if it is not too far away; the signal has a distance
depending direct effect. The signal comes with a certain intensity: if it is sent simul-
taneously #R times in t, then it is #R times in the set I(i,X(t)) of an agent i who
is under its direct influence, i.e. not too far away. – This is an abstract description
in terms of signals. More concrete interpretations can be given in terms of radical
or dogmatic groups, charismatic leadership, campaigning, or advertising. That are
different interpretations—the formal model is always the same.
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Figure 13. R moves direction center of the opinion space. Top
row: R = 1.0 (left), R = 0.95 (right). Middle row: R = 0.9 (left),
R = 0.8 (right). Bottom row: R = 0.65 (left), R = 0.5 (right).
x-axis: the confidence level ε increases in 50 steps of size 0.01 from
0.01 to 0.5. y-axis: #R, i.e. the number of radicals, increases from
1 to 50.

We analyzed in detail the combined effects of the intensity of the signal, the
size of the confidence interval, and the position of the signal. The main result
for a signal R at the upper bound of the opinion space (‘a radical position’) is:
The parameter space has wild regions. In the region of low signal intensity (small
values of #R) and in the region of middle sized confidence levels, the number of
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agents, that end up at the signal’s position, depends highly sensitive on the specific
confidence/intensity combination 〈ε,#R〉. Tiny increases/decreases in one or both
dimensions, and the numbers jump up or down dramatically—even from all to none
or none to all. The intersection of low signal intensity and middle sized confidence
intervals, is especially wild.

We laid open and made visible the micro layer that generates deterministically
the puzzling macro effects. They can be understood. It is an understanding of a
dynamical network in terms of certain types and chains of bridges, their evolution,
and their sudden breakdown under different forces that pull on their piers.

Under the perspective of intervention and control (cf.s [9], [18]), the results may
illustrate, why both, policies to convince people, and policies to prevent people from
getting convinced, often fail badly. Suppose a radicalization dynamics as above is
going to start. There is a social planner, who, within certain and possibly narrow
limits, can increase or decrease both, the normals’ confidence interval, and the
number of radicals. The radical position can’t be changed and is R = 1.0. The
social planner has perfect knowledge about the landscape of figure 6 and wants
to minimize the number of finally radicalized normals. What should the planner
do? If the planner knows the position of his actual society in the landscape, then
the task is easy. Obviously, there are constellations 〈ε,#R〉 where increasing the
number of radicals would be the best policy to fight radicalization of normals. At
some locations in the parameter space an increase of ε, at others a decrease would
be best. And in some parts of the parameter space the social planner would give
up—nothing would help. But that is not the typical epistemic situation of a social
planner. The normal epistemic situation is, that the planner has only a rough
knowledge where the actual society is located. If it is in the wild regions, then
the prospects are bleak: Tiny differences may matter and decide about extreme
success or extreme failure. Without knowledge of the exact position of the actual
society, it is easy to fail, while, at the same time, success is not due the planner’s
expertise—it is just luck in lottery. – The transfer of these types of considerations
to other interpretations of the model is easy. A campaigner, for instance, who
wants to maximize the number of convinced agents, and now has to decide about
the intensity with which he sends a certain signal (his ‘messages’), may face a very
difficult task.

In our analysis the signal has a distance depending direct effect: It is ‘heard’ only
by agents with opinions not too far away. But one could think of a receptivity for,
and, therefore, an influence of the signal independent of the distance to the signal.
Some or all of the agents have that receptivity. Again the signal is a constant. The
effects of such a mechanism was studied in our paper [11]. The decisive equation
is (4): An updated opinion is a convex combination of two components. The first
component is the distance independent attraction of the signal. It is determined by
a weight αi with 0 ≤ αi ≤ 1. The second component with the weight (1−αi) is the
usual BC-opinion dynamics. Agents i with an αi > 0 are attracted by the signal.
In agents with αi = 0, only the usual BC-driven dynamics is at work.

xi(t+ 1) = αi ·R+ (1− αi)

 1

#
(
I
(
i,Xt)

) ∑
j∈I
(
i,X(t)

)xj(t)
 . (4)

In [11] we interpreted R as the true value in the opinion space. αi represented in
a summary way agent i’s capabilities as a truth seeker. Under that interpretation
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we ‘told a story’ about the chances of a society to get to the truth, if the truth is
R = 0.1 (radical), 0.3, or 0.5 (center), the frequency of truth seekers is 10, 50 or
90 percent, the quality of truth seekers is αi = 0.01, 0.02, ..., 1.0, and the confidence
levels are ε = 0.01, 0.02, ..., 0.4. Different from above, the start distributions were
always random. The truth seeker status was randomly assigned. The main lesson
was: Wherever the truth is located, whether there is a tiny minority or even an
overwhelming majority of truth seekers, under suitable values for the confidence
level and the strength of the attraction of truth, the whole society will end up with
a consensus on the truth. However, if the truth seekers are ‘too good’ and converge
too fast in the direction of the truth, they may leave behind them – and often far
distant from the truth – major fractions of their not truth seeking fellow citizens.

That is a nice result under a nice interpretation of equation 4. But there are
others—some of them not nice at all : Equation 4 could be interpreted as modeling
a campaigning or advertising context, in which a campaigner can manipulate the
frequency of receptive agents and/or the strength with which receptive agents get
the signal. Another interpretation could be a context of conspiracy : There is a
group of agents which all have the opinion R. They are not very much. But
they want to become more: all should belief that R. They agree, not to reveal
their true opinion. Instead they assign to each group member a randomly chosen
start opinion, that the member then will pretend to have. Finally the accomplices
agree upon a joint or individual αi, that they will apply period by period in the
ongoing infiltration process. – Under that interpretation the translated main lesson
says: Under a lot of circumstances the conspiracy would work—at least in the BC-
model-world. (Probably some real-world agents, or “merchants of doubt” know that
since long (see [16]). Real-world citizens should know it as well.)

These re-interpretations of our old results, the other way round, suggest a further
interpretation of our new results about distance dependent signals: it is an inter-
pretation in terms of truth approximation. Under that interpretation, the model
might be about a scientific community under the direct influence of the truth, but
embedded in a society of others, more distant to the truth, while an ongoing ex-
change allows for an indirect influence of the truth. If such an interpretation (or
an interpretation close by) makes sense, then the translation of our ‘radicalization
story’ into the truth-approximation context, is a contribution to social epistemology.

If one compares our results about the distance depending influence with our
earlier results about a distance independent influence of a constant signal, then
there is one main impression: In the distance depending case the radicalization
landscapes are wild for extreme values of R. In our earlier analysis of a distance
independent influence of a truth-signal, there are corresponding landscapes that
show the final root mean square deviations of all opinions with respect to the truth-
signal. But whatever the specific value of the truth-signal, the landscapes are always
very smooth (though not plane). Of course, a landscape, that shows the final
numbers of agents that end up with opinions equal to the signal, is not the same
as a landscape showing the root mean square deviations of opinions with respect to
the signal. But if the former is wild, and the latter smooth, then we have a strong
indicator, that distance depending and distance independent influence of a constant
signal work very different. – With that indicator a question comes up: If so, how
and why do they differ so much? We do not know the answer—not yet.

Finally, as to the perspectives for rigorous proofs: There are many other rele-
vant ways a constant signal can influence agents. For example, instead by positive
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integers, one may express the intensity of the signal by any positive number (and
correcting the averaging correspondingly). In the distance independent case, the
intensity is nonnegative constant depending on i only. Using different methods,
this case has been delt with already in our earlier paper [11]. Generalizations were
proven in [14] and [4]. Or, the intensity is neither constant nor dependent on dis-
tance but dependent on time. The interesting question then is, whether for the
above cases also a segregation as in the Constant Signal Theorem does hold. This,
actually, can be proven under quite natural assumptions in a way similar to the one
in the Appendix. This, however, is the task for a subsequent paper.

Appendix. As before let I = {1, 2, . . . , n} be the set of normal agents. For sim-
plicity let the group of radicals consist of just one radical r (see the remarks below)
and let I∗ = I ∪ {r} the set of all agents. For i ∈ I let I(i,X(t)) = {j ∈ I∗ |
|xi(t)− xj(t)| ≤ ε} and for j ∈ I∗

aij(t) =
1

#
(
I(i,X(t))

) if j ∈ I(i,X(t)) and aij(t) = 0 otherwise.

Then the interaction among agents is for t = 0, 1, 2, . . . given

for i ∈ I by xi(t+ 1) =
∑
j∈I∗

aij(t)xj(t)

and for i = r by xr(t) = R,R ∈ [0, 1].
(5)

Concerning the behavior of agents as observed in the simulations, the following
analytical result holds:

Main Theorem (Constant Signal Theorem). The following holds:

(i) There exists a (possibly empty) set J of normal agents and a point in time T
such that on each agent J there exists a chain of influence from the radical r
at each t ≥ T .

(ii) The opinions of all agents in J converge to the opinion of the radical.
(iii) The opinions of all normal agents not in J converge in finite time to opinions

different from that of the radical.

Proof. Defining arj(t) = 1 for j = r and arj(t) = 0 otherwise, the interaction of all
agents can be described by

xi(t+ 1) =
∑
j∈I∗

aij(t)xj(t) for all i ∈ I∗

or, for the profile X∗(t) = (xr(t), X(t)), compactly by

X∗(t+ 1) = A(t)X∗(t) for t = 0, 1, 2, . . . (6)

where A(t) is the (n+1)× (n+1)–stochastic matrix with entries aij(t) for i, j ∈ I∗,
the latter ordered as (r, 1, 2, . . . , n). The matrix A(t) can be specified furthermore
as follows. Let J(t) be the set of normal agents on which the radical has (direct or
indirect) influence on at time t. That is, i ∈ J(t) if and only if there exists a chain
(i1, i2, . . . , ik) of normal agents (also called an ε–chain) such that

aii1(t) > 0, ai1i2(t) > 0, . . . , aik,r(t) > 0.

Obviously, for a normal agent j 6∈ J(t) one has that ajr(t) = 0 and, if i ∈ J(t) in
addition, aij(t) = 0. Thus, the matrix A(t) is of the form

A(t) =

[
B(t) 0

0 C(t)

]
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where B(t) consists of the entries aij(t) for i, j ∈ {r}∪J(t) and C(t) consists of the
entries aij(t) for i, j ∈ I \J(t). Thus, it may happen that the above block structure
changes with time.

The proof now proceeds in 4 steps as follows.

1. In a first step we show there exists T such that J(t) = J for all t ≥ T . For
this let’s first see that J(t+ 1) ⊆ J(t) for all t. Without loss we may number
the normal agents for fixed t as x1(t) ≤ x2(t) ≤ . . . ≤ xn(t). Suppose i 6∈ J(t)
and xi(t) ≤ xr(t) = R. Then there exists some j ∈ I such that

xi(t) ≤ xj(t) < xj+1(t) ≤ xr(t) with xj+1(t)− xj(t) > ε.

By the ordering of the x·(t) we must have that

ajh(t) = 0 for j + 1 ≤ h, h = r and aj+1,h(t) = 0 for h ≤ j.
Therefore

xj(t+ 1) =
∑
h∈I∗

ajh(t)xh(t) ≤ xj(t)

and
xj+1(t+ 1) =

∑
h∈I∗

aj+1,h(t) ≥ xj+1(t).

This implies xj+1(t+1)−xj(t+1) ≥ xj+1(t)−xj(t) > ε and taking into account
that x1(t+ 1) ≤ x2(t+ 1) ≤ . . . ≤ xn(t+ 1) we conclude that i 6∈ J(t+ 1). An
argument as above applies also to the case of i 6∈ J(t) and xr(t) ≤ xi(t). This
shows J(t+1) ⊆ J(t) for all t. Now, being a descending sequence of finite sets
the sequence of the J(t) must become constant, that is there exists T such
that J(t) = J for t ≥ T , where J may be empty. This proves, in particular,
part (i) of the theorem.

2. By step 1 we obtain from the decomposition of A(t) in B(t) and C(t) that
for t ≥ T the interaction of the agents in J∗ = {r} ∪ J and those in I \ J is
uncoupled, that is

xi(t+ 1) =
∑
j∈J∗

aij(t)xj(t) for i ∈ J∗ (7)

and
xi(t+ 1) =

∑
j∈I\J

aij(t)xj(t) for i ∈ I \ J. (8)

To these different subsystems we apply two different methods.
3. Considering system (7) we apply a result from [13, Corollary 8.5.10] which

yields convergence to consensus provided the matrix A(t) (restricted on J∗)
has a positive diagonal, the minimal positive entry is bounded from below by
a positive constant and A(t) is coherent. From this result it follows that all
agents in J converge to the opinion of the radical because of r ∈ J∗.

Considering the assumptions on A(t), the diagonal is positive because
aii(t) ≥ 1

n+1 for i ∈ I and arr(t) = 1. Also aij(t) ≥ 1
n+1 provided aij(t) > 0.

It remains to show that A(t) (restricted to J∗) is coherent. The latter means
that any two nonempty saturated sets for A(t) have a nonempty intersection.
Thereby, ∅ 6= M ⊆ J∗ is saturated for A(t) if aij(t) > 0 and i ∈ M implies
j ∈ M . Consider nonempty subsets M,M ′ of J∗ saturated for A(t) and let
i ∈ M, j ∈ M ′. If i = r = j, then r ∈ M ∩ M ′. If i = r, j 6= r, then
j ∈ J = J(t) for t ≥ T and, hence, there exists a chain (i1, . . . , ik) in I such
that aji1(t) > 0, ai1i2(t) > 0, . . . , aik,r(t) > 0.
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Since M ′ is saturated it follows consecutively i1 ∈M ′, i2 ∈M ′, . . . , r ∈M ′.
Thus r ∈ M ∩M ′. Similarly for i 6= r, j = r. Finally, let i 6= r, j 6= r that is
i, j ∈ J = J(t) for t ≥ T . Then there exists a chain from i to r as well as from
j to r and, both M and M ′ being saturated, we get r ∈M ∩M ′. This proves
A(t) is coherent for all t ≥ T . Therefore, by the result mentioned, part (ii) of
the theorem holds true.

4. Since system (8) is the common unmodified BC–model from the fundamental
result on fragmentation part (iii) of the theorem does follow. (For fragmen-
tation see [10, Appendix D] and, for a generalization, [13, Theorem 8.5.20]).
This proves the theorem.

This completes the proof.

Remark 1. Whereas in the above theorem convergence among normal agents not
in J holds in finite time, this need not be the case for the agents in J . This can be
seen already from the case of just one normal agent influenced by one radical. If
there is no influence then J is empty.

Remark 2. The case of several radicals sharing the same opinion R is covered by
the theorem, too. If H is the set off radicals then the interaction of a normal agent
i can be written as

xi(t+ 1) =
∑
j∈I

aij(t)xj(t) +

(∑
h∈H

aih(t)

)
R.

Selecting any r ∈ H and defining ãir(t) =
∑
h∈H

aih(t) one has ãir(t) = 0 iff

|xi(t)−xr(t)| > ε. By this H is represented by the single radical r with a weight of
|H|.

Remark 3. The theorem above bears some relationship to [11, Theorem 2 and
Appendix] where the “truth”, like a radical, is not influenced by normal agents.
The two cases are, however, rather different in that the influcence of the “truth”
is constant, whereas the influence of a radical depends on the distance to normal
agents.
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