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Abstract. Multiplex network is an emergent model that has been lately pro-

posed in order to cope with the complexity of real-world networks. A multiplex

network is defined as a multi-layer interconnected graph. Each layer contains
the same set of nodes but interconnected by different types of links. This rich

representation model requires to redefine most of the existing network analysis

algorithms. In this paper we focus on the central problem of community de-
tection. Most of existing approaches consist on transforming the problem, in a

way or another, to the classical setting of community detection in a monoplex

network. In this work, we propose a new approach that consists on adapting a
seed-centric algorithm to the multiplex case. The first experiments on hetero-

geneous bibliographical networks show the relevance of the approach compared
to the existing algorithms.

1. Introduction. Nodes in complex networks are generally arranged in tightly
connected groups that are loosely connected one to each other. Such groups are
called communities. Community members are generally admitted to share common
properties. Hence, unfolding the community structure of a network could provide
much insights about the overall structure of the network. The problem of community
detection in complex networks has received much f attention in the last decade.
Most of existing approaches are designed for simple static networks, where all edges
are supposed to be of the same type [15, 29]. However, real networks are often:

• Heterogeneous: nodes and links may have different types.
• Dynamic: nodes and links may evolve with time.

The multiplex network model has been introduced lately in order to cope with the
both heterogeneous and dynamic networks [5, 13, 8]. A multiplex network (a.k.a
multi-slice, multi-relational, multi-layer network) is defined as an interconnected
multi-layer network. Each layer contains exactly the same set of nodes. However,
the nature of links vary from one layer to another. An exemple of a multiplex
network is illustrated on figure 1. The figure shows a three-layer multiplex defined
over a set of nodes, each node represents an author of an academic publication
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(dataset is extracted from the well known DBLP1 bibliographical database). The
first (resp. second, third) defines a co-authorship (resp. co-citation, co-venue)
relationship between authors. Two authors (nodes) are linked in the first (resp.
second, third) layer if they co-author a publication (resp. have been co-cited by a
third author, have participated to the same venue).

Figure 1. Multiplex bibliographical network. Nodes are authors,
layers define the following three relationships: co-authorship, co-
citation and co-venue

The multiplex model can readily copes with multi-relationnel networks (ex. one
relation per layer), but also with dynamic networks (a layer corresponds to the
network stat at a given time stamp). However, analyzing multiplex networks re-
quiers to redefine most of basic metrics that have been previously defined in the
context of monoplex network such as node’s centralities [9, 3], clustering coefficient
[11] and nodes similarity [13]. In this work, we study the problem of community
detection in multiplex networks [4]. Few works have addressed this problem. Most
of which are based transforming the problem, in a way or another, to the classical
setting of community detection in a monoplex network [4, 28, 29]. Another ap-
proach consists on extending an existing algorithm to deal directly with multiplex
networks. This is for instance the approche adopted in [22], where the modularity
quality function has been extended to the multiplex case allowing to apply classical
modularity-optimization approaches [7]. A multi-objective optimization approach
has been proposed in [2]. In this work we propose to extend a seed-centric commu-
nity detection approach to be applied to the multiplex network [30]. Seed-centric
approaches are based on the idea of first selecting some special nodes in the network
for which local communities are first computed. A global community structure of
the network is then inferred from the set of obtained local communities [18]. These
approaches are mainly based on local computations allowing hence to handle large-
scale graphs. A quick survey of on seed-centric approches for community detection
in monoplex networks is reported in [27].

The remainder of this paper is organized as follows. In section 2 we introduce
basic definitions and used notations related to multiplex networks. In section 3, we
provide a quick survey on main approaches for community detection in multiplex

1http://www.dblp.org
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networks. Next in section 4, we describe the proposed approach, called mux-Licod
which is an extension of the Licod algorithm provided in [30]. Experiments on real
networks are reported and commented in section 5. Finally we conclude in section
6.

2. Multiplex networks.

2.1. Notations. Formally, we define a multiplex network as a multi-layer graph:

G =< V,E1, . . . , Eα : Ek ⊆ V × V ∀k ∈ {1, . . . , α} > (1)

where V is a set of nodes and Ek is a set of edges of type k. α denotes the number
of layers in the multiplex. Next, we introduce some new notations that will be used
further in this paper.

• A[k] is the adjacency matrix of layer k
• n = |V | is the number of nodes in the multiplex.
• mk = |Ek| is the number of edges in layer k
• Γ(v)[k] = {x ∈ V : (x, v) ∈ Ek} denotes the neighbors of v in layer k
• dkv =‖ Γ(v)[k] ‖ is the degree of node v in layer k

2.2. Multiplex metrics. The multi-layer nature of a multiplex network poses the
problem of redefining all basic network metrics [3]. We consider next the redefi-
nition of three very basic network concepts used later in our proposed algorithm
(see section 4). These are: node’s degree, node’s neighborhood, and shortest-path
mesure between two nodes.
Multiplex node degree. The degree of a node i in a multiplex network composed of
α layers can simply be defined as an aggregation of i’s degrees in each of the layers.
Formally, we have:

dmultiplexi = F(d
[1]
i , . . . , d

[α]
i ) (2)

Where F is an aggregate function. Basic aggregate functions, such a the mean, sum,
. . . , etc, do not allow distinguishing nodes having very different degree distributions
across layers. For exemple, consider the case of a 3-layer multiplex and two nodes
i, j such that i has one neighbor is each layer while j has three neighbors in one
layer and none in each of the remaining two layers. Both nodes will have exactly the
same multiplex degree if a simple aggregate function is applied. A more interesting
option would be the application of an entropy-like aggregate function as proposed
in [3]:

dmultiplexi = −
α∑
k=1

d
[k]
i

d
[tot]
i

log

(
d

[k]
i

d
[tot]
i

)
(3)

where d
[tot]
i =

α∑
k=1

d
[k]
i is the total degree of a node i in the multiplex network.

Following this definition, the degree of a node i would be null if all it is only
connected in one layer. It would be maximized if the node is equally connected
in each layer. This would be more suitable for computing degree centrality of a
node where nodes connected across multiple layers of a multiplex would be more
important than nodes connected in only one layer.
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Neighborhood. In much a similar way to the multiplex degree definition, the set
of neighbors of a node i in a multiplex would be defined as an aggregation of its
neighbors sets in each layer. One restrictive aggregate function would be the set-
intersection function: j is a neighbor of i if j is connected to i is each layer. On the
opposite side, a very loose definition of node’s neighborhood would be defined by
using the set-union function: j is a neighbor of i if j is connected to i in at least one
layer [19]. A trade-off between these two basic definitions is the one proposed in
[8]: j is a neighbor of i if it is connected to i in at least m layers where 1 ≤ m ≤ α.
This definition may suits multiplex composed of large number of layers. It poses
also the problem of defining a threshold on the number of layers to consider.

We propose here another trade-off based on node’s similarity. The principle is
to select from the set of all neighbors of a node (across all layers), those which are
most similar to the considered node. Topological similarity measures can be used
for that purpose. More formally, let Γ(i)total = {j : ∃k : j ∈ Γ(i)[k]} be the set of
neighbors of node i across all layers. We define the multiplex neighbourhood of a
node i as follows:

Γδmultiplex(i) = {c ∈ Γ(i)total :∼ (c, i) ≥ σ} (4)

Where δ ∈ [0, 1] is a similarity threshold. Different similarity functions can be
applied. An exemple would be the Jaccard similarity measure defined as follows:

simjaccard(i, j) =
Γ(i)total ∩ Γ(j)total

Γ(i)total ∪ Γ(j)total
(5)

Shortest-path. Again, shortest-path length in a multiplex between two nodes i, j
can be defined as an aggregation of shortest-path length between these nodes in
each layer go the multiplex. Entropy-based aggregate function can also be applied.
More generally, any dyadic topological measure X can be defined as an aggregate
as follows:

Xent(i, j) = −
α∑
k=1

X(i, j)[k]

Xtotal
log(

X(i, j)[k]

Xtotal
) (6)

where Xtotal =
∑α
k=1X(i, j)[k]. The entropy based aggregate is more suitable for

capturing the distribution of the measure value across all layers. A higher value
indicates uniform distribution attribute value across the multiplex layers.

3. Community detection in multiplex networks. We classify existing ap-
proaches for community detection in multiplex networks in two main classes:

1. Approaches based on using existing monoplex community detection algorithms.
The principle is to transform the problem of community detection in a mul-
tiplex to the one of community detection is a monoplex network. One first
approach consists on transforming a multiplex into a monomplex by applying
some layer aggregation scheme [28]. A second approach consists on applying
a community detection algorithm to each layer of the multiplex. Then apply
an ensemble-clustering approach in order to combine all obtained partitions
[6].

2. Approaches based on extending existing algorithms to deal directly with multi-
plex networks.

Next we detail the above identified approaches.
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3.1. Layer aggregation approaches. Generally, the layer aggregation approach
consists on transforming a multiplex network into a weighted graphG =< V,E,W >
where W is a weight matrix. Figure 2 illustrates the process of layer aggregation.

Figure 2. Layer aggregation based approach.

Different weights computations schemes can be applied. Examples are:

Binary weights: two nodes i, j are linked in the resulting simple graph if it exists
at least one layer in the multiplex where these nodes are linked. Formally we
have:

wij =

{
1 if ∃1 ≤ k ≤ α : (i, j) ∈ Ek
0 else

(7)

Frequency-based weighting: In [29], authors propose to weight a link (i,j) by
the average of weights in all layers in the multiplex. Formally we have:

wij =
1

α

α∑
k=1

A
[k]
ij (8)

A similar weighting scheme is proposed in [4] where a link is weighted by its
redundancy :

wij =‖ {d : A
[d]
ij 6= 0} ‖ (9)

Similarity-based weighting schema: The weight of a link (i,j) is given by the
similarity of two nodes computed in the multiplex graph. In practice, temporal
dyadic similarity measures used to compute similarity score of two nodes [25]
(layers in the multiplex are considered as time stamps). In [4], authors propose
to use the clustering coefficient before computing the weight of links in the
aggregated simple graph.

Linear combinaison: In [10], authors propose to consider independantly the dif-
ferent layers of a multiplex. Therefore, the weight of a link in the resulting
aggregated graph should take into account the difference of layers contribu-
tions. A linear combinaison schemas can then be applied:

A =

α∑
k=1

wkA
[k] (10)
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The weights wk can also be learned based on user defined constraints on
the clustering of some nodes into communities.

More recently, another transformation approach has been proposed [20]. It con-
sists on mapping a multiplex to a 3-uniform hypergraph H = (V,E) such as the
node set in the hypergraph is V = V ∪ 1, ..., α and (u, v, i) ∈ E if ∃l : Aluv 6=
0, u, v ∈ V, i ∈ 1, ..., α. Community detection algorithmes in hypergraphs can then
be applied [24].

3.2. Ensemble-clustering based approach. This approach consists on first ap-
plying a community detection algorithm to each layer. Then an ensemble clustering
approach is applied in order to combine all obtained partitions (see figure 3).

Figure 3. Partition Aggregation

A variety of ensemble clustering approaches can be applied [1]. One widely
applied method is based on constructing a consensus graph out of the set of
partitions to be combined [1]. The consensus graph Gcons is defined over the same
set of nodes of the initial graph G. Two nodes i, j ∈ V are linked in Gcons if
there is at least one partition where both nodes are in a same cluster. Each link
(i, j) is weighted by the frequency of instances that nodes i, j are placed in the same
cluster. Notice that the obtained graph is not necessarily a connected one. Different
approaches can be applied in order to compute the aggregated clustering out from
the consensus graph:

• In [1], authors transform the graph into a complete one by adding missing
links with a null weight, then nodes are finally partitioned into clusters using
agglomerative hierarchical clustering with some linkage rule, or by using a
classical graph partition method such as the Kernighan-Lin algorithm.

• in [12] a similar approach is applied but with enforcing that nodes in the same
result clusters should be connected in the initial graph by a sufficiently short
path.

• In [21] authors propose a simple but effective method that consists on pruning
links in the obtained consensus graph whose weights (frequency) is under a
given threshold λ ∈ [0, 1]. The set of obtained connected components is taken
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to be the aggregated partition. The main problem of this approach is the
problem of defining the value of the threshold λ to use.

3.3. Extending monoplex approaches to the multiplex case. In [29] a unified
approach for community detection is proposed allowing to model different types of
algorithms using matrix computations. This unified approach allows to identify
different aggregation strategies in addition to the two basic ones: layer aggregation
and partition ensemble clustering.

In [2], a multi-objective optimization approach is proposed. This idea is to first
rank the layers of the multiplex. A classical community detection algorithm is ap-
plied on the first layer. Then for each subsequent layer a community detection
algorithm that optimize two criteria at once is applied: optimizing the local mod-
ularity of the obtained partition, and maximizing the similarity with the partition
found on the previous layer. The main problem of this approach is about defining
a layer ranking function.

The leading role that modularity and its optimization have played in the con-
text of communities detection in simple graphs has naturally motivated works to
generalize the modularity in case of multiplex networks. A multiplex modularity is
proposed is [23] as follows:

Qmultiplex(P ) =
1

2µ

∑
c∈P

∑
i,j∈c

k,l:1→α

((
A

[s]
ij − λk

d
[k]
i d

[k]
j

2m[k]

)
δkl + δijC

kl
ij

)
(11)

where µ is a normalization factor, and λk is a resolution factor as introduced
for multi-resolution modularity [26]. Note that in our case, only links inter-layer
are implicit connecting node i to itself in the others layers. Therefore we have:
Cklij = 0 ∀i 6= j. With this new modularity, classical approaches for modularity
maximization can be applied directly to multiplex networks. However, there is now
evidences showing that this new modularity does not suffer from the drawbacks of
the classical modularity optimization approaches [16].

4. The proposed approach. In this section, we propose a new seed-centric ap-
proach, called mux-Licod, for community detection in multiplex networks. The
proposed approach is an extension of the Licod algorithm designed for monoplex
networks [30]. Seed-centric algorithms constitue an emerging trend in the area
of community detection. The basic idea underlaying these approaches consists on
identifying special nodes in the target network, called seeds, around which commu-
nities can then be identified. These algorithms are mainly based on performing local
computations allowing to consider their application to large-scale graphs. Next, we
give an informal description of the proposed algorithm. Implementation issues are
discussed in 4.2. A quick discussion of the algorithm computational complexity is
presented in 4.3.

4.1. Algorithm description. Algorithm 1 presents the general outlines of a typ-
ical seed-centric community detection algorithm [27]. Three main steps can be
distinguished:

1. Seed computation.
2. Seed local community computation.
3. Community computation from all local communities calculated in step 2
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Algorithm 1 General seed-centric community detection algorithm

Require: G =< V,E > a connected graph,
1: C ← ∅
2: S ← compute seeds(G)
3: for s ∈ S do
4: Cs ← compute local com(s,G)
5: C ← C + Cs
6: end for
7: return compute community(C)

Following the idea of the original Licod algorithm we search to define seeds as
leaders of communities: set of nodes that are plying central role inside the commu-
nity. In order to find such leaders, we first search for all single leader-nodes. These
are defined as nodes that have higher centrality than most of their direct neighbors.
Once all leader-nodes are identified, we cluster these in function of their similarity
in order to obtain the final leaders. Notice that leaders are then defined as a set
of nodes not necessarily directly connected in the graph. Each node in the graph,
then rank the set of leaders in function of some preference membership function.
A complete rank of all leaders by each node is required. Then, since two directly
connected nodes are likely to belong to the same community we apply a local prefer-
ence merging algorithm that allows each node to update its membership preference
vector in function of preferences of its neighbors. The procedure of local preference
merging iterates until stabilization. Each node in the graph will then be affected to
the community defined by the leader?ranked first in its preference vector.

4.2. Implementation issues. Algorithm 2 sketches the outlines of mux-Licod. In
the current implementation we use degree centrality in order to identify leader-
nodes. We use the formula 3 in order to compute the degree of a node in the
multiplex network. The function isLeaderNode() (line 3 in 2) is then simply im-
plemented by comparing the degree of each node with the degree of its direct neigh-
bors. We apply the similarity-based neighborhood selection formal for computing
the set of neighbors of a node in the multiplex network (see formula 4). The Jaccard
similarity function given in formula 5 is used. A node is a leader-node if its degree
centrality is greater than the degree centrality of most of its direct neighbors. For-

mally a node i is a leader-node if
|{v∈Γmultiplexδ (i):dmultiplexi ≥dmultiplexv }|

|Γmultiplexδ (i)|
≥ σ. σ ∈ [0, 1]

is an algorithm parameter. Leader-nodes are clustered using the same Jaccard sim-
ilarity function in order to compute the set of leaders (line 7 in algorithm 2). The
idea is that leader-nodes having a relatively large number of common neighbors are
grouped into one community.

As for the original Licod algorithm, the membership degree of node to a com-
munity is estimated using the value of the shortest path length linking the node to
the leader. Here we apply formula 6 for computing the length of the shortest path
between nodes in multiplex network. Different rank aggregation functions can be
applied for merging the preferences community membership of neighboring nodes
(line 16 in algorithm 2) . We apply here the local kemeny approach proposed in [14]
as it was shown that this gives the best results in the context of the original Licod
algorithm [30]. The preference merge process is iterated till convergence or for max
number of iterations.
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4.3. Algorithm complexity. The computational complexity of the proposed algo-
rithm depends on the complexity of three basic steps of computing leaders, comput-
ing community membership degrees and then preference rank aggregation applied
method. Using the degree centrality for leader-nodes identification requiers O(m)
steps where m = max

i∈[1,α]
|Ei| is the max number of edges in the layers of the multi-

plex. The most expensive step is one required for computing the preference of nodes
membership to each identified community since this requiers computing shortest-
paths lengths between each node and identified leaders-nodes. Applying classical
shortest-path length compassion algorithm, the complexity is O(m + |V |log(|V |).
The preference merging step has a complexity of O(l × log(l)) where l = |C| is the
number of identified leaders. Actually the local rank merging procedure is simply
implemented using the quick-sort algorithm as detailed in [14]. However, the num-
ber of identified leaders is usually very small compared to the number of all nodes.
To sum up, the Mux-licod algorithm, in this current implementation will have a
computational complexity of O(m+ |V |log(|V |).

Algorithm 2 mux-LICOD algorithm

Require: G =< V,E1, . . . , Eα > a connected Multiplex graph
1: L ← ∅ {#set of leader-nodes}
2: for v ∈ V do
3: if isLeaderNode(v) then
4: L ← L ∪ {v}
5: end if
6: end for
7: C ← cluster(L) {#Compute Leaders}
8: for v ∈ V do
9: for c ∈ C do

10: M [v].append(membership(v, c))
11: end for
12: P [v] = sortAndRank(M [v])
13: end for
14: repeat
15: for v ∈ V do
16: P [v]← rankAggregatex∈{v}∩Γmultiplex(v)P[x]
17: end for
18: until Stabilization of P [v]? ∀v ∈ V
19: COM← ∅
20: for v ∈ V do
21: COM.append(P [v][0])
22: end for

23: return COM

5. Experiments.

5.1. Settings. In order to evaluate the proposed algorithm, we choose to com-
pare its performances with basic approaches using layer-aggregation and ensemble-
clustering approaches. To be as fair as possible we applied these two approaches
with the original Licod algorithm. The same parameters are used for Licod and
mux-licod, namely we set σ to 0.9 as this was the best value as shown in experi-
ments reported in [30]. The neighbourhood threshold σ is set to the default value
0.5.
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5.2. Evaluation criteria. To the best of our knowledge, there do not exist any
multiplex networks with ground-truth partitions into communities. Thus, classical
approaches for evaluating performances of community detection algorithme using
supervised indices can not be applied. Only, unsupervised estimation of the quality
of obtained communities can be used. One such metric is the redundancy proposed
in [4]. The redundancy computes the average of redundant link of each intra-
community in all multiplex layers. The intuition is that the link intra-community
should be recurring in different layers. The computing of this indicator is as follows:

We denote by:

• P the set of couple (u, v) which are directly connected to at least one layer.

• ¯̄P the set of couple (u, v) which are directly connected in at least two layers.
• Pc ⊂ P represents all links in the community c.

• ¯̄Pc ⊂ ¯̄P the subset of ¯̄P and which are also in c.

The redundancy of the community c is given by:

ρ(c) =
∑

(u,v)∈ ¯̄Pc

‖ {k : ∃A[k]
uv 6= 0} ‖

α× ‖ Pc ‖
(12)

The quality of a given multiplex partition is defined as follows:

ρ(P) =
1

‖ P ‖
∑
c∈P

ρ(c) (13)

We also, follow the proposition made in [2] fr evaluating the quality of obtained
communities using the simple modularity criteria applied to each layer of the mul-
tiplex. The idea is to measure is taking into account different types of relationships
between nodes can enhance the quality of ebonies communities with respect to one
relationship. We also computed the modularity value of the obtained partition with
respect to the aggregated graph using two different aggregation schemes: a simple
layer-union and the one obtained by applying the Jacquard-based node similarity
function (two nodes are liked in the aggregated network if one is in the neighbor-
hood of the another as computed by the Jaccard similarity neighborhood function,
see section 2.2).

5.3. Datasets. We evaluated the differsnt approaches n two different real work
datasets. The first one is a 3-layer multiplex network extracted form the biblio-
graphical database DBLP, while the second is a set of three 2-layer multiplex net-
works build from of a bibliographical sharing web service Bibsonomy2. Next we
briefly describe these two datasets.
Dblp dataset. Dblp is bibliographical database referencing a huge amount of sci-
entific papers mostly related to computer science. We extracted from the publicly
available database, a subset corresponding to publications covering the time period
1980 to 1985. A 3-layer multiplex network is constructed out from this dataset:
Nodes of the multiplex are authors. The first layer encodes a co-authorship rela-
tionship. The second one gives co-citation relationships beteen authors while te
third layer gives co-venue relation between authors (participating to the same con-
ference edition). The table 1 summarizes the information about networks built out
of the DBLP dataset.

2http://www.bibsonomy.org

http://www.bibsonomy.org
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Layer # Nodes # Edges Density

co-authoring 2809 5109 0.001295439
co-citation 2809 36187 0.000000780
co-venue 2809 251819 0.000000161

Table 1. Basic statistics about the 3-layer multiplex extracted
from DBLP

Bibsonomy. Bibsonomy is a bibliographical reference sharing system. Users can
tag references that can be available for browsing by other users. We use here the
2007 post-core at level 5, used for evaluation in [17]. The network is composed by
three types of nodes: tags, resources and users. Out of this tripartite graph, we
build three 2-layer multiplex networks defined respectively on each of the three sets:
users, tags and ressources. First, we start by decomposing the tripartite graph into
three bipartite subgraphs : User-Tag, Resource-Tag and User-Resource. Then, we
make two projections of each bipartite graph. As result, we obtain six unipartite
graphs that compose the three 2-layer networks. Figure 4 illustrate the applied
construction process of the 2-layer multiplex defined over the tag nodes.

Figure 4. 2-layer tag multiplex network

Basic statistics about obtained multiples networks are summarized in table 5.3.

Multiplex network Layers # Nodes # Edges Density

User User based Resource 116 901 0,135
User based Tag 116 985 0,147

Tag Tag based Resource 412 2496 0,0294
Tag based User 412 1956 0,0231

Resource Resource based Tag 361 2814 0,0433
Resource based User 361 1685 0,0259

Table 2. Bibsonomy multiplex networks

5.4. Results. Table 5.4 (resp. 5.4) shows the number of communities obtained on
the DBLP (resp. Bibsonomoy) multiplex networks when applying the three selected
community detection algorithms.
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Methods Dblp network

Layer Aggregation 184
Ensemble Clustering 59

mux-LICOD 179
Table 3. Numbers of obtained communities in the Dblp multiplex network

Methods User network Resource network Tag network

Layer Aggregation 13 48 42
Ensemble Clustering 21 86 88

mux-LICOD 24 70 46
Table 4. Numbers of obtained communities in the Bibsonomy
multiplex networks

In figure 5 (resp. 6, 7, 8) we show the modularities of communities structures
computed by the three different approaches with respect to each layer of the mul-
tiplex and with respect to aggregated networks for the DBLP (resp. Bibsonomy)
dataset.

Figure 5. Modularities of the obtained community structure with
respect to each layer and to aggregated networks - DBLP dataset

Results show that mux-licod provides better modularity values for almost all
networks. This may suggest that both layer aggregation and ensemble-clustering
approaches are not the adequate approaches for multiplex community detection.
Actually, layer aggregation approaches leaders to a great loss of information about
the heterogeneous nature of links. While ensemble-clustering approaches merge
communities that are much different (since each is computed according to a different
relation). The best way might be the one we propose based on analyzing all layers
of the multiplex at once.

In table 5.4 (resp. 5.4) we show the values of redundancy index of obtained
communities. Again, muc-Licod outperforms the other two approaches in almost all
cases. These first results are very promising. However, these need also confirmation
on other kind of datasets. The approach based on extending algorithms to deal
with multiplex networks seems to outperform approaches based on transforming the
multiplex community detection to the problem of monoplex community detection.



A SEED-CENTRIC APPROACH 83

Figure 6. Modularities of the obtained community structure with
respect to each layer and to aggregated networks - Bibsonomy
dataset, User multiplex network

Figure 7. Modularities of the obtained community structure with
respect to each layer and to aggregated networks - Bibsonomy
dataset, Ressource multiplex network

Comparaisons of performances of mux-Licod with approaches from the same type
(see section 3.3) are required to better evaluate the performances of the proposed
algorithm.

Methods Redundancy

Layer Aggregation 0, 0017
Ensemble Clustering 0, 0346

mux-LICOD 0,4761
Table 5. Comparative results of redundancy on Dblp dataset

6. Conclusion. In this paper we presented a new approach of community detection
based on seed-centric algorithm that takes into account different types of relation-
ships between nodes in different layers of a multiplex network. Our approach called
mux-LICOD is a direct generalization of the Licod algorithm, initially proposed to
cope with monoplex networks. First experiments on real datasets show that the
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Figure 8. Modularities of the obtained community structure with
respect to each layer and to aggregated networks - Bibsonomy
dataset, Tag multiplex network

Methods User network Resource network Tag network

Layer Aggregation 0,085 0, 010 0, 026
Ensemble Clustering 0, 050 0, 059 0, 100

mux-LICOD 0, 069 0,484 0,201
Table 6. Comparative results of redundancy on Bibsonomy dataset

proposed approach yields better results than other classical approaches based on
layer-aggregation or ensemble-clustering approaches.

We are working to extend experiments to include other state-of-the-art approaches,
including using different algorithms when applying layer-aggregation and ensemble
clustering approaches. Comparison with other approaches extending algorithms de-
signed for monoplex networks such as the generalized Louvain algorithm are also
scheduled [3].

Our proposed algorithm, Mux-Licod has many parameters. Effects of each pa-
rameter should also be carefully studied. The evaluation problem still to be an open
problem, even for the monoplex networks. Task-driven evaluation approaches, such
as proposed in [30] should also be considered.
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