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Abstract. We investigate a class of linear discrete control systems, modeling

the controlled dynamics of planar manipulators as well as the skeletal dynamics

of human fingers and bird’s toes. A self-similarity assumption on the phalanxes
allows to reinterpret the control field ruling the whole dynamics as an Iterated

Function System. By exploiting this relation, we apply results coming from

self-similar dynamics in order to give a geometrical description of the control
system and, in particular, of its reachable set. This approach is then applied

to the investigation of the zygodactyl phenomenon in birds, and in particular

in parrots. This arrangement of the toes of a bird’s foot, common in species
living on trees, is a distribution of the foot with two toes facing forward and two

back. Reachability and grasping configurations are then investigated. Finally

an hybrid system modeling the owl’s foot is introduced.

1. Introduction. The aim of this paper is to introduce a class of linear discrete
control systems, modeling the controlled dynamics of planar manipulators as well
as the skeletal dynamics of human fingers and bird’s toes. The key idea is to
model robotic, human, avian finger as a sequence of links, whose relative (planar)
angle is controlled by a discrete control function with values in a compact set.
The main assumption regards the lengths lk of the links: they are assumed to
decay according to a recursive and contractive relation, e.g. a constant scaling:
lk = lk−1/ρ with ρ > 1. We show that the recursively of the scaling relation, as well
as its contractivity, allows to reinterpret the control field ruling the whole dynamics
as an Iterated Function System, namely a set of contractive maps. This opens the
way to the wide theoretical background of fractal geometry and, in particular, to
the branch devoted to the investigation of self-similar structures. By establishing
a relation between discrete control systems and fractals, well-known concepts and
results coming from self-similar dynamics (like the attractor of an iterated function
systems or the celebrated Open Set Condition) are used to describe the topology of
the reachable set and other properties of the dynamical systems – see for instance [9]
for an investigation on the left invertibility of discrete control systems via Iteration
Function Systems.
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This approach was also explored in [8] and in [15], for a particular class of self-
similar structures related to the theory of expansions in non-integer bases. The main
novelty of this paper consists in the increased generality of the (linear) dynamics
taken into account.

In the first part of the paper we shall focus on the study of the asymptotic
reachable set of the manipulator, which in the first stage of our investigation is
assumed to composed by a possibly infinite number of links, namely to belong to
the class of so-called hyper-redundant manipulators – the term was introduced in [6]
and it refers to manipulators with an high or possibly infinite kinematic redundancy.
The interest of researchers in devices with hyper-redundant controls was motivated
by the ability to avoid obstacles and the ability to perform new forms of robot
locomotion and grasping (see for instance [1], [5] and [7]).

In the second part of the paper, an application to skeletal biology is showed:
we assume the number of links to be finite and we investigate of the zygodactyl
phenomenon in bird’s feet. This arrangement of the toes of a bird’s foot, common
in species living on trees and in particular in parrots, is a distribution of the foot
with two toes facing forward and two back. We apply the general self-similar model
to the foot and we provide an algorithm computing the reachability set. Then
we investigate the grasping problem, by providing sufficient, explicit conditions for
the grasp of a branch, modeled as a cylinder. In general, our model may allow
several grasping configurations: we adapt from robotics an optimality condition,
maximizing the resistance of the grasp to external forces. Finally we introduce a
hybrid dynamical system modeling owl’s foot in various stages of hunting (flying,
attack, grasp).

Biomechanics of avian foot, in particular in the case of arboreal birds, is widely
investigated in the literature. We refer to [21] and the references therein for a
discussion on the mechanics and energetics of trunk climbing and grasping of the
treecreeper. In [4], Bock describes the morphology of woodpeckers and the biome-
chanical analysis of climbing and perching. Zinoviev and Dzerzhinsky, [27] studied
the forces acting on avian limbs on various stages of locomotion, while Sustaita
et al. [26] survey the tetrapod grasping in several clades, including birds. The
above mentioned papers share a mechanical approach to the analysis of grasping
and perching capabilities of avian feet: forces acting on bird’s foot are described by
considering in detail the whole skeleton-muscular system. Our model is a simplified
version of these systems, on the other hand the dynamical system we consider is
indeed a control system: this yields the possibility of investigating at once all the
physically reasonable configurations of the foot.

The discrete control theoretic approach in the investigation of limb’s kinematics
is common in robotics - among many others, we refer to the papers [11], [17], [16]
for an overview on robotic fingers that are investigated in a fashion similar to the
one proposed in the present paper. Finally we note that the connection between
the biomechanics of avian feet and robotics is an active research domain, mostly
motivated by the fact that the locomotion of birds turned out to be more efficient
with respect with human locomotion - see for instance the project described in [18],
where the locomotion of birds is mimicked in a robotic device.

2. Preliminaries: Iterated function systems and discrete control systems.
The main point of this investigation is establish a relation in the linear case between
the theory of Iterated Function Systems (IFSs) and a particular class of discrete
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control problems. In particular, we aim to reinterpret the reachable set of a contrac-
tive discrete control system as the attractor of a suitable iterated function system,
in a sense that is made clear below. In what follows we recall some basic facts
about Iterated Function Systems and we establish a general relation with a class of
discrete control models.

2.1. Iterated function systems. Iterated Function Systems are one of the main
theoretical tools used to construct fractals and self-similar structures. In order to
keep this introduction session as general as possible we shall set definitions and
main results in a general metric space (X, d). However, our applications are mainly
concerned with the n-dimensional complex field Cn, or, in some cases, to its isomor-
phic space R2n. IFSs are collections of contractive maps (Fu)u∈U and, as one may
expect, their main features are related to fixed point arguments. We recall that a
function in a metric space (X, d) is a contraction, if for every x, y ∈ X

d(F (x), F (y)) ≤ Ld(x, y)

for some L < 1. Every IFS is naturally associated with the so called Hutchinson
operator, a set-valued map defined by

F(S) :=
⋃
u∈U

Fu(S).

By definition F acts of the power set of X, P (X). P (X) is a metric space, as well,
if it is endowed with the Hausdorff distance dH induced by the distance of X:

dH(A,B) := max{sup
b∈B

inf
a∈A

d(a, b), sup
a∈A

inf
b∈B

d(a, b)}.

Hutchinson [10] showed that every finite IFS, namely every IFS with finitely
many contractions, admits a unique non-empty compact fixed point Q. In other
words, there exists and it is unique a compact subset R of X such that

Q = F(Q).

Moreover Q is also an attractor for F : for every non-empty bounded set S ⊆ X

lim
k→∞

Fk(S) = Q.

This result was lately generalized to the case of infinite bounded IFSs ([25] and [19]).
Let (Fu)u∈U be an IFS and for every u ∈ U denote by Lu the Lipschitz constant
of Fu. Then (Fu)u∈U is bounded if (Lu)u∈U is uniformly bounded from above by a
constant c < 1, i.e., if

c := sup
u∈U

Lu < 1.

The attractor Q of an IFS can be characterized by means of the associated shift
space U∞, the space of infinite sequences of element of the index set U . Indeed one
has that for every bounded subset S of X

Q = cl

({
lim
k→∞

Fu1 ◦ Fu2 ◦ · · · ◦ Fuk
(S) | (u1, . . . , uk, . . . ) ∈ U∞

})
(1)

where cl(S) = S denotes the closure of a set S.

Example 1. Consider the simple IFS given by Fu : x 7→ 1
ρ (x + u) with ρ > 1

and u ∈ U , where U is a compact subset of R. Then by a direct computation
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Fu1 ◦ · · · ◦ Fuk
(0) =

∑k
j=1 ujρ

−j . By applying (1) with S = {0} we obtain that the

attractor of (Fu) is

Q =


∞∑
j=1

ujρ
−j | (uj) ∈ U∞

 .

As we shall see in next sections, the reachable set of some control problems can be
identified with the attractor of suitable IFSs: the key idea is to see the (contractive)
controlled dynamics F (·, u) of a control system ẋ = F (x, u) as an element of an IFS.
In the next section, this relation is described in a detailed way for a particular class
of control systems; here we are interested to keep the argument at a more intuitive
level. The controls u are encoded as the indexes of the functions of the IFS, so that
F (·, u) = Fu(·). Borrowing the content of above example, we can keep in mind as a
toy model the following discrete control system

xk =
1

ρ
(xk−1 + uk) u0 = 0, uk ∈ U. (2)

The velocity field of above system is Fu(x) = 1
ρ (x + u) and we may store this

information with the formalism of IFSs by considering the family of contractive
maps (Fu)u∈U . Given a control sequence ū = (uk) ∈ U∞, the associated trajectory
(xk[ū]) satisfies for every k ≥ 1

xk = Fuk
◦ · · · ◦ Fu1

(0) =

k∑
j=1

uk−jρ
−j .

Note that the above relation is backward in time with respect to the control ū.
However when we consider the reachable set in time k we get

Rk := {xk[ū] | ū ∈ U∞} = {
k∑
j=1

uk−jρ
−j | ū ∈ U∞} = {

k∑
j=1

ujρ
−j | ū ∈ U∞}.

Using IFS formalism and considering the Hutchinson operator F associated to
(Fu)u∈U we get

Rk = Fk({0}). (3)

When considering the attractor Q of F , described explicitly in above example,
the asymptotic reachable set R∞ of this system satisfies

R∞ := { lim
k→∞

xk[u] | u ∈ U∞} = lim
k→∞

Rk = lim
k→∞

F k({0}) = Q.

More generally, the iteration of an IFS via the Hutchinson operator can be reinter-
preted as a discrete time evolution of a control system. The attractor, namely the
set of the possible outcomes of infinite iterations of the controlled velocity maps, is
naturally associated to the asymptotic reachable set.

Fractal geometry is a theoretical framework providing a description of the topol-
ogy of the attractor and, consequently, of the reachable set of some discrete control
systems. For instance, in the case of finite IFS over Rn, we may consider the cel-
ebrated Open Set Condition (OSC), stating that there exists a relatively compact
open set V ⊂ Rn such that F(V ) ⊂ V and that the images Fu(V ), with u ∈ U ,
are disjoint. If this condition is satisfied then the attractor has a positive Hausdorff
dimension s, that can be explicitly calculated by solving the equation 1 =

∑
u∈U L

s
u,

where Lu denotes the Lipschitz constant of the map Fu [10]. In the case of coformal
finite IFS, the conversely was proved to be also true [23].
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Example 2. Consider the control system (2) control set U = {0, 1}. The OSC on
(Fu) is satisfied if and only if ρ > 2. If ρ > 2 then asymptotic reachable set has
Hausdorff dimension log2 ρ. In particular, R∞ is a totally disconnected set. Note
that for ρ = 3 we obtain a scaled version of the Middle Third Cantor set.

The parallelism between discrete control dynamics and IFS can be extended to
the investigation of the uniqueness of the controlled trajectories, whose relevance
has twofold motivations. When there is a one-to-one relation between control and
trajectory, then observability properties emerge or, with the terminology coming
from engineering, we can say that the system is reversible or invertible – see [9] for
an investigation of this issue via IFS.

On the other hand, a redundancy of the trajectories naturally opens questions
about optimality with respect to a given running cost. The theory of IFS is a
fertile framework also for this kind of problems: we refer to Barnsley’s book [2]
for a general overview on the topic. We finally remark that a wide literature was
devoted for the unidimensional linear case, as a branch of the theory of expansions
in non-integer bases, see for instance [14], [12], [22], [13] and references therein.

2.2. Affine IFS. In this paper we are interested on a particular class of affine IFSs
on Cn, whose maps are of the form

Fu(x) = e−iωu(Ax+B) (4)

for some contractive linear operator A : Cn → Cn, B ∈ Cn, ω ∈ [0, 2π) and
u ∈ U ⊂ R. Note that Fu is composed by a “controlled” rotation term e−iωu and a
fixed contraction-displacement term Ax+B.

By construction, (Fu)u∈U is a bounded IFS. Indeed for all u ∈ U one has Lu =
||A||, where ||A|| is the essential norm of A, defined by

||A|| := sup
x∈Cn,||x||≤1

||Ax|| < 1. (5)

The last inequality is given by the fact that we assumed above A to be contractive.
In order to give an explicit description of the attractor R of (Fu)u∈U , we note that
for every u, v ∈ U

Fu ◦ Fv(0) = e−iω(u+v)AB + e−iωuB.

By iteratively applying above equality, for every sequence (uk) ∈ U∞ one has

lim
k→∞

Fu1
◦ · · ·Fuk

(0) =

∞∑
k=1

e−iω
∑k

h=1 ukAk−1B.

Finally, by taking S = {0} in (1), we obtain

Q =

{ ∞∑
k=1

e−iω
∑k

h=1 uhAk−1B | (uk) ∈ U∞
}
. (6)

For our purposes we shall take into account matrices A whose spectral radius ρ(A) <
1. This is a milder assumption than (5), but in general if ρ(A) < 1 then there exists
K ≥ 1 such that for every k ≥ K one has ||Ak|| < 1. For this reason we shall also
refer to such operators as eventually contractive. Clearly Q, as it is given in (6),
is well defined even in the case of eventually contractive IFSs of the form (4). By
a direct computation, one can convince himself that R is an invariant set for the
associated Hutchinson operator. Indeed, next results shows that Q is the unique
compact invariant set for the class of eventually contractive IFSs.
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Proposition 1. Let A be a complex-valued n × n matrix with ρ(A) < 1, B ∈ Cn,
U ⊂ R and ω ∈ [0, 2π). Consider the eventually contractive IFS

Fu(x) := e−iωu(Ax+B).

Then

Q =

{ ∞∑
k=1

e−iω
∑k

h=1 ukAk−1B | (uk) ∈ U∞
}

is the unique invariant set for (Fu)u∈U . Moreover for every bounded set S

lim
k→∞

Fk(S) = Q

where F is the Hutchinson operator associated to (Fu)u∈U .

Proof. As mentioned above, the invariance of Q follows by a direct computation.
To show its uniqueness, let K be the smallest integer such that ||Ak|| < 1 for every
k ≥ K. Also consider the space UK of sequences in U of length K and an auxiliary
IFS composed by the contractive maps:

Fu1,...,uK
:= Fu1

◦ · · · ◦ FuK

For brevity we denote the index sequence u1, . . . , uK by ū, so that the above IFS
also reads (Fū)ū∈UK .

Now, let Q′ be an invariant for (Fu)u∈U , the original eventually contractive IFS.
Then F(Q′) = Q′ and, consequently, FKh(Q′) = Q′, for every h ∈ N. But

FKh(·) =
⋃

u1,...,uKh∈U
Fu1
◦ · · · ◦ FuKh

(·) =
⋃

ū1,...,ūh∈UK

Fū1 ◦ · · · ◦ Fūh(·).

Then Q′ is an invariant set for the IFS (Fū)ū∈UK , too. Therefore, since compact
invariant sets for purely contractive, classical IFSs are unique ([10] and [25]), the
same holds in the eventually contractive case. To complete the proof it is left to
prove that for every bounded set S the already established limit

lim
h→∞

FhK(S) = Q

(if follows by the fact that FK is a contractive IFS) implies

lim
k→∞

Fk(S) = Q.

We notice that F is uniformly continuous (see [3] for an overview on the continuity
of F). Consequently for every m ∈ N and for every ε > 0 there exists δm > 0 such
that

dH(S1, S2) < δm ⇒ dH(Fm(S1),Fm(S2)) < ε.

Fix ε > 0, and let H be such that

dH(FKh(S), Q) < δm ∀h ≥ H, m = 1, . . . ,K.

For every k > KH we may write k = Kh + m for some h ≥ H and some m =
1, . . . ,K. Therefore we finally get

dH(FKh+m(S), Q) = dH(Fm(FKh(S)),Fm(Q)) < ε

and this concludes the proof.
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xk−1 xk

xk+1

ω

Figure 1. In this figure the k + 1-th rotation control vk+1 is
equal to 1: this corresponds to rotate the k + 1-th phalanx, whose
junctions are xk and xk+1 of an angle ω with respect to the k-
phalanx.

3. Discrete control systems for skeletal motion. Throughout this section we
introduce a simple control model describing the kinematics of a sequence of rigid
links whose relative angles can be controlled by actuators on the junctions. Note
that this approach applies to robotics, where a sequence of mobile rigid links is
termed manipulator, as well as to skeletal biology. As an example of applications,
in the next sections we shall focus on the kinematics of the avian foot and we shall
also consider the interplay between couples of bird fingers.

In order to build our model, consider a sequence of one-dimensional links of length
lk, k ∈ N. We denote by xk and xk+1 the positions of the endpoints (junctions) of
the k-th link. We assume the motion of the links to be planar and, since rotations
are involved, it is more comfortable to set our dynamics on the complex plane, so
that xk ∈ C. Finally every junction xk is endowed a rotation control uk belonging to
a compact control set U ⊂ R. We finally introduce a maximal rotation ω ∈ [0, 2π],
so that the effective clockwise rotation of the k-th link with respect to the former
can be described by −ωuk. For instance if uk = 0 then the (k − 1)-th and the k-th
links are collinear, while if uk = 1 then a rotation of amplitude ω is applied and,
consequently, the (k − 1)-th and the k-th links form an angle π − ω, see Figure 1.
In view of above reasoning, we may assume without loss of generality U ⊂ [0, 1].
Summarizing, one has for every k

||xk − xk−1|| = lk arg(xk − xk−1) = arg(xk−1)− ωuk. (7)

By iteratively applying last equality (and by setting arg(x0) := 0) we obtain

xk − xk−1 = lke
−iω

∑k
h=1 uh . Setting as initial datum x0 = 0, we finally get the

discrete control system {
xk = xk−1 + lke

−iω
∑k

h=1 uh

x0 = 0 uk ∈ U, k ∈ N.
(8)

For every control sequence ū = (u1, . . . , uk, . . . ) ∈ U∞, the trajectories xk[ū] = xk
of above system are given by

xk =

k∑
j=1

lje
−iω

∑j
h=1 uh , k ∈ N.
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Then we may explicitly write the reachable set in time k

Rk := {xk[ū] | ū ∈ U∞} =


k∑
j=1

lje
−iω

∑j
h=1 uh | u1, . . . , uk ∈ U

 . (9)

Finally, we note that if the sequence of link lengths (lk) is summable, then the
asymptotic reachable set R∞ := limk→∞Rk is a compact set:

R∞ =

{
lim
k→∞

xk[ū] | ū ∈ U∞
}

=


∞∑
j=1

lje
−iω

∑j
h=1 uh | u1, . . . , uk ∈ U

 . (10)

3.1. Asymptotic reachability for self-similar links. We noticed above that
the notion of asymptotic reachable set makes sense under an obvious finiteness
condition of the total length of the links, namely ` :=

∑∞
k=1 lk < +∞. Among all

the summable sequences, we take into account the class of positive sequences (lk)
that can be recursively generated via a contractive, linear transformation. We shall
see that this assumption allows to reinterpret the asymptotic reachable set as the
attractor of a suitable IFS.

Definition 3.1. We say that a sequence (lk) in R is Linear-Contractive-Recursive
(LCR) if there exist an integer n ∈ N and a linear map f : Rn → R satisfying
lk = f(lk−1, . . . , lk−n) for every k > n and there exists L < 1 such that

|f(x)− f(y)| < L||x− y||∞ (11)

where ||(x1, . . . , xn)||∞ := max{|xk|, k = 1, . . . , n} denotes the L∞-norm of x ∈ Rn.

A trivial example of linear-contractive-recursive (LCR) sequence is given by the
geometric sequence lk = q−k for some q > 1. Indeed lk = lk−1q

−1 for every k ∈ N.

An other example consists in the scaled Fibonacci sequence lk = F̃kq
−k. Here q is

assumed greater than the Golden Mean ϕ and F̃k+1 = F̃k−1 + F̃k denotes the k-th
Fibonacci number. Indeed one has

lk = lk−1q
−1 + lk−2q

−2, ∀k ≥ 2.

Remark 1. Generating functions of LCR sequences are always contractions with
respect the Euclidean norm || · ||, while the conversely is not necessarily true when-
ever n ≥ 2. This immediately follows by the inequality

||x||∞ ≤ ||x|| ∀x ∈ Rn.
To make clearer above definition, observe that by definition the scaled Fibonacci
sequence F̃kq

−k is LCR if and only if q > ϕ, while the generating map f(x, y) =
xq−1 + yq−2 is a contraction with respect Euclidean norm if and only if q >

√
ϕ.

Finally notice that the series
∑
F̃kq

−k converges if and only if q > ϕ ( and not if
q >
√
ϕ). This fact is clarified in the next proposition.

Proposition 2. LCR sequences are summable.

Proof. Let (lk) be a LCR sequence and let L < 1 be the L∞- Lipschitz constant of
its generating function f : Rn → R. Then for every k > n one has

|lk| ≤ L|(lk−1, . . . , lk−n)|∞ = L|lk′ |
where lk′ := max{lk−1, . . . , lk−n}. By iteratively applying the above inequality we
have

|lk| ≤ Lk ∀k ≥ n. (12)
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Note that this inequality is sharp when k′ = k− 1 for all k, as in the case of scaled-
Fibonacci sequence. The claim hence follows by the comparison between the series∑
k>n |lk| and the geometric series

∑
k>n L

k.

In order to investigate the reachability properties of the control system (8), we
fix a LCR sequence (lk). In what follows we build an eventually contractive IFS
naturally associated to (lk). To this end, recall that the dual of Rn is isomorphic
to Rn itself, that is every linear map from f : Rn → R can be identified with an
element a ∈ Rn. In other words, there exists a = (a1, . . . , an) ∈ Rn such that for
every k > n

lk = 〈a, (lk−1, . . . , lk−n)〉.
Note that since (lk) is LCR, and in particular the L∞-Lipschitz constant of f is
smaller than 1, then

||a||1 :=

n∑
k=1

|ak| < 1. (13)

Remark 2. Above inequality is an application of Hölder inequality in the finite-
dimensional case. However a more direct proof consists in setting for all j = 1, . . . , n

xj =

{
|aj |/aj if aj 6= 0

0 otherwise

and in applying Condition (11) to x = (x1, . . . , xn) and to y = 0n := (0, . . . , 0) ∈ Rn.

Now, define the n× n matrix

A :=

(
a1 . . . an−1 an

In−1 0n−1

)
where In−1 denotes the (n − 1)-dimensional identity matrix. By construction, for
every k > n

A(lk−1, lk−2, . . . , lk−n)T = (lk, lk−1, . . . , lk−n+1)T , (14)

that is A acts on (lk) as a shift operator with window of length n.
So far we fixed a LCR sequence of lengths (lk) and we associated to it a n-

dimensional eventually contractive linear operator A, describing the evolution of
(lk) via (14). We now consider the eventually contractive affine IFS (Fu)u∈U defined
on Cn

Fu(x) := e−iωu(Ax+B) u ∈ U. (15)

where

B = (ln, ln−1, . . . , l1)T .

Note that by (14)

AkB = (lk+n, . . . , lk+1)T ∀k > 0. (16)

Remark 3 (Spectral localization of A). We notice that (16), together with (12),
implies limk→∞ ||AkB||∞ = 0. Therefore Ak tends to 0 as k tends to infinity, and
consequently, the spectral radius of A is strictly lower than 1.

Theorem 3.2. Let F(S) := ∪u∈UFu(S) be the Hutchinson operator associated to
(Fu)u∈U and denote by π1 the projection of a vector of Cn on its first component.
Then for every k ≥ 0, the reachable set in time k of the control system (8), Rk,
satisfies

Rk = π1Fk({0}). (17)
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Furthermore let Q∞ be the (unique) invariant set of (Fu)u∈U . Then asymptotic
reachable set R∞ satisfies

R∞ = π1(Q∞)

and for every bounded set S ⊂ Cn

R∞ = π1( lim
k→∞

Fk(S)),

Proof. Let Qk := Fk({0}). By (3) one has

Qk =


∞∑
j=k

e−iω
∑j

h=1 uhAk−1B | (uk) ∈ U∞
 .

and, by (16) we may rewrite above equality as

Qk =


∞∑
j=k

e−iω
∑j

h=1 uh(ln+k, . . . , lk+1) | (uk) ∈ U∞
 .

Then (17) follows by noting that

Rk =


∞∑
j=k

e−iω
∑j

h=1 uh lk | (uk) ∈ U∞
 = π(Qk).

By Proposition 1, the compact set Q∞ ⊂ Cn is well defined an it satisfies

Q∞ =

{ ∞∑
k=1

e−iω
∑k

h=1 uhAk−1B | (uk) ∈ U∞
}
.

Again by (16) we may rewrite above equality as

Q∞ =

{ ∞∑
k=1

e−iω
∑k

h=1 uh(ln+k−1, . . . , lk) | (uk) ∈ U∞
}

so that one has by (10)

π1(Q∞) =

{ ∞∑
k=1

e−iω
∑k

h=1 uk lk | (uk) ∈ U∞
}

= R∞.

Finally, the last part of the claim follows again by Proposition 1.

Example 3. If lk = 1/ρk for all k ≥ 1 (namely l0 = 1) then R∞ is the attractor of
the one-dimensional IFS on C

Fu(x) = e−iωu
1

ρ
(x+ 1)

If lk = Fk/ρ
k for all k ≥ 1 (namely l0 = F0 and l1 = F1/ρ) then R∞ is the projection

on the first component of the attractor of the two-dimensional IFS

Fu(x1, x2) = e−iωu
( 1
ρ

1
ρ

1 0

)
(x1 + F0, x2 + F1/ρ)T .

Next result gives informations about the geometry of R∞ in the case of lk = 1/ρk
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Corollary 1. Assume lk = 1/ρk for all k ≥ 1, ρ > 2 and U = {u1, u2} with
ū := u2 − u1 satisfying √

1− cos(ωū) >
1

2
√

2
. (18)

Then R∞ has Hausdorff dimension equal to logρ 2 and, consequently, it is a totally
disconnected set.

Proof. By Theorem 3.2 R∞ is the attractor of the IFS

Fu(x) = e−iωu
1

ρ
(x+ 1) u ∈ {u1, u2}.

It is left to show that (Fu) satisfies the Open Set Condition (see Section 2.2), namely
that there exists a open set V such that

Fu1
(V ) ∪ Fu2

(V ) ⊆ V. (19)

and

Fu1(V ) ∩ Fu2(V ) = ∅. (20)

To this end set V = B1(0) the open unit ball on the complex plane, and note that if
ρ > 2 then (19) is satisfied. To show (20), we observe that Fu1(V )∩ Fu2(V ) its the
union of two balls of radius r := 1

ρ and whose centers are respectively c1 := e−iωu1

and c2 := e−iωu2 . Then by (18) the distance between c1 and c2 satisfies

|c1 − c2| =
√

2

ρ

√
1− cos(ωū) >

r

2

and, consequently, (20) holds. Finally recall that when the OSC is satisfied the
Hausdorff dimension s is the solution of the equation

1 = 2

(
1

ρ

)s
,

(indeed 1
ρ is the Lipschitz constant of Fu1 and Fu2) and this concludes the proof.

4. A model for zygodactyl bird’s foot. Zygodactyl bird’s foot is composed by
four pairwise opposable toes. It occurs parrots, woodpeckers, cuckoos and some
owls. The arrangement of the fingers varies with species, we shall consider the case
in which the motions of opposite finger are coplanar; see Figure 2 for an example.

Building our model consists into two stages: we first slightly modify the control
system (8) in order to take into account several toes, we then consider the global
arrangement of all the toes in a general three-dimensional setting. The rest of the
paper is devoted to investigation of the grasping capabilities of feet and to the
description of an hybrid dynamical system modeling the tendon locking mechanism,
a feature of owl’s (zygodactyl) feet.

4.1. Bird’s toes on the complex plane. In previous section we introduced a
model for a toe (or for a manipulator) on the complex plane, whose kinematics
is ruled by control system (8) . In what follows, physical assumptions (planar
motion, lengths lk are LCR sequences, maximal rotation angle ω is fixed) and control
assumptions hold still. The corresponding control dynamics is a slight modification
of (8), described below.

First of all we notice that, for simplicity, the reference frame of (8) is set in order
to have x0 = 0 and the axes oriented along the first link: the position of the first
junction simply reads x1 = l1e

−iωu1 , and x1 belongs to the real axes if no rotation
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is performed, i.e., if u1 = 0. Since our goal is to model a whole foot, where several
toes are involved, a general reference frame is needed. All the toes of the bird’s foot
are assumed to share the same initial point, that can be set to the origin without
loss of generality. However several coplanar toes have different orientations that
need to be taken into account in our model. With this consideration in mind, we
embed in (8) an additional rotation term, u0 ∈ [0, 2π]. Note that u0 is not a control
but this little abuse of notation allows to rewrite (8) in the more general form{

xk = xk−1 + lke
−i

∑k
h=0 uh ω

x0 = 0
(21)

Note that if u1 = 0, then x1 = l1e
−iωu0 . The reachable set in time k of this new

system, R0
k, reads

R0
k =


k∑
j=1

lje
−iω

∑j
h=0 uh | uh ∈ U

 = e−iωu0Rk.

and, similarly,

R0
∞ =

{ ∞∑
k=1

lke
−iω

∑j
h=0 uh | uh ∈ U

}
= e−iωu0R∞.

Remark 4. In order to construct the reachable sets R0
k and R0

∞, Theorem 3.2 can

be directly applied by considering the IFS (F 0
u), where F 0

u(x) := e−iω(u0+u)(Ax+B).

4.2. Zygodactyl bird’s foot. The junctions of every finger are coplanar, we de-
note pi, with i = 1, . . . , 4, the plane the i-th finger belongs to. All the planes
of the fingers are assumed to be orthogonal to the xy-plane and we call Ωi, with
i = 1, . . . , 4, the angle the plane pi forms with xz-plane. The condition Ω1 = Ω3

and Ω2 = Ω4 ensures Finger 1 and Finger 3 (and Finger 2 and Finger 4) to be
coplanar, respectively. In Figure 2, Ω1 = Ω3 = π/12 and Ω2 = Ω4 = −π/12.

The initial rotation ui0 of the i-th finger is set to
0 for i = 1, 3, while for u2

0 = u4
0 = π. All fingers have in common their first

junction, that, for seek of simplicity, coincides with the origin. We assume all
fingers to have scale according to the same LCR sequence (lk) and to have the same
maximal rotation angle ω and the same control set U .

We discuss the reachability of Finger 3, the other cases being similar. By Theo-
rem 3.2 (see also Remark 4) the reachable set of the extremal junction of Finger 3,
R3

4, can be obtained by following algorithm

1. consider the LCR sequence of lengths (lk) with recursion depth n ≥ 0 and set
u0 := Ω3/ω.

2. iterate 4 times the IFS F = {e−iω(u+u0)Ax + B, x ∈ C, u ∈ U} with initial
datum {0};

3. project the resulting n-dimensional set on its first component;
4. apply the isomorphism between C and R3∩xz-plane given by x+iz 7→ (x, 0, z).

See Figure 3 for some examples.

4.3. Perching on a branch. We consider the ability of our model bird’s foot to
grasp a branch, modeled as a cylinder. We discuss the case of coplanar fingers,
say Finger 1 and Finger 3, so that the problem can be set on the complex plane
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π
6

π
6

5
6
π5

6
π

Finger 2

Finger 3

Finger 4

Finger 1

Figure 2. An example for our model: here lk = (1.2)−k. Note
that the motions of Finger 1 and Finger 3 are coplanar, as well as
for Finger 2 and Finger 4.

(a) ω = π/12 (b) ω = π/6

Figure 3. An approximation of the reachable set for Finger 3 R3
4

with ω = π/12, π/6 and lk = 1/ϕk, where ϕ is the Golden Mean,
obtained by an uniform discretization of the control set R = [0, 1].
The consistency of this approximation is given by the continuity in
Hausdorff metric of the attractor of F with respect to R - see [15].
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and reduces to consider the problem of grasping an appropriate ellipse, namely the
section of the cylinder-branch related to the plane p1(= p2) - see Figure 4.

The ellipse E generated by the intersection of a cylinder (with axis parallel to
y-axis) and p1 has a generic center of the form (0, cy) and radii of the form (rΩ1, r).
It can be parametrized as follows

x(θ; cy, r) = r cos(Ω1) cos(θ)

y(θ; cy, r) = cy + r sin(θ)

and its tangent vector given by is

ẋ(θ; cy, r) = −r cos(Ω1) sin(θ)

ẏ(θ; cy, r) = r cos(θ)

Using the classical isomorphism (x, y) 7→ x + iy the ellipse on the complex plane
may be parametrized by

γ(θ; cy, r) = cy + r(cos(Ω1) cos(θ) + i sin(θ)).

Grasp modeling is a deeply investigated topic in robotics and, in particular, a
wide literature is devoted to the grasp of planar manipulators. In what follows we
borrow from robotics some terminology and techniques in order formalize grasp-
ing conditions and the quality of the resulting grasp. In our setting, we assume
that the fingers of the bird touch the surface of the branch (namely some pha-
lanxes are tangent to the boundary of the ellipse E) in a finite number of contact
points, p1, . . . ,pn. The unit normal vectors (with respect to ∂E) are denoted by
n(p1), . . . ,n(pn). The fingers exert on every contact point pk a frictionless con-
tact force fk, also termed squeezing force, whose magnitude is denoted by fk ≥ 0.
Formally one has

fk = fkn(pk) ∀k = 1, . . . , n.

Note that the condition fk ≥ 0 for every k = 1, . . . , n, implies that f1, . . . , fn are
pointing inward the branch. Every grasp is associated with the so-called wrench
system {w1, . . . ,wn}, a subset of R4 containing the information related to the acting
forces and torques. Formally the wrench wk associated to the k-th contact point
pk of a planar manipulator reads

wk = (n(pk),pk × n(pk)) ∈ R4

where × denotes the vector product. We consider a very simple grasp condition,
commonly termed force closure.

Definition 4.1. A system of wrenches w1, . . . ,wn is said to be a force/torque
closure grasp if and only if any arbitrary external wrench can be generated by
varying the magnitude of the wrenches. In other words, the positive space spanned
by w1, . . . ,wn is the entire R4. Equivalently one has the condition

0 ∈ int conv(w1, . . . ,wn). (22)

In general, a planar force closure configuration requires four contact points. How-
ever when sacrificing the torque closure, three contact points are sufficient to achieve
a force closure. This is the setting we shall consider. In other words, we are looking
for three contact points p1,p2,p3 ∈ ∂E such that

1. Torque equilibrium condition. The lines emanating from p1,p2 and p3

and following positively the corresponding directionsn(p1), n(p2) and n(p3)
are concurrent, namely they intersect in a single point.
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y

z

p1

x

Figure 4. The cylinder represents a branch and it has radius 1
and axis x = 0, z = −1. The plane p1 is the plane Finger 1 and
Finger 3 belong to. The black ellipse is the intersection between p1

and the boundary of the cylinder-branch.

2. Force closure condition. The unit inner normals n(p1), n(p2),n(p3) pos-
itively span the two-dimensional force space, namely for every w ∈ R2 there
exist f1, f2, f3 ≥ 0 such that

w =

3∑
k=1

fkn(pk)

We aim to describe the possible branches (i.e. cylinders) that can be grasped
by a couple of fingers. To this end, we first need to establish geometric conditions
characterizing the contact points.

Lemma 4.2. Consider a finger whose number of phalanxes is K. Let u ∈ {0, 1}K
be a control sequence and xk[u] the corresponding configuration. Also consider

φk(t) := xk−1 + tlke
−i

∑k
j=0 ujω.

Then a point p = (p1, p2) ∈ R2 is a contact point between the ellipse E and the
finger if

p1 + ip2 = φk(t;u) = γ(θ; cy, r)

where k = 1, . . . ,K and t ∈ [0, 1] respectively ensure the existence of a solution and
solve of the following system of equations

φk(t;u) = γ(θ; cy, r)

arg(φ
(h)
k (t; (uk))) = arg(γ̇(θ; cy, r))

θ ∈ [0, 2π), t ∈ [0, 1]

(23)

Proof. The proof immediately follows by noticing that φk(t) is a parametrization
on the complex plane of the k-th finger on the finger and the equations of (23)
respectively are an incidence and a tangency conditions between the k-th phalanx
and the section of the branch E.

Next result summarizes above reasonings.
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Proposition 3. The bird’s foot can grasp on a cylinder of center c and radius

r using Finger 1 and Finger 3 if there exist two control sequences (u
(h)
k≤Kh

), with
i = 1, 3 and K1 ≤ 2 and K3 ≤ 4, such that:

i) The system 
φ

(h)
k (t;u) = γ(θ; cy, r)

arg(φ
(h)
k (t; (uk))) = arg(γ̇(θ; cy, r))

θ ∈ [0, 2π), t ∈ [0, 1], k = 1, . . . , 3, h = 1, 3

(24)

admits at least three solutions (kj , hj , tj , θj) with j = 1, . . . , 3, yielding the
three contact points p1 = γ(θ1; cy, r), p2 = γ(θ1; cy, r) and p3 = γ(θ1; cy, r),
according to the relation established in Lemma 4.2

ii) The torque equilibrium condition is satisfied, namely, there exist a solution for
the system 

p1 + α1n(p1) = p2 + α2n(p2);

p1 + α1n(p1) = p3 + α3n(p3);

α1, α2, α3 ≥ 0

Above equations can be explicitly rewritten as
γ(θ1; cy, r) + α1γ̇(θ1; cy, r) = γ(θ2; cy, r) + α2γ̇(θ2; cy, r);

γ(θ1; cy, r) + α1γ̇(θ1; cy, r) = γ(θ3; cy, r) + α3γ̇(θ3; cy, r);

α1, α2, α3 ≥ 0.

iii) The force closure condition is satisfied, namely for every w ∈ C there exist
f1, f2, f3 ≥ 0 such that

w =

3∑
k=1

fkn(pk).

So far we did not take into account any constraint on the intensities of finger
forces. This approach suffers of a lack of realism, since we are allowing arbitrary
large forces. However, the results of Proposition 3 also hold when a constraint
χ(f1, f2, f3) = 1 on the forces is imposed, by slightly modifying the force closure
condition as follows: for every w ∈ C there exist f1, f2, f3 such that χ(f1, f2, f3) = 1
and

w =

3∑
k=1

fkn(pk).

This generalization makes more interesting the equivalent force closure condition:
there exists R > 0 such that the ball of radius R and centered in the origin Br
satisfies

BR ⊂ conv

{
3∑
k=1

fkn(pk) | χ(f1, f2, f3) = 1

}
. (25)

The maximal radius r satisfying above inclusion gives a measure of the quality of
the grasp [20]. Indeed it can be showed that the larger is r, the strongest is the
capability of the grasp to resist at external forces or, in the case of force/torque
closure, to external wrenches. We then conclude our reasoning on the grasping
with the following
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(3) Optimality condition. Let θ1, θ2, θ3 ∈ [0, 2π] and assume pk = γ(θk, Cy, R),
k = 1, . . . , 3, be three contact points between the branch and two fingers of
bird’s foot. Assume the corresponding grasp to be force closure, according to
Proposition 3. Then the grasp is optimal if

(θ1, θ2, θ3) = arg max {R | BR ⊂ Gχ}
where

Gχ := conv

{
3∑
k=1

fkn(pk) | χ(f1, f2, f3) = 1

}
.

4.4. Tendon locking mechanism in owl’s foot. Owls have zygodactyl feet en-
suring a good grasp when perching or clutching a pray. They are characterized
by the further ability of rotating the a third toe to the front when in flight - see
Figure 5. In particular, when attacking the pray, the talons are spread out wide to
increase the chance of a successful strike. Owl’s feet are also endowed with the so
called digital Tendon Locking Mechanism (TLM), common among bats too. When
an object, say a perch or a pray, touches the base of the foot then TLM engages
and keeps the toes locked around the object without the need for the muscles to be
contracted [24].

From a mathematical point of view, TLM can be modeled as an hybrid system:
when the first phalanx of any toe, namely the base of the foot, is not in contact
with an object then the position of the phalanxes evolves according the control
dynamics described in previous section. If otherwise the first phalanx belongs to an
appropriate region of R3 denoted by O and representing an obstacle, say a pray or
a branch, then TLM engages. Since TLM is not a voluntary movement, then the
corresponding dynamic is not controlled - see Figure. 5-(A).

(a) Zygodactyl configuration (b) Isodactil configuration

Figure 5. Owl’s foot in two configurations, (A) is suitable for
grasping, (B) is the typical flight configuration: as soon as a pray
is targeted, phalanxes spread wide in order to maximize the chance
of grabbing it.

As in previous sections, let x
(h)
k be the position of the k-th junction of the h-th

toe of owl’s foot and u
(h)
k ∈ [0, 1] be the corresponding rotation control. In our

model phalanxes are segments, in particular the first phalanx of the h-th toe is the
set

P (h) :=
{
ax

(h)
1 | a ∈ [0, 1]

}
.
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(a) TLM engage-
ment for Finger 4

(b) Talon (i.e. ex-
tremal of the toe)

trajectory

Figure 6. Various stages of TLM engagement: all rotational con-
trols are equal to v(t) ∈ [0, π/6], t ∈ [0, T ], where T is engagement
time.

Also define the TLM map v(t) : [0, T ] 7→ [0, 1] where T is the is the engagement
time, that is the time requested to the toes to contract when it touches an object
O, and v(t) is a continuous non-decreasing map. We have for every h = 1, . . . , 4

x
(h)
k (t) =

k+1∑
j=1

lje
−iω

∑j
n=1 u

(h)
n (t) if P (l) ∩ O = ∅; l = 1, . . . , 4

x
(h)
k (t) =

k+1∑
j=1

lje
−iωjv(t) otherwise

(26)

Remark 5. If O is convex then P (l) ∩ O 6= ∅ for some l = 1, . . . , 4 is satisfied
for every t ∈ [0, T ]. At time T the tendon is locked and no further movement is
allowed. This is indeed the goal of such mechanism: to keep the toes contracted
without the contribution of muscles. We postpone the investigation of models for
the TLM disengagement in a future work.
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