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Abstract. We consider a two-dimensional atomic mass spring system and

show that in the small displacement regime the corresponding discrete ener-
gies can be related to a continuum Griffith energy functional in the sense of

Γ-convergence. We also analyze the continuum problem for a rectangular bar

under tensile boundary conditions and find that depending on the boundary
loading the minimizers are either homogeneous elastic deformations or configu-

rations that are completely cracked generically along a crystallographic line. As

applications we discuss cleavage properties of strained crystals and an effective
continuum fracture energy for magnets.

1. Introduction. A fundamental problem in static fracture mechanics is to deter-
mine the behavior of a brittle material which is subject to certain displacements
imposed at its boundary. Of particular interest is the identification of critical loads
at which failure occurs. A natural framework to treat such free discontinuity prob-
lems with variational methods is given by Griffith energy functionals introduced by
Francfort and Marigo [20] comprising elastic bulk contributions and surface terms
comparable to the size of the crack (see also [17]). Often these models contain
anisotropic surface terms (see e.g. [2, 19, 26]) modeling the fact that due to the
crystalline structure of the materials certain directions for the formation of cracks
are energetically favored. Indeed, fracture typically occurs in the form of cleav-
age along crystallographic planes. Ultimately, such a continuum model should be
identified as an effective theory derived from atomistic interactions.

Specifying the set-up even further, a basic experiment to infer material properties
of brittle materials is to probe the specimen by applying a uniaxial tensile strain
which allows to determine its Poisson ratio in the elastic regime and a critical load
beyond which the body fails due to fracture. From a theoretical point of view this
problem has been studied recently by Mora-Corral in [25], where he investigates a
rectangular bar of brittle, incompressible, homogeneous and isotropic material sub-
ject to uniaxial extension and shows that, depending on the loading, the minimizers
are either given by purely elastic configurations or deformations with horizontal
fracture.
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An atomistic model problem with surface contributions sensitive to the crack
geometry has been studied by the authors in [21] leading to a complete analysis of
the asymptotically optimal configurations under uniaxial extension in the discrete-
to-continuum limit: The body shows pure elastic behavior in the subcritical case
and for supercritical boundary values generically cleavage occurs along a specific
crystallographic line. However, for a certain symmetric orientation of the lattice
cleavage may fail and more complicated crack geometries are possible.

The goal of this work is to show that in the small displacement regime the ener-
gies associated to such a discrete system can be related to a continuum Griffith en-
ergy functional with anisotropic surface contributions in the sense of Γ-convergence.
Moreover, we analyze the continuum problem under tensile boundary conditions.
In this way we (1) obtain a convergence scheme which in certain applications to be
discussed below allows to identify effective continuum fracture energies, (2) extend
the results of [25] to anisotropic and compressible materials and (3) re-derive in
part the aforementioned convergence results of [21].

In the theory of fracture mechanics the passage from discrete systems to con-
tinuum models via Γ-convergence is by now well understood for one-dimensional
chains, see e.g. [7, 8, 9]. In the higher dimensional setting there are results for
scalar valued models (see [10]) and approximations of vector valued free discontinu-
ity problems where the elastic bulk part of the energy is characterized by linearized
terms (see [2]) or by a quasiconvex stored energy density (see [19]). However, in
more than one dimension the energy density of discrete systems such as well-known
mass spring models is in general not given in terms of a discretized continuum qua-
siconvex function. For large strains these lattices typically become even unstable,
see e.g. the basic model discussed in [23]. Consequently, in the regime of finite
elasticity it is a subtle question if minimizers for given boundary data exist at all.
On the other hand, for sufficiently small strains one may expect the Cauchy-Born
rule to apply so that individual atoms do in fact follow a macroscopic deformation
gradient, see [23, 14]. In particular this applies to the regime of infinitesimal elastic
strains. For purely elastic interactions this relation has also been obtained in the
sense of Γ-convergence for a simultaneous passage from discrete to continuum and
linearization process in [12, 27].

The model considered in [21] as well as the one-dimesional seminal paper [11]
suggest that the most interesting regime for the elastic strains is given by

√
ε (ε

denotes the typical interatomic distance) as in this particular regime the elastic and
the crack energy are of the same order. This is in accordance to the observation
that brittle materials develop cracks already at moderately large strains. More-
over, it shows that a discrete-to-continuum Γ-limit for the discrete energies under
consideration naturally involves a linearization process.

Identifying all possible limiting continuum configurations and energies is a chal-
lenging task as necessary smallness assumptions on the discrete gradient can not
be inferred from suitable energy bounds. In particular, deriving rigidity estimates
being essential in the passage from nonlinear to linearized theory (see [12, 27]) is
a subtle problem. Partial results have been obtain in [21] for almost minimizers of
a boundary value problem describing uniaxial extension. A general analysis in two
dimensions is deferred to a subsequent work. In the present context we make the
simplifying assumption that we consider deformations lying

√
ε-close to the identity

mapping. However, we will also see that there are physically interesting applications
e.g. to magnetic materials where such an assumption can be justified rigorously.
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It then turns out that the derivation of the continuum limit is an issue similar
to those considered in [2, 10, 19]. Nevertheless, we believe that the present Γ-
convergence result is interesting as (1) it gives rise to a limiting Griffith functional
in the realm of linearized elasticity which can be explicitly investigated for cleavage,
(2) there are applications to systems with small displacements for small energies and
(3) to the best of our knowledge our approach to the problem differs from techniques
which are predominantly used when treating discrete systems in the framework of
fracture mechanics.

The reduction to one-dimensional sections using slicing properties for (special)
functions of bounded variation turned out to be a useful tool not only to derive
general properties of these function spaces but also to study discrete systems and
variational approximation of free discontinuity problems. E.g., the original proofs
of the main compactness and closure theorems in SBV (see [3]) as well as the Γ-
convergence results in [10, 19] make use of this integral-geometric approach. Similar
to the fact that there are simplified proofs of these compactness theorems being
derived without the slicing technique (see [1]), we show that in our framework the
lower bound of the Γ-limit can be achieved in a different way. In fact, we carefully
construct the crack shapes of discrete configurations in an explicit way which allows
us to directly appeal to lower semicontinuity results for SBV functions.

The paper is organized as follows. We first introduce our discrete model and
state our main results in Section 2. Here we also briefly discuss how these results
shed new light on our findings in [21] on crystal cleavage and study an application
to fractured magnets in an external field.

Section 3 is devoted to the derivation of the continuum energy functional via
Γ-convergence. The main idea for the lower bound relies on a separation of the
energy into elastic and surface contributions by introducing an interpolation with
discontinuities on triangles where large expansion occurs. By constructing the set
of discontinuity points in a suitable way the surface energy can be estimated using
lower semicontinuity results for SBV functions. The elastic part can be treated
similarly as in [22, 27].

Finally, in Section 4 we analyze the continuum problem under tensile boundary
values and extend the results obtained in [25] to anisotropic and compressible ma-
terials. A careful analysis of the anisotropic surface contribution shows that in the
generic case there is a unique optimal direction for the formation of fracture, while
in a symmetrically degenerate case cleavage fails and all energetically optimal crack
geometries can be characterized by specific Lipschitz curves. As in [25] the proof
makes use of a qualitative rigidity result for SBV functions (see [13]) and of the
structure theorem on the boundary of sets of finite perimeter by Federer [18].

2. The model, main results and applications.

2.1. The discrete model. Let L denote the rotated triangular lattice

L = RL

(
1 1

2

0
√

3
2

)
Z2 = {λ1v1 + λ2v2 : λ1, λ2 ∈ Z},

where RL =

(
cosφ − sinφ
sinφ cosφ

)
∈ SO(2) is some rotation and v1, v2 are the lattice

vectors v1 = RLe1 and v2 = RL( 1
2e1 +

√
3

2 e2), respectively. Without loss of gen-
erality we can assume φ ∈ [0, π3 ). We collect the basic lattice vectors in the set

V = {v1,v2,v3}, where v3 = v2 − v1. The macroscopic region Ω ⊂ R2 occupied
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by the body is supposed to be a bounded domain with Lipschitz boundary. In the
reference configuration the positions of the specimen’s atoms are given by the points
of the scaled lattice εL that lie within Ω. Here ε is a small parameter defining the
length scale of the typical interatomic distances.

The deformations of our system are mappings y : εL ∩ Ω → R2. The energy
associated to such a deformation y is assumed to be given by nearest neighbor
interactions as

Eε(y) =
1

2

∑
x,x′∈εL∩Ω
|x−x′|=ε

W

(
|y(x)− y(x′)|

ε

)
. (1)

Note that the scaling factor 1
ε in the argument of W takes account of the scaling of

the interatomic distances with ε. The pair interaction potential W : [0,∞)→ [0,∞]
is supposed to be of ‘Lennard-Jones-type’:

(i) W ≥ 0 and W (r) = 0 if and only if r = 1.
(ii) W is continuous on [0,∞) and C2 in a neighborhood of 1 with α := W ′′(1) > 0.

(iii) limr→∞W (r) = β > 0.

In order to analyze the passage to the limit as ε→ 0 it will be useful to interpolate
and rewrite the energy as an integral functional. Let Cε be the set of equilateral
triangles 4 ⊂ Ω of sidelength ε with vertices in εL and define Ωε =

⋃
4∈Cε 4. By

ỹ : Ωε → R2 we denote the interpolation of y, which is affine on each 4 ∈ Cε. The
derivative of ỹ is denoted by ∇ỹ, whereas we write (y)4 for the (constant) value of
the derivative on a triangle 4 ∈ Cε. Then (1) can be rewritten as

Eε(y) =
∑
4∈Cε

W4((ỹ)4) + Eboundary
ε (y)

=
4√
3ε2

∫
Ωε

W4(∇ỹ) dx+ Eboundary
ε (y),

(2)

where

W4(F ) =
1

2

(
W (|Fv1|) +W (|Fv2|) +W (|F (v3)|)

)
. (3)

Here we used that |4| =
√

3ε2/4. The boundary term is the sum of pair interaction

energies 1
4W ( |y(x)−y(x′)|

ε ) or 1
2W ( |y(x)−y(x′)|

ε ) over nearest neighbor pairs which form
the side of only one or no triangle in Cε, respectively.

Due to the discreteness of the underlying atomic lattice, Dirichlet boundary
conditions have to be imposed in a small neighborhood of the boundary as otherwise
cracks near the boundary may become energetically more favorable. Assume that
Ω̃ ⊃ Ω is a bounded, open domain in R2 with Lipschitz boundary defining the
Dirichlet boundary ∂DΩ = ∂Ω ∩ Ω̃ of Ω. For (the continuous representative of)

g ∈ W 1,∞(Ω̃) we define the class of discrete displacements assuming the boundary
value g on ∂DΩ as

Ag =
{
u : εL ∩ Ω̃→ R2 : u(x) = g(x) for x ∈ εL ∩ ΩD,ε

}
, (4)

where ΩD,ε := {x ∈ Ω̃ : dist(x, ∂DΩ) ≤ ε} ∪ (Ω̃ \ Ω). For the corresponding
deformations y = id+u this amounts to requiring y(x) = x+g(x) for x ∈ εL∩ΩD,ε.

Similar as before, we let C̃ε be the set of equilateral triangles 4 ⊂ Ω̃ with vertices
in εL and define Ω̃ε =

⋃
4∈C̃ε 4. By ỹ : Ω̃ε → R2 we again denote the piecewise

affine interpolation of y.
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It is easy to see that the formation of a crack of finite length resulting from a
number of largely deformed triangles scaling with 1

ε leads to an energy contribution

to Eε scaling with 1
ε . The most interesting regime is when the elastic energy contri-

butions to Eε and the energy cost of a cracked configurations are of the same order.
We are thus particularly interested in boundary displacements gε scaling with

√
ε.

For them there are also completely elastic deformations for which Eε scales with 1
ε ,

e.g. Eε(id + gε) = O(ε−1).
In order to obtain finite energies and displacements in the limit ε → 0, we

accordingly rescale the displacement field to u = 1√
ε
(y − id) and the energy Eε to

Eε(u) := εEε(y) = εEε(id +
√
εu).

Moreover, we will assume u ∈ Agε for some gε ∈ W 1,∞(Ω̃). Note that then Eε(u),
which in fact only depends on the restriction u|Ω, does not depend on the particular

choice of Ω̃ and on gε|Ω̃\Ω as long as the Dirichlet boundary ∂DΩ = ∂Ω∩ Ω̃ and the

values of gε on {x ∈ Ω : dist(x, ∂DΩ) < ε} remain unchanged.
We also introduce the functionals Eχε which arise from Eε by replacing W∆ by

W∆,χ = W∆ + χ, where χ : R2×2 → [0,∞] is a frame indifferent penalty term with
χ ≥ cχ > 0 in a neighborhood of O(2) \ SO(2) and χ ≡ 0 in a neighborhood of
SO(2) ∪ {∞}. This term is a mild extra assumption to assure that the orientation
of the triangles is preserved in the elastic regime and unphysical effects are avoided.

2.2. Convergence of the variational problems. Our convergence analysis ap-
plies to discrete deformations which may elongate a number scaling with 1

ε of springs
very largely, leading to cracks of finite length in the continuum limit. On triangles
not adjacent to such essentially broken springs, the defomations are

√
ε-close to the

identity mapping, so that the accordingly rescaled displacements are of bounded
L2-norm. Note that the first of these assumptions can be inferred from suitable
energy bounds. By way of example, however, we will see that this cannot be true
for the displacement estimates in the bulk: The sequence of functionals (Eε)ε is not
equicoercive. Nevertheless, it is interesting to investigate this regime in order to
identify a corresponding continuum functional which describes the system in the
realm of Griffith models with linearized elasticity. In fact, below we will discuss two
specific models where external fields or boundary conditions break the rotational
symmetry whence the sequence (Eχε )ε satisfies suitable equicoercivity conditions.

Recall that the space SBV (Ω;R2), abbreviated as SBV (Ω) hereafter, of special
functions of bounded variation consists of functions u ∈ L1(Ω;R2) whose distri-
butional derivative Du is a finite Radon measure, which splits into an absolutely
continuous part with density ∇u with respect to Lebesgue measure and a singular
part Dju whose Cantor part vanishes and thus is of the form

Dju = [u]⊗ νuH1bJu,

where H1 denotes the one-dimensional Hausdorff measure, Ju (the ‘crack path’)
is an H1-rectifiable set in Ω, νu is a normal of Ju and [u] = u+ − u− (the ‘crack
opening’) with u± being the one-sided limits of u at Ju. If in addition ∇u ∈ L2(Ω)
and H1(Ju) < ∞, we write u ∈ SBV 2(Ω). See [5] for the basic properties of these
function spaces.

The sense in which discrete displacements are considered convergent to a limiting
displacement in SBV is made precise in the following definition.
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Definition 2.1. Suppose uε : εL∩ Ω̃→ R2 is a sequence of discrete displacements.
We say that uε converges to some u ∈ SBV 2(Ω̃) and write uε → u, if

(i) χΩ̃ε
ũε → u in L1(Ω̃)

and there exists a sequence C∗ε ⊂ C̃ε with #C∗ε ≤ C
ε for a constant C independent

of ε such that

(ii) ‖∇ũε‖L2(Ω̃\∪4∈C∗ε4) ≤ C.

The main idea will be to separate the energy into elastic and crack surface con-
tributions by introducing a threshold such that triangles 4 with (y)4 beyond that
threshold are considered as cracked and ỹ is modified there to a discontinuous func-
tion. The treatment of the elastic part draws ideas from [27] and [22]. To derive
the crack energy, one could use a slicing technique, see, e.g., [10]. Although also
possible in our framework, we follow a different approach here: We carefully con-
struct crack shapes of discrete configurations in an explicit way which allows us to
directly appeal to lower semicontinuity results for SBV functions in order to derive
the main energy estimates.

Consider the limiting functional

E(u) =
4√
3

∫
Ω

1

2
Q(e(u)) dx+

∫
Ju

∑
v∈V

2β√
3
|v · νu| dH1

for u ∈ SBV 2(Ω̃), where e(u) = 1
2

(
∇uT +∇u

)
denotes the symmetric part of the

gradient. Q is the linearization of W4 around the identity matrix Id (see Lemma

3.2 for its explicit form). Observe that u is defined on the enlarged set Ω̃ and

therefore also jumps lying in Ω̃ \ Ω (and thus particularly those lying on ∂DΩ)
contribute to E(u). For a displacement field u, which is the limit of a sequence

(uε) ⊂ Agε converging in the sense of Definition 2.1, we get u = g on Ω̃ \ Ω, where
g = L1- limε→0 gε. Consequently, if u|Ω does not attain the boundary condition g
on the Dirichlet boundary ∂DΩ (in the sense of traces), this will be penalized in the
energy E(u) as then H1(Ju∩∂DΩ) > 0. Moreover, as g by assumption is continuous,

for any u ∈ Ag the jump set Ju does not intersect Ω̃ \ Ω, which shows that E(u)

is in fact independent of the particular choice of Ω̃ and g|Ω̃\Ω as long as ∂DΩ and

g|∂DΩ remain unchanged. In Section 3 we prove the following Γ-convergence result
(see [16] for an exhaustive treatment of Γ-convergence):

Theorem 2.2. (i) Let (gε)ε ⊂ W 1,∞(Ω̃) with supε ‖gε‖W 1,∞(Ω̃) < +∞. If (uε)ε

is a sequence of discrete displacements with uε ∈ Agε and uε → u ∈ SBV 2(Ω̃),
then

lim inf
ε→0

Eε(uε) ≥ E(u).

(ii) For every u ∈ SBV 2(Ω̃) and g ∈ W 1,∞(Ω̃) with u = g on Ω̃ \ Ω there is
a sequence (uε)ε of discrete displacements such that uε ∈ Ag, uε → u ∈
SBV 2(Ω̃) and

lim
ε→0
Eχε (uε) = E(u).

Note that the recovery sequence is obtained for the energy Eχε which includes the
frame indifferent penalty term. Due to the frame indifference of W , (Eε) and (Eχε )
are not equicoercive as the following example shows.
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Example. Let B ⊂ Ω be an arbitrary ball. Assume that the specimen satisfying
the boundary conditions is broken into the two parts B and Ω \B, where the inner
part is subject to a rotation R 6= Id so that

∇ỹε(x) = R for x ∈ B.
In particular, the energy of the configuration is of order 1. But for x ∈ B

|∇ũε(x)| =
∣∣∣∣ 1√
ε

(R− Id)

∣∣∣∣→∞ for ε→ 0.

Thus, ∇ũε is not bounded in L1 and so uε does not converge.

We now add a term to Eε such that the sequence becomes equicoercive. Let
m̂ : R2×2 → S1 be a function satisfying

m̂(RF ) = Rm̂(F ) for all F ∈ R2×2, R ∈ SO(2), m̂(Id) = e1.

Moreover, assume that m̂ is C2 in a neighborhood of SO(2) and R2×2
sym ⊂

ker(Dm̂(Id)). Let Fε(u) = Eε(u) + 1
ε

∫
Ωε
fκ(∇ỹ) with

fκ(F ) =

{
κ(1− e1 · m̂(F )), |F | ≤ T,
0 else,

(5)

for F ∈ R2×2, where T, κ > 0. Likewise, we define Fχε . In Lemma 3.4 below we
show that W∆,χ(F ) + fκ(F ) ≥ C|F − Id|2 for all F ∈ R2×2 with |F | ≤ T .

This implies that the sequence (Fχε )ε is equicoercive: Given a sequence of dis-
placement fields (uε)ε with Fχε (uε) + ‖uε‖∞ ≤ C we find a subsequence converging
in the sense of Definition 2.1. Indeed, we get that #C∗ε ≤ C

ε , where C∗ε := {∆ ∈
C̃ε : |(Id +

√
εũε)∆| > T}. By Lemma 3.4 we then get ‖∇ũε‖L2(Ω̃\∪4∈C∗ε4) ≤

C and therefore condition (ii) in Definition 2.1 is satisfied. By an SBV com-
pactness theorem (see [5]) we then find a (not relabeled) subsequence such that

ũεχΩ̃ε\∪4∈C∗ε4
→ u in L1 for some u ∈ SBV 2(Ω̃). This together with ‖uε‖∞ ≤ C

and |
⋃
4∈C∗ε

4| ≤ Cε implies that also condition (i) in Definition 2.1 holds with

this function u.
Define m̂1 : R2×2 → [−1, 1] by m̂1 = e1 ·m̂ and let Q̂ = D2m̂1(Id) be the Hessian

at the identity. We introduce the limiting functional F : SBV 2(Ω̃)→ [0,∞) given
by

F(u) = E(u)− κ

2

∫
Ω

Q̂(∇u).

We then obtain a Γ-convergence result similar to Theorem 2.2.

Theorem 2.3. The assertions of Theorem 2.2 remain true when Eε, Eχε and E are
replaced by Fε, Fχε and F , respectively.

2.3. Analysis of a limiting cleavage problem. We now analyze the limiting
functional E for a rectangular slab Ω = (0, l) × (0, 1) with l ≥ 1√

3
under uniaxial

extension in e1 direction. We determine the minimizers and prove uniqueness up
to translation of the specimen and the crack line for the boundary conditions

u1 = 0 for x1 = 0 and u1 = al for x1 = l. (6)

(More precisely: u ∈ SBV 2((−η, l + η) × (0, 1)) with u1(x) = 0 for x ≤ 0 and
u1(x) = al for x ≥ l.) Note that we can investigate the limiting problem without
any assumption on the second component of the boundary displacement. Let γ =
max{|v1 · e2|, |v2 · e2|, |v3 · e2|} and vγ ∈ V such that γ = |vγ · e2|. We note that γ
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takes values in [
√

3
2 , 1] and vγ is unique if and only if φ 6= 0. It turns out that the

specimen shows perfect elastic behavior up to the critical boundary displacement

acrit =

√
2
√

3β

αγl
.

Beyond critical loading the body fails by breaking into two pieces.

Theorem 2.4. Let a 6= acrit. Then

min
{
E(u) : u satisfies (6)

}
= min

{
αl√

3
a2,

2β

γ

}
.

All minimizers of E subject to (6) are of the following form:

(i) If a < acrit, then

uel(x) = (0, s) +

(
a 0
0 −a3

)
x

for some s ∈ R.
(ii) If a > acrit and φ 6= 0 then

ucr(x) =

{
(0, s) for x to the left of (p, 0) + Rvγ ,

(al, t) for x to the right of (p, 0) + Rvγ ,

for some s, t ∈ R and p ∈ (0, l) such that (p, 0) + Rvγ intersects both the
segments (0, l)× {0} and (0, l)× {1}.

(iii) If a > acrit and φ = 0 then

ucr(x) =

{
(0, s) if 0 < x1 < h(x2),

(al, t) if h(x2) < x1 < l,

for a Lipschitz function h : (0, 1) → [0, l] with |h′| ≤ 1√
3

a.e. and constants

s, t ∈ R.

This theorem will be addressed in Section 4. An analogous result for isotropic,
incompressible materials has been obtained recently by Mora-Corral [25]. Theorem
2.4 is an extension of this result to anisotropic, compressible brittle materials in the
framework of linearized elasticity.

In particular, as mentioned above we see that all the optimal configurations
show purely elastic behavior in the subcritical case and complete fracture in the
supercritical regime. The crack minimizer in (ii) for φ 6= 0 is broken parallel to
Rvγ which proves that cleavage occurs along crystallographic lines, while in the
symmetric case φ = 0 cleavage in general fails.

2.4. Applications: Cleaved crystals and fractured magnets. As applications
of the converging results for the energy functionals Eχε and Fχε we consider cleaved
crystals and fractured magnets, respectively. In the first model a mild equicoercivity
of the sequence (Eχε )ε is guaranteed by investigating a specific boundary value prob-
lem, in the latter model an external field provides an even stronger equicoercivity
condition.



A DISCRETE-TO-CONTINUUM CONVERGENCE FOR A 2D BRITTLE MATERIAL 329

2.4.1. Uniaxially strained crystals. Theorem 2.2 in combination with Theorem 2.4
gives a new perspective to the results on crystal cleavage of [21]. Let Ω = (0, l) ×
(0, 1) with l ≥ 1√

3
. For Ω̃ = (−η, l + η)× (0, 1) and a ≥ 0 set

A(a) =
{
u =(u1, u2) : εL ∩ Ω̃→ R2 :

u(x) = g(x) for x1 ≤ ε and x1 ≥ l − ε for some g ∈ G(a)
}
,

where G(a) := {g ∈ W 1,∞(Ω̃) : g1(x) = 0 for x1 ≤ ε, g1(x) = al for x1 ≥ l − ε}. In
[21, Theorem 2.1] we proved that the limiting minimal energy leads to a universal
cleavage law of the form

lim
ε→0

inf {Eε(u) : u ∈ A(a)} = min

{
αl√

3
a2,

2β

γ

}
,

independent of the particular shape of the interatomic potential W . Optimal con-
figurations are given by the constant sequences uε = uel in the subcritical case
a ≤ acrit and uε = ucr in the supercritical case a ≥ acrit, respectively, with uel and
ucr as in Theorem 2.4.

In fact, the above given configurations provide a characterization of all minimiz-
ing sequences in the sense that, all low energy sequences (uε)ε satisfying

Eχε (uε) = inf{Eχε (u) : u ∈ A(a)}+O(ε) (7)

and supε ‖uε‖∞ < ∞ converge–up to subsequences–in the sense of Definition 2.1
to uel if a < acrit or ucr if a > acrit for suitable s, t, p and g, respectively. This
is a direct consequence of [21, Theorem 2.3 and Corollary 2.4]. (The convergence
obtained in [21] is even stronger.)

One implication of [21, Theorem 2.3 and Corollary 2.4] is that, under the ten-
sile boundary conditions uε ∈ A(a), the requirement that uε be an almost energy
minimizer satisfying (7), guarantees the existence of a subsequence converging in
the sense of Definition 2.1. In particular, the sequence (Eχε ) is mildly equicoercive.
A fundamental theorem of Γ-convergence (see, e.g., [6, Theorem 1.21]) implies that
such low energy sequences converge to limiting configurations uel, respectively, ucr,
in the sense of Definition 2.1. Consequently, in this way we have re-derived the
convergence result [21, Corollary 2.4] (in the sense of Definition 2.1).

2.4.2. Permanent magnets in an external field. Assume that the material is a per-
manent magnet and let e1 be the magnetization direction. We suppose that there
is a constitutive relation between ∇ỹ(x) and the local magnetization direction
m̂(ỹ, x) ∈ S1 of the deformed configuration ỹ at some point x ∈ Ω, which is of
the form m̂(ỹ, x) = m̂(∇ỹ(x)) with m̂ as defined in Section 2.2. Let Hext : R2 → R2

be an external magnetic field. The magnetic energy corresponding to the deforma-
tion y = id +

√
εu is then given by

Emag
ε (u) = −1

ε

∫
Ωε

Hext · m̂(∇ỹ),

i.e. alignment of the magnetization direction with the external field is energetically
favored. The total energy of the system is given by

Etot
ε = Eχε + Emag

ε .

We now suppose that the external field is homogeneous and satisfies without re-
striction Hext = κe1 for κ > 0. We then see that

Fε = Etot
ε +

κ

ε
|Ωε|
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with fκ as in (5) and corresponding Fε. By Theorem 2.3 we get that the renormal-
ized functionals Fε Γ-converge to the renormalized total energy functional Etot

ren = F .
(Obviously, a configuration minimizes Etot

ε if and only if it minimizes Fε.)
We consider a boundary value problem minu∈Ag Etot

ren(u) for g ∈W 1,∞(Ω̃). Since
the sequence (Fε)ε is equicoercive as discussed in Section 2.2, the theory of Γ-

convergence implies limε→0(κ|Ωε|ε + minu∈Ag Etot
ε (u)) = limε→0 minu∈Ag Fε(u) =

minu∈Ag Etot
ren(u) and also convergence of the corresponding (almost) minimizers of

Fε, and hence Etot
ε , to minimizers of Etot

ren in the sense of Definition 2.1 is guaranteed.

In this context, note that by a truncation argument taking g ∈ W 1,∞(Ω̃) into
account, we may indeed assume that a low energy sequence satisfies supε ‖uε‖ε <
+∞.

3. Convergence of the variational problems.

3.1. Preparations. The goal of this section is the derivation of the Γ-convergence
result for Eε. We first collect some properties of the cell energy W4 proven in [21,
Section 3] provided that W satisfies the assumptions (i), (ii) and (iii).

Lemma 3.1. W4 is

(i) frame indifferent: W4(QF ) = W4(F ) for all F ∈ R2×2, Q ∈ O(2),
(ii) non-negative and satisfies W4(F ) = 0 if and only if F ∈ O(2) and

(iii) lim inf |F |→∞W4(F ) = lim inf |F |→∞W4,χ(F ) = β.

Lemma 3.2. Let F = Id +G for G ∈ R2×2. Then for |G| small

W4(F ) =
1

2
Q(G) + o(|G|2),

where Q(G) = 3α
16

(
3g2

11 + 3g2
22 + 2g11g22 + 4

(
g12+g21

2

)2)
.

In particular, Q(G) only depends on the symmetric part
(
GT +G

)
/2 of G. Q

is positive semidefinite and thus convex on R2×2 and positive definite and strictly
convex on the subspace R2×2

sym of symmetric matrices.

The following lemma provides useful lower bounds for the energy W4 and the
pair interaction potential W .

Lemma 3.3. For all T > 1 one has:

(i) There exists some c > 0 such that cdist2(F,O(2)) ≤W4(F ) for all F ∈ R2×2

satisfying |F | ≤ T .
(ii) For ρ > 0 there is an increasing, subadditive function ψρ : [0,∞) → (0,∞)

which satisfies ψρ(r)− ρ ≤W (r+ 1) for all r ≥ 0 and ψ(r) = β for all r ≥ cρ
for some constant cρ only depending on ρ.

Proof. (i) This essentially follows from the expansion given in Lemma 3.2. For
details we refer to [21, Lemma 3.5].

(ii) We define

ψ̄(r) =

{
ηr for 0 ≤ r ≤ β

η ,

β for r ≥ β
η ,

for some η > 0 (depending on ρ) such that ψ̄−ρ ≤W . Then we set ψρ(r) = ψ̄(r+1).
As ψρ is a concave function with ψρ(0) > 0, it is subadditive.

Moreover, we provide a lower bound for W∆,χ(F ) + fκ(F ) which implies the
equicoercivity of (Fχε )ε.
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Lemma 3.4. Let T >
√

2. Then there are constants C1, C2 > 0 such that for all
F ∈ R2×2 with |F | ≤ T we obtain

i) |m̂(F ) − m̂(R(F ))| ≤ C1|F − R(F )|2, where R(F ) ∈ SO(2) is a solution of
|F −R(F )| = minR∈SO(2) |F −R|,

(ii) W∆,χ(F ) + fκ(F ) ≥ C2|F − Id|2.

Proof. (i) Without restriction we may assume that |F −R(F )| is small as otherwise
the assertion is clear. So in particular, R(F ) is uniquely determined. Moreover, it
suffices to consider F ∈ R2×2

sym and R(F ) = Id. Indeed, once this is proved, we find

|m̂(F ) − m̂(R(F ))| = |R(F )m̂(R(F )TF ) − R(F )m̂(Id))| ≤ C|R(F )TF − Id|2, as
desired.

Let F ∈ R2×2
sym, R(F ) = Id and setG = F−Id withG ∈ R2×2

sym small. As m̂ is C2 in

a neighborhood of SO(2) we derive |m̂(F )−m̂(Id)| ≤ |Dm̂(Id)G|+C|G|2 = C|G|2
as R2×2

sym ⊂ ker(Dm̂(Id)).
(ii) By Lemma 3.3(i) the assertion is clear for all |F | ≤ T with c0 ≤ dist(F,O(2))

for c0 > 0 and C2 = C2(c0, T ) sufficiently small. Otherwise, we again apply Lemma
3.3(i) to obtain for c0 small enough

W∆,χ(F ) ≥ C dist2(F,O(2)) + χ(F ) ≥ C dist2(F, SO(2)) = C|F −R(F )|2.
For convenience we write rij = eTi R(F )ej for i, j = 1, 2. As r2

12 = r2
21 = 1− r2

11 we
find 1− r11 = 1− r2

11 + r11(r11 − 1) = r2
12 + (1− r11)2 − (1− r11). Thus, recalling

m̂(R) = Re1 for all R ∈ SO(2) and applying (i) we get for 0 < c ≤ κ small enough

W∆,χ(F ) + fκ(F )

≥ C|F −R(F )|2 + c(1− e1 · m̂(R(F ))) + ce1 · (m̂(R(F ))− m̂(F ))

≥ C|F −R(F )|2 + c(1− eT1 R(F )e1)− cC1|F −R(F )|2

≥ C

2
|F −R(F )|2 +

c

2
(1− r11)2 +

c

2
r2
12 ≥ C2|F − Id|2,

(8)

as desired.

As a further preparation we modify the interpolation ỹ on triangles with large
deformation: We fix a threshold explicitly as R = 7 and let C̄ε ⊂ C̃ε be the set of
those triangles where |(ỹ)4| > R. By definition of the boundary values in (4) we
find C̄ε ⊂ Cε for ε small enough. We introduce another interpolation y′ which leaves
ỹ unchanged on 4 ∈ C̃ε \ C̄ε and replaces ỹ on 4 ∈ C̄ε by a discontinuous function
with constant derivative satisfying |(y′)4| ≤ R. In fact, by introducing jumps we

achieve a release of the elastic energy. Note that y′ ∈ SBV (Ω̃ε).
More precisely, note that on 4 ∈ C̄ε we have |(ỹ)4 v| ≥ 2 for at least two springs

v ∈ V. Indeed, using the elementary identity∑
v∈V
〈v, Hv〉2 =

3

8

(
2 trace(H2) + (traceH)2

)
≥ 3

8
(traceH)2

for any H ∈ R2×2
sym, we find that |F | > 7 implies∑

v∈V
|Fv|4 =

∑
v∈V
〈v, FTFv〉2 ≥ 3

8
(trace(FTF ))2 =

3

8
|F |4

and so maxv∈V |Fv|4 > 74

8 > 44. Hence, |Fv| > 4 for at least one v ∈ V and at

least two springs are elongated by a factor larger than 2. For m = 2, 3 let C̄ε,m ⊂ C̄ε
be the set of triangles where |(ỹ)4 v| ≥ 2 holds for exactly m springs v ∈ V. For
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i, j, k = 1, 2, 3 pairwise distinct let hi denote the segment between the centers of the
sides in vj and vk direction and define the set Vi = hj ∪ hk.

We now construct y′ ∈ SBV 2(Ω̃ε). On 4 ∈ C̃ε \ C̄ε we simply set y′ = ỹ. On
4 ∈ C̄ε,2, assuming |(ỹ)4 vi| ≤ 2, we choose y′ such that ∇y′ assumes the constant
value (y′)4 on 4 with (y′)4 vi = (ỹ)4 vi and |(y′)4 v| = 1 for v ∈ V \ {vi}.
Moreover, we ask that y′ = ỹ at the three vertices and on the side orientated in
vi direction. This can and will be done in such a way that y′ is continuous on
int(4) \ hi. We note that the definition of (y′)4 is unique up to a reflection, unless
(ỹ)4vi = 0. We may and will assume that

dist ((y′)4, SO(2)) ≤ dist ((y′)4, O(2) \ SO(2)) . (9)

For 4 ∈ C̄ε,3 we set (y′)4 = Id and y′ = ỹ at the three vertices such that y′ is
continuous on int(4) \ Vi for some i ∈ {1, 2, 3}. Here, the index i can be taken
arbitrarily at first. However, in what follows it will also be necessary to use the
following unambiguously defined ‘variants’ of y′: If on every 4 ∈ C̄ε,3 the set Vi is
chosen as the jump set of y′ we denote this interpolation explicitly as y′Vi .

We define the interpolation u′ for the rescaled displacement field by u′ = 1√
ε
(y′−

id). We note that by construction also on an edge [p, q] ⊂ ∂4 for 4 ∈ C̄ε jumps
may occur. There, however, the jump height |[u′ε]| can be bounded by

|[u′ε](x)| ≤ ε ‖∇u′ε‖∞ ≤ ε · cε
− 1

2 = c
√
ε (10)

for a constant c > 0 independent of ε and x ∈ [p, q]. This holds since the interpola-
tions are continuous at the vertices.

The following lemma shows that we may pass from ũε to u′ε without changing
the limit.

Lemma 3.5. If uε → u in the sense of Definition 2.1 and Eε(uε) is uniformly

bounded, then χΩ̃ε
u′ε → u in L1(Ω̃), χΩ̃ε

∇u′ε ⇀ ∇u in L2(Ω̃) and H1(Ju′ε) is
uniformly bounded.

Proof. We first note that there is some M > 0 such that

#C̄ε ≤
M

ε
(11)

for all ε > 0. To see this, we just recall that every triangle 4 ∈ C̄ε provides at least
the energy ε inf {W (r) : r ≥ 2}. In fact we may assume that C∗ε = C̄ε in Definition
2.1 as for ∆ ∈ C∗ε \ C̄ε we have |(ũε)4| ≤ C√

ε
|(ỹε)4 − Id| ≤ C√

ε
and so

‖∇ũε‖L2(Ω̃ε\∪4∈C̄ε4) ≤ ‖∇ũε‖L2(Ω̃ε\∪4∈C∗ε4) + ‖∇ũε‖L2(∪4∈C∗ε\C̄ε4)

≤ C +

(
#(C∗ε \ C̄ε)

√
3ε2

4
· C
ε

) 1
2

≤ C.

It follows that χΩ̃ε
∇u′ε is bounded uniformly in L2 and, in particular, equiintegrable.

Finally, the jump lengths H1(Ju′ε) are readily seen to be bounded by Cε#C̄ε ≤ C.
But then Ambrosio’s compactness Theorem for GSBV [4, Theorem 2.2] shows that

indeed χΩ̃ε
∇u′ε ⇀ ∇u in L2(Ω̃).
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3.2. The Γ-lim inf-inequality. With the above preparations at hand, we may now
prove the Γ-lim inf-inequality in Theorem 2.2.

Proof of Theorem 2.2(i). Let (gε)ε ∈ W 1,∞(Ω̃) with supε ‖gε‖W 1,∞(Ω̃) < +∞ be

given. Let u ∈ SBV 2(Ω̃) and consider a sequence uε ⊂ SBV 2(Ω̃ε) with uε ∈ Agε
converging to u in SBV 2 in the sense of Definition 2.1. We split up the energy into
bulk and crack parts neglecting the contribution εEboundary

ε from the boundary
layers:

Eε(uε) ≥ ε
∑

4∈Cε\C̄ε

W4((ỹε)4) + ε
∑
4∈C̄ε

W4((ỹε)4)

=
4√
3ε

∫
Ωε

W4
(
Id +

√
ε∇u′ε

)
+ ε

∑
4∈C̄ε

∑
v∈V,

|(ỹε)4 v|>2

1

2
W (|(ỹε)4 v|)

=: Eelastic
ε (uε) + Ecrack

ε (uε).

(12)

We note that by contruction of the interpolation u′ε we may take the integral over
Ωε. As both parts separate completely in the limit, we discuss them individually.

Elastic energy. We first concern ourselves with the elastic part of the energy. We

recall W4(Id +G) = 1
2Q(G) + ω(G) with sup

{
ω(F )
|F |2 : |F | ≤ ρ

}
→ 0 as ρ→ 0. Let

χε(x) := χ[0,ε−1/4)(|∇u′ε(x)|). Note that for F ∈ R2×2, r > 0 one has Q(rF ) =

r2Q(F ). We compute

Eelastic
ε (uε) ≥

4√
3

∫
Ωε

χε(x)

(
1

2
Q(∇u′ε) +

1

ε
ω
(√
ε∇u′ε(x)

))
dx.

The second term of the integral can be bounded by

χε|∇u′ε|2
ω (
√
ε∇u′ε)

|
√
ε∇u′ε|2

.

Since ∇u′ε is bounded in L2 and χε
ω(
√
ε∇u′ε)

|
√
ε∇u′ε|2

converges uniformly to 0 as ε → 0 it

follows that

lim inf
ε→0

Eelastic
ε (uε) ≥ lim inf

ε→0

4√
3

∫
Ωε

χε(x)
1

2
Q(∇u′ε(x)) dx

≥ lim inf
ε→0

4√
3

∫
Ω

1

2
Q(χΩεχε(x)∇u′ε(x)) dx.

By assumption χΩε∇u′ε ⇀ ∇u weakly in L2. As χε → 1 boundedly in measure on
Ω, it follows χΩεχε∇u′ε ⇀ u weakly in L2(Ω). By lower semicontinuity (Q is convex
by Lemma 3.2) we conclude recalling that Q only depends on the symmetric part
of the gradient:

lim inf
ε→0

Eelastic
ε (uε) ≥

4√
3

∫
Ω

1

2
Q(e(u(x))) dx.

Crack energy. By construction the functions u′ε have jumps on destroyed triangles
4 ∈ C̄ε. We now write the energy of such a triangle in terms of the jump height
[u] = u+ − u−. We first concern ourselves with a triangle 4 ∈ C̄ε,3. For the variant
u′ε,Vi , i = 1, 2, 3 we consider the springs in vj ,vk direction for j, k 6= i. Thus, we
compute

ε(ỹε)4 vj = ε(y′ε)4 vj + [y′ε,Vi ]hk = εvj +
√
ε[u′ε,Vi ]hk , (13)
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where [u′ε,Vi ]hk denotes the jump height on the set hk. Here and in the following
equations, the same holds true if we interchange the roles of j and k. We claim that

|(ỹε)4 vj | ≥ ε
1
4

∣∣∣∣ 1√
ε

[u′ε,Vi ]hk

∣∣∣∣+ 1. (14)

Indeed, for | 1√
ε
[u′ε,Vi ]hk | ≤ ε

− 1
4 this is clear since |(ỹε)4 vj | ≥ 2. Otherwise, apply-

ing (13) we compute for ε small enough:

|(ỹε)4 vj | =
∣∣∣∣ 1√
ε

[u′ε,Vi ]hk + vj

∣∣∣∣ ≥ ∣∣∣∣ 1√
ε

[u′ε,Vi ]hk

∣∣∣∣− 1

≥ ε 1
4

∣∣∣∣ 1√
ε

[u′ε,Vi ]hk

∣∣∣∣+
(

1− ε 1
4

)
ε−

1
4 − 1

= ε
1
4

∣∣∣∣ 1√
ε

[u′ε,Vi ]hk

∣∣∣∣− 2 + ε−
1
4 ≥ ε 1

4

∣∣∣∣ 1√
ε

[u′ε,Vi ]hk

∣∣∣∣+ 1.

Let ρ > 0 sufficiently small. Applying Lemma 3.3(ii) there is an increasing subad-

ditive function ψρ0 with ψρ(r − 1) − ρ ≤ W (r) for r ≥ 1. We define ψ̃ρ = ψρ − ρ.
The monotonicity of ψρ and (14) yield

W (|(ỹε)4 vj |) ≥ ψ̃ρ(|(ỹε)4 vj | − 1) ≥ ψ̃ρ
(∣∣∣ε− 1

4 [u′ε,Vi ]hk

∣∣∣) . (15)

Now for 4 ∈ C̄ε,3 we may estimate the energy as follows:

W4 ((ỹε)4) =
1

2

3∑
l=1

W (|(ỹε)4 vl|)

≥ 1

4

3∑
i=1

{
ψ̃ρ
(
ε−

1
4 |[u′ε,Vi ]hk |

)
+ ψ̃ρ

(
ε−

1
4 |[u′ε,Vi ]hj |

)}
=: W4,3 ((ỹε)4) ,

where i, j, k = 1, 2, 3 are pairwise distinct. With ν
(i)
u = νu′ε,Vi

we can also write

W4,3 ((ỹε)4) =
1

4
· 2
ε
· 2√

3

3∑
i=1

∫
hj∪hk

ψ̃ρ
(
ε−

1
4 |[u′ε,Vi ]|

)(
|vj · ν(i)

u |+ |vk · ν(i)
u |
)
dH1.

The factors in front occur since H1(hj) = ε
2 and, letting νj be a normal of hj ,

one has |νj · vj | = 0 and |νj · vk| =
√

3
2 . Consequently, defining φρi (r, ν) =

ψρ(r) (|vj · ν|+ |vk · ν|) and φ̃ρi (r, ν) = ψ̃ρ(r) (|vj · ν|+ |vk · ν|), respectively, we
get

W4,3 ((ỹε)4) =
1√
3ε

3∑
i=1

∫
Ju′
ε,Vi

∩int(4)

φ̃ρi (ε
− 1

4 |[u′ε,Vi ]|, ν
(i)
u ) dH1

on every 4 ∈ C̄ε,3. For 4 ∈ C̄ε,2 we proceed analogously. Assuming |(ỹε)4 vi| ≤ 2
we compute for the springs in vj ,vk direction (abbreviated by vj,k) as in (13)

ε(ỹε)4 vj,k = ε(y′ε)4 vj,k +
√
ε[u′ε]hi . (16)

Note that in this case we do not have to take a special variant of u′ε into account.
Repeating the steps (14) and (15) we find

1

2
(W (|(ỹε)4 vj |) +W (|(ỹε)4 vk|)) ≥ ψ̃ρ

(
ε−

1
4 |[u′ε]hi |

)
=: W4,2 ((ỹε)4) .

Noting that |vj · νi| = |vk · νi| =
√

3
2 , |vi · νi| = 0 and that every of these terms

occurs twice in the sum of the right hand side of the following formula, it is not
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hard to see that this energy satisfies the same integral representation formula as
W4,3:

W4,2 ((ỹε)4) =
1√
3ε

3∑
i=1

∫
Ju′
ε,Vi

∩int(4)

φ̃ρi (ε
− 1

4 |[u′ε,Vi ]|, ν
(i)
u ) dH1.

(Recall that the interpolation variant u′ε,Vi and its crack normal ν
(i)
u do not depend

on i on 4 ∈ C̄ε,2.) Let σ > 0. Note that C̄ε ⊂ Cε for ε sufficiently small as
supε ‖gε‖W 1,∞(Ω̃) < +∞. Thus, the crack energy can be estimated by

Ecrack
ε (uε) ≥

1√
3

∑
i

∫
Ju′
ε,Vi

∩Ω̃ε

φ̃ρi (ε
− 1

4 |[u′ε,Vi ]|, ν
(i)
u ) dH1 − Eρε,∪∂4 (ỹε)

≥ 1√
3

∑
i

∫
Ju′
ε,Vi

∩Ω̃ε

(
φρi (σ

−1|[u′ε,Vi ]|, ν
(i)
u )− 2ρ

)
dH1 − Eρε,∪∂4 (ỹε) ,

where Eρε,∪∂4 (ỹε) compensates for the extra contribution provided by jumps lying

on the boundary of some 4 ∈ C̄ε. We will show that this term vanishes in the limit.
Now by construction the φρi (r, ν), i = 1, 2, 3, are products of a positive, increasing

and concave function in r and a norm in ν. Moreover, u′ε and its variants converge
to u in L1 with ∇u′ε bounded in L2 and thus equiintegrable. By Ambrosio’s lower
semicontinuity Theorem [4, Theorem 3.7] we obtain

lim inf
ε→0

Ecrack
ε (uε) ≥

1√
3

∫
Ju

∑
i

φρi (σ
−1|[u]|, νu) dH1 − CMρ− lim sup

ε→0
Eρε,∪∂4 (ỹε) ,

where we used that supεH1(Ju′ε) ≤ CM for a constant C > 0 by (11). We recall
that ψρ(r)→ β for r →∞. In the limit σ → 0 this yields

lim inf
ε→0

Ecrack
ε (uε) ≥

1√
3

∫
Ju

2β
∑
v∈V
|v · νu| dH1 −CMρ− lim sup

ε→0
Eρε,∪∂4 (ỹε) . (17)

Taking (10) and (11) into account we compute

lim sup
ε→0

∑
4∈C̄ε

∫
∂4
|ψ̃ρ

(
ε−

1
4 |[u′ε]|

)
| ≤ lim

ε→0
CM sup

{
|ψρ (r)− ρ| : r ≤ ε− 1

4 · cε 1
2

}
= CMρ.

This proves lim supε |E
ρ
ε,∪∂4 (ỹε) | ≤ C̃Mρ for some C̃ > 0. We finally let ρ→ 0 in

(17). This finishes the proof of (i).

We now prove the Γ-lim inf-inequality in Theorem 2.3.

Proof of Theorem 2.3, first part. Following the proof of Theorem 2.2(i) it suffices
to show

lim inf
ε→0

1

ε

∫
Ωε

χεfκ(∇y′ε) ≥ −
κ

2

∫
Ω

Q̂(∇u),

where Q̂ = D2m̂1(Id). Let u′ε = 1√
ε
(y′ε − id). With a slight abuse of notation

we set e(F ) = 1
2 (FT + F ) and a(F ) = F − e(F ) for matrices F ∈ R2×2. Let

F = Id +
√
εG for G ∈ R2×2. Linearization around the identity matrix yields

dist(F, SO(2)) =
√
ε|e(G)|+ εO(|G|2). It is not hard to see that this implies

R(F ) = Id +
√
εa(G) + εO(|G|2), (18)
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where R(F ) ∈ SO(2) is defined as in Lemma 3.4. As m̂(Id) = e1 and e(G) ∈
ker(Dm̂(Id)), we find by expanding m̂1

m̂1(F ) = 1 +
√
εDm̂1(Id)a(G) +

ε

2
Q̂(G) + ω(

√
εG) (19)

with sup
{
ω(H)
|H|2 : |H| ≤ ρ

}
→ 0 as ρ→ 0.

We concern ourselves with the term Dm̂1(Id)a(G). Recall that |m̂(R(F )) −
m̂(F )| ≤ C|R(F )− F |2 by Lemma 3.4(i). For F = Id +

√
εG this implies by (18)

Dm̂1(Id)a(G) = e1 ·Dm̂(Id)G = lim
ε→0

e1 ·
m̂(F )− m̂(Id)√

ε

= lim
ε→0

e1 ·
m̂(R(F ))− e1√

ε
+O(

√
ε) = lim

ε→0
e1 · a(G)e1 +O(

√
ε) = 0.

In particular, (19) then implies 0 ≤ 1
εfκ(F ) = −κ2 Q̂(G) − 1

εω(
√
εG) and thus −Q̂

is positive semidefinite. We proceed exactly as in the proof of Theorem 2.2(i) and
conclude

lim inf
ε→0

1

ε

∫
Ωε

χεfκ(∇y′ε) ≥ lim inf
ε→0

−
∫

Ωε

χε

(κ
2
Q̂(∇u′ε) +

κ

ε
ω(
√
ε∇u′ε)

)
≥ −κ

2

∫
Ω

Q̂(∇u).

3.3. Recovery sequences. It remains to construct recovery sequences in order to
complete the proof of Theorem 2.2.

Proof of Theorem 2.2(ii). The basic tool for the proof of the Γ-limsup-inequality is
a density result for SBV functions due to Cortesani and Toader [15]. Moreover,
a proof very similar to that of Proposition 2.5 in [24] shows that we may also
impose suitable boundary conditions on the approximating sequence. We suppose
W(Ω̃,R2) is the space of all SBV functions u ∈ SBV (Ω̃,R2) such that Ju is a finite

union of (disjoint) segments and u ∈W k,∞(Ω̃ \ Ju,R2) for all k. Then W(Ω̃,R2) is

dense in SBV 2(Ω̃,R2) ∩ L∞(Ω̃,R2) in the following way:

For every u ∈ SBV 2(Ω̃,R2) ∩ L∞(Ω̃,R2) with u = g on Ω̃ \ Ω, there exists a

sequence un and a sequence of neighborhoods Un ⊂ Ω̃ of Ω̃ \Ω such that un = g on
ΩD, 1

n
(recall (4)), un ∈ W 1,∞(Un) and un|Vn ∈ W(Vn,R2), where Vn ⊂ Ω is some

neighborhood of Ω \ Un, such that ‖un‖∞ ≤ ‖u‖∞ and

(i) un → u strongly in L1(Ω̃,R2), ∇un → ∇u strongly in L2(Ω̃,R2),
(ii) lim supn→∞

∫
Jun

φ(νun)dH1 ≤
∫
Ju
φ(νu)dH1 for every upper semicontinuous

function φ : S1 → [0,∞) satisfying φ(ν) = φ(−ν) for every ν ∈ S1.

Recall that u is defined on Ω̃ and thus it will be penalized in
∫
Ju
φ(νu) dH1 if u

does not attain the boundary condition g on the Dirichlet boundary ∂DΩ (see also
the comment in Section 2.2).

Let u ∈ SBV 2(Ω̃,R2) with u = g on Ω̃ \ Ω. Without restriction we can assume

u ∈ L∞(Ω̃,R2) as this hypothesis may be dropped by applying a truncation ar-
gument and taking Q(F ) ≤ C|F |2 into account. In fact, it suffices to provide a
recovery sequence for an approximation un defined above. Although our notion of
convergence in Definition 2.1 is not given in terms of a specific metric, similarly to a
general density result in the theory of Γ-convergence this can be seen by a diagonal
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sequence argument. The crucial point is that due to (20) below we may assume
that for ε sufficiently small (depending on n)

#C∗ε = #Dε ≤
CH1(Jun)

ε
≤ CH1(Ju)

ε
,

where C is independent of n and ε. If (un,ε)ε is a recovery for un, one may there-
fore pass to a diagonal sequence which is a recovery sequence for u, in particular
converging to u the sense of Definition 2.1. For simplicity write u instead of un in
what follows.

Let δ > 0 and define Jδu = {x ∈ Ju, |[u](x)| ≥ δ}. Since |[u]| is Lipschitz continu-
ous on Ju, it cannot oscillate infinitely often between values ≤ δ and values ≥ 2δ on
a single segment. Consequently, there is a finite number Nδ

u of disjoint subsegments
S1, . . . , SNδu in Ju such that |[u]| < 2δ on every Sj and |[u]| > δ on Ju\(S1∪. . .∪SNδu).

Note that H1(
⋃Nδu
i=1 Si) ≤ H1(Ju\J2δ

u ) =: ρ(δ)→ 0 for δ → 0. We cover S1, . . . , SNδu
by pairwise disjoint rectanglesQ1, . . . QNδu which satisfy

∑
j H1(∂Qi)+|Qi| ≤ Cρ(δ).

It is not hard to see that |u(x)−u(y)| ≤ CH1(∂Qi)+2δ for x, y ∈ Qj as∇u ∈ L∞(Ω̃).

We modify u on the rectangles Qi: Let uδ = u on Ω̃\
⋃Nδu
i=1Qj and define uδ = cj

on Qj for cj ∈ R2 in such a way that Juδ = Jδuδ up to an H1-negligible set. As

u ∈ L∞(Ω̃), ∇u ∈ L∞(Ω̃) we find uδ → u in L1(Ω̃) and ∇uδ → ∇u in L2(Ω̃).
Moreover, we have H1(Ju∆Juδ) ≤ Cρ(δ)→ 0 for δ → 0.

Consequently, it suffices to establish a recovery sequence for a function u ∈ W(Ω̃)

with u = g in a neighborhood of Ω̃ \Ω and Ju = Jδu for some δ > 0. Note after the
above modification the segments of Ju might not be pairwise disjoint.

We define uε(x) = u(x) for x ∈ Lε ∩ Ω̃ and let yε(x) = id +
√
εuε(x). Clearly we

have uε ∈ Agε for all ε. By ũε, u
′
ε we again denote the interpolations on Ω̃ε. Up to

considering a translation of u of order ε, we may assume that Ju ∩ Lε = ∅. Let Dε
be the sets of triangles where Ju crosses at least one side of the triangle. Then

#Dε ≤
CH1(Ju)

ε
+ CNu (20)

for a constant C > 0 independent of u ∈ W(Ω̃,R2) and ε, where Nu denotes the
(smallest) number of segments whose union gives Ju. From now on for the local
nature of the arguments we may assume that Ju consists of one segment only.
Indeed, if Ju consists of segments S1, . . . , SNu , which are possibly not disjoint, the

number of triangles ∆ ∈ C̃ε with 4∩ Si1 ∩ Si2 6= ∅ for 1 ≤ ii < i2 ≤ Nu scales like
Nu and therefore their energy contribution is negligible in the limit. We show

C̄ε = Dε
for ε small enough. Let 4 ∈ Dε. We see that, if Ju = Jδu crosses a spring v at point
x∗, say, then a computation similar as in (16) together with ∇u ∈ L∞ shows

|(ỹε)4 v| =
∣∣∣∣ 1√
ε

[u(x∗)] +O(1)

∣∣∣∣ ≥ δ√
ε

+O(1). (21)

Thus, 4 ∈ C̄ε for ε small enough. On the other hand, if we assume 4 /∈ Dε, then
for at least two springs v ∈ V we have |(ỹε)4 v| ≤ 1 +

√
ε ‖∇u‖∞ < 2 for ε small

enough leading to 4 /∈ C̄ε.
We claim that

‖∇u′ε‖L∞(Ω̃) ≤ C. (22)
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This is clear for 4 /∈ Dε = C̄ε as ∇u ∈ L∞. For 4 ∈ C̄ε,3 it follows by construction.
For 4 ∈ C̄ε,2 there is a v ∈ V such that (y′ε)4 v = (ỹε)4 v = v+O(

√
ε). By Lemma

3.3(i) and (9) we get a rotation Rε ∈ SO(2) such that

|Rε − (y′ε)4|2 = dist2((y′ε)4, SO(2)) = dist2((y′ε)4, O(2)) ≤ CW4((y′ε)4) = O(ε).

This yields |(y′ε)4 − Id| = O(
√
ε) and thus |(u′ε)4| = O(1).

We note that χΩ̃ε
ũε → u in L1 as u and thus every ũε is bounded uniformly

in L∞ and, u being Lipschitz away from Ju, ũε → u uniformly on Ω̃ε \
⋃
4∈Dε4,

where |
⋃
4∈Dε4| ≤ Cε. Letting C∗ε = Dε this shows that uε → u in the sense

of Definition 2.1 recalling (20) and the fact that |(ũε)4| = O(1) for 4 /∈ Dε. We
next establish an even stronger convergence of the derivatives. Consider ∇ũε on
triangles in Cε \ Dε. As ∇u is Lipschitz there, the oscillation on such a triangle,
osc4ε (∇u) := sup {|∇u(x)−∇u(x′)|, x, x′ ∈ 4}, tends to zero uniformly (i.e., not
depending on the choice of the triangle). We thus obtain∫

Ω̃ε\∪4∈Dε4
‖∇ũε −∇u‖2∞ ≤

∫
Ω̃ε\∪4∈Dε4

(osc4ε (∇u))2 → 0

for ε→ 0, so that even χΩ̃ε\∪4∈Dε4
∇ũε → ∇u strongly in L2(Ω̃). Note that in fact

χΩ̃ε
∇u′ε → ∇u in L2(Ω̃). Indeed, recall #Dε ≤ Cε−1 by (20). Using (22) on the

set of broken triangles we then get∫
⋃
4∈Dε 4

|∇u′ε −∇u|2 ≤ C#D̄εε2 → 0

for ε→ 0. We now split up the energy in bulk and surface parts

Eχε (uε) = Eelastic
ε (uε) + Ecrack

ε (uε) +O(ε) +
1

ε

∫
Ωε

χ(∇ỹε) (23)

as defined in (12). Note that indeed the contribution εEboundary
ε is of order O(ε)

as ∇u ∈ L∞(Ω̃) and Ju ⊂ Ω since u = g in a neighborhood of Ω̃ \ Ω. We first
observe that 1

ε

∫
Ωε
χ(∇ỹε) = 0 for ε small enough. Indeed, for ∆ ∈ C̄ε this follows

from (21). For ∆ /∈ Dε it suffices to recall |(ũε)4| = O(1) which implies that (ũε)4
is near SO(2). Repeating the steps in the elastic energy estimate in (i), applying
χΩε∇u′ε → ∇u strongly in L2(Ω), (22) and Q(F ) ≤ C|F |2 for a constant C > 0 we
conclude that

lim sup
ε→0

Eelastic
ε (uε) =

4√
3

∫
Ω

1

2
Q(e(u(x))) dx. (24)

It is elementary to see that Ju crosses

H1(Ju)
2|νu · v|√

3ε
+O(1) (25)

springs in v-direction for v ∈ V, where νu is a normal to the segment Ju. Recalling
(21), the crack energy may be estimated by

lim sup
ε→0

Ecrack
ε (uε)

≤ lim sup
ε→0

H1(Ju) sup
{
W (r) : r ≥ δε− 1

2 +O(1)
} 2√

3

∑
v∈V
|νu · v|+O(ε)

= H1(Ju) β
2√
3

∑
v∈V
|νu · v|.
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This together with (23) and (24) shows that uε is a recovery sequence for u.

Finally, we construct recovery sequences for the functionals Fχε to conclude the
proof of Theorem 2.3.

Proof of Theorem 2.3, second part. Following the proof of Theorem 2.2(ii) it suffices
to show

lim
ε→0

1

ε

∫
Ωε

fκ(∇ỹε) = −κ
2

∫
Ω

Q̂(∇u).

First, by (21) and the definition of fκ we get
∫⋃

∆∈Dε ∆
fκ(∇ỹε) = 0 for ε small

enough. For ∆ /∈ Dε we have (∇ỹε)∆ = (∇y′ε)∆ and thus we find fκ((∇ỹε)∆) =

−εκ2 Q̂((∇u′ε)∆)− κω(
√
ε∇(u′ε)∆) by (19). We obtain

1

ε

∫
Ωε

fκ(∇ỹε) =
1

ε

∫
Ωε\

⋃
∆∈Dε ∆

fκ(∇y′ε)

≤ −κ
2

∫
Ωε\

⋃
∆∈Dε ∆

Q̂(∇u′ε) +
C

ε

∫
Ωε

ω(
√
ε∇u′ε).

Using (22) and the definition of ω we observe 1
ε‖ω(

√
ε∇u′ε)‖∞ → 0 for ε→ 0. This

together with strong convergence χΩε∇u′ε → ∇u in L2(Ω) shows

lim sup
ε→0

1

ε

∫
Ωε

fκ(∇ỹε) ≤ −
κ

2

∫
Ω

Q̂(∇u).

4. Analysis of the limiting variational problem. We finally give the proof of
Theorem 2.4 determining the minimizers of the limiting functional E . An analogous
result for isotropic energy functionals has been obtained in [25]. We thus do not
repeat all the steps of the proof provided in [25] but rather concentrate on the
additional arguments necessary to handle anisotropic surface contributions.

Proof of Theorem 2.4. We first establish a lower bound for the energy E . To this

end, we begin to estimate
∑

v∈V |v · ν| for ν ∈ S1. We recall that γ ∈ [
√

3
2 , 1] and

define P : [
√

3
2 , 1]× S1 → [0,∞) by

P (γ, ν) =


(

1−
√

3

√
1−γ2

γ

)
|vγ · ν|, γ >

√
3

2 ,

max
{√

3|e2 · ν| − |e1 · ν|, 0
}
, γ =

√
3

2 .

As vγ is unique for γ >
√

3
2 , the function P is well defined. In the generic case, i.e.

for γ >
√

3
2 , an elementary computation yields∑

v∈V
|v · ν| ≥ |vγ · ν|+

√
3|v⊥γ · ν| = |vγ · ν|+

√
3

∣∣∣∣∣± 1

γ
e1 · ν ±

√
1− γ2

γ
vγ · ν

∣∣∣∣∣
≥
√

3

γ
|e1 · ν|+ P (γ, ν)

for ν ∈ S1. In the first step we used that
∑

v∈V\{vγ} v = ±
√

3v⊥γ . In the special

case φ = 0⇔ γ =
√

3
2 , i.e. v1 = e1, v2,3 = ± 1

2e1 +
√

3
2 e2 we obtain

∑
v∈V |v · ν| =

|e1 · ν| +
√

3|e2 · ν| for |ν2| > 1
2 and

∑
v∈V |v · ν| = 2|e1 · ν| for |ν2| ≤ 1

2 , ν ∈ S1.
Consequently, it is not hard to see that
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∑
v∈V
|v · ν| ≥

√
3

γ
|e1 · ν|+ P (γ, ν)

also holds for γ =
√

3
2 . Thus, we get

E(u) ≥ 4√
3

∫
Ω

1

2
Q(e(u(x))) dx+

∫
Ju

2β

γ
|e1 · νu|+

2β√
3
P (γ, νu) dH1.

By Lemma 3.2 we obtain min{Q(F ) : eT1 Fe1 = r} = α
2 r

2. Then using the slicing
method (see, e.g., [5, Section 3.11]) we get

E(u) ≥
∫ 1

0

(∫ l

0

α√
3

(
eT1∇u(x1, x2)e1

)2
dx1 +

2β

γ
#Sx2(u)

)
dx2 + Eγ(u), (26)

where #Sx2 denotes the number of jumps on a slice (0, l)× {x2} and

Eγ(u) =

∫
Ju

2β√
3P (γ, νu)

dH1.

In case #Sx2(u) ≥ 1, the inner integral in (26) is obviously bounded from below

by 2β
γ . If #Sx2(u) = 0, by applyig Jensen’s inequality we find that this term is

bounded from below by αla2 due to the boundary conditions. We thus obtain

inf E ≥ min
{
αla2
√

3
, 2β
γ

}
. On the other hand, it is straighforward to check that

E(uel) = αla2 and E(ucr) = 2β
γ , which shows that uel is a minimizer for a < acrit

and ucr is a minimizer for a > acrit. It remains to prove uniqueness:

(i) Let a < acrit and u be a minimizer of E . Since E(u) = E(uel) we infer from
(26) that u has no jump on a.e. slice (0, l)× {x2} and satisfies eT1∇u e1 = a a.e. by
the imposed boundary values and strict convexity of the mapping t 7→ t2 on [0,∞).
Thus, if Ju 6= ∅, a crack normal must satisfy νu = ±e2 H1-a.e. Taking Eγ(u) and

the fact that P (γ, e2) > 0 for γ ∈ [
√

3
2 , 1] into account, we then may assume Ju = ∅

up to an H1 negligible set, i.e., u ∈ H1(Ω). We find u1(x1, x2) = ax1 + f(x2) a.e.
for a suitable function f , and the boundary condition u1(0, x2) = 0 yields f = 0
a.e. In particular, eT1∇u e2 = 0 a.e. Applying strict convexity of Q on symmetric
matrices (Lemma 3.2) we now observe eT2∇u e2 = −a3 and eT1∇u e2 + eT2∇u e1 = 0
a.e. So the derivative has the form

∇u(x) =

(
a 0
0 −a

3

)
for a.e. x.

Since Ω is connected, we conclude u(x) = (0, s) + F ax = uel(x) a.e.
(ii) Let a > acrit, φ 6= 0 and u be a minimizer of E . We again consider the

lower bound (26) for the energy E and now obtain that on a.e. slice (0, l) × {x2}
a minimizer u has precisely one jump and that eT1∇u e1 = 0 a.e. Now Lemma
3.2 shows that ∇u is antisymmetric a.e. As a consequence, the linearized rigidity
estimate for SBD functions of Chambolle, Giacomini and Ponsiglione [13] yields
that there is a Caccioppoli partition (Ei) of Ω such that

u(x) =
∑
i

(Aix+ bi)χEi and Ju =
⋃
i

∂∗Ei,

where ATi = −Ai ∈ R2×2 and bi ∈ R2. (See [5] for the definition and basic properties
of Caccioppoli partitions.) As Eγ(u) = 0, we also note that νu ⊥ vγ a.e. on Ju.
Following the arguments in [25], in particular using regularity results for boundary
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curves of sets of finite perimeter and exhausting the sets ∂∗Ei with Jordan curves,
we find that

Ju =
⋃
i

∂∗Ei ⊂ (p, 0) + Rvγ

for some p such that (p, 0)+Rvγ intersects both segments (0, l)×{0} and (0, l)×{1}.
We thus obtain that (Ei) consists of only two sets: E1 to the left and E2 to the right
of (p, 0) +Rvγ , say. Due to the boundary conditions we conclude that A1 = A2 = 0
and b1 = (0, s), b2 = (al, t) for suitable s, t ∈ R.

(iii) Let a > acrit, φ = 0 and u be a minimizer of E . We follow the lines of the

proof in (ii). The only difference is that Eγ(u) = 0 now implies that |νu · e1| ≥
√

3
2

a.e. and then arguing similarly as before we obtain

Ju ⊂ h((0, 1))

up to an H1-negligible set, where h : (0, 1) → [0, l] is a Lipschitz function with
|h′| ≤ 1√

3
a.e. We now conclude as in (ii).
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