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ABSTRACT. Functional connectivity in human brain can be represented as a
network using electroencephalography (EEG) signals. Network representation
of EEG time series can be an efficient vehicle to understand the underlying
mechanisms of brain function. Brain functional networks whose nodes are
brain regions and edges correspond to functional links between them are char-
acterized by neurobiologically meaningful graph theory metrics. This study
investigates the degree to which graph theory metrics are sex dependent. To
this end, EEGs from 24 healthy female subjects and 21 healthy male subjects
were recorded in eyes-closed resting state conditions. The connectivity ma-
trices were extracted using correlation analysis and were further binarized to
obtain binary functional networks. Global and local efficiency measures as
graph theory metrics were computed for the extracted networks. We found
that male brains have significantly greater global efficiency (i.e., global com-
municability of the network) across all frequency bands for a wide range of cost
values in both hemispheres. Furthermore, for a range of cost values, female
brains showed significantly greater right-hemispheric local efficiency (i.e., local
connectivity) than male brains.

1. Introduction. There has been tremendous progress in network science and en-
gineering in recent years [4]. Human brain is one of the most complex biological
systems that can be modelled as a networked structure [10]. In modelling the
brain as a network, brain regions are considered as nodes and the functional or
anatomical relations between them as edges. To construct large-scale functional
or anatomical brain networks, signals recorded via electroencephalography (EEG),
magnetocephalography (MEG), or magnetic resonance imaging (MRI) can be used
[2, 35, 22]. Brain anatomical networks are extracted using MRI and Diffusion Tensor
Imaging (DTI) techniques [19].

It has been shown that real-world networks share a number of common properties
such as small-worldness, scale-free degree distribution and community structure
[9, 39, 5]. Measuring neurobiologically meaningful graph metrics in brain networks
has revealed their small-worldness [2, 15, 33, 34] and scale-free degree distribution
[19, 14]. Small-world property of brain networks indicates that the connections have
been developed in a way such that the networks have not only rather short average
path length (i.e., high global efficiency), but also their transitivity (i.e., clustering
coefficient or local connectivity) is rather high (much higher than corresponding
random networks). In other words, brain networks are cost economic [11]. Scale-
freeness of the networks indicates that there are a small fraction of hub nodes that
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are connected to many nodes (i.e., high degree), while many nodes have only few
connections.

Various brain disorders affect the network structure of the brain [8]. It has been
shown that the small-world property of brain networks is disrupted in schizophre-
nia [22, 31], Alzihmers disease [35, 37], epilepsy [28] and patients suffering from
psychogenic non-epileptic seizures [6]. The brain networks are also sensitive to the
number of nodes considered in the construction process [41, 24]. Therefore, in in-
terpreting properties of brain networks and comparing different works (which might
have different sizes for the networks), the size of the networks should be taken into
account.

Brains activity is gender-related in some aspects and there are clear anatomical
differences between the brain in males and females [25, 17]. Applying DTT technique
on a rather large group of subjects revealed their connectivity differences; male
brains are optimized for intra-hemispheric and female brains for inter-hemispheric
differences [20]. Another DTI study showed that female brains have greater local
connectivity than male brains [40]. Furthermore, smaller brains showed larger local
connectivity in female brains but in males, and several brain regions were identified
to have associations between node centrality and the sex [40]. An fMRI study
showed that there are gender-specific interactions in local connectivity of functional
brain networks [38].

EEG is a cheap and non-invasive recording technique that is used for both study-
ing mechanisms of brains activity and diagnosis. Gender-specific differences in
brains activity are clearly visible in EEGs; the experiments revealed greater bilat-
eral flexibility in females during self-generation tasks [12]. The percentage alpha
time was shown to be greater in males, while that of beta time was greater in females
[30]. In this work we aimed at studying hemispheric- and gender-specific differences
in terms of the global and local connectivity of functional brain networks extracted
from EEG time series. First, the weighted connectivity matrices are constructed
separately for each hemisphere. Then, global and local efficiency measures are com-
puted for the binarized networks. We observed significant difference between male
and female brains. While female brains showed significantly less global efficiency
(more pronounced in the left hemisphere) than male brains, females had slightly
higher local efficiency than males.

2. Methods.

2.1. EEG recording. The EEGs of 45 healthy subjects, used for this analysis,
were recorded at the Department of Clinical Neurosciences of the University of
Lausanne (Lausanne, Switzerland) and approved by the local Ethics committee of
the university (Commission cantonale d’thique de la recherche sur I'tre humain).
All the procedures conformed to the Declaration of Helsinki (1964) by the World
Medical Association concerning human experimentation. The participants (21 men
with mean age 45 years, standard deviation 16; 24 women with mean age 39 and
standard deviation 19) were without substance abuse or dependence and had no
known neurological or psychiatric illness or trauma. The participants were all right
handed and did not significantly differ in their age (P > 0.2; Wilcoxons ranksum
test). Written informed consent was obtained from all participants involved in this
study.

The EEG data were collected with eyes closed in a dedicated semi-dark room with
a low level of environmental noise. A 128-channel Geodesic Sensor Net (Electrical
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Geodesic Inc., Eugene, OR, USA) was used at a sampling frequency of 500 Hz. The
sensors from the outer ring of the sensor net were not considered because of low
quality signals, which left 111 sensors for analysis. Artifacts in all channels were
edited off-line: first automatically, based on an absolute voltage threshold (100
1V) and on a transition threshold (50 pV), and then on the basis of a thorough
visual inspection. The EEG time series were analyzed in conventional frequency
bands including theta (3-7 Hz), alpha (7-13 Hz), beta (13-30 Hz) and gamma (30-
50 Hz). To minimize the effects of volume conduction, we computed high-resolution
Laplacian [32]. To this end, at each sample, a 2-D spline was fitted to common-
average-reference EEG, along the surface of the best-fit sphere.

These control subjects have been previously used in our projects as healthy con-
trol signals against patients suffering from schizophrenia, Alzheimers disease and
non-epileptic seizures [16, 23, 26].

2.2. Constructing brain functional networks. The filtered EEG time series
were used to construct the binary connectivity matrices of the brain networks. The
first step to obtain the connectivity matrices is to obtain the weighted correla-
tions. We divided the electrodes into two groups; one for the right hemisphere and
another one for the left hemisphere (Fig. 1). We then applied Pearson product
momentum correlation coefficient as an index of the interdependence of the time
series of two sensor locations. For each hemisphere, we obtained a weighted 51x51
correlation matrix (there are 51 electrodes in each hemisphere) based on Pearson
cross-correlation coefficients. The correlation coefficient between sensors i and j

can be obtained as o
iy = cov(@y) _ W
var(i)var(j)
where cov(i, j) is the covariance between nodes ¢ and j, and var(i) is the variance
of node 7. By averaging the correlation matrices over the artifact-free epochs, we
computed two average weighted correlation matrices (one for each hemisphere) for
each subject.

The next step was to construct the functional brain networks based on the corre-
lation matrices. A common approach is to binarize the weighted correlation matrices
and to compute graph metrics for binary networks. We used conventional applica-
tion of different threshold values to binarize the correlation matrix and to generate
the adjacency matrix [2, 6]. There are different threshold selection methods. When
studying group differences, it is important to compare the networks of the same
cost. Otherwise, the observed phenomena might be due to the unbalanced number
of links in the constructed networks. In order to obtain networks with similar cost,
we applied sparsity thresholding method [1, 21, 13]. Cost of an undirected network
of size N is the number of its edges divided by the number of edges in a complete
network of size N, which is N(N — 1)/2. With a cost thresholding method, for
each cost value one finds a subject-specific threshold resulting in a network with
that particular cost. We applied this procedure to the correlation matrices of all
subjects by repeating the thresholding over a range of cost values.

2.3. Graph theoretical metrics. As the binary networks were obtained, we cal-
culated a number of neurobiologically meaningful graph metrics. A number of such
measures have been suggested to be meaningful in the context of brain networks
[10]. Among them, measures corresponding to global and local connectivity struc-
ture of the networks have been frequently used. In this work we studied two such
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FicUrRE 1. The Sensor Net locations that match the positions of
the International 10-10 System are labeled and followed by the
numbers of the Sensor Net. The sensors corresponding to the 10-
20 System are shown with grey circles. The electrodes in the middle
are excluded from processing and those inside the rectangular in
the right (or left) hemisphere are used to obtain the brain functional
networks.

measures: global and local efficiency. Network integration is the ability of a network
to combine the information of various parts. A frequently used measure for network
integration is global efficiency defined as [27]

1 1
GE_—N(N—UZZ;E’ (2)

where N is the total number of nodes in the network and [; ; is the length of the
shortest path between nodes ¢ and j.

We also studied local efficiency that determines functional segregation in the
brain, which refers to its ability to locally process information in parallel processing
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streams. Local efficiency of node i is computed as
1 1
LE;, = ———— —, 3
i=G; 7

where N; is degree of node ¢ (the number of nodes connected to node i) and G;
is the graph of neighbors of nodes i excluding node i. The local efficiency of the
network is obtained by making average over all the nodes, more precisely

1
LE = S LE,. (4)

2.4. Statistical assessments. Non-parametric Wilcoxon’s ranksum test was used
to assess the statistically significant differences between the global and local effi-
ciency measures of brain networks at different scales. The tests were carried out
separately for all the values of network cost and the difference was considered sig-
nificant at P < 0.05. All the computations were performed in MatLab.

3. Results and discussion. Available tool in network science and engineering
have been applied to many real-world systems. These tools have been recently
applied for analysing anatomical and functional brain networks constructed based
on data recorded from DTI, fMRI, MEG, or EEG. Various brain disorders have
been shown to alter their properties. Examples include schizophrenia [22, 31, 3, 7],
Alzheimers disease [35, 36], and early blindness [29].

Brain functional networks are often extracted using signals recorded through
techniques such as EEG, MEG and fMRI. In these networks, nodes are considered
to be brain regions and the links to represent the functional associations between the
nodes. In EEG-based functional networks, the nodes are often to be considered the
EEG sensor locations [35, 22, 31, 21]. Alternatively, the EEGs in source domain
can be used in order to extract the network structure for which the nodes are
individual (or a group of) sources. In this work, we analysed properties of EEG-
based brain functional networks of a number of male and female subjects. To this
end, we extracted networked structure for EEGs recorded from 24 healthy females
and 21 healthy males. The EEGs were recorded in eyes-closed resting state, and
filtered in conventional frequency bands including theta, alpha, beta and gamma.
Furthermore, the networks were studied separately for the hemispheres. Pearson
correlation technique was used in order to obtain weighted correlation matrices
between the nodes of the networks (i.e., the individual EEG sensor locations in
different hemispheres). The weighted correlations were binarized such that the
binary networks have the same cost (i.e., the same number of edges). Many graph
metrics are sensitive to the number of edges in the networks, and by making the
network cost to be the same for all subjects, we removed such unwanted effects.

Figures 2 and 3 show the global efficiency in the left and right hemispheres,
respectively. Male brains have significantly greater global efficiency than female
brains for a wide range of cost values (P < 0.05, Wilcoxons ranksum test). This
is the case for all frequency bands except theta and beta for which there was no
significant differences for large cost values. Indeed, when the networks are sparse
(for cost values less than 0.2), brain functional networks of male subjects have always
significantly greater global efficiency than those of female subjects. The difference in
the right hemisphere is less pronounced as compared to the left hemisphere. Global
efficiency of right hemisphere in male brain is significantly greater than that of
female brain only for a range of medium cost values. Global efficiency corresponds
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FI1GURE 2. Global efficiency of the network as a function of network
cost in males and females groups, computed for the left hemisphere.
Mean values of clustering coefficient are plotted for different fre-
quency bands including theta (3 - 7 Hz), alpha (7 - 13 Hz), beta
(13 - 30 Hz) and gamma (30 - 50 Hz). The dots above the plots
represent statistically significant difference at P < 0.05 (Wilcoxon’s
ranksum test).

to communicability of distal brain regions. Our results indicate that male brains
have better global communicability than female brains.

Local connectivity of a network is similar to the concept of clustering coefficient
(or transitivity) and measures local connectedness of the network. Female brains
showed no significant changes in the local connectivity as compared to male brains
in the left hemisphere (Fig. 4). However, the right hemispheric local connectivity
of functional networks in female subjects showed some significant variations to that
of male subjects (Fig. 5). In the right hemisphere, female brains had significantly
greater local connectivity than male brains (P < 0.05; Wilcoxons ranksum test)
for a range of high cost values in theta and gamma bands, a range of medium to
high cost value in alpha band, and a range of medium costs in beta band. These
results indicate that the female brains either have greater local connectivity than
male brains or there are no significant differences between them.

4. Conclusion. In order to compare the properties of brain functional networks
between male and female subjects, we used two frequently used graph metrics:
global and local connectivity. Global connectivity of a network is analogous to
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average path length and measure global communicability of the nodes within the
networks. The local connectivity is similar to the clustering coefficient and measures
local connectedness in the network. We found that male subjects have significantly
greater global efficiency than females in the left hemisphere across all frequency
bands. Furthermore, males showed greater global efficiency for a range of cost
values in the right hemisphere. Contrary to the global efficiency, females showed
either no change or greater local efficiency than male subjects. While, we found
no significant changes in the local efficiency of the subjects in the left hemisphere,
females showed greater local connectivity than males for a range of cost values in
functional networks of the right hemisphere.

Our results partially support previous findings on the gender-related differences
in cortical connectivity. While, Gong et al showed that female brains have better
local/global efficiency in the anatomical connectivity network [18], Tian et al showed
that in the functional networks males have higher left-ward local connectivity and
lower right-ward local connectivity as compared to female brains [38]. Furthermore,
they found no significant differences in the global efficiency measure [38]. Our
findings on greater local connectivity for females confirms those based on DTT (i.e.,
anatomical connectivity), but this is not the case for global connectivity. This work
can be replicated on MEG data to investigate whether the MEG-based functional
networks depend upon the gender of the subjects.
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