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Centre d’Analyse et de Mathématique Sociales (CAMS, UMR8557)

190–198 avenue de France - 75013 Paris, France
and

Ecole Normale Supérieure, CNRS, UPMC and Univ. Paris Diderot

Laboratoire de Physique Statistique (LPS, UMR8550)
24, rue Lhomond - 75231 Paris cedex 05, France

Nancy Rod́ıguez

UNC Chapel Hill, Department of Mathematics
Phillips Hall, CB # 3250

Chapel Hill, NC 27599-3250, USA

Abstract. We introduce and analyze several variants of a system of differ-
ential equations which model the dynamics of social outbursts, such as riots.

The systems involve the coupling of an explicit variable representing the in-
tensity of rioting activity and an underlying (implicit) field of social tension.

Our models include the effects of exogenous and endogenous factors as well as

various propagation mechanisms. From numerical and mathematical analysis
of these models we show that the assumptions made on how different locations

influence one another and how the tension in the system disperses play a ma-

jor role on the qualitative behavior of bursts of social unrest. Furthermore,
we analyze here various properties of these systems, such as the existence of
traveling wave solutions, and formulate some new open mathematical problems

which arise from our work.

1. Introduction. This article proposes a framework for describing the internal
dynamics of riots, focusing on self-reinforcement and spatial diffusion mechanisms.
The purpose here is not to explore the economics, social or political origins of riots,
even less to discuss the legitimacy of any given riot. The approach in our work bears
partial similarities to a recent literature on the use of mathematics in the analysis
of uncivil and criminal activities [35, 6, 26], showing for instance that statistical
regularities in crime patterns, together with insights from criminology, allow one to
anticipate the evolution of such patterns, at least on short time scales. However,
the phenomena and the models are quite different. We now first review some of the
most common traits in riots to motivate some of the key ideas in our model.
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Civil disobedience and riots have been and continue to be means for populations
or segments of populations to express their discontent towards their government or
to react to certain events or political decisions [25]. While these episodes of bursts
of social activity are relatively rare compared to other phenomena, such as residen-
tial burglaries which essentially never cease, their current significance remains. If
need be, the recent outbursts of protests and civil disobedience that broke out in
Ferguson, Missouri (US) after the fatal shooting of Michael Brown by a police officer
on August 9, 2014 reminded us of the relevance of this phenomenon [11]. Brown,
who was African-American, was short by Darren Wilson, a white officer, without
apparent probable cause and this sparked a national and international conversation
about the inadequate and tense relationship between the law enforcement and the
community [23]. A second shooting in St. Louis city reignited the protests and in-
creased the tension between the African American community and the police force
in Ferguson [32].

Whether the tension between the population and their ruling government or
the police arises from political events or decisions (e.g. the riots following the
assassination of Julius Cesar in 44 BC in Rome, or the New York draft riots in
1863), new or increased taxes (such as the Moscow salt riots in 1648) , food scarcity
[41], high unemployment [16], police brutality [23, 3], or racial tension, these events
of social unrest are normally believed to have been triggered by a specific individual
event. However, one can think of this “triggering event” as the the straw that broke
the camel’s back.

Consider, for example, the beating of Rodney G. King on March 3, 1991 by
a group of policemen in Los Angeles, California (US) that was caught on video-
tape and was made available for the world to see. Interestingly enough, it was not
the beating of King that sparked the riots, but rather the injustice believed to be
committed when the police officers involved were exonerated. Indeed, on April 29
of the next year the four police officers involved in this incident were acquitted and
the first incident of the 1992 Los Angeles riots was reported only two hours later
[13, 27].

Of particular interest to us, is the case of the 2005 riots in France. The trig-
gering event was the incident involving three young men who jumped into a power
substation while being pursued by the police in Clichy-sous-Bois, one of the poorest
suburbs of Paris, on October 27, 2005. Two of these young men died and this was
the spark for the riots that spread throughout the country and lasted over three
weeks [36]. As a final example, we mention the case of Mark Duggan who was shot
on the chest by the police in Northern London on August 4, 2011, this triggered a
four-day riot that spread throughout London [3].

These are only a few examples, but similar episodes continue to be observed
throughout the world. Needless to say that the concept of civil disobedience is not
new and has lead to many revolutions [2]. As Henry David Thoreau put it in his
essay Civil Disobedience the idea behind civil disobedience is the belief that a just
person must stand for what is right, which is not necessarily what is lawful... “If a
thousand men were not to pay their tax bills this year, that would not be a violent
and bloody measure, as it would be to pay them, and enable the State to commit
violence and shed innocent blood. This is, in fact, the definition of a peaceable
revolution, if any such is possible.”

While it is widely accepted that all episodes of civil disobedience can be traced
back to a single event, it is unclear what events are going to generate a cascade of
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civil unrest. In fact, there are many incidents that are very similar in nature to the
triggering events mentioned above which do not generate bursts of rioting activity.
For example, many incidents of shootings by police officers do not generate riots.
If a community is content (employed, fed, educated, etc.) such incidents might be
viewed as unfortunate occurrences, but citizens might not feel compelled to take
to the streets and protest. However, if the social tension is sufficiently high, the
shooting that might soon be forgotten in a content community, will have a high
probability of igniting riots. In most serious riots in France, the triggering event
was the death of a young individual in a poor neighborhood in situations where the
police, or some other official authority, was involved.

From the above examples we see that for a riot outburst to occur the social
system needs to be “ripe,” in the sense that the social tension in the system needs
to be sufficiently high. The social tension is a function of the economy, the police
relationships with the community, the education level, as well as individual events.
For example the visit of President Sarkozy to Clichy-sous-Bois on June 2005 where
he stated that “we will clean up the city with a karcher,” likely raised the tension
in this poor community. Also, in the recent years, solidarities based on religious
issues in poor neighborhood have started to play a role in generating local riots in
France (as in Trappes, a suburb of Paris, July 2013).

From our perspective, episodes of civil unrest require three factors: exogenous
events (these include the triggering event, events that increase the tension in the
system, and even “pre-triggering” events), endogenous factors (self-reinforcement in
the system), and a sufficiently high social tension (a “ripe” system that is ready to
experience self-reinforcement). Endogenous factors are those that are internal to a
system, such as would be word-of-mouth type effects that promote the propagation
and organization of the civil unrest. For example, during the French riots in 2005
the police announced on a daily basis the number of rioting events that occurred
and the whole country was aware of the spread and level of the rioting activity. As
a matter of fact, some believed that these announcements, if anything, were fueling
the continuation of the riots. However, the government stopped announcing these
numbers three days prior to the total cease of rioting activity and at this point the
level of rioting was already quite small (less than a total of one hundred events per
day). On the other hand, exogenous factors are external factors to the system that
also affect the behavior of a system but in a different way.

This dichotomy has been observed in various systems, such as world-wide-web
searches and the number of times YouTube videos are viewed. Recently, in [26]
Mohler and collaborators introduced the idea of modeling certain criminal activity,
which experience repeat and near-repeat victimization [34], as an epidemic-like phe-
nomena using Hawke’s processes. Crane and Sornette in [12] introduced a method to
determine the quality of highly viewed YouTube videos by using a Hawke’s process-
like model to extract the effects of the exogenous factors versus the endogenous
factors. As noted in [12] a great example of endogenous factors playing a signif-
icant role is the number of views of the Harry Potter trailer; on the other hand,
the “tsunami” keyword search outburst was completely generated by the exogenous
factor, mainly the tsunami that shook Japan in 2011. One of the advantages of
the model introduced in [12] is that it affords the ability to extract the quality of
videos. For example, a video with a sharp increase in the number of views and
sudden decrease is more likely to have been boosted by an exogenous factor, but
the quality of the video is probably not sufficiently good for viewers to pass along
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to others in their social network. On the other hand, the number of views of a video
that experiences a slower but steadier increase is more likely to have been fueled by
the quality of the video. An analogy can be drawn to civil unrest: episodes with
a sudden spike and rapid self-relaxation are likely the mark of a strong exogenous
factor and episodes which experience a slower but steady increase are likely to be
fueled by the endogenous factors. The latter occurs when the system is experiencing
a high and slowly decaying tension, and one can argue that these are more serious
episodes or, at least, it is natural to expect that they will last longer.

When dealing with systems that are inherently spatial a fourth factor is the influ-
ence that one location has on another. This effect has become extremely important
due to the globalization of information brought about by the spread of technology
and social media, a particularly suggestive example of the importance of this effect
was observed in the “Arab Spring”, a revolutionary wave of riots, demonstrations,
and protests that began in 2010 and spread throughout many countries including
Tunisia (where the triggering event occurred), Egypt, Syria, and Libya - see [24]
for a historical account and [21] for a mathematical model related to revolutions.
Therefore, it is of much interest to understand how the rioting activities spread spa-
tially. What leads some riots to spread while others remain localized? In France,
for example, there has been riots before and after 2005, but these riots remained
at a local level - as in Vaulx-en-Velin, suburb of Lyon, October 1992, the Sapins
neighborhood in Rouen in January 1994, the La Duchère neighborhood in Lyon,
October 1995, etc. In October 1995, in Vaulx-en-Velin again, a rather severe riot of
about two hundred young people extended to the rest of the suburb of Lyon, but
did not lead to riots on a national scale. Similarly, in 2007 at Villiers-le-Bel, a two
day riot propagated only to neighboring cities. A sociologist called these riots “les
meutes de la mort” [31].

Early models of riots formation have focused on the emergence of a collective
phenomena due to herding behaviors [33, 19]. Such models, formally related to Ising
models in physics, have led to an important literature with various applications in
social and economic sciences - for recent works, see [18, 9] and references therein.
In the recent years, the generic dynamics of riots and other social phenomena,
as evoked above, has attracted more attention. In particular, several works have
developed models based on the assumption that these systems are driven by Hawke’s
processes [20] – see for example [30, 12, 22] and references within.

In this work we propose a model for the bursts of civil disobedience that includes
the four mechanisms discussed above: endogenous factors, exogenous factors, suf-
ficiently high social tension and influences, both local and non-local. In the bigger
scope one of the ultimate objectives is to extract the strength of the exogenous
factors versus the endogenous factors.

As a first step, in this work we introduce a stochastic system on a network, which
seems fitting for this application. Numerical realizations of the model illustrate
a rich set of behavior of the system. We observe, especially in some parameter
regimes, that the model behaves in a qualitatively similar way to what is observed
in many real-world riots - capturing the global behavior without capturing the
details. Moreover, we explore the effects that the non-local spread of information
has on the spread of civil unrest. Through the development of the model we observe
that it is necessary that the social-tension in the system also spreads in order for
the system to experience a large scale burst of activity. To explore this phenomena
mathematically, we then derive a system of nonlinear partial differential equations.
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This work presents a general model about riots and was initially motivated by
the 2005 French riots. However, we believe that the family of models introduced
here can be applied or adapted to many systems that experience bursts of activity
followed by a period of relaxation. The general spirit of the model is to combine an
explicit function which is observable with an implicit field, here the social tension.
The explicit function - here the level of rioting activity, however it is defined - corre-
sponds to actions that can be measured. The latter implicit field can be thought of
as a potential field. The plausible existence of an underlying social field in collective
social phenomena is stressed in [4]. We believe that this approach is relevant for
a number of other situations where the introduction of such an underlying implicit
field is warranted. For example, conflicts of various nature, with their escalation
parts present some of the aspects we have described here. At the same time, models
in the same vein but with bistable non-linearity in the implicit field are relevant to
describe the loss of confidence, be it among people, towards organizations, media
or towards the state of the economy, is such an instance where a buildup of dis-
trust can enable a seemingly minor action or event to precipitate a complete loss of
confidence.

We also note that the system we introduce here has some similarities with models
in neuroscience. Specifically it is related to models of neural dynamics that take into
account synaptic depression [38]. We give more details about this link in the next
section (see discussion following equation (5)). It would be interesting to further
explore these analogies.

We wish to emphasize that our objective here is to introduce simple models whose
solutions exhibit the ‘stylized facts’ observed in riots, which can vary significantly
from riot to riot. For example, the 2011 London riots was on the rise for four days
and essentially ceased abruptly on day five, whereas the 2005 French riots took a
period of about twenty-five days with long periods of increased activity and self-
relaxation. There have been models for riots introduced in the literature previously
– see for example [10, 21, 14], which we discuss in more detail below. However, to the
authors’ knowledge this is the first PDE model developed for riots, although the use
of PDE systems to model urban crime has recently become an active field of research
[35, 6]. A continuous model affords us the ability to prove rigorous spreading and
decay estimates using PDE methods. It would be worthwhile, in future work, to
move from a model describing the global behavior to one that actually captures
more details about the actual spread of a given rioting activity.

Lastly, we discuss some previous works that are especially related to our research.
Theories on the role of contagion or diffusion processes in collective actions have
been proposed already a long time ago (see e. g. LeBon 1895 [8], and references
in [28]), but formal mathematical models are quite recent. In [10], Braha intro-
duced a non-linear spatial dynamical model for the global spread of civil unrest
that includes short-range connections (describing geographic locations) and long-
range connections (describing the effects of social networks and the media). In
this work the author concludes that external causes such as those mentioned in the
introduction (racial tension, food scarcity, etc.) are not necessary for the sudden
outburst of civil disobedience. This is in contrast to our observation that the dy-
namics of these external causes are essential to fully understand any rioting activity.
Davies and collaborators studied a model in [14], similar in nature to that of Braha,
but which included the effects of police deterrence. This model was particularly
concerned with data from the 2011 riots that took place in London. The authors
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tune the parameters of the model and obtain a simulated bursts of rioting activity
that is qualitatively similar to what occurred during the 2011 riots. Finally, we
mention a compartmentalized model for the dynamics of revolutions [21]. The au-
thors of that work use a simple differential equation model that includes the effects
of police repression and censorship. Under the assumption that for a revolution
to propagate there needs to be a sufficient amount of protesting taking place, the
authors divide the parameters of the model into regions that would lead to either
stable or unstable regimes.

While the models we introduce here contain similar ideas to those used in the
works mentioned above, our model has a wider scope. It contributes the dynamics of
the social tension in the system and a continuous model that allows us to rigorously
analyze certain key characteristics of the spread of riots. The use of continuous
models, which are less conventional in these contexts, to describe social phenomena
has been popularized in recent years. Of particular interest are the models of
Short and collaborators in [35] and of Berestycki and Nadal in [6] to describe the
propagation of crime. These works introduce a notion of an invisible scalar field
that measures the probability that a criminal activity occurs, this field is refereed to
as the “attractiveness field” in [35] and the “willingness to commit a crime” in [6].
In the context of riots or civil unrest, this is analogous to a measure of the social
tension. This concept is also found in the model of [10], which includes a measure
of the political, social, and economic stress.

Outline of the paper. In section 2 we introduce the model on a network and
illustrate the results of some numerical realizations of the system on a single site in
section 3. We analyze the dynamics in the simplest case of a single site in section 4.
In the following section we perform and illustrate some numerical experiments on a
network. We derive the continuous system in the case of local and non-local spread
of the social tension in section 6. We discuss the propagation of rioting activity in
section 7. We conclude with a discussion in section 8.

2. Description of the model. It is natural to consider a network of N nodes,
where each node represents a location that is prone to rioting activity. These nodes
correspond to the “urban clusters” of [10] and they can represent, for example, cities
in a country or neighborhoods within a city that are likely locations for the gather-
ings of people who are protesting or participating in more violent and destructive
activities, such as arson or looting. Let us denote this network by N , we discuss the
connections between the nodes in a network shortly. We assume that for any node
s ∈ N there is an explicit field that measures the level of rioting activity. The level
of activity is dynamic in time and we denote it by λ(s, t). We further assume that
there is a base intensity rate λb(s) which can vary between nodes on the network.
This base level determines the low recurrent activity that occurs in the absence of
any unusual factors. For example, according to media sources, the typical number
of burnt cars in France is between fifty to one-hundred per night, with as many as
three to four hundred burnt during special times, such as New Year’s eve. Interest-
ingly, since around 1999 the burning of cars, in the absence of riots, has become a
national sport in France. In fact, it is estimated that 10-30% are insurance crimes.
This is clearly a component of the self-reinforcing mechanism: some people might
burn their own cars after other cars have been burnt in their neighborhood so as to
make the insurance company believe that they are victims of these events.

Under the assumption that the number of rioting activities follows an inhomoge-
neous Poisson process, the λ(s, t) would correspond to the intensity of the process,
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which is the expected number of rioting events. In this case, the expected number
of events that occur during the time interval (a, b) at node s is given by:

λ(s, (a, b)) =

∫ b

a

λ(s, t) dt.

Assuming that the system is “ripe,” then the occurrence of a triggering event will
spark a movement that gains momentum and is self-reinforcing. The endogenous
effect (or self-excitement) is built in the dynamics of λ(s, t). Of course, there is a
natural saturation limit, e.g. there is a maximal number of building and cars that
can be destroyed. Thus, we begin with the following dynamics of the level of rioting
activity:

d

dt
λ(s, t) = −ω(λ(s, t)− λb(s)) +G(λ(s, t)), (1)

where ω is the natural mean reverting parameter of the level of rioting activity if
there is no self-reinforcing activity. For simplicity in most of this paper we will
assume λb = 0. However, including a non zero base level of activity will be essential
for future validation of the model with data. The self-reinforcement mechanism is
modeled by the function G(z) which satisfies:

G(z) > 0 for z ∈ (0, z0), G(0) = 0 and G(z) ≤ 0 for z ≥ z0. (2)

An example of this is a KPP-type term: G(z) = z(z0 − z) for z ∈ (0, z0) for some
z0 > 0.

Since riots are bursts of social activity triggered by exogenous events, but not all
external events (similar in nature) lead to riots, we assume that the systems must
be “sufficiently ripe.” To express this mathematically, we introduce an implicit
variable that represents the readiness of the system to experience these bursts. We
refer to this scalar field as the social tension and denote it by α(s, t). Naturally,
this value can vary from cluster to cluster and it is dynamic in time. Moreover,
we assume that external events, such as, controversial political remarks, lack of
social justice, high unemployment rates, police brutality, and the triggering events,
tend to increase the tension in the system. In a way the social tension measures
the level of resentment that a community or population feels toward the authority
they are facing. Thus, we think of the kindling of riots as being analogous to flame
propagation: the endogenous factors take substantial effect when the tension has
reached a critical tension. This leads us to update (1) as follows:

d

dt
λ(s, t) = −ω(λ(s, t)− λb(s)) + r(α(s, t))G(λ(s, t)), (3)

where r(z) is, for example, a sigmoid function:

r(z) =
1

1 + e−β(z−a)
,

where β > 0 provides a measure of the transition slope between a relaxed state (non-
excited state) and an excited state. In other words, it provides a measure of how
fast the transition is between a system that does not include the endogenous factors
and a system with the full-force of these factors. The critical tension is denoted by
a. Note, that in the limit as β approaches infinity r(α) approaches a step function:
then as soon as the tension is above the critical threshold the endogenous factors
are in full-force. We refer to Figure 1a for an illustration of this transition function.
The idea of a critical threshold was introduced in [21], where the authors make the
assumption that the number of protests has to be sufficiently large before it begins
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to grow into a revolution. This assumptions leads to a bistable ordinary differential
equation. However, we note that the critical value is assumed directly in the level
of rioting activity, which stands in contrast with our model.

It is clear that the dynamics of α(s, t) in the process are crucial. Based on
the above discussion we first assume that the exogenous factors increase the social
tension in the system. It is noteworthy to mention that there are numerous fac-
tors in a society, which are present at all times and do not correspond to a single
event, but that also significantly affect the level of tension that a community ex-
periences. These factors include, but are not limited to, the state of the economy,
unemployment rates, and political tensions. We include the exogenous factors that
can be pin-pointed to a particular time and place as “point sources” in our model.
These occurrences are deterministic and should be clear indicators that the social
tension will increase. In general, if n exogenous events occur at the times and
the locations {si, ti}ni ⊂ N × {t > 0} , the source term produced by this effect is
given by

∑n
i=1Aiδt=ti,s=si , where Ai measures the intensity of the exogenous events

and δt=ti,s=si is the Dirac delta centered at (ti, si). To include the more constant
factors, such as the state of the economy, we introduce a source term αb(s). For
example, if the economy is on a downward turn, the social tension will increase:
αb(s) > 0 during this period. The second important hypothesis is that, in absence
of exogenous inputs, the social tension tends to decay (hence r(α) will decay). This
hypothesis is somewhat analogous to Myers’ proposal that the riot “infectiousness”
decays gradually over time [28], which he tests with an econometric approach in
the case of the US racial riots in the 60s. Incorporating these effects into the model
gives:

d

dt
α(s, t) =

n∑
i=1

Aiδt=ti,s=si − h(λ)α(s, t) + θαb(s).

The function h(λ) represents the effect that riots or protests can have on the
tension: the higher the level of rioting activity the slower the tension decays. For
example, h(λ) could have the form

h(λ) = θ exp(−p λ) or h(λ) = θ

(
1 +

λ

λ1

)−p
(4)

The parameter θ = h(0) measures the natural decrease of the tension per unit of
time, which sets the natural timescale over which the exogenous factors have an
effect. The equation is set in such a way that in the absence of shocks (Ai = 0) and
when there is no rioting (i.e. λ = 0), then, the social tension field α reverts to the
base rate αb. Indeed, the equation then reduces to α̇ = −θ(α− αb).

The parameters p and λ1 control the influence that λ has on the decay of α. In
the following, we will set λ1 = 1 and assume a slow decay, taking h(λ) = θ/(1 +λ)p

with 0 < p ≤ 1. See Figure 1b for an illustration of this function with two different
values of p > 0. However, from the point of view of modeling, both the cases p > 0
and p < 0 make sense. They describe different situations. We will discuss the case
of a fast decay of activity, that is p < 0, in further work.

The timescale over which the exogenous factors have an effect can be different
from the timescale over which the endogenous factors have an effect. For example, it
took one year for the Los Angeles riots to begin after the initial release of the video
showing the beating of King. However, the tension had been building up and the
exoneration of the policemen responsible for the beating increased the tension above
the critical tension. On the other hand, the riots only lasted six days. However,
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these six days were very intense and the total number of deaths surpassed that of
any other riot in the United States with the exception of the New York city draft
riots of 1863 [15]. This leads us to the condition that ω > θ, so that the exogenous
effects can be observed over a longer period of time than the endogenous effects.

(a) Transition function: r(z) (b) Decay control function: h(z)

Figure 1. (a) Illustration of the function r(z) with β = 1 and
β = 10. (b) Illustration of the function h(z) with θ = 1 for p = 1
and p = 0.5.

Including all these elements, the model then takes the form of the following
system: {

d
dtλ(s, t) = −ω(λ(s, t)− λb(s)) + r(α(s, t))G(λ(s, t)),
d
dtα(s, t) =

∑n
i=1Aiδt=ti,s=si − h(λ)α(s, t) + θαb(s).

(5)

This system of equations has some similarities with the ones of the neural field
equations in the presence of synaptic depressions, even though the non-linearities
are not of the same form in the two cases. These equations, derived from the classi-
cal Wilson – Cowan equations [40], have the form of a mean field model describing
neural dynamics. Tsodyks, Pawelzik and Markram [38] have introduced an exten-
sion of this model that takes into account synaptic depression, that is, the decrease
of signal transmission at the synapse when there is a high level of activity. One
can think of the rioting activity level here as the analogous of the neural activity
of a population of neurons, and the social tension as the analogous of the quantity
accounting for synaptic depression. The latter represents the amount of resources
available at the synapses for signal transmission. In both cases, the second quan-
tity modulates the reinforcement mechanism in the activity dynamics, and relaxes
with a time scale depending on the activity level. However, in addition to the non-
linearities, there are two main differences. First, in the neural context, there is
no direct external inputs to the synaptic depression field (hence no shock terms as
above). Second, when modeling the spatio-temporal neural dynamics, synaptic de-
pression acts on the influence between different neurons or locations [38, 5], whereas
in our case, we assume the social tension to be a field acting specifically on the feed-
back from the local activity on itself but not on the influence from other locations
(see below). In other words, here, the social tension field enters as a modulation of
the self-excitatory local dynamics of rioting activity.
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In the form (5), the model does not include any effects that one node might
have on another. However, recent popularization of social media has enabled a
kind of globalization of information and it is now rare to find isolated communities.
Indeed, what happens in one city is quickly known world-wide and therefore it is
natural to assume that the endogenous and exogenous effects spread in potentially
non-local ways. The role of the use of television networks, cell-phones, and social
media, to name a few, is the subject of various studies [1, 17]. In particular, the
works [10, 14, 21], which we discussed in the introduction, either include or note
the importance of the spatial component and diffusion of information due not only
to geographical proximity but also to social connections. Furthermore, in [3] the
authors analyze the data from the 2011 London riots and conclude that there is
evidence for the diffusion and clustering of rioting activities, which is a call for
spatial models that explore such factors. Different neighborhoods, towns, cities,
or even countries are influenced in spatially heterogeneous ways. For example,
Marseilles, France is reputed to be a self-centered city that is not influenced by
the rest of France, whereas rural communities might be highly influenced by urban
centers. We assume that the social tension in a node spreads to nodes which are
within their social network. This communications or social connections are encoded
in the matrix C = (cij)n×n with

cij =

{
1 if node i has a social or communication connection to node j,
0 otherwise.

At the same time, it is also natural to account for geographic proximity effects. One
is naturally concerned about what happens to neighbors more so than what happens
globally. Indeed, it is clearly observed that the level of rioting activity spreads
locally from a place to neighboring districts or cities. To account for this we assume
that the level of rioting activity diffuses to geographically neighboring locations. To
quantify the geographic proximity let us define the matrix V = (vij)n×n such that:

vij =

{
1 if node i is a neighbor of node j,
0 otherwise.

We denote the degree of a node s, i.e. the number of geographic neighbors (or
edges) that node s has, by dV (s) and the number of social connections by dC(s).
Let η represent the total influence that the nodes connected to s have on node s.
The actual effect that node s′ has on node s is proportional to the total number
of nodes connected to node s. Thus, when we include the influence of neighboring
nodes, the dynamics of the level of rioting activity is defined by:

d

dt
λ(s, t) =

η

dV (s)

∑
j

vsjλ(j, t) + r(α(s, t))G(λ(s, t))− ω(λ(s, t)− λb(s)),

which can be written using the graph Laplacian ∆g:

d

dt
λ(s, t) =

η

dV (s)
∆gλ(s, t) + κλ(s, t) + r(α(s, t))G(λ(s, t)), (6)

where κ = η−ω. The graph here is associated to neighboring locations. The choice
of the graph Laplacian is the simplest and most convenient for an initial analy-
sis. However, it must be said that if λ(x, t) represents, for example, the number
of people (or fraction of the population) which are protesting or rioting, then more
complex topologies must be included in order to move toward a more realistic model.
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In particular, the inclusion of transportation networks will be crucial. These het-
erogeneities could lead to non-local, fractional, or non-linear diffusion. Non-linear
diffusion arises naturally if one takes into account that the diffusion should really
be proportional to the level of rioting activity. Of course, the behavior of a model
with the more general diffusion can be significantly different; however, the analysis
of these cases is beyond the scope of this paper.

From equation (6) we see that the natural decay of the level of criminal activity
must be larger than the total influence of the neighbors of node s. This gives rise to
condition that ω > η to guarantee the eventual decay or rioting activity. We assume
that the influence on the social tension is governed by the social/communications
network (which could be non-local geographically). Incorporating this into the
model gives the dynamics of the social tension is governed by the following equation:

d

dt
α(s, t) =

η

dC(s)

∑
j

csjα(j, t) +

n∑
i=1

Aiδt=0,s=si − h(λ(s, t))α(s, t) + θαb(s). (7)

Combining equations (6) and (7) yields the final system on the network. This
system can easily be generalized to include weights on the influence between any
two nodes, in which case, we would use the weighted graph Laplacian. The following
table summarizes the parameters.

Parameters Description

ω Decay rate of the rioting activity level λ.

λb Base rioting activity level.

Ai Strength of the shock at time ti and location si.

θ Decay rate of the social tension value α.

p Level of influence that λ has on the decay of the social tension.

αb Base social tension value.

β Sharpness of the transition between the relaxed state and excited state.

a Critical social tension value.

η Strength of the influence of neighboring nodes.

We can also consider a stochastic version of this model, which takes into account,
for example, the effects of the media and the climate. Let Xt represent a Brownian
or Lévy process, then we obtain the stochastic version of the model:

dλ(s, t) =
η

dV (s)
∆gλ(s, t)dt+ κλ(s, t)dt+ r(α(s, t))G(λ(s, t))dt+ σλ(s, t)dXt,

(8a)

dα(s, t) =
η

dC(s)

∑
j

csjα(j, t)dt+

n∑
i=1

Aiδt=0,s=si − (h(λ(s, t))α(s, t)− θαb(s)) dt.

(8b)

System (8) is a coupled system of stochastic differential equations.

3. Numerical experiments of the single site model. To demonstrate the flex-
ibility of the model to capture the various global behaviors observed in a variety of
real-world riots, we begin with some numerical experiments. For this purpose, we
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consider the following model on single node without any noise and αb = λb = 0:

d

dt
λ(t) = −ωλ(t) + r(α(t))G(λ(t)), (9a)

d

dt
α(t) =

n∑
i=1

Aiδt=ti − h(λ(t))α(t). (9b)

λ(0) = λ0 and α(0) = α0, (9c)

with either one or two shocks (n = 1 or n = 2).

1. Slow relaxation of rioting activity: The first simulation results in an outburst
of rioting activity that relaxes slowly - refer to Figure 2a. The outburst was
a result of one shock at time t = 0 that was intense enough to push the social
tension above the critical threshold. This type of relaxation was observed
during the 2005 French riots.

2. Fast relaxation of the rioting activity: The second simulation results in an
outburst of rioting activity that suddenly decreases - refer to Figure 2b. This
type of relaxation was observed during the 2011 London riots. The driving
parameter here is β (all other parameters where unchanged from the previous
simulation), as the transition in the function r is sharper the self-relaxation
(and self-excitation) is also sharper.

3. Delayed outburst of activity: The third simulation illustrates the case of two
exogenous events: the first event occurring at time t = 0 and the second event
occurring at t = 12. The first external event is not strong enough to lead to
an outburst of activity, but it does increase the tension in the system. Thus,
when the second external event occurs, this drives the social tension above the
critical threshold leading to what we call a delayed burst of activity - refer to
Figure 2c. This is similar to what happened in the 2001 L.A. riots: the first
event would correspond to the beating of King and the second event to the
exoneration of the police officers involved.

4. Two bursts of activity: The final simulation results in two bursts of rioting
activity. In this case the first shock was strong enough to lead to a bursts
of activity that settled down before a second shock occurred (of smaller in-
tensity), which reignited the activity - see Figure 2d. This was observed, for
example, in the recent protests in Ferguson, Missouri.

4. Analysis of the single site model. We now provide a more rigorous analysis
of the system given by (9) by first analyzing it in the absence of shocks, and then
considering the case of a single shock (n = 1), and finally the case of repeated
shocks.

4.1. Absence of shocks. We begin with the study of the system:

d

dt
λ(t) = Φ(λ(t), α(t)), Φ(λ, α) := −ω(λ− λb) + r(α)G(λ), (10a)

d

dt
α(t) = Ψ(λ(t), α(t)), Ψ(λ, α) := θαb − αh(λ) (10b)

λ(0) = λ0 and α(0) = α0, (10c)

where λb is assumed to be small relative to the maximum of the function G.
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Case with λb = 0 and αb = 0. A preliminary remark is that the dynamics dλ/dt =
Φ(λ(t), ᾱ) for a fixed ᾱ value, has as stable fixed point at λ = 0 for ω > r(ᾱ)G′(0).
On the other hand, for ω < r(ᾱ)G′(0), the stable fixed point is λ∗(ᾱ) > 0 which
is the non-zero solution of Φ(λ, ᾱ) = 0 - for example λ∗ = z0 − ω/r(ᾱ) when
G(z) = z(z0 − z). We thus choose the parameters such that

G′(0)r(0) < ω < G′(0) and lim
α→∞

r(α) = 1, (11)

so that, at constant α, the attractive state is a no-riot state for small tension and a
non-zero rioting state for large tension.

The dynamics are easily understood by looking at the nullclines of (10) in the
plane (α, λ). The nullcline associated to λ, Φ(λ, α) = 0, is given by λ = 0, and, for
α > αc with r(αc) = rc := ω/G′(0), the function λ1(α), which increases from 0 at
α = αc to its maximum value λ∗ ≤ z0 as α → ∞ (r(α) → 1 in this limit). This is
illustrated on Figure 3 for G = z(z0 − z). During the evolution of (10), λ increases
everywhere under this curve (α, λ1) if λ > 0, and decreases elsewhere.

Since αb = 0, the nullcline associated to α is simply α = 0: indeed dα(t)/dt
is strictly negative for any α > 0. One can then conclude that there is a single
attractive fixed point, α = 0, λ = 0. If the initial values are in the domain left/above
the λ-nullcline, this fixed point is reached with continuously decreasing α and λ. If
one starts below the nullcline, with λ(t = 0) > 0, the fixed point is reached after
an excursion at high λ. While α is permanently decreasing, λ increases until the
nullcline is reached with a null slope dλ/dα = 0, and then decreases towards 0. If
λ = 0 and α > αc, the system is at an unstable fixed point. However, if one adds
any small perturbation, the system will be driven into the λ > 0 domain where the
rioting excursion will occur. For an illustration, see Figure 3 (the λ−nullcline is the
dashed-red curve).

Case with αb > 0, λb > 0. When λb > 0, the fixed point at λ = 0 is replaced by
a fixed point at a small λ value. Along the λ−nullcline, as α increases, λ remains
almost constant up to αc, and then λ increases sharply as for the case of λb = 0.
Because λ ≥ 0, there is no more an unstable fixed point at a small λ value.

For αb > 0, the α−nullcline is a curve close to the vertical line for small αb,
and moves towards the right with smaller slopes. For small αb, the two nullclines
intersect in the range where λ is small, and this gives the unique stable fixed point:
starting from any initial condition, the trajectory will end at this point, with a riot-
excursion if the initial values α0, λ0 are on the right of the λ−nulcline. For a large
αb value, the intersection is in the range where λ is large. The unique fixed point is
with a high level of rioting activity. If β is larger than some threshold, there is an
intermediate domain of α values for which the two nullclines have three intersects
(see Figure 4b). In that case the intermediate intersect is an unstable fixed point,
and the two others are stable fixed points: one with low rioting activity, one with
high rioting activity. One has here a structure with a classical discontinuous, ‘1st

order’ transition, leading to abrupt changes of behavior and hysteresis phenomena.
If αb increases starting from a very small value, there is a critical value α1

b at which
the fixed point with high λ value appears. As αb increases, the system may remains
on the low fixed point, until a second critical value, α2

b , where the lower fixed point
disappears: the system suddenly jumps to the state of high rioting activity. If now
αb decreases smoothly, the system will remain on the high λ fixed until αb = α1

b

where the high fixed point disappears, and the system is abruptly brought back to
the no riot state. This is reminiscent of the ending of the 2011 London riots, which
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(a) Slow self-relaxation (b) Sharp self-relaxation

(c) Delayed burst of activity (d) Double burst of activity

Figure 2. Simulations of the system given by 9). The solutions
illustrated in 2a use parameters: z0 = 10;ω = .2;A = 5; θ = .1;
p = 1;β = 10, a = 6, t1 = 0, t2 = 12. The solutions illustrated in
2b use parameters: z0 = 10;ω = .2;A = 6; θ = .1; p = 1;β =
1, a = 6, t1 = 0. The solutions illustrated in 2c use parameters:
z0 = 10;ω = .3;A = 8; θ = .3; p = 1, β = 100, a = 6.. Finally, the
solutions illustrated in 2d use parameters: z0 = 10;ω = .3;A1 =
6;A2 = 3, θ = .4; p = 1, β = 1, a = 6.

stopped unexpectedly abruptly. The decrease in temperature and arrival of rain
has been among the factor contributing to this event. One may assume that the
weather contributes to the level of αb.

Remark 1. From the Poincaré-Bendixon theorem it follows that there is always
convergence of the solutions to (10) to a stationary state. Indeed, the Poincaré-
Bendixon theorem states that a trajectory necessarily either converges to a station-
ary point or converges to a cycle. But here, owing to the second equation in which
the right-hand side has a sign, there are no cycles. Note that this theorem holds
for both cases p < 0 and p > 0 it is only the sign that matters.

4.2. Adding a single shock. First consider the case λb = 0 and αb = 0. With
an initial condition at small α and λ, a single shock Aδt=0 on dα sends the system
at a higher value of α. If the nullcline is not crossed, both α and λ then decrease
smoothly towards the fixed point (0, 0). If the nullcline is crossed, the trajectory
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makes a rioting excursion as described above. If the initial value of λ is zero, a
strong shock sends the system onto the unstable fixed point λ = 0. However, if one
adds any small perturbation, the system will be driven in the λ > 0 domain where
the riot excursion will occur.

In the case when the base level of rioting activity is zero and αb = 0 we observe
an eventual self-relaxation. The formal proof of eventual relaxation is as follows.

Proposition 1 (Burst of activity with eventual self-relaxation). Let n = 1 and any
A1 > 0. If λ(t) and α(t) are solutions to (9) with G′(0)r(0) < ω, and λ(t = 0) > 0,
then

lim
t→∞

λ(t) = 0 and lim
t→∞

α(t) = 0.

Proof. We can solve for the social tension explicitly:

α(t) = A1e
−

∫ t
0
h(λ(s)) ds,

which we then substitute into the equation for λ to obtain:

dλ(t) = −ωλ(t)dt+ r
(
A1e

−
∫ t
0
h(λ(s)) ds)

)
G(λ(t))dt.

Recalling that λ∗ is the maximum value of λ, we have the following lower bound∫ t

0

h(λ(s)) ds ≥ t

1 + λ∗
,

which allows us to conclude.

Even though the level of rioting activity eventually ceases (or relaxes to its base
level of activity λ0) as does the social tension in the system, it is clear that the
higher the intensity of the triggering event the longer the bursts of rioting activity
will last. Indeed, if the shock is strong enough, the maximum value of λ along its
trajectory is reached on the nullcline in the domain where the nullcline is in its
asymptotic regime λ ∼ λ∗, so that the activity remains at its maximum for a long
period time before being able to decrease - see again Figure 3 for an illustration.
In the same vein, the parameter θ plays, in some sense, an even more important
role on how fast the solution decays. Indeed, α decays exponentially fast at a rate
which depends on θ: smaller values of θ lead to a slower decay. More formally, we
prove that when the shock is sufficiently large the intensity will remain close to its
maximum value for long periods of time.

Proposition 2 (Long-periods of rioting activity due to a strong shock). Given
arbitrary L > 0 and δ > 0, there exists A0 = A0(δ, L) and to > 0 such that if
A ≥ Ao then

λ(t) > λ∗ − δ ∀ t ∈ [t0, t0 + L].

Proof. From the α equation (10a) we get

α(t) = Ae−
∫ t
0
h(λ(s)) ds,

where A can be interpreted as the initial shock. To take into account a pre-existing
base rate αb, we could also consider A = A′ + θαb where A′ is the initial shock and
the result is the same. Since h is bounded from above, from this formula we infer
that there exists some r > 0 such that α(t) ≥ Ae−rt for all t ≥ 0. Therefore, given
η > 0, T > 0, there exists A0 such that for all A ≥ A0 we get

r(α(t)) ≥ 1− η, for all t ∈ [0, T ].
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Then, consider the equation

ẏ = −ωy + (1− η)G(y), y(0) = λ0 > 0.

Clearly, λ(t) ≥ y(t) for all t ∈ [0, T ]. By our assumptions, this system admits a
unique globally asymptotically stable equilibrium zη > 0. Hence, given δ > 0, there
exists t0 > 0 such that y(t) ≥ zη − δ/2, for all t ≥ t0. Now, zη → λ∗ as η → 0 and
therefore we can choose η sufficiently small so that zη ≥ λ∗ − δ/2. Gathering these
properties, we see that given δ > 0 and L > 0, we can choose accordingly η > 0,
then t0 ≥ 0, and then T = t0 + L for which we get A0 such that for all A ≥ A0,
λ(t) ≥ λ∗ − δ on the interval of time [t0, t0 + L]. This completes the proof of the
proposition.

Figure 5 illustrates the dynamics for λb > 0, αb > 0. The general features de-
scribed in the previous case remain, with two important aspects. First, as discussed
previously, for αb larger than some threshold there is a fixed point at high value of
λ: obviously a strong enough shock will make the system evolve towards this high
activity state. Maybe more interesting is the behavior below the transition. Sup-
pose the system is ‘at rest’, that is at its fixed point in the absence of shock. Then
any shock will drive the system in the domain where λ(t) increases. However, if the
shock is small enough, the system remains into the domain where the λ−nullcline
is almost flat, the rioting activity remains very small. See Figures 5a and 5b.

4.3. Repeated shocks. If multiple exogenous events occur, their intensity and
proximity in time will play a role on whether the system remains excited or even-
tually relaxes. With strong enough shocks at a high frequency, the shocks will
maintain the system within the domain below the λ-nullcline, and since in that
regime λ always increases, the rioting activity will remain close to its maximum
value λ∗. With shocks at moderate frequency, a given shock occurs while the sys-
tem is in the regime where λ is decreasing, and the shock sends back the system
under the nullcline. One has then a (regular or irregular) cyclic activity. With
weak enough stimulations, in amplitude and/or frequency, the system will eventu-
ally relax. For this single site case, whatever the shocks may be, λ∗ is the maximum
maximorum possible value of λ, whenever the initial condition is smaller than λ∗

(which is of course the case with the hypothesis of no riots at t = 0).
To understand the roles that both the time between events and the intensities of

the shocks play in either leading an eventual relaxation to the base activity value
or the perpetual self-excited system, we explore the case when there are periodic
exogenous events, each with intensity A and period T . It is useful to define the
point source term:

S(t) = A

∞∑
i=0

δt=iT . (12)

Thus, we consider system (9) with the point source term given by S(t) as defined
in (12).

Proposition 3 (Periodic excitable systems). Let λ(t) be the solution to system (9)
with point source term given by (12). Then, for any given T and for any given
δ > 0, there exists an A∗ = A∗(T, δ, λ0) such that for all A ≥ A∗ we have

lim inf
t→∞

λ(t) ≥ λ∗ − δ.
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(a) A small and a moderate shock (b) Strong shock

(c) Dynamics

Figure 3. Simulations of the system given by (9) with ω = .4, z0 =
2, β = 3, a = 1, θ = .7, p = .7 and varying intensity of the triggering
event: a small shock A = 0.4, a moderate one A = 4 and a strong
one, A = 30. Figure 3a shows the nullcline dλ/dα = 0, and the
trajectories for the small (no riot generated) and the moderate
(generation of riots) shocks. Figure 3b shows the case of the strong
shock (note the difference in the range of α values). In all cases the
initial values are chosen with small α and λ values. The dashed
lines indicate the jump in α value due to the shock. Figure 3c
shows the time dynamics of the rioting activity in the three cases.

This is a straightforward consequence of Proposition 2. Figure 6 gives a nu-
merical illustration in the case of a periodic excitation as above, starting from a
positive value of λ0. If the stimulations are too weak or too spread out (below some
thresholds Ac(T ) or 1/Tc(A)), the activity relaxes to null activity with damped oscil-
lations. Above the threshold, the system converges to a limit cycle. The proposition
states that these limit cycles are in regions closer and closer to λ = λ∗ as A gets
larger. As shown on Figure 6, this is the same at fixed A when T becomes small
(high frequency).

We conjecture a similar result in the case of a stochastic source term:

S(t) =

∞∑
i=0

Aiδt=ti , (13)
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(a) Small β (b) Large β

Figure 4. Nullclines of the system given by (10) with G(z) =
z(z0 − z) and ω = .4, z0 = 2, a = 1, θ = .7, p = .7, λb = 0.05. Left,
4a, β = 3, and right, 4b, β = 6. For each case, three α-nullclines
are shown: θαb = 0.2, 0.41 and 0.6. For β = 6, a discontinuous
transition occurs.

where each {Ai, ti} are specified by a compound Poisson process. More precisely, the
time between events, ti+1−ti, are specified by {N(t) : t ≥ 0} , a Poisson process with
a prescribed intensity λP . Moreover, {Ai : i ≥ 1} are independent and identically
distributed random variables with a prescribed distribution. Finally, we assume
that {Ai : i ≥ 1} are independent of {N(t) : t ≥ 0} .

Open questions. As t → ∞, we conjecture that there is a limit distribution for
λ(t). Now, assume that λb = 0. Then, given λP , when the E(Ai) are bounded
and E(Ai) → 0, we believe that this distribution converges in probability to 0,
and that, when E(Ai) → ∞, this distribution converges weakly (or in probability)
to the constant λ∗. It seems to be an interesting question to understand whether
there is actually a phase transition, depending on E(Ai), from a long time limit
of λt going to zero in probability to a long time limit of λt approaching a non-
zero distribution. This is what we observe in the periodic deterministic case form
numerical simulations. In the random case, we note that whatever the value E(Ai)
is, we always have

lim inf
t→∞

λt = 0, lim sup
t→∞

λt = λ∗

with probability one. Similar questions arise when E(Ai) > 0 is given and one
examines the influence of the intensity λP , which represents here a frequency. We
can even assume that the Ai’s are constant. At high frequency, we expect the
system to be close to the maximum value most of the time, while for low frequency,
we expect it to be close to 0. Whether there is or for what distributions there is a
phase transition is an open question.

Some aspects of these questions are supported by numerical simulations. The
dynamics with repeated shocks is illustrated on Figure 7 for shocks of constant
amplitude Ai = A but occurring at random times, with a mean frequency ν = E(ti).
As one would expect, there is a critical value νc(A) such that for ν < νc(A) the
systems eventually relax, and for ν > νc(A) the system is in a sustained regime
of bursts of excitations. It is observed that the activity is frequently close to the
maximum λ∗, even at moderate rate. The fraction of time spent near λ∗ increases
as the mean frequency increases.



MODELING RIOTING ACTIVITY 461

(a) Moderate αb (b) Moderate αb, small
shock, zoom

(c) Near the transition

Figure 5. Dynamics in the phase plane of the system given by 10
with G(z) = z(z0 − z) and ω = .4, z0 = 2, β = 6, a = 1, θ = .7, p =
.7, λb = 0.05. Top 5a and 5b, θαb = 0.2. Starting from the fixed
point of the system without shocks, three trajectories are shown
after stiulating the system with shocks of different amplitudes: A =
0.4, 2 and 4. For a small enough shock (5b, A = 0.4), the system
remains where the λ−nullcline is almost flat, the rioting activity
remains very small. Bottom, 5c, θαb = 0.41. In this case, there is
two stable fixed points. Under a strong enough shock - here two
examples, A = 2 and A = 4-, the systems, initially at the low fixed
point, ends at the fixed point with a high λ value.

5. Numerical experiments on a network. To investigate the effects that spatial
dispersal of information has on the spread of riots we illustrate and discuss some
numerical realizations of the system defined in (6)-(7) in this section. We perform
simulations on a network of one hundred urban centers that are on a square grid.
The square grid gives the geographic neighbors of each node.

1. Double-threshold phenomena: We study the case when one urban center is
the only influence for all other centers. For example, we can think of this
center as being Paris, which undoubtedly has an influence on all of France. In
order to explore the effect that the intensity of the triggering event has on the
spread of the rioting activity, we perform a series of simulations with fixed the
parameters ω = .2, θ = .3, z0 = 10, β = 1, a = 100, p = .7, η = .2 and vary the
strength of the triggering event A. In this case, we observe a double threshold
phenomenon, which we summarize below:
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(a) Low frequency, decaying

rioting activity

(b) Medium frequency, phase plane

(c) High frequency (d) High

frequency,
zoom

Figure 6. Simulations of the system given by (9) with ω = .4, z0 =
2, β = 3, a = 1, θ = 0.7, p = .7 under periodic stimulations at
different mean frequencies with common amplitude A = 2.

(a) Low frequency (b) Near the transition (c) High frequency

Figure 7. Simulations of the system given by (9) with ω = .4, z0 =
2, β = 3, a = 1, θ = 0.7, p = 0.7 under multi shocks stimulations at
different mean frequencies with common amplitude A. The rioting
activity, λ(t)/λ∗, is shown as a function of time.

(a) For A small (the simulation illustrates the case when A = 2) we observe
that the rioting activity does not spread beyond the location of where the
triggering event occurs. In fact, the intensity is not sufficiently high to
provoke the spatial spread of rioting activity. Refer to Figures 8a-8c for
three different snapshots in time of this simulation. Red corresponds to
high levels of activity and dark blue to zero levels of rioting activity.

(b) For A of intermediate value (the simulation illustrates the case when
A = 6) we observe that the rioting activity spreads in a local fashion:
the burst of rioting activity affects nearest neighbors. It appears that the
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local diffusion of λ(s, t) dominates in this regime, refer to Figures 8d-8f
for the corresponding snapshots in time of this simulation.

(c) For A large (the simulations illustrate the case when A = 10) the spread
of rioting activity is non-local: the bursts of social activity jump infecting
urban areas in a non-local manner. It appears that the non-local diffusion
of α(s, t) dominates in this regime, refer to Figures 8g-8i.

The apparent threshold between the very localized rioting activity and the
activity which spreads is not surprising, but the second observed threshold
is. Indeed, from these numerical experiments we conjecture that there is a
critical threshold value for the intensity, denote it by A∗, such that if A < A∗

then the rioting activity spreads locally (the geographic network dominates
in this regime) and if A > A∗ the rioting activity spreads non-locally (the
social-network dominates in this regime).

2. Delay effect: Consider a social network made up of two influential urban
centers, for example, this could be Marseilles (M) and Paris (P). We assume
that the triggering event occurs at time t = 0 in (P). If the initial triggering
event is not sufficiently strong, we observe a nominal spread of the rioting
activity and in fact the activity ceases relatively fast. Refer to Figure 9a-9b
for an illustration. On the contrary, when a second exogenous event (even of
significantly less strength) occurs at the second urban center (M) at a much
later time (t = 30 for our simulation), we observe a much stronger and faster
spread of activity both from (M) and (P). After the second exogenous event
one observes a local spread of rioting activity from both (M) and (P). Refer to
9c-9d for an illustration of this phenomena. Of course, this is due to the self-
reinforcement between the two center (P) and (M), which leads to a delayed
burst of activity.

6. Spatially continuous deterministic model. While we can learn much from
the discrete system and its numerical simulations, it is useful to work with the
continuum limit in order to be able to perform more rigorous analysis. Although we
recognize that a discrete model is more realistic for this application, the continuum
models are useful in that they allow us to determine the intrinsic parameters of
the system as well as to obtain estimates for the duration of an episode of rioting
activity. Thus, we are motivated to introduce a couple of continuum versions of our
models in this section.

6.1. Local influence on the the social tension. First, we consider the case
when the diffusion of both the level of rioting activity and of the social tension is
only due to geographic connections. This corresponds to the case when the matrix
C = V. Let Ω ⊂ R2 (or R1 as a first step in exploring this phenomena) represent
our domain of interest. We are interested in the limit as the number of nodes
approaches infinity (N →∞): λ(x, t) and α(x, t) are then defined for all x ∈ Ω. We

discretize Ω and obtain a lattice and denote it by Ωl := {(xi, yj)}Ni,j=1 , such that

∆x = xi+1−xi and ∆y = yi+1−yi. The nodes (xi, yj) ∈ Ωl = N correspond to the
discrete locations where the rioting activity will take place, e.g. ‘urban clusters’ in
the model introduced in [10]. We are interested in the limit of the distance between
the urban clusters approaching zero, i.e. ∆x → 0. For simplicity, we consider
the case when the stochastic effects are negligible, which corresponds to the system
given by equations (6) and (7). As the derivation of the continuum limit as both ∆x
and ∆t go to zero is standard, we only mention that one uses the discrete Laplacian



464 H. BERESTYCKI, J.-P. NADAL AND N. RODRÍGUEZ

operator in order to keep track of mesh distance and take the limit in such a way

that D := (∆x)2η
∆t remains constant. Then, the corresponding limiting equation are

the following:

d

dt
λ(x, t) = D∆λ(x, t) + r(α(s, t))G(λ(x, t))− κλ(x, t), (14a)

d

dt
α(x, t) = D∆α(x, t) +Ai

n∑
i=1

δt=0,s=si − (h(λ(x, t))− η)α(x, t) + θαb, (14b)

where κ = ω − η. We always assume that κ > 0. The existence of solutions to the
Cauchy problem defined by (14) falls under classical theory.

6.2. Single triggering event: Eventual decay of the rioting activity. Let
us consider the system (14) with the following initial conditions:

λ(x, 0) = λ0 and α(x, 0) = 0. (15)

We show that in the case when αb = 0 the bursts of social activity eventually cease
though out the domain Ω. That is, the we prove that the mass of the social tension
and the level of rioting activity eventually approaches zero.

Proposition 4 (Decay of mass). Let λ(x, t) and α(x, t) be solutions to (14) with
initial conditions given by (15) for parameters such that

θ/(1 + λ∗)p > η.

There exists k1, k2 > 0 such that

‖α(0, x)‖1e−k1t +Ai

n∑
i=1

e−k1(t−ti)

≤‖α(t, x)‖1 ≤ ‖α(0, x)‖1e−k2t +Ai

n∑
i=1

e−k2(t−ti). (16)

Furthermore, for any ε > 0 there exists a Tε > 0 such that
∫

Ω
λ(t) < ε for all t > Tε.

Proof. Let us first compute the dynamics of the mass of α,

d

dt

∫
Ω

α(x, t) dx = Ai

n∑
i=1

∫
Ω

δt=0,x=xi
dx− (h(λ(x, t))− η)

∫
Ω

α(x, t) dx.

For simplicity let us denote y(t) =
∫

Ω
α(x, t) dx and k2 = θ/(1 + λ∗)p − η and

k1 = θ − η. Then we obtain the following upper and lower bounds:

Ai

n∑
i=1

∫
Ω

δt=0,x=xi
dx− k1y(t) ≤ d

dt
y(t) ≤ Ai

n∑
i=1

∫
Ω

δt=0,x=xi
dx− k2y(t).

This gives the upper bound on the mass:

y(t) ≤ 1

ek2t

∫ t

0

ek2sAi

n∑
i=1

δs−ti ds

≤‖α(0, x)‖1e−k2t +Ai

n∑
i=1

e−k2(t−ti).
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Similarly, we obtain that

y(t) ≥ ‖α(0, x)‖1e−k1t +Ai

n∑
i=1

e−k1(t−ti).

Now, let us consider the dynamics of the mass of λ :

d

dt

∫
Ω

λ(x, t) dx =

∫
Ω

r(α)G(λ) dx− κ
∫

Ω

λ(x, t) dx

≤ r(g(t)) |Ω|λ∗ − κ
∫

Ω

λ(x, t) dx,

where,

g(t) = ‖α(0, x)‖1e−k2t +Ai

n∑
i=1

e−k2(t−ti).

From this, we obtain the estimate

‖λ(x, t)‖1 = ‖λ(x, 0)‖1e−κt + c̃

∫ t

0

r(g(s))e−κs ds.

Note that limx→∞ g(t) = 0 and this implies that limt→∞ r(g(t)) = 0. Thus, for
any ε > 0 there exists a time T ∗ = T ∗(ti, Ai, k2, a, β, ε) such that for all t > T ∗

λ(t, x) < ε.

6.3. Non-local influence on the tension. Similarly, we can obtain a continuum
model for the case when the social tension diffuses non-locally through the commu-
nications network C. In this case, we obtain a system with an integral operator.

λt = D∆λ− (ω − η)λ+ r(α)G(λ) + ωλb (17a)

αt =
η̄∫

Ω
J (·, y) dy

∫
Ω

J (x, y)α(y, t) dy − h(λ)α+ θαb +Aδ0,s̄. (17b)

The interaction potential J (x, y) is either equal to zero or one, which is due to
the choice of the social network (see the definition of the matrix C in section 2) This,
of course, can be generalized to include different weights. As an interpretation of
J (x, y) we can think that each location, x ∈ Ω, has a domain of influence, which
is the set of locations which influence what happens in x. At the same time, each
location influences some locations and not others, we refer to this as the range of
influence of location x. Observe that the integral operator does not model diffusion
and does not have to be symmetric.

7. Traveling waves solutions. One of the most important characteristics about
the spread of rioting activity is the speed and the exact manner in which it spread.
In fact, one can think of the spread of rioting activity as a front of high levels activity
that is invading regions with the base level of activity. It is therefore natural to first
look for the existence of traveling wave solutions.
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(a) A = 2, t ∼ 4.3 (b) A = 2, t ∼ 25 (c) A = 2, t = 50

(d) A = 6, t ∼ 10 (e) A = 6, t ∼ 15 (f) A = 6, t = 50

(g) A = 10, t ∼ 4.3 (h) A = 10, t ∼ 25 (i) A = 10, t = 50

Figure 8. Simulations of the the network-dependent model (sys-
tem given by (6)-(7)) with ω = .2, θ = .3, z0 = 10, a = 100, p =
.7, η = .2 and varying intensity of the triggering event. Figures
8a-8c illustrate a simulation with a triggering event occurring at
time zero with intensity A = 2. On the other hand, Figures 8d-
8f illustrate a simulation where the triggering event has intensity
A = 4. Figures 8g-8i illustrate a simulation with an triggering event
of intensity A = 10.

7.1. Local influence. For simplicity, let us consider the model with local diffusion
for both variables and with only one exogenous event. In fact, the shock can be
included in the initial condition. For this purpose, consider the system:

d

dt
λ(x, t) = ∆λ(x, t) + Φ(α(x, t), λ(x, t)), (18a)

d

dt
α(x, t) = ∆α(x, t) + Ψ(α(x, t), λ(x, t)), (18b)

λ(x, 0) = λ0 and α(x, 0) = Aiδx=x̄, (18c)



MODELING RIOTING ACTIVITY 467

(a) t = 25 (b) t = 50.

(c) t = 19. (d) t = 45.

Figure 9. Simulation with the social network with two influen-
tial nodes. Figures 9a-9b illustrate a single exogenous event with
intensity A = 5. Figures 9c-9d illustrate the effect of a strong trig-
gering event in (P) (red square in Fig 9c) and a much waker second
event A = 2 at t = 30, which leads to a delay spread in the rioting
activity in (P).

where Φ(α, λ) := r(α)G(λ) − κλ and Ψ(α, λ) := −h(λ)α + ηα + θαb. Solving
dα/dt = 0 gives the relationship:

α(λ) =
θαb

h(λ)− η
. (19)

Substituting (19) into the equation Φ(α, λ) = 0 then gives two steady state

solutions: one corresponding to a non-excited state, (α1, λ1) :=
(
θαb

θ−η , 0
)
, and one

corresponding to an excited state (α2, λ2) :=
(

θαb

h(λ2)−η , λ2

)
, where λ2 = λ2(G, r).

The excited state will always be stable for our choice of functions r(z) and G(z).
However, if

r(α1)G′(λ1) + η > h(λ1) + k, (20)

then the non-excited state will be unstable. In fact, as the critical tension decreases
(with all other parameters fixed) the system defined by (18) goes from a regime
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(a) Bistable system: a = 5 (b) Monostable system: a = 1

Figure 10. Illustration of the Φ(α(λ), λ) with parameters: z0 =
10, ω = .2, θ = 0.05, η = .01, p = .5.

where the two constant steady-states are stable into a regime where the non-excited
steady-state becomes unstable. Refer to Figure 10 for an illustration of the reaction
terms Φ(α(λ), λ) in the bistable regime (Figure 10a) and monostable regime (Figure
10b).

In fact, for a certain parameter regime there exist traveling wave solutions,
(ψ, φ, c) with c ∈ R+, such that for all z = x− ct the following holds:

ψ′′(z) + cψ′(z) + Φ(φ, ψ) = 0,
cφ′(z) + cφ(z) + Ψ(φ, ψ) = 0,
0 ≤ (ψ(z), φ(z)) ≤ (α2, λ2),
ψ(−∞) = α2, φ(−∞) = λ2, ψ(+∞) = α1, φ(+∞) = 0.

(21)

The interesting observation is that the critical tension parameter a can determine
if traveling wave solutions exist and whether they are unique.

Theorem 7.1 (Critical threshold for traveling wave solutions). Let the κ, θ, p, η, a, k
be chosen so that (18) has two steady-state solutions (α1, 0) and (α2, λ2) and such
that (19) remains positive for all λ ∈ [0, λ2]. There exists 0 < a∗ <∞ so that:

1. if a∗ < a there exists a unique (ψ(z), φ(z), c∗) with c∗ ∈ R, up to translations,
to (21), Furthermore, c∗ > 0.

2. For 0 < a < a∗ there exists a c∗ ∈ R+ and solutions (ψc(z), φc(z)) with
z = x − ct to (21) for any c ≥ c∗. Furthermore, when c < c∗, such waves do
not exist.

In either case, it holds that ψ′(z) < 0 and φ′(z) < 0 for all |z| <∞.

The proof of Theorem 7.1 is a direct application of two theorems from [39]. The
only observation needed to be made is that for fixed parameters ω, θ, η, p, z0 and k
as hypothesized in Theorem (7.1), there exists a critical value a∗ such that if a > a∗

the (18) has two stable steady-state solutions. Thus, an application of Theorem 2.1
give part 1. On the other hand, for 0 ≤ a < a∗ the non-excited state is unstable
and an application of Theorem 2.2 gives 2.

This result shows that certain initial data or triggering events can facilitate the
propagation of rioting activity. Moreover, we observe a critical threshold develop
for the critical social tension a. That is, for moderate levels of a the traveling wave
can only move at a unique speed. However, if the a is sufficiently small then the
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traveling waves which facilitate the dispersal of rioting activity can spread at very
large speeds. For example, a very intense triggering event could lead to a faster
spread of the riots. We leave the study of the various qualitative properties of the
traveling wave solutions from Theorem 7.1, such as the asymptotic decay rates, for
future work.

7.2. Numerical experiments on spreading. The existence of traveling wave
solutions can be useful in exploring the spreading speed of the riots and helps
provide a global picture. However, the actual spread of the rioting activity in the
2005 French data seems to have some very interesting properties, which would lead
us to believe that the true solutions are not true traveling waves, although they
do exhibit similar characteristics. To better explain this, let us denote by p(x)
the peak number of events at location x and by t(x) the day in which the rioting
activity peaked. In preliminary analysis of the spread of rioting activity during the
2005 French riots, we observe the following general trend: if the triggering event
occurred in location x′ at time t = 0 then the peak number of events decreased and
was delayed in locations with the distance away from the rioting activity, in other
words, p(y) is a decreasing function of |y − x′| and t(y) is an increasing function of
|y − x′|. This was only a general global trend and there were exceptions of course.
In particular, large cities erupted first in some cases. We are able to reproduce this
observation with the model (14).

1. Traveling wave-like solution: Figures 12a-12d illustrate the numerical solu-
tions where λ(x, 0) = e−10x and a triggering event occurring at location x = 0.
The result is a wave-like solution whose crest decreases as it moves. In Figure
12a one observes that the rioting activity grows and at time t = 1 the solution
has a wave-like profile which connects the maximum level of rioting activity
and the base level of rioting activity. At time t = 2 the solution continues to
have a wave-like profile, however, it now connects a lower level of rioting ac-
tivity to the zero level of rioting activity. Of course, this is not a true traveling
wave as we see the crest decrease and the transition between the lowest level
of activity and the highest level widen. We extract and illustrate from the
evolution of this solution, the level of rioting activity at four different loca-
tions (x = 0, 1, 2, 3) in Figure 11a. Recall, that the triggering event occurred
in location x = 0 and here the peak of the level of activity is the highest of the
four and occurs the earliest. From there we observe that the peaks at each
corresponding location decreases with the distance from the triggering event
location.

2. Spreading solution: Figures 13a-13d illustrate the numerical solutions where
λ(x, 0) = λ0 = 2 and a triggering event occurring at location x = 5. The result
is a bump-like solution whose center is located at the triggering event location.
Initially, this bump-like solution increases. In Figure 13a one observes that
the rioting activity grows and at time t = 1 it begins to simultaneously spread
and decay. We extract and illustrate from the evolution of this solution, the
level of rioting activity at four different locations (x = 2, 3, 4, 5) in Figure 11b.
Recall, that the triggering event occurred in location x = 0 and here the peak
of the level of activity is the highest of the four and occurs the earliest. From
there we observe that the peaks at each corresponding location decreases with
the distance from the triggering event location.
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7.3. Mixed local-non-local model. The inclusion of social connections in the
network leads to a (spatially) non-local spread of information in the social tension.
To the authors’ knowledge this poses a new mathematical system for which there is
much theory that needs to be developed. For example, while the global existence of
solutions to the Cauchy problem defined by system (14) falls under classical theory,
the proof of the global existence of solutions to (17) can be found in [7]. Moreover,
in the special case where there is a symmetric influence between nodes and this
influence deceases with geographic distance we obtain a system of the following
form:

λt = D∆λ− (ω − η)λ+ r(α)G(λ) + ωλb (22a)

αt = η̄

(∫
Ω

J (x− y)α(y, t) dy − α
)
− (h(λ) + η̄)α+ θαb +Aδ0,s̄. (22b)

The existence of traveling wave solutions in this system is an open problem. Al-
though we conjecture that such solutions exists.

8. Conclusion. Our goal here is to introduce simple models for the dynamics of
riots that include what we believe to be the essential ingredients to qualitatively
capture the initiation, self-excitation, spreading, and relaxation of rioting activities.
Without any of these factors, we believe that important qualitative information
will be lost. In addition, we have introduced a way to model the social or global
connections both on a network and on a continuum domain. The former is useful
for the purpose of fitting data and the latter to extract some characteristics of the
growth, spreading, and decay of the rioting activities. These models are mainly
exploratory tools that can be used to gain some insight into the effect that the
different mechanisms have on the rioting activity.

One interesting outcome of this model is the double threshold phenomena that
comes from the intensity of the triggering event. It was surprising to us that if the
intensity of an event was sufficiently high the spreading of riots changed from being
a local one to a non-local one. Of course, since this is an observation from numerical
simulations it raises the question to verify this with rigorous analysis: it is an open
problem to prove that such a threshold exists.

While all rioting activities are similar in nature there are many contrasts between
them as well - see for example [29]. We aim in this paper to construct a model
that has the flexibility to describe various types of bursts of rioting activity. It is
hoped that it could be used in the future to determine if, for example, a riot was
exogenously driven or endogenously driven. This is another interesting direction of
research that is worth pursuing. Likewise, the model allows for different possible
regimes of influence of activity on the social tension. Here we have chosen to
consider the effect when high activity slows down the relaxation of this tension.
This is reflected in the choice p > 0 for the function h(λ). In other situations,
a high activity may actually generate a rapid decay of the social tension as some
observations seem to suggest. This leads to choose p < 0 in this function. Also note
that another possible choice for the evolution of the social tension field is

d

dt
α(s, t) =

n∑
i=1

Aiδt=ti,s=si − h(λ)(α(s, t)− αb(s)). (23)

We will discuss the case p < 0 and this variant elsewhere.
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(a) Level of rioting ac-

tivity in time.

(b) Level of rioting ac-

tivity in time.

Figure 11. On the left we observe the total number of rioting ac-
tivities for four different locations with parameters and initial con-
ditions corresponding to Figures 12a-12d. On the left we observe
the total number of rioting activities for four different locations
with parameters and initial conditions corresponding to Figures
13a-13d.

Another interesting aspect of a riot that remains to be studied in detail is the
process of “self-relaxation.” In fact, the reasons why riots end is recognized as quite
unclear. For example, in the 2005 French riots, riots were already strongly declining
when the government adopted the strongest measures (notably an evening curfew).
Rioters from the 2011 London riots reported to have stopped due to boredom, lack
of targets, bad weather, fear of the police, and a call for peace by the father of
a person killed during the riots [37]. In the model, whenever there are no more
shocks or other external inputs to the social tension, the rioting activity eventually
ends (provided the background social tension is small enough). This is a key aspect
of the model. The self-reinforcement effect leads to developing riots even though
the social tension is already decreasing. However, when this social tension becomes
small enough, it brings back the rioting activity to its baseline level.

Some of the empirical factors mentioned in the introduction are clearly ingre-
dients contributing to the decay of the social tension. It is well known that the
weather plays a role in riots (everything else being equal, the likeliness of riots in-
creases with the temperature). This factor can be thought of as modulating the
baseline value of the social tension. Other empirical elements could be incorporated
into our model. Specifically, the effects of the police department or announcements
for the police that the army will become involved (such as what happened in the
2011 London riots) can be incorporated as a negative shock. This is obviously the
same for the call for peace - but why a specific call, or such an announcement by
the police, are actually perceived as events of strong amplitude is a deep issue in
sociology, outside the scope of this modeling approach. In this model, a negative
shock on the social tension can bring the system into the regime of decreasing ri-
oting activity. We would like to emphasize that a shock that would act directly on
and only on the rioting activity would be inefficient - the system remaining in the
regime where the activity increases. This bears some interesting consequences on
what type of measures are more likely to ease a situation with severe unrests. A
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(a) Solutions at t = 1. (b) Solutions at t = 2.

(c) Solution at t = 3. (d) Solution at t = 4.

Figure 12. Figures 12a-12d illustrate the dynamics of the numer-
ical solution to system (14) with exponential initial intensity at in
the triggering event location x = 0 and with a triggering event
intensity A = 50. The horizontal axis represents space.

more detailed study of the effect of negative shocks is also a natural direction of
future work.

As already said, the purpose of this work is to establish models that characterize
the global behavior of such systems. However, the ultimate objective is to use
data from riots to validate this model. One perspective is the use of the 2011
London riots data which are available on line. The case of the 2005 French riots
would also be very interesting to study: the fact that the riots spread throughout
the country makes this a particularly interesting data set to study the effects of
non-local dispersal of the riots though the study of the proper social connections
included in the model. In terms of stylized facts, our preliminary analysis seems to
support that the model we propose here is coherent with the observations.

Finally, it is worth noting that modeling this social phenomena leads to the
construction of new mathematical models, for which there is much mathematical
theory to be developed. We hope that this article will encourage future work in this
direction. In particular we emphasize the open problems related to the properties of
the model with stochastic shocks and to the study of mixed local /non-local diffusion
models. For the latter, solving the Cauchy problem, the construction of traveling
fronts and the determination of the asymptotic speed of propagation are new types
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(a) Solutions at t = .5. (b) Solutions at t = 1.5.

(c) Solution at t = 2. (d) Solution at t = 2.5.

Figure 13. Figures 13a-13d illustrate the dynamics of the nu-
merical solution to system (14) with a constant initial conditions
λ(x, 0) = 2 and a triggering event with intensity A = 100 occurring
at location x = 0. The following parameters were used for both nu-
merical experiments: z0 = 10, a = 100, ω = .2, θ = 0.05, η = .198.
The horizontal axis represents space.

of problems which could lead to interesting mathematical developments. Lastly,
the different geometries of a network and heterogeneities in a system will lead to
varying types of diffusion. It would be an interesting problem to see how non-linear
or fractional diffusion influence the the existence of traveling wave solutions and
their propagation speed (if they exists).
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