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Abstract. The evolution Stokes equation in a domain containing periodically
distributed obstacles subject to Fourier boundary condition on the boundaries

is considered. We assume that the dynamic is driven by a stochastic perturba-

tion on the interior of the domain and another stochastic perturbation on the
boundaries of the obstacles. We represent the solid obstacles by holes in the

fluid domain. The macroscopic (homogenized) equation is derived as another

stochastic partial differential equation, defined in the whole non perforated
domain. Here, the initial stochastic perturbation on the boundary becomes

part of the homogenized equation as another stochastic force. We use the two-
scale convergence method after extending the solution with 0 in the holes to

pass to the limit. By Itô stochastic calculus, we get uniform estimates on the
solution in appropriate spaces. In order to pass to the limit on the bound-
ary integrals, we rewrite them in terms of integrals in the whole domain. In

particular, for the stochastic integral on the boundary, we combine the pre-

vious idea of rewriting it on the whole domain with the assumption that the
Brownian motion is of trace class. Due to the particular boundary condition

dealt with, we get that the solution of the stochastic homogenized equation is
not divergence free. However, it is coupled with the cell problem that has a
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divergence free solution. This paper represents an extension of the results of
Duan and Wang (Comm. Math. Phys. 275:1508–1527, 2007), where a reaction

diffusion equation with a dynamical boundary condition with a noise source

term on both the interior of the domain and on the boundary was studied, and
through a tightness argument and a pointwise two scale convergence method

the homogenized equation was derived.

1. Introduction and formulation of the problem. In this paper, we are in-
terested in a fluid flow where the advective inertial forces are small compared with
viscous forces. Starting from the evolution Stokes equations in domain containing
periodically distributed obstacles or solid pores, with a dynamical boundary con-
dition driven by a noise source on the solid pores, the homogenized dynamic is
rigorously recovered by the use of two-scale convergence method. We represent the
solid pores by holes in the fluid domain.

The homogenization of the Stokes problem in perforated domains goes back to
Sánchez-Palencia in [18] where an asymptotic expansion method was used. Rigor-
ous proofs were given later by Tartar in [20] by the energy method and by Allaire
in [2] where two scale convergence method was used. The two scale convergence
was first introduced by Nguetseng in 1989 in [12] and later developed by Allaire in
[1]. The idea of this method was to give a rigorous justification to the asymptotic
expansion method. A more general setting has been defined by Nguetseng in [13],
[14] and later in [15]. The theory of the two scale convergence from the periodic to
the stochastic setting has been extended by Bourgeat, A. Mikelić and Wright in [5],
using techniques from ergodic theory. There is a vast literature for partial differen-
tial equations with random coefficients, where this method was used, however most
of the tackled problems in this setting are not in perforated domains, (see [5], [4] and
the references therein). Much less was done for homogenization of stochastic partial
differential equations, in particular in perforated domains. We mention the paper
[24] where a reaction diffusion equation with a dynamical boundary condition with
a noise source term on both the interior of the domain and on the boundary was
studied, and through a tightness argument and a pointwise two scale convergence
method the homogenized equation was derived. A comprehensive theory for solv-
ing stochastic homogenization problems has been constructed recently in [26] and
[17], where a Σ-convergence method adapted to stochastic processes was developed.
An application of the method to the homogenization of a stochastic Navier-Stokes
type equation with oscillating coefficients in a bounded domain (without holes) has
been provided. In their setting, the Σ-convergence method implies the two-scale
convergence.

For the deterministic Stokes or Navier Stokes equations in perforated domains
we refer to [18], [20], [2], [10], [6], [3], [11]. In [6] the Stokes problem in a perforated
domain with a nonhomogeneous Fourier boundary condition on the boundaries of
the holes was studied while in [3] the same problem was studied with a slip boundary
condition. As far as we know, the stochastic Stokes or Navier Stokes equation in a
perforated domain has not been studied.

In this paper we consider a stochastic linear Navier Stokes equation in a period-
ically perforated domain with a noise source. On the boundaries of the holes, we
consider a dynamical Fourier boundary condition driven by a noise. A boundary
condition is called dynamical if it involves the time derivative. This problem mod-
elises the flow of an incompressible viscous flow through a porous medium under
the action of an external random perturbation. We will consider the scaling ε for
the density on the boundary of the pores and 1 for the viscosity. Our boundary
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condition is very similar to the nonhomogenous boundary condition used by [6]
where they used an electrical field as an external source. However, their model was
stationary while ours takes into account time derivatives. For similar boundary
conditions in a deterministic setting and for parabolic problems see [22].

Different scalings will be considered in a forthcoming paper like ε2 for the vis-
cosity that will lead to different limit problems.

We consider D, an open bounded Lipschitz domain of Rn with boundary ∂D,
and let Y = [0, 1[n the representative cell. Denote by O an open subset of Y with a
smooth boundary ∂O, such that O ⊂ Y , and let Y ∗ = Y \ O. The elementary cell
Y and the small cavity or hole O inside it are used to model small scale obstacles or
heterogeneities in a physical medium D. Denote by Oε,k the translation of εO by
εk, k ∈ Zn. We make the assumption that the holes do not intersect the boundary
∂D and we denote by Kε the set of all k ∈ Zn such that the cell εk + εY is strictly
included in D. The set of all such holes will be denoted by Oε, i.e.

Oε :=
⋃
k∈Kε

Oε,k =
⋃
k∈Kε

ε(k +O),

and set
Dε := D −Oε.

By this construction, Dε is a periodically perforated domain with holes of size of the
same order as the period. One of the difficulties of the homogenization in perforated
domains consists in the fact that the ε- problems are defined in different domains.
In [20], [6], [2], [3] suitable extensions for the velocity and for the pressure were
defined to overcome this difficulty.

The evolution Stokes equation in the domain Dε with a stochastic dynamical
boundary condition on the boundaries of the holes is given by

duε(t, x) = [ν∆uε(t, x)−∇pε(t, x) + f(t, x)] dt+ g1(t)dW1(t) in Dε,
div uε(t, x) = 0 in Dε,

ε2duε(t, x) = −
[
ν
∂uε(t, x)

∂n
− pε(t, x)n+ bεuε(t, x)

]
dt+ εgε2(t)dW2(t) on ∂Oε,

uε(0, x) = uε0(x) in Dε,
uε(0, x) = vε0(x) on ∂Oε,

(1.1)

where uε is the velocity of the fluid and pε is the pressure.
Using Itô’s formula and stochastic calculus we are able to prove some uniform

estimates in some functional spaces that are ε- dependent. Our particular boundary
condition makes it difficult to extend the velocity continuously in H1(D)n, so we
chose to use the trivial extension by 0 of the velocity as well as of the gradient of
the velocity. This extension is a continuous one in L2(D) for which the uniform
estimates still hold. Our extension is not divergence free, so we cannot expect the
homogenized solution to be divergence free. Hence we cannot use test functions that
are divergence free in the variational formulation, which implies that the pressure
has to be included. Because of the low regularity in time of the stochastic process,

we have to define a more regular in time pressure P (t) =
∫ t

0
p(s)ds in Theorem 3.3.

We apply to it the same extension and we will recover in the limit the information
into the coefficients of the homogenized equation.

For the convergence of the boundary integrals we use an idea from [6] to rewrite
an integral on the boundary in terms of an integral on the whole domain. In this way,
the integrals over the boundary ∂Oε become in the limit integrals over the whole
domain D. In particular, in the case of the stochastic integral on the boundaries of



346 HAKIMA BESSAIH, YALCHIN EFENDIEV AND FLORIN MARIS

the holes, we combined this idea with the use of the decomposition of the Wiener
process in terms of the basis, and that it is of trace class.

Our process depends on three variables: ω, t, and x but the oscillations appear
only in x, hence we will use the two scale convergence method in the space variable
but with a parameter (ω, t) ∈ Ω × [0, T ]. One of the condition to be able to use
two scale convergence is the uniform boundedness with respect to ε > 0 of the L2-
norm. We were not able to show uniform bounds for ω ∈ Ω or for any t ∈ [0, T ],
but only in L2(Ω × [0, T ] × D)n, thus we decided using this type of convergence.
Most of the results concerning the two scale convergence are being extended in a
straighforward way to the results of our paper. We gather the results we use in
Section 4. The convergence in two scale is a stronger type of convergence than the
weak convergence (see Corollary 4.3), and so the convergence to the homogenized
solution will be the weak one in L2(Ω × [0, T ] × D)n. This convergence although
weak in the deterministic sense, is strong in the probability sense.

The paper is organized as follows: in Section 2 we formulate more precisely our
problem, set the functional setting and give the assumptions used throughout the
paper. In Section 3 we study the problem (1.1) in the perforated domain and show
the existence and uniqueness in Theorem 3.1. The estimates, needed for the two
scale convergence method, are derived. We also introduce the pressure in Theorem
3.3 and setup the variational formulation to be used for the passage to the limit.
In Section 4, we introduce the two scale convergence and give a number of results
that we will use. In Section 5, we pass to the limit in the variational formulation
(3.11) and get the a variational formulation for the two-scale limit. In section 6, we
write the two-scale limit solution in terms of the cell problem (6.4) coupled with
the homogenized system (6.12). We also, prove that the system (6.12) is well posed
and we finish with some remarks related to the properties of the limit problem.

2. Preliminaries and assumptions. In this section we introduce some functional
spaces and assumptions in order to study the problem (1.1).

2.1. Functional setting. Let us introduce the following Hilbert spaces

L2
ε := L2(Dε)n × L2(∂Oε)n, (2.1)

H1
ε := H1(Dε)n ×H 1

2 (∂Oε)n. (2.2)

equipped respectively with the inner products

〈U,V〉 =

∫
Dε

[
u(x) · v(x)

]
dx+

∫
∂Oε

[
u(x′) · v(x′)

]
dσ(x′),

and

((U,V)) =

∫
Dε

[
∇u(x) · ∇v(x)

]
dx.

We introduce the bounded linear and surjective operator γε : H1(Dε)n 7→
H

1
2 (∂Oε)n such that γεu = u|∂Oε for all u ∈ C∞

(
Dε
)n

. γε is the trace opera-

tor, (see [19], pp47). We denote by H−
1
2 (∂Oε)n the dual space of H

1
2 (∂Oε)n.

We denote by Hε the closure of Vε in L2
ε, and by Vε the closure of Vε in H1

ε,

where for U = (u, u) ∈ C∞
(
Dε
)n × γε(C∞ (Dε

)n
)

Vε := {U = (u, u) | div u = 0, u = εu on ∂Oε, u = 0 on ∂D} , (2.3)

Let Πε : L2
ε 7→ L2(Dε)n be the operator that represents the projection onto the

first component, i.e. ΠεU = u, for every U = (u, u) ∈ L2
ε.
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Let us also denote by Hε and V ε the images under the operator Πε of the spaces
Hε and Vε, with:

Hε :=
{
u ∈ L2(Dε)n | div u = 0 in Dε, u · n = 0 on ∂D, u · n = εu · n on ∂Oε

}
and for u ∈ L2(∂Oε)n.

V ε :=
{
u ∈ H1(Dε)n | div u = 0 in Dε, u = 0 on ∂D

}
.

Hε and Vε are separable Hilbert spaces with the inner products and norms
inherited from L2

ε and H1
ε respectively:

‖U‖2Hε = 〈U,U〉 ,

‖U‖2Vε = ((U,U)) ,

and Hε and V ε are also separable Hilbert spaces with the norms induced by the
projection Πε.

Denoting by (Hε)′ and (Vε)′ the dual spaces, if we identify Hε with (Hε)′ then
we have the Gelfand triple Vε ⊂ Hε ⊂ (Vε)′ with continuous injections.

We denote the dual pairing between U ∈ Vε and V ∈ (Vε)′ by 〈U,V〉〈Vε,(Vε)′〉.
When U,V ∈ Hε, we have 〈U,V〉〈Vε,(Vε)′〉 = 〈U,V〉.

Assume that b is a strictely positive constant, and define the linear operator
Aε : D(Aε) ⊂ Hε 7→ Hε:

AεU = Aε

(
u
u

)
= ProjHε

( −ν∆u
ν

ε

∂u

∂n
+
b

ε
u

)
, (2.4)

with

D(Aε) = {U ∈ Hε| −∆u ∈ L2(Dε)n and
∂u

∂n
∈ L2(∂Oε)n},

and

〈AεU,V〉 =

∫
Dε
ν∇u∇vdx+

∫
∂Oε

εbγε(u)γε(v)dσ.

Let Fε ∈ L2(0, T ;L2(Dε)n × L2(∂Oε)n) be defined by

Fε(t, x) =

(
f(t, x)

0

)
, (2.5)

Let Q1 and Q2 be linear positive operators in L2(D)n of trace class. Let
(W1(t))t≥0 and (W2(t))t≥0 be two mutually independent L2(D)n- valued Wiener
processes defined on the complete probability space (Ω,F ,P) endowed with the
canonical filtration (Ft)t≥0 and with the covariances Q1 and Q2. The expectation
is denoted by E. If K and H are two separable Hilbert spaces, then we will denote
by L2(K,H) the space of bounded linear operators that are Hilbert-Schmidt from
K in H. If Q is a linear positive operator in K of trace class, then we will de-
note by LQ(K,H), the space of bounded linear operators that are Hilbert-Schmidt

from Q
1
2K to H, and the norm will be denoted by ‖ · ‖Q and is defined as fol-

lows: ||g||2Q :=
∑∞
j=1 λj ||gej ||2H where {ej}∞j=1 and {λj}∞j=1 are respectively the

eigenvectors and eigenvalues of Q.
Let us denote by

Gε(t) =

(
g1(t) 0

0 εgε2(t)

)
, W(t) = (W1(t),W2(t)). (2.6)
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The system (1.1) can be rewritten: dUε(t) +AεUε(t)dt = F(t)dt+ Gε(t)dW,

Uε(0) = Uε
0 =

(
uε0

uε0 = εvε0

)
.

(2.7)

Lemma 2.1. (Properties of the operator Aε) For every ε > 0, the linear operator
Aε is positive and self-adjoint in Hε. Moreover, it generates an analytic semigroup
that we denote by Sε(t).

Proof. We use Proposition A.10, page 389 from [7] prove the lemma. The operator
is obviously symmetric, since for every U, V ∈ D(Aε):

〈AεU,V〉 = ν

∫
Dε
∇u∇vdx+

∫
∂Oε

εbγε(u)γε(v)dσ.

We only need to show now that Aε is variational, according to the definition from
page 388 from [7]. We consider the space Vε densely embedded in Hε and the
continuous bilinear form a(·, ·) on Vε, defined as:

a(U,V) = ν

∫
Dε
∇u∇vdx+

∫
∂Oε

εbγε(u)γε(v)dσ.

There exists a constant c(ε) such that:

a(U,U) ≥ c(ε)‖U‖2Vε ,

for every U ∈ Vε. It will be enough to show that

D(Aε) = {U ∈ Vε | 〈AεU,V〉 ≤ C||V||Hε for every V ∈ Vε}.

But, 〈AεU,V〉 ≤ C||V||Hε for every V ∈ Vε is equivalent to

ν

∫
Dε
∇u∇vdx ≤ C||v||L2(Dε)n + C||v||L2(∂Oε)n ∀v ∈ V ε ⇐⇒

ν

∫
Dε
−∆uvdx+ ν

∫
∂Oε

∂u

∂n
vdσ ≤ C||v||L2(Dε)n + C||v||L2(∂Oε)n ∀v ∈ V ε ⇐⇒

(2.8)

∆u ∈ L2(Dε)n and
∂u

∂n
∈ L2(∂Oε)n, so U ∈ D(Aε).

Viceversa if U ∈ D(Aε), then it easy to see that 〈AεU,V〉 ≤ C||V||Hε for every
V ∈ Vε.

Now we use Proposition A.10, page 389 from [7] to infer that Aε is self-adjoint
and generates an analytic semigroup Sε(t).

By continuity, the operator Aε can be extended from V into V′.
For α > 0, let us denote by (Aε)α the α-power of the operator Aε and D((Aε)α)

its domain. In particular,

D((Aε)0) = Hε, and D((Aε)1/2) = Vε.

For more details, see [8], page 152.

Lemma 2.2. Let φ ∈ H1(Dε). Then
√
ε‖φ‖L2(∂Oε) ≤ C‖φ‖H1(Dε).
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Proof. For each k ∈ Kε, let φε,k be the function defined in Y ∗ by φε,k(x) =
φ
(
x
ε − k

)
. Then, we have

‖φε,k‖L2(∂O) ≤ C
(
φε,k‖L2(Y ∗) + ‖∇φε,k‖L2(Y ∗)n

)
.

We use the change of variables x = εx + εk and add over all k ∈ Kε to obtain the
result.

In the next section, we will set up the assumptions.

2.2. Assumptions. We assume that we are given three maps

g1 ∈ C([0, T ];LQ1
(L2(D)n, L2(D)n),

g21 ∈ C([0, T ];LQ2
(L2(D)n, H1(D)n)

and

g22 ∈ C([0, T ];LQ2
(L2(D)n, L2(∂O)n)

such that there exists a positive constant CT

||g1(t)||2Q1
:=

∞∑
j=1

λj1||g1(t)ej1||2L2(D)n ≤ CT , t ∈ [0, T ],

||g21(t)||2Q2
:=

∞∑
j=1

λj2||g21(t)ej2||2H1(D)n ≤ CT , t ∈ [0, T ],

||g22(t)||2Q2
:=

∞∑
j=1

λj2||g22(t)ej2||2L2(∂O)n ≤ CT , t ∈ [0, T ],

(2.9)

where {ej1}∞j=1 and {ej2}∞j=1 are respectively the eigenfunctions for Q1 and Q2,
and {λj1}∞j=1 and {λj2}∞j=1 are the corresponding sequences of eigenvalues. For any

element h ∈ L2(∂O), we define the element Rεh ∈ L2(∂Oε) by

Rεh(x) = h
(x
ε

)
(2.10)

where h is considered Y− periodic.

Lemma 2.3. There exists a constant C independent of ε > 0 and h ∈ L2(∂O)n)
such that √

ε‖Rεh‖L2(∂Oε)n ≤ C‖h‖L2(∂O)n .

Proof. We use the definition of Rεh to obtain:

‖Rεh‖2L2(∂Oε)n =

∫
∂Oε

h2

(
x′

ε

)
dσ(x′) =

∑
k∈Kε

∫
∂Oεk

h2

(
x′

ε

)
.

After a change of variables and given the periodicity of the function h, we obtain
that

‖Rεh‖2L2(∂Oε)n =
∑
k∈Kε

εn−1
∑
k∈Kε

‖h‖2L2(∂O)n

≤ εn−1Cε−n‖h‖2L2(∂O)n = Cε−1‖h‖2L2(∂Oε)n ,

which gives the result.
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We define gε2(t) by

gε2(t) = g21(t) +Rεg22(t),

where Rεg22 ∈ C([0, T ];LQ2
(L2(D)n, L2(∂Oε)n). Moreover, throughout the paper

we will assume that Uε
0 = (uε0, u

ε
0 = εvε0) is an F0− measurable Hε− valued random

variable and there exists a constant C independent of ε, such that for every ε > 0:

E‖uε0‖2L2(Dε)n + εE‖vε0‖2L2(∂Oε) ≤ C. (2.11)

For any function zε defined in Dε let us denote by z̃ε the extension of zε to D
by

z̃ε :=

{
zε on Dε

0 on D \Dε (2.12)

3. The microscopic model. This section is devoted to the study of system (1.1).
We first prove the existence and uniqueness of mild and weak solutions and state
some uniform estimates with respect to ε. Since we are using the two-scale con-
vergence method for the passage to the limit on ε, a variational formulation is
needed with test functions that are not divergence free . Hence, a variational for-
mulation that contains a pressure term will be recovered. However, due to the
stochastic integral and its lack of regularity in time, we will define a new process

Uε(t) =
∫ t

0
uε(s)ds and recover a pressure term P ε(t) ∈ L2(Dε). Independently

from the passage to the limit in ε, the results stated in this section are not classical.
In particular, theorem 3.3 and the variational formulation (3.11) are new results.

Theorem 3.1. (Well posedness of the microscopic model) Assume that (2.9) holds,
then for any T > 0 and any Uε

0 an Hε− valued measurable random variable, the
system (1.1) has a unique mild solution Uε ∈ L2(Ω, C([0, T ],Hε) ∩ L2(0, T ; Vε)),

Uε(t) = Sε(t)U
ε
0 +

∫ t

0

Sε(t− s)F(s)ds+

∫ t

0

Sε(t− s)Gε(s)dW, t ∈ [0, T ]. (3.1)

The mild solution Uε is also a weak solution, that is, P-a.s.

〈Uε(t),φ〉+

∫ t

0

〈(Aε)1/2Uε(s), (Aε)1/2φ〉ds = 〈Uε
0,φ〉+

∫ t

0

〈F(s),φ〉ds+∫ t

0

〈Gε(s)dW(s),φ〉 (3.2)

for t ∈ [0, T ] and φ ∈ Vε.
Moreover, if (2.11) holds then for every ε > 0

E‖Uε(t)‖2Hε + E
∫ t

0

‖Uε(s)‖2Vεds ≤ CT (1 + E‖Uε
0‖2Hε), t ∈ [0, T ] (3.3)

and

E sup
t∈[0,T ]

‖Uε(t)‖2Hε ≤ CT (1 + E‖Uε
0‖2Hε). (3.4)

Proof. Since the operator Aε is the generator of a strongly continuous semigroup
Sε(t), t ≥ 0 in Hε and using the assumption (2.9), then the existence and uniqueness
of mild solutions in Hε is a consequence of Theorem 7.4 of [7]. The regularity in
Vε is a consequence of the estimates below.
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Applying the Itô formula to ‖Uε(t)‖2Hε see [9], we get that

d‖Uε(t)‖2Hε = 2〈Uε(t), dUε(t)〉dt+ ‖Gε(t)‖2Qdt
= −2〈AεUε(t),Uε(t)〉dt+ 2〈F(s),Uε(t)〉dt
+ 2〈Gε(t)dW,Uε(t)〉dt+ ‖Gε(t)‖2Qdt.

Hence,

‖Uε(t)‖2Hε + 2

∫ t

0

‖(Aε)1/2Uε(s)‖2Hεds ≤ ‖Uε
0‖2Hε +

∫ t

0

‖F(s)‖2Hεds

+

∫ t

0

‖Uε(s)‖2Hεds+ 2

∫ t

0

〈Gε(s)dW,Uε(t)〉+

∫ t

0

‖Gε(s)‖2Qds. (3.5)

Taking the expected value yields

E‖Uε(t)‖2Hε ≤ E‖Uε
0‖2Hε +

∫ t

0

‖F(s)‖2Hεds+

∫ t

0

E‖Uε(s)‖2Hεds

+

∫ t

0

‖Gε(s)‖2Qds (3.6)

and

E
∫ t

0

‖Uε(s)‖2Vεds ≤ E‖Uε
0‖2Hε +

∫ t

0

‖F(s)‖2Hεds+

∫ t

0

E‖Uε(s)‖2Hεds

+

∫ t

0

‖Gε(s)‖2Qds (3.7)

Now (3.3) follows from using Gronwall’s lemma in (3.6).
On the other side, (3.5) implies that

sup
0≤t≤T

‖Uε(t)‖2Hε + 2

∫ T

0

‖Uε(s)‖2Vεds ≤ ‖Uε
0‖2Hε +

∫ T

0

‖F(s)‖2Hεds

+

∫ T

0

‖Uε(s)‖2Hεds+ 2 sup
0≤t≤T

∣∣∣∣∫ t

0

〈Gε(s)dW,Uε(t)〉
∣∣∣∣+

∫ T

0

‖Gε(s)‖2Qds

Moreover using the Burkholder-David-Gundy inequality and the Young inequality,
we get that

E sup
0≤t≤T

∣∣∣∣∫ t

0

〈Gε(s)dW,Uε(t)〉
∣∣∣∣ ≤ E

(∫ T

0

|Gε(s)Uε(s)|2 ds

)1/2

≤ 1

2
E sup

0≤t≤T
‖Uε(t)‖2Hε + C

∫ T

0

|Gε(s)|2ds

≤ 1

2
E sup

0≤t≤T
‖Uε(t)‖2Hε + CT

Now, plugging this estimate in the previous one and using Gronwall’s lemma
completes the proof of (3.4).

Theorem 3.2. Assume that the assumptions of Theorem 3.1 hold. Then, for every
t ∈ [0, T ] and every ε > 0

E‖uε(t)‖2Hε + ε2E‖γεuε(t)‖2L2(∂Oε)n + E
∫ t

0

(
‖uε(s)‖2V ε + ε2‖γεuε(s)‖2

H
1
2 (∂Oε)n

)
ds

≤ CT (1 + E‖Uε
0‖2Hε), (3.8)
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and

E sup
t∈[0,T ]

(
‖uε(t)‖2Hε + ε2‖γεuε(t)‖2L2(∂Oε)n

)
≤ CT (1 + E‖Uε

0‖2Hε). (3.9)

Moreover, for q ≥ 2

sup
t∈[0,T ]

(
E‖uε(t)‖qHε + ε2E‖γεuε(t)‖qL2(∂Oε)n

)
≤ C(q, T )(1 + E‖Uε

0‖
q
Hε), (3.10)

Proof. (3.8), (3.9) and (3.10) are consequences of Theorem 3.1.

Theorem 3.3. Let us define Uε(t) =
∫ t

0
uε(s)ds, where uε is given by the previous

theorem, with Uε ∈ C([0, T ];V ε). Then, there exists a unique vector valued random
variable P ε : Ω 7→ C([0, T ];L2(Dε)), such that for every t ∈ [0, T ] we have:∫

Dε

(
uε(t)− uε0 −

∫ t

0

f(s)−
∫ t

0

g1(s)dW1(s)

)
φdx+∫

Dε
(ν∇Uε(t)∇φ− P ε(t) div φ) dx =∫

∂Oε

(
ε2uε(t)− ε2vε0 +

∫ t

0

εgε2(s)dW2(s)ds− εbUε(t)
)
φdσ, (3.11)

P-a.s., and for every φ ∈ H1
0 (D)n.

Moreover,

sup
0≤t≤T

E‖P ε(t)‖2L2(Dε)n ≤ C(T ). (3.12)

Proof. We recall (3.2) which says that Uε(t) = (uε, εγε(u
ε)) is a variational solution

in the following sense:

〈Uε(t),φ〉+

∫ t

0

〈(Aε)1/2Uε(s), (Aε)1/2φ〉ds = 〈Uε
0,φ〉+

∫ t

0

〈F(s),φ〉ds+∫ t

0

〈Gε(s)dW(s),φ〉

P− a.s. for t ∈ [0, T ] and φ ∈ Vε.
In this variational formulation we consider the test function φ = (φ, 0), where

φ = Πεφ ∈ V ε, hence P-a.s. we get

〈uε(t)− uε0 − ν
∫ t

0

∆uε(s)ds−
∫ t

0

f(s)−
∫ t

0

g1(s)dW1(s), φ〉 = 0 (3.13)

∀t ∈ [0, T ], ∀φ ∈ V ε ∩H1
0 (Dε)n.

Using Proposition I.1.1 and I.1.2. of [21], we find for each t ∈ [0, T ], the existence
of some P ε(t) ∈ L2(Dε)n/R such that P-a.s.

uε(t)− uε0 − ν∆Uε(t)−
∫ t

0

f(s)−
∫ t

0

g1(s)dW1(s) = −∇P ε(t), (3.14)

where,

L2(Dε)n/R =

{
P ∈ L2(Dε)n,

∫
Dε
P (x)dx = 0

}
.

In particular, ∇P ε ∈ C([0, T ];H−1(Dε)n) P− a.s..
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The equation (3.14) may be written equivalently:∫
Dε

(uε(t)− uε0)φdx+

∫
Dε

(ν∇Uε(t)∇φ− P ε(t) div φ) dx

=

∫
Dε

∫ t

0

f(s)φdsdx+

∫
Dε

∫ t

0

g1(s)φdW1(s)dx,

(3.15)

for every φ ∈ H1
0 (Dε)n.

The equation (3.14) gives that P a.s., div (ν∇Uε(t)− P εI) belongs to L2(Dε)n,

which implies that ν
∂Uε(t)

∂n
− P ε(t)n ∈ H−

1
2 (∂Oε)n (see [21]). Hence, for every

φ ∈ H1(Dε)n, with φ|∂D = 0 we have〈
uε(t)− uε0 −

∫ t

0

f(s)−
∫ t

0

g1(s)dW1(s), φ

〉
+

∫
Dε

(ν∇Uε(t)∇φ− P ε(t) div φ) dx

=

〈
ν
∂Uε(t)

∂n
− P ε(t)n, φ

〉
H−

1
2 (∂Oε)n,H

1
2 (∂Oε)n

.

(3.16)

Any φ ∈ H 1
2 (∂Oε)n such that

∫
∂Oε

φndσ = 0 is the trace on ∂Oε of some function
from V ε that we will denote also by φ. We use such a function φ in (3.16) and get〈

uε(t)− uε0 −
∫ t

0

f(s)−
∫ t

0

g1(s)dW1(s), φ

〉
+

∫
Dε
ν∇Uε(t)∇φdx =〈

ν
∂Uε(t)

∂n
− P ε(t)n, φ

〉
H−

1
2 (∂Oε)n,H

1
2 (∂Oε)n

.

Now, we use the variational formulation (3.2) and obtain that for every φ ∈
H

1
2 (∂Oε)n such that

∫
∂Oε

φndσ = 0, we have

−
〈
ν
∂Uε(t)

∂n
− P ε(t)n, φ

〉
H−

1
2 (∂Oε)n,H

1
2 (∂Oε)n

=

∫
∂Oε

(
ε2uε(t)− εuε0 + εbUε(t)−

∫ t

0

gε2(s)dW2(s)

)
φdσ.

(3.17)

But the orthogonal of the space of such functions φ is the space of functions of the
type cn, where c is a real constant. So, there exists cε ∈ C([0, T ]) such that if we

re-denote P ε(t) = P ε(t) + cε(t), (3.17) is satisfied for every φ ∈ H 1
2 (∂Oε)n. Using

again (3.2), we showed that there exists a unique P ε ∈ C([0, T ], L2(Dε)), such that
for t ∈ [0, T ] (3.11) holds.

To show (3.12) we consider the extension to the whole domain of the pressure

P̃ ε(t), and compute

E‖∇P̃ ε(t)‖2H−1(D)n = E sup
φ∈H1

0(D)n

‖φ‖
H1

0(D)n
≤1

∣∣∣∣∫
D

P̃ ε(t) div φdx

∣∣∣∣2 ,
from (3.11). We show that it is bounded uniformly for t ∈ [0, T ], and then apply
the result given by Proposition 1.2 from [21] to obtain (3.12). We estimate first
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D

P̃ ε(t) div φdx

∣∣∣∣ from (3.11) and obtain by applying Hölder’s inequality:∣∣∣∣∫
D

P̃ ε(t) div φdx

∣∣∣∣ ≤ ‖φ‖H1
0 (D)n

(
‖uε(t)‖L2(Dε)n + ‖uε0‖L2(Dε)n + T‖f‖L2([0,T ]×D)n

)
+ ‖φ‖H1

0 (D)n

(
‖
∫ t

0

g1(s)dW1(s)‖L2(Dε)n + ν‖Uε(t)‖H1
0 (Dε)n

)
+‖φ‖L2(∂Oε)n

(
‖ε2uε(t) + ε2vε0 + εbUε(t) +

∫ t

0

gε2(s)dW2(s)‖L2(∂Oε)n

)
.

We use Lemma 2.2 and the estimates (3.8) for uε(t) and (2.11) for the initial con-
ditions to get

E‖∇P̃ ε(t)‖2H−1(D)n ≤ C + CE‖
∫ t

0

g1(s)dW1‖2L2(Dε)n + CεE‖uε(t)‖2L2(∂Oε)n+

εE‖
∫ t

0

g21(s)dW2(s)‖2L2(∂Oε)n + εE‖
∫ t

0

Rεg22(s)dW2(s)‖2L2(∂Oε)n .

Ito’s isometry gives

E‖∇P̃ ε(t)‖2H−1(D)n ≤ C + C

∫ t

0

∞∑
i=1

λi1‖g1(s)ei1‖2L2(Dε)nds+

Cε

∫ t

0

∞∑
i=1

λi2‖g21(s)ei2‖2L2(∂Oε)nds+ Cε

∫ t

0

∞∑
i=1

λi2‖Rεg22(s)ei2‖2L2(∂Oε)nds.

We use again Lemmas 2.2 and 2.3 and then property (2.9) to obtain that

E‖∇P̃ ε(t)‖2H−1(D)n is bounded uniformly for t ∈ [0, T ].

4. Two scale convergence. We will summarize in this section several results
about the two scale convergence that we will use throughout the paper. Although
the results stated in theorems 4.2 and 4.4 are not new, they had to be adapted to
our setting; in fact our processes depend on ω, t, x. On the other side, the two scale
limits are used in the variational formulation 3.11 that contains terms of the form
Uε(t) =

∫ t
0
uε(s)ds. Hence, we had to include a two-scale convergence result stated

in theorem 4.5 that takes into account these kind of terms. This last theorem was
not found in the literature.

For the results stated without proofs, see [1] or [26]. First we establish some
notations of spaces of periodic functions. We denote by Ck#(Y ) the space of functions

from Ck(Y ), that have Y− periodic boundary values. By L2
#(Y ) we understand

the closure of C#(Y ) in L2(Y ) and by H1
#(Y ) the closure of C1

#(Y ) in H1(Y ).

Definition 4.1. We say that a sequence uε ∈ L2(Ω×[0, T ]×D)n two-scale converges
to u ∈ L2(Ω× [0, T ]×D × Y )n, and denote this convergence by

uε
2−s−→ u in Ω× [0, T ]×D,

if for every Ψ ∈ L2(Ω× [0, T ]×D;C#(Y ))n we have

lim
ε→0

∫
Ω

∫ T

0

∫
D

uε(ω, t, x)Ψ(ω, t, x,
x

ε
)dxdtdP

=

∫
Ω

∫ T

0

∫
D

∫
Y

u(ω, t, x, y)Ψ(ω, t, x, y)dydxdtdP.



HOMOGENIZATION OF THE EVOLUTION STOKES EQUATION 355

Theorem 4.2. Assume the sequence uε is uniformly bounded in L2(Ω×[0, T ]×D)n.

Then there exists a subsequence (uε
′
)ε′>0 and u0 ∈ L2(Ω × [0, T ] × D × Y )n such

that uε
′

two-scale converges to u0 in L2(Ω× [0, T ]×D)n.

Corollary 4.3. Assume the sequence uε ∈ L2(Ω× [0, T ]×D)n, two-scale converges
to u0 ∈ L2(Ω× [0, T ]×D× Y )n. Then, uε converges weakly in L2(Ω× [0, T ]×D)n

to

∫
Y

u0(ω, t, x, y)dy.

Theorem 4.4. Let for any ε > 0, uε ∈ L2(Ω × [0, T ];H1(Dε)n) such that uε = 0
on ∂D. Assume that uε is a sequence uniformly bounded with respect to ε > 0, i.e.

sup
ε
||uε||L2(Ω×[0,T ];H1(Dε)n) <∞.

Then, there exists u0 ∈ L2(Ω×[0, T ];H1
0 (D)n) and u1 ∈ L2(Ω×[0, T ]×D;H1

#(Y )n),
such that

ũε(ω, t, x)
2−s−→ u0(ω, t, x)1Y ∗(y)

and

∇̃u
ε
(ω, t, x)

2−s−→
(
∇xu0(ω, t, x) +∇yu1(ω, t, x, y)

)
1Y ∗(y).

Theorem 4.5. Assume that the sequence uε two scale converges to u ∈ L2(Ω ×
[0, T ]×D × Y )n. Then the sequence Uε(ω, t, x) defined by

Uε(ω, t, x) =

∫ t

0

uε(ω, s, x)ds

two scale converges to

∫ t

0

u(ω, s, x, y)ds.

Proof. We have for the sequence uε that

lim
ε→0

∫
Ω

∫ T

0

∫
D

uε(ω, t, x)Ψ(ω, t, x,
x

ε
)dxdtdP

=

∫
Ω

∫ T

0

∫
D

∫
Y

u(ω, t, x, y)Ψ(ω, t, x, y)dydxdtdP,

for every Ψ ∈ L2(Ω× [0, T ]×D;C#(Y ))n. Now if we choose Ψ to be of the form

Ψ(ω, s, x, y) = 1[0,t](s)Ψ1(ω, x, y),

we obtain that

lim
ε→0

∫
Ω

∫ t

0

∫
D

uε(ω, s, x)Ψ1(ω, x,
x

ε
)dxdP

=

∫
Ω

∫ t

0

∫
D

∫
Y

u(ω, s, x, y)Ψ1(ω, x, y)dydxdP,

for any fixed t ∈ [0, T ] and any Ψ1 ∈ L2(Ω × D;C#(Y ))n. As a consequence, for
Ψ2 ∈ L2(Ω× [0, T ]×D;C#(Y ))n the sequence

hε(t) =

∫
Ω

∫ t

0

∫
D

uε(ω, s, x)Ψ2(ω, t, x,
x

ε
)dxdsdP

=

∫
Ω

∫
D

Uε(ω, t, x)Ψ2(ω, t, x,
x

ε
)dxdP
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is convergent for almost every t ∈ [0, T ] to

h(t) =

∫
Ω

∫ t

0

∫
D

∫
Y

u(ω, s, x, y)Ψ2(ω, t, x, y)dydxdsdP

=

∫
Ω

∫
D

∫
Y

U(ω, t, x, y)Ψ2(ω, t, x, y)dydxdP.

By applying Hölder’s inequality,

hε(t) ≤ ||uε||L2(Ω×[0,T ]×D)n ||Ψ2(t)||L2(Ω×D×Y )n .

We use the dominated convergence theorem to deduce that∫ T

0

hε(t)dt→
∫ T

0

h(t)dt.

5. Passage to the limit in ε. Now, we are able to pass to the limit in ε. Using
the uniform estimates obtained previously and the two-scale convergence method,
we will pass to the limit in ε in each term of the variational formulation (3.11).

Since ũε0 satisfies E‖ũε0‖2L2(Dε)n ≤ C according to (2.11), then using Theorem 4.2,

there exists u0 ∈ L2(Ω;L2(D;L2
#(Y ))n such that

ũε0(x)
2−s−→ u0(x, y)1Y ∗(y) in Ω×D. (5.1)

We recall that the processes ũε and ∇̃u
ε

defined on the stochastic basis (Ω,F ,
(Ft),P) are uniformly bounded in L2(Ω;C([0, T ];L2(D)n)) as well as in L2(Ω;L2(0,
T ;L2(D)n×n)). So using Theorem 4.4 there exist u ∈ L2(Ω;L2(0, T ;H1

0 (D)n)) and
u1 ∈ L2(Ω;L2(0, T ;L2(D;H1

#(Y ))n)) such that

ũε(ω, t, x)
2−s−→ u(ω, t, x)1Y ∗(y) in Ω× [0, T ]×D, (5.2)

and

∇̃u
ε
(ω, t, x)

2−s−→ (∇xu(ω, t, x) +∇yu1(ω, t, x, y))1Y ∗(y) in Ω× [0, T ]×D. (5.3)

We use Theorem 4.5 to obtain as consequences of (5.2) and (5.3) the following
two scale convergences:

Ũε(ω, t, x)
2−s−→ U(ω, t, x)1Y ∗(y) in Ω× [0, T ]×D, (5.4)

and

∇̃U
ε
(ω, t, x)

2−s−→ (∇xU(ω, t, x) +∇yU1(ω, t, x, y))1Y ∗(y) in Ω× [0, T ]×D, (5.5)

where U(ω, t, x) =

∫ t

0

u(ω, s, x)ds and U1(ω, t, x, y) =

∫ t

0

u1(ω, s, x, y)ds.

Also (3.12) gives us the existence of P ∈ L2(Ω× [0, T ]×D × Y )n such that:

P̃ ε(ω, t, x)
2−s−→ P (ω, t, x, y)1Y ∗(y) in Ω× [0, T ]×D. (5.6)

Now we are able to pass to the limit in (3.11). We will take a test function of
the form

φε(ω, t, x) = φ(ω, t, x) + εψ(ω, t, x,
x

ε
),

such that
φ(ω, t, x) = φ1(t)φ2(ω)φ3(x), (5.7)

where φ1 ∈ C∞0 (0, T ), φ2 ∈ L∞(Ω) and φ3 ∈ C∞0 (D)n and

ψ(ω, t, x, y) = ψ1(t)ψ2(ω)ψ3(x)ψ4(y), (5.8)
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where ψ1 ∈ C∞0 (0, T ), ψ2 ∈ L∞(Ω), ψ3 ∈ C∞0 (D)n and ψ4 ∈ C∞# (Y ). We obtain

after integrating over Ω× [0, T ]:∫
Ω

∫ T

0

∫
D

ũε(ω, t, x)φε(ω, t, x)dxdtdP + ε2

∫
Ω

∫ T

0

∫
∂Oε

uε(ω, t, x′)φε(ω, t, x′)dσ(x′)dtdP−∫
Ω

∫ T

0

∫
D

ũε0(ω, x)φε(ω, t, x)dxdtdP− ε2

∫
Ω

∫ T

0

∫
∂Oε

vε0(x′)φε(ω, t, x′)dσ(x′)dtdP+∫
Ω

∫ T

0

∫
D

∫ t

0

ν∇̃u
ε
(ω, s, x)∇φε(ω, t, x)dsdxdtdP+∫

Ω

∫ T

0

∫
∂Oε

∫ t

0

εbuε(ω, s, x′)φε(ω, t, x′)dsdσ(x′)dtdP =∫
Ω

∫ T

0

∫
D

P̃ ε(ω, t, x) div φε(ω, t, x)dxdtdP +

∫
Ω

∫ T

0

∫
Dε

∫ t

0

f(s, x)φε(ω, t, x)dsdxdtdP+∫
Ω

∫ T

0

∫
Dε

∫ t

0

g1(s)dW1(s)φε(ω, t, x)dxdtdP+∫
Ω

∫ T

0

∫
∂Oε

∫ t

0

εgε2(s)dW2(s)φε(ω, t, x′)dσ(x′)dtdP.

We will compute the limit when ε→ 0 in (5.9) term by term:
As a consequence of (5.2) and (5.1) which implies the weak convergences in

L2(Ω×[0, T ]×D)n of the sequences ũε(ω, t, x) and ũε0(ω, x) to

∫
Y

u(ω, t, x)1Y ∗(y)dy

and to

∫
Y

u0(ω, x)1Y ∗(y)dy we have:

lim
ε→0

∫
Ω

∫ T

0

∫
D

ũε(ω, t, x)φε(ω, t, x)dxdtdP =

|Y ∗|
∫

Ω

∫ T

0

∫
D

u(ω, t, x)φ(ω, t, x)dxdtdP, (5.9)

and

lim
ε→0

∫
Ω

∫ T

0

∫
D

ũε0(ω, x)φε(ω, t, x)dxdtdP =

|Y ∗|
∫

Ω

∫ T

0

∫
D

u0(ω, x)φ(ω, t, x)dxdtdP. (5.10)

The estimates (2.11), (3.8), (3.9) imply that:

ε2

∫
Ω

∫ T

0

∫
∂Oε

uε(ω, t, x)φε(ω, t, x′)dσ(x′)dP =

= ε2

∫
Ω

∫ T

0

∫
∂Oε

vε0(x)φε(ω, t, x′)dσ(x′)dtdP = 0. (5.11)

We use the two scale convergences (5.5) and (5.6) and that
∂

∂xi
φε =

∂φ

∂xi
+

ε
∂ψ

∂xi
+
∂ψ

∂yi
to deduce that

lim
ε→0

∫
Ω

∫ T

0

∫
D
ν∇̃U

ε
(ω, t, x)∇φε(ω, t, x)dxdtdP =∫

Ω

∫ T

0

∫
D

∫
Y ∗

ν (∇xU(ω, t, x) +∇yU1(ω, t, x, y)) (∇xφ(ω, t, x) +∇yψ(ω, t, x, y)) dydxdtdP,

(5.12)
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and

lim
ε→0

∫
Ω

∫ T

0

∫
D

P̃ ε(ω, t, x) div φε(ω, t, x)dxdtdP =∫
Ω

∫ T

0

∫
D

∫
Y ∗
P (ω, t, x) (divx φ(ω, t, x) + divy ψ(ω, t, x, y)) dydxdtdP. (5.13)

Now, if we fix ω ∈ Ω and t ∈ [0, T ] the sequence of integrals∫
Dε

∫ t

0

f(s, x)φε(ω, t, x,
x

ε
)dsdx =

∫
D

∫ t

0

f(s, x)φε(ω, t, x,
x

ε
)1Dε(x)dsdx

converges using formula (5.5) from [1] to

|Y ∗|
∫
D

∫ t

0

f(s, x)φ(ω, t, x)dsdx.

Hence, after applying Vitali’s theorem we obtain:

lim
ε→0

∫
Ω

∫ T

0

∫
Dε

∫ t

0

f(s, x)φε(ω, t, x)dsdxdtdP =

|Y ∗|
∫

Ω

∫ T

0

∫
D

∫ t

0

f(s, x)φ(ω, t, x)dsdxdtdP. (5.14)

Now we compute the limits of the stochastic integrals and of the integrals over
the boundary ∂Oε, and the results we obtain are shown in the next three Lemmas.

Lemma 5.1.

lim
ε→0

∫
Ω

∫ T

0

∫
Dε

∫ t

0

g1(s)dW1(s)φε(ω, t, x)dxdtdP =

|Y ∗|
∫

Ω

∫ T

0

∫
D

∫ t

0

g1(s)dW1(s)φ(ω, t, x)dxdtdP. (5.15)

Proof. We substitute φε(ω, t, x) = φ(ω, t, x) + εψ(ω, t, x, xε ) and use the decomposi-
tion (5.7) of φε and we get that (5.15) can be rewritten as∫

Ω

φ1(ω)

∫ T

0

φ2(t)

∫
D

∫ t

0

g1(s)dW1(s)
(
φ3(x)(1Dε(x)− |Y ∗|) + εψ(ω, t, x,

x

ε
)
)
dxdtdP

−→ε→0 0.

Now using the Hölder’s inequality, and the fact that ||ψ(ω, t, x, xε )||L2(Ω×[0,T ]×D)n

is a sequence uniformly bounded in ε by ||ψ(ω, t, x, y)||L2(Ω×[0,T ]×D;C#(Y ))n , we
obtain:

lim
ε→0

∣∣∣∣∣
∫

Ω

∫ T

0

∫
D

∫ t

0

g1(s)dW1(s)εψ(ω, t, x,
x

ε
)dxdtdP

∣∣∣∣∣ ≤
lim
ε→0

εT 2||ψ(ω, t, x,
x

ε
)||L2(Ω×[0,T ]×D)n sup

t∈[0,T ]

||g1(t)||2Q1
= 0.

Using Hölder’s inequality again:

lim
ε→0

∣∣∣∣∫
Ω

φ1(ω)

∫ T

0

φ2(t)

∫
D

∫ t

0

g1(s)dW1(s)φ3(x)(1Dε(x)− |Y ∗|)dxdtdP
∣∣∣∣ ≤

lim
ε→0
||φ1||L2(0,T )||φ2||L2(Ω)

∫
Ω

∫ T

0

∣∣∣∣∫
D

∫ t

0

g1(s)dW1(s)φ3(x)(1Dε(x)− |Y ∗|)dx
∣∣∣∣2 dtdP.
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We rewrite the integral as follows:∫
Ω

∫ T

0

|
∫
D

∞∑
i=1

√
λi1

∫ t

0

g1(s)ei1(x)dβi(s)φ3(x)(1Dε(x)− |Y ∗|)dx|2dtdP.

where (βi)
∞
i=1 is a sequence of real valued independent Brownian motions, and

(ei1)∞i=1 and (λi1)∞i=1 are previously defined in (2.9).
We apply the stochastic Fubini theorem and the Itô’s isometry and the sum

becomes
∞∑
i=1

λi1

∫
Ω

∫ T

0

|
∫ t

0

dβi(s)

∫
D

g1(s)ei1(x)(1Dε(x)− |Y ∗|)φ2(x)dx|2dtdP =

∞∑
i=1

λi1

∫ T

0

|
∫ t

0

ds

∫
D

g1(s)ei1(x)(1Dε(x)− |Y ∗|)φ2(x)dx|2dt ≤

C

N∑
i=1

λi1|
∫ t

0

ds

∫
D

g1(s)ei1(x)(1Dε(x)− |Y ∗|)φ2(x)dx|2+

C

∞∑
i=N

λi1||g1(s)ei1(x)||2L2(D)n ,

for any N ∈ Z∗+, and for a constant C independent of N . The first sum goes to 0
from dominated convergence theorem and the weak convergence to 0 in L2(D) of
(1Dε(x) − |Y ∗|)φ2(x). The second term goes to 0 when N → ∞ because of (2.9).
Hence, (5.15) follows.

We compute the limits that involve integrals over the boundaries, and we will
make use of the techniques from [6] that give a way of transforming integrals over
the surface in integrals over the volume.

Lemma 5.2.

lim
ε→0

∫
Ω

∫ T

0

∫
∂Oε

∫ t

0

εbuε(ω, s, x′)φε(ω, t, x′)dsdσ(x′)dtdP =

|∂O|
∫

Ω

∫ T

0

∫
D

∫ t

0

bu(ω, s, x)φ(ω, t, x)dsdxdtdP.
(5.16)

Proof. We will define as in [6] the solution of the following system:

−∆w1 = −|∂O|
|Y ∗|

in Y ∗,

∂w1

∂n
= 1 on ∂O,∫

Y ∗
w1 = 0,

w1 −Y − periodic,

(5.17)

which, according to Remark 4.3 from [6] belongs to W 1,∞(Y ∗). We define wε1(x) =
ε2w1(xε ), and straightforward calculations show that wε1 satisfies:

−∆wε1 = −|∂O|
|Y ∗|

in Dε,

∂wε1
∂n

= ε on ∂Oε.

(5.18)
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For fixed ω ∈ Ω and t ∈ [0, T ], the sequence vε(w, t, ·) = b

∫ t

0

uε(ω, s, ·)φε(ω, t, ·)ds

belongs to W 1,1(Dε) and we have:∫
∂Oε

εvε(ω, t, x′)dσ(x′) =

∫
∂Oε

∂wε1
∂n

(x′)vε(ω, t, x′)dσ(x′) =∫
Dε

(∆wε1(x)vε(ω, t, x) +∇wε1(x)∇vε(ω, t, x)) dx.

But from (3.8) and the definitions of wε1 and vε,

|
∫

Ω

∫ T

0

∫
Dε
∇wε1(x)∇vε(ω, t, x)dxdtdP| → 0,

and∫
Ω

∫ T

0

∫
Dε
vε(ω, t, x)dxdtdP→ |Y ∗|b

∫
Ω

∫
D

∫ t

0

u(ω, s, x)φ(ω, t, x)dsdxdtdP,

which implies (5.16).

Lemma 5.3.

lim
ε→0

∫
Ω

∫ T

0

∫
∂Oε

∫ t

0

εgε2(s)dW2(s)φε(ω, t, x′)dσ(x′)dtdP =

|∂O|
∫

Ω

∫ T

0

∫
D

∫ t

0

g21(s)dW2(s)φ(ω, t, x)dxdtdP

+

∫
Ω

∫ T

0

∫
∂O

∫ t

0

g22(s)dW2(s)dσ

∫
D

φ(ω, t, x)dxdtdP.

Proof. Similar arguments discussed in (5.16) and (5.15) will be used here. We will
prove:

lim
ε→0

∫
Ω

∫ T

0

∫
∂Oε

∫ t

0

εg21(s)dW2(s)φε(ω, t, x′)dσ(x′)dtdP =

|∂O|
∫

Ω

∫ T

0

∫
D

∫ t

0

g21(s)dW2(s)φ(ω, t, x)dxdtdP,
(5.19)

and

lim
ε→0

∫
Ω

∫ T

0

∫
∂Oε

∫ t

0

εRεg22(s)dW2(s)φε(ω, t, x′)dσ(x′)dtdP =∫
Ω

∫ T

0

∫
∂O

∫ t

0

g22(s)dW2(s)dσ

∫
D

φ(ω, t, x)dxdtdP.
(5.20)

To show (5.19) we use the functions w1 and wε1 defined in (5.17) and (5.18):∫
∂Oε

∫ t

0

εg21(s)dW2(s)φε(ω, t, x′)dσ(x′)

=

∫
∂Oε

∂wε1
∂n

∫ t

0

g21(s)dW2(s)φε(ω, t, x′)dσ(x′)

=

∫
Dε

∆wε1(x)

∫ t

0

g21(s)dW2(s)φε(ω, t, x′)dσ(x′)
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+

∫
Dε
∇wε1(x)

∫ t

0

g21(s)dW2(s)∇xφε(ω, t, x)dx

=
|∂O|
|Y ∗|

∫
Dε

∫ t

0

g21(s)dW2(s)φε(ω, t, x′)dσ(x′)

+

∫
Dε
∇wε1(x)

∫ t

0

g21(s)dW2(s)∇xφε(ω, t, x)dx.

But

lim
ε→0

∫
Ω

∫ T

0

∫
Dε
∇wε1(x)

∫ t

0

g21(s)dW2(s)∇xφε(ω, t, x)dxdtdP = 0

follows from the condition (2.9) and the definiton of wε1.
Now, the same computation used to show (5.15) yields:

lim
ε→0

∫
Ω

∫ T

0

∫
Dε

∫ t

0

g21(s)dW2(s)φε(ω, t, x)dxdtdP =

|Y ∗|
∫

Ω

∫ T

0

∫
D

∫ t

0

g21(s)dW2(s)φ(ω, t, x)dxdtdP.

To show (5.20), let (ei2(x))∞i=1 and (λi2)∞i=1 previously defined in (2.9). Denote
by hi(s) = g22(s)ei2 ∈ L2(∂O), for each i ∈ Z+ and s ∈ [0, T ]. We infer from (2.9)
that

sup
s∈[0,T ]

∞∑
i=1

λi2||hi(s)||2L2(∂O) < +∞. (5.21)

We will define wi(s) similarly as w1 to be the unique element in H1(Y ∗) that solves:

−∆wi(s) = − 1

|Y ∗|

∫
∂O

hi(s)dσ in Y ∗,

∂wi(s)

∂n
= hi(s) on ∂O,∫

Y ∗
wi(s) = 0,

wi(s) −Y − periodic,

(5.22)

and wεi (s) = ε2wi(s)
( ·
ε

)
that will solve

−∆wεi (s) = − 1

|Y ∗|

∫
∂O

hi(s)dσ in Dε,

∂wεi (s)

∂n
= εRεhi(s) on ∂Oε.

(5.23)

There exists a constant C independent of i and s such that ||wi(s)||H1(Y ∗)n ≤
C||hi(s)||L2(∂O)n and using (5.21) we also have:

sup
s∈[0,T ]

∞∑
i=1

λi2||wi(s)||2H1(Y ∗)n <∞. (5.24)

Using the decomposition of φε and previously used computations, we have to show
that:∫

Ω

∣∣∣∣∫
∂Oε

∫ t

0

εRεg22(s)dW2(s)φ2(x′)dσ(x′)−
∫
∂O

∫ t

0

g22(s)dW2(s)dσ

∫
D

φ2(x)dx

∣∣∣∣2 dP
converges to 0 uniformly for t ∈ [0, T ]. We perform the following calculations:∫

Ω

∣∣∣∣∫
∂Oε

∫ t
0
εRεg22(s)dW2(s)φ2(x

′
)dσ(x

′
)−

∫
∂O

∫ t
0
g22(s)dW2(s)dσ

∫
D
φ2(x)dx

∣∣∣∣2 dP =
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∫
Ω

∞∑
i=1

λi2

∣∣∣∣∫
∂Oε

∫ t
0
εRεg22(s)ei2dβi(s)φ2(x

′
)dσ(x

′
)−

∫
∂O

∫ t
0
g22(s)ei2dβi(s)dσ(x

′
)

∫
D
φ2(x)dx

∣∣∣∣2 dP =

∫
Ω

∞∑
i=1

λi2

∣∣∣∣∫ t
0

∫
∂Oε

εh
ε
i (s)φ2(x

′
)dσ(x

′
)dβi(s)−

∫ t
0

∫
∂O

hi(s)dσ

∫
D
φ2(x)dxdβi(s)

∣∣∣∣2 dP =

∞∑
i=1

λi2

∫ t
0
ds

∣∣∣∣∫
∂Oε

εh
ε
i (s)φ2(x

′
)dσ(x

′
)−

∫
∂O

hi(s)dσ

∫
D
φ2(x)dx

∣∣∣∣2 =

∞∑
i=1

λi2

∫ t
0
ds

∣∣∣∣∣
∫
∂Oε

∂wεi (s)

∂n
φ2(x

′
)dσ(x

′
)−

∫
∂O

hi(s)dσ

∫
D
φ2(x)dx

∣∣∣∣∣
2

=

∞∑
i=1

λi2

∫ t
0
ds

∣∣∣∣∫
Dε

(
∆w

ε
i (s)φ2(x) +∇wεi (s)∇φ2(x)

)
dx−

∫
∂O

hi(s)dσ

∫
D
φ2(x)dx

∣∣∣∣2 =

∞∑
i=1

λi2

∫ t
0
ds

∣∣∣∣∣
∫
D

∫
∂O

hi(s)dσ

(
1

|Y ∗|
1Dε (x)− 1

)
φ2(x)dx +

∫
Dε
∇wεi (s)∇φ2(x)dx

∣∣∣∣∣
2

≤

C
∞∑
i=1

λi2

∫ t
0
ds

∣∣∣∣∫
D

∫
∂O

hi(s)dσ
(
1Dε (x)− |Y ∗|

)
φ2(x)dx

∣∣∣∣2 + C
∞∑
i=1

λi2

∫ t
0
ds

∣∣∣∣∫
Dε
∇wεi (s)dx

∣∣∣∣2 .

The second term of the sum will be bounded by

Cε2
∞∑
i=1

λi2

∫ T

0

ds

∣∣∣∣∫
Y ∗
∇wi(s)dx

∣∣∣∣2 .
Using (5.24) it converges to 0 uniformly for t ∈ [0, T ].

We decompose the first term similarly to (5.15), into

N∑
i=1

λi2

∫ t

0

ds

∣∣∣∣∫
D

∫
∂O

hi(s)dσ (1Dε(x)− |Y ∗|)φ2(x)dx

∣∣∣∣2 +

∞∑
i=N+1

λi2

∫ t

0

ds

∣∣∣∣∫
D

∫
∂O

hi(s)dσ (1Dε(x)− |Y ∗|)φ2(x)dx

∣∣∣∣2 .
The first sum goes to 0 for any fixed N because of the weak convergence to 0 in

L2(D) of (1Dε(x) − |Y ∗|)φ2(x). The second sum goes to 0 when N → ∞ because
of (5.21).

Using the limits obtained in the variational formulation we get

|Y ∗|
∫

Ω

∫ T

0

∫
D
u(ω, t, x)φ(ω, t, x)dxdtdP− |Y ∗|

∫
Ω

∫ T

0

∫
D
u0(ω, x)φ(ω, t, x)dxdtdP+∫

Ω

∫ T

0

∫
D

∫
Y ∗

∫ t

0
ν (∇xu(ω, s, x) +∇yu1(ω, s, x, y)) (∇xφ(ω, t, x) +∇yψ(ω, t, x, y)) dsdydxdtdP

−
∫

Ω

∫ T

0

∫
D

∫
Y ∗

P (ω, t, x, y) (divx φ(ω, x) + divy ψ(ω, t, x, y)) dydxdtdP+

|∂O|
∫

Ω

∫ T

0

∫
D

∫ t

0
bu(ω, s, x)φ(ω, t, x)dsdxdtdP =

|Y ∗|
∫

Ω

∫ T

0

∫
D

∫ t

0
f(s, x)φ(ω, t, x)dsdxdtdP+

|Y ∗|
∫

Ω

∫ T

0

∫
D

∫ t

0
g1(s)dW1(s)φ(ω, t.x)dxdtdP+

|∂O|
∫

Ω

∫ T

0

∫
D

∫ t

0
g21(s)dW2(s)φ(ω, t, x)dxdtdP+∫

Ω

∫ T

0

∫
∂O

∫ t

0
g22(s)dW2(s)dσ

∫
D
φ(ω, t, x)dxdtdP.

(5.25)
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6. Homogenized equation. This section contains the main result of this paper.
We will prove that the two-scale limit (u, P ) that satisfies the variational formulation
(5.25) will be solution of a stochastic partial differential equation coupled with a
cell problem. Moreover, we will write the SPDE associated with the weak limit
u∗(ω, t, x) =

∫
Y
u(ω, t, x, y)dy.

6.1. The cell problem. We separate the terms in (5.25) according to φ and ψ and
consider their decompositions introduced in section 5, which means that U1 and P
satisfy the following equation for every t ∈ [0, T ], almost every x ∈ D and ω ∈ Ω:∫

Y ∗
ν (∇xU(ω, t, x) +∇yU1(ω, t, x, y))∇yψ4(y)− P (ω, t, x, y) divy ψ4(y)dy = 0,

(6.1)
for every ψ4 ∈ C∞# (Y )n.

We have also, as a consequence of (5.5) that

divx U(ω, t, x) + divy U1(ω, t, x, y) = 0, (6.2)

being the two scale limit of the sequence d̃ivx U
ε

(ω, t, x).
Equations (6.1)–(6.2) lead us to define for every Λ ∈ Rn×n, wΛ ∈ H1

#(Y ∗)n and

qΛ ∈ L2
#(Y ∗), as the solution of the following problem in Y ∗:

∫
Y ∗
ν∇y (Λy + wΛ(y))∇yφ(y)− qΛ(y) divy φ(y)dy = 0 for all φ ∈ H1

#(Y )n

divy (Λy + wΛ(y)) = 0 in Y ∗

(6.3)
which is equivalent to the system:

−ν∆wΛ(y) +∇qΛ(y) = 0 in Y ∗

divy (Λy + wΛ(y)) = 0 in Y ∗

ν
∂ (Λy + wΛ(y))

∂n
− qΛ(y)n = 0 on ∂O

wΛ, qΛ Y − periodic∫
Y ∗
wΛ(y)dy = 0

(6.4)

Define C the linear form on Rn×n, by:

CΛ =

∫
Y ∗

(ν (Λ +∇ywΛ(y))− qΛ(y)I) dy, (6.5)

where I ∈ Rn×n is the identity matrix.
Let eij ∈ Rn×n be defined by (eij)kh = δikδjh, for every 1 ≤ k, h ≤ n, and let wij

and qij be the solutions of the cell problem (6.4) corresponding to Λ = eij . Then,
by linearity:

wΛ(y) =

n∑
i,j=1

wij(y)Λij and qΛ(y) =

n∑
i,j=1

qij(y)Λij , (6.6)

and the linear form C can be given componentwise:

(Ceij)kh =

∫
Y ∗

(
νδikδjh + ν

∂wkij
∂yh

(y)− qijδkh

)
dy. (6.7)
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6.2. The homogenized system. According to (6.6) the solutions U1 and P of
(6.1)–(6.2) are given by

U1(ω, t, x, y) =

n∑
i,j=1

wij(y)
∂(U)i
∂xj

(ω, t, x), (6.8)

P (ω, t, x, y) =

n∑
i,j=1

qij(y)
∂(U)i
∂xj

(ω, t, x), (6.9)

and the equation (5.25) becomes

|Y ∗|
∫
D

u(ω, t, x)φ3(x)dx− |Y ∗|
∫
D

u0(ω, x)φ3(x)dx+

∫
D

(C∇U(ω, t, x))∇φ3(x)dx−

|∂O|
∫
D

∫ t

0

buε(ω, s, x)φ3(x)dsdx = |Y ∗|
∫
D

∫ t

0

f(s, x)φ3(x)dsdx+

|Y ∗|
∫
D

∫ t

0

g1(s)dW1(s)φ3(x)dx+ |∂O|
∫
D

∫ t

0

g21(s)dW2(s)φ3(x)dx+∫
∂O

∫ t

0

g22(s)dW2(s)dσ

∫
D

φ3(x)dx.

(6.10)

for every φ3 ∈ C∞0 (D)n, for every t ∈ [0, T ] and a.s. ω ∈ Ω, which implies that u is
the solution of the following stochastic partial differential equation:

du(t) =

[
divx (C∇xu(t)) +

|∂O|
|Y ∗|

bu(t) + f(t)

]
dt

+g1(t)dW1(t) +
1

|Y ∗|

(
|∂O|g21(t) +

∫
∂O

g22(t)dσ

)
dW2(t) in D,

u(0) = u0 in D.
(6.11)

If we denote by u∗ the weak limit in L2(Ω × [0, T ] × D)n of the sequence ũε,
according to (5.2), then it will solve a similar equation:

du∗(t) = [divx (C∇xu∗(t)) + |∂O|bu∗(t) + |Y ∗|f(t)] dt

+|Y ∗|g1(t)dW1(t) +

(
|∂O|g21(t) +

∫
∂O

g22(t)dσ

)
dW2(t) in D,

u∗(0) = |Y ∗|u0 in D.
(6.12)

Let us define now the operator A∗ : D(A∗) ⊂ L2(D)n 7→ L2(D)n, by A∗u =
−div (C∇u) for every u ∈ D(A∗), where

D(A∗) = H1
0 (D)n ∩H2(D)n,

and C is introduced in (6.5).

Lemma 6.1. (Properties of the operator A∗) The linear operator A∗ is positive and
self-adjoint in L2(D)n.

Proof. All we have to show is that the operator C defined in (6.5) is symmetric and
positive definite. Let Λ1 and Λ2 be two matrices from Rn×n and let us compute
CΛ1 · Λ2:

CΛ1 · Λ2 =

∫
Y ∗

(ν (Λ1 +∇ywΛ1(y))− qΛ1(y)I) · Λ2dy.
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Using wΛ2 as a test function in (6.4), for Λ = Λ1 we get that:∫
Y ∗

(ν (Λ1 +∇ywΛ1
(y))− qΛ1

(y)I) · ∇wΛ2
dy = 0,

and given that divy qΛ1
(y) = divy qΛ2

(y) = 0 in Y ∗,∫
Y ∗

(ν∇y (Λ1y + wΛ1
(y))) · qΛ2

(y)dy =

∫
Y ∗

(ν∇y (Λ2y + wΛ2
(y))) · qΛ1

(y)dy = 0.

Using these relations, elementary calculations will give us that

CΛ1 · Λ2 =

∫
Y ∗
ν (Λ1 +∇ywΛ1

(y)) · (Λ2 +∇ywΛ2
(y)) dy, (6.13)

which implies that C is symmetric and positive definite.

As a consequence, we have the following existence result:

Theorem 6.2. (Well posedness of the homogenized equation) Let S∗(t)t≥0 be the
semigroup generated by the operator A∗ and assume that assumption (2.9) is satis-
fied. Then, the equation (6.12) admits a unique mild solution u∗ such that

u∗ ∈ L2(Ω;C([0, T ], L2(D)n) ∩ L2(0, T ;H1
0 (D)n))

given by

u∗(t) =|Y ∗|S∗(t)u∗0 + |∂O|
∫ t

0

S∗(t− s)bu∗(s)ds+ |Y ∗|
∫ t

0

S∗(t− s)f(s)ds

+|Y ∗|
∫ t

0

S∗(t− s)g1(s)dW1(s) + |∂O|
∫ t

0

S∗(t− s)g21(s)dW2(s)

+

∫ t

0

S∗(t− s)
∫
∂O

g22(s)dσdW2(s), t ∈ [0, T ].

(6.14)

Remark 6.3. 1. The solution of (6.12) is not divergence free, so the homog-
enized equation does not contain a pressure term. However, the effect of
the pressure P ε(t) appears implicitely through the matrix C, hence the cell
problem.

2. The overall effect of the boundary condition is seen in the homogenized equa-
tion through the Brinkman term |∂O|bu∗(t) and through an extra stochastic

forcing acting in the volume,

(
|∂O|g21(t) +

∫
∂O

g22(t)dσ

)
Ẇ2(t).

3. The convergence of the sequence uε to the limit u∗ is strong in the probabilistic
sense, but weak in the deterministic sense. In particular, the sequence ũε of the
extensions by 0 of uε inside Oε converges to u∗ weakly in L2(Ω× [0, T ]×D)n.
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[10] A. Mikelić, Homogenization of nonstationary Navier-Stokes equations in a domain with a
grained boundary, Annali di Matematica pura ed applicata, 158 (1991), 167–179.
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