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Abstract. In this work we present a new approach for co-authorship link

prediction based on leveraging information contained in general bibliograph-
ical multiplex networks. A multiplex network is a graph defined over a set

of nodes linked by different types of relations. For instance, the multiplex

network we are studying here is defined as follows : nodes represent authors
and links can be one of the following types: co-authorship links, co-venue at-

tending links and co-citing links. A supervised-machine learning based link

prediction approach is applied. A link formation model is learned based on a
set of topological attributes describing both positive and negative examples.

While such an approach has been successfully applied in the context on simple
networks, different options can be applied to extend it to multiplex networks.

One option is to compute topological attributes in each layer of the multiplex.

Another one is to compute directly new multiplex-based attributes quantifying
the multiplex nature of dyads (potential links). These different approaches are

studied and compared through experiments on real datasets extracted from

the bibliographical database DBLP.

1. Introduction. Analyzing dynamic large-scale networks is a major emerging
topic in different research areas. Actually, many real-world systems can be modeled
as an evolving network of interacting actors. This is namely the case of on-line
social networks, collaboration networks (such as academic co-authoring networks,
product co-purchasing, etc), biological systems (such as protein interaction net-
works) and computer science networks as the Internet and peer-to-peer networks.
One of the major problems in studying dynamic evolution of complex networks, is
the problem of link prediction [28, 34]. This refers to the problem of finding new
associations (edges) in a network at a given point of time t when provided with
the information about the network’s temporal history before time t. The problem
has a wide range of applications: recommender systems, identification of probable
professional or academic associations in scientific collaboration networks, identi-
fication of structures of criminal networks and structural analysis in the field of
microbiology or biomedicine, etc. A variety of approaches have been proposed in
the scientific literature. Recent surveys on the topic can be found in [34, 36]. Most
of existing works consider only simple networks where all links are of the same
type. However, real networks are often heterogeneous. They involve different types
of links and nodes. For example, Figure 1(a) shows a diagrammatic representation
of a scientific collaboration network. Different types of actors can be distinguished:
researchers, publications, venues, terms . . . , etc. Focusing on interactions among
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researchers, different types of links can be defined: researchers can be linked if they
have co-published some articles or if they have published their articles in the same
conferences or the domain of their research are the same. They can also be linked if
they have referred to same works in their articles. Authors or researchers network
can be better modeled by a multiplex network [9, 11] (see figure 1 b). We define a
multiplex as a multi-layer network, where each layer contains the same set of nodes
but a different type of links.

(a) Scientific collaboration networks

(b) Multiplex layers in author (researchers) network

Figure 1. Multiplex structure in a scientific collaboration network

In this work, we explore approaches for leveraging information mined from dif-
ferent layers in a multiplex in order to inform the link formation in one specific
layer. For instance, in a bibliographical network, we search to inform the formation
of co-authorship links by mining different types of interactions among researchers
(co-venue, co-citing, etc.).

Various link prediction approaches have been proposed in recent years [34, 36, 40].
Few has dealt with heterogeneous network [3, 16, 27, 14, 26]. Link prediction
approaches can be classified as node-features based approaches or topological ap-
proaches based on whether they use node-features or only structural information
of the graph for prediction. In node-features based approaches, apart from the
structure of graph we also have some extra information regarding the properties or
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characteristics of nodes. These extra information can be helpful in predicting links
when the nodes are very sparsely connected in the graph. One such approach is local
probabilistic model proposed by C. Wang and al. [43]. Topological approaches refer
to those which involve only exploitation of graph structure of the network. They
compute scores for pairs of unconnected nodes based on only the graphical features
of the network structure and without any extra information about the features of
nodes. They observe mainly how the connections have been established between
of nodes and how they change over time. Based on former they try to predict a
missing link or based on the later they predict a new link.

Node features are very useful when the network graph is very sparsely connected
and not much can be learned from graph topology. Whereas topological approaches
are very efficient in the absence of content of feature information. Both have their
own utility and at times a combination of both can come out to give a very good
predictor. These kind of approaches can be termed as hybrid approaches. The
topological (graph based) link prediction approaches can be further categorized as
temporal or non-temporal / static based on the fact that whether they take into
account the dynamic aspect of the network or not. Another way to classify them
is as dyadic or structural approaches, based on the way of score computations.
They can also be classified as supervised or unsupervised : Supervised approaches
generate a model using many topological scores for unlinked node pairs to predict
links whereas unsupervised approaches use a single type of score for the node pairs
and mostly use ranking to predict new links.

Next in section 2 we introduce basic notations and definitions used in this paper.
In section 3, we give brief account of the classical link prediction methods, focusing
mainly on dyadic topological approaches. In section 4 we introduce our approach
based on supervised rank aggregation. In section 5 we present our new approach of
link prediction in multiplex networks using multiplex link information. Finally, we
conclude in section 6.

2. Formal definition and notations. A network N can be modeled as a graph
G =< V,E > where V is the set of nodes or vertices and E is the set of edges
present in the graph. A multiplex network is defined as a multi-layer graph:

G =< V,E1, . . . , Eα : Ek ⊆ V × V ∀k ∈ {1, . . . , α} >

where V is a set of nodes and Ek is a set of edges of type k. α denotes the number
of slices in the multiplex. We introduce some new notations that will be used next
in this paper.

• A[k] is the adjacency matrix of slice k
• n = |V | is the number of nodes in the multiplex.
• mk = |Ek| is the number of edges in slice k
• Γ(v)[k] = {x ∈ V : (x, v) ∈ Ek} denotes the neighbors of v in slice k
• dkv =‖ Γ(v)[k] ‖ is the degree of node v in slice k

In the case of a simple network (one layer) we simply omit the superscript k.
Let G =< G0, G1, ..., Gn > be a temporal sequence of networks. The goal of a link
prediction approach is to predict the structure of graph Gn+1. In other words, here
we try to find pairs (u, v) such that u, v ∈ V and (u, v) /∈ E where V =

⋃n
i=0 Vi and

E =
⋃n
i=0Ei.

In machine learning terms, the unlinked pairs of nodes are called examples or
instances. If the time aspect of the network are to be considered also, then the
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examples can be generated as follows. Let G =< G1, . . . , Gn > be a temporal se-
quence of an evolving graphs. The whole sequence is divided into two parts: training
and testing. Each part is then again divided into two phases one for generation of
examples and another for labeling those examples. Thus, for example, in training
we shall have a learning and labeling phases resulting in graphs namely Glearn and
Glabel generated by making union of the temporal sequences of the graphs for three
corresponding time slots. The training data is constructed as follows. An example
will be a couple of nodes (x, y) that are not linked in Glearn but both belonging
to the same connected component. The class is obtained by checking whether the
couple of nodes is indeed connected in Glabel. If such a connection exists then it will
be a positive example in the supervised learning task and if no connection exists,
it will be a negative example [7]. Thus, examples are generated from these graphs
for both training and testing. These examples are also characterized by a given
number of topological attributes computed on learning (or test) graphs. Figure 2
and 3 illustrate the process diagrammatically.

Figure 2. Generation of examples

Figure 3. Construction of learning and labeling graphs
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3. Link prediction approaches. The basic and most simple approach for predict-
ing links using network graphs is to compute similarity scores for the unlinked node
pairs and based on this score decide the presence or appearance of a link between
them. In scientific literature we find many ways of computing this score. They can
be neighborhood-based, distance-based or an aggregation of node properties. These
approaches are mostly unsupervised. Below we list few of the important methods
that have been used for link prediction. For sake of simplicity, we define hereafter
basic topological scores for the case of simple (one layer) network. Extensions of
these scores to multiplex networks is discussed in section 5.

Neighborhood based features.

Common neighbors: Common neighbors counts the number of nodes (i.e. neigh-
bors) that are connected to both the nodes under observation. Newman used
this quantity for studying collaboration networks [38], while Kossinets used it
while analysing large-scale social networks [25].

CN(x, y) =| Γ(x) ∩ Γ(y) | (1)

Jaccard coefficient : Jaccard coefficient calculates the ratio of number of common
neighbors to that of the total number of neighbors of the two nodes [23].

JC(x, y) =
| Γ(x) ∩ Γ(y) |
| Γ(x) ∪ Γ(y) |

(2)

Adamic Adar coefficient : This metric proposes to weight the common neigh-
bours based on their connectivity while computing the score. It gives more
weight to less connected neighbours increasing their contribution in the score
[29].

AA(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

log | Γ(z) |
(3)

It is based on the coefficient proposed by L. Adamic and E. Adar to find
similarity between two web pages [1]. For two web pages x and y, sharing a

set of features z, this coefficient is computed as
∑
z

1

log(frequency(z))
. Where

z is shared feature between x and y.
Resource allocation: This metric is based on resource allocation dynamics on

complex networks [39]. Like Adamic Adar coefficient, this index also depresses
the contribution of high-degree common neighbours.

RA(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

| Γ(z) |
(4)

Path based features.

Shortest path length: Number of edges in the shortest path between x and y in
G. It is also known as the distance between nodes. More is the distance,
lesser is the similarity between the nodes and lesser is the chance of having an
link between them. This metric captures the fact that that the path between
two nodes in a social network can effect the formation of a link between them
following the fact that friend of a friend can be a friend in a social network.

Katz’s index : This index has been proposed initial in [24]. It is based on paths
between nodes in a graph. It sums over a collection of paths and is exponen-
tially damped by length to give shorter paths more weights. Mathematically
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it is defined as,

Katz(x, y) =

∞∑
l=1

β`× | path(`)
x,y | (5)

where path
(`)
x,y is the number of paths between x and y of length ` and β is a

positive parameter (i.e. damping factor) which favours shortest paths. The
same can be presented using adjacency matrix

Katz(x, y) = βAxy + β2(A2)xy + β3(A3)xy + . . . (6)

Axy is the adjacency matrix where the values are either 1 or 0 based on whether
x and y are directly connected. A2)xy is the matrix showing numbers of paths
of length 2 between x andy and so on. A very small β leads to a score close
to number of common neighbors because long paths contribute very little. So
the matrix showing Katz score between all pairs of nodes can be found as

K = (I − βA)−1 − I (7)

β must be lower than the reciprocal of the largest eigenvalue of matrix A to
ensure the convergence of above given equation [34].

Matrix forest index : Matrix forest index computes the similarity between two
nodes as the ratio of number of spanning rooted forests such that the two
nodes belong to the same tree rooted at one of the nodes all the spanning
rooted forests of the network. It can be computed as M = (I −L)−1, I being
the identity matrix and L = D − A is the Laplacian matrix of the network
where D is the degree matrix and A is the adjacency matrix [12]. This index
was used for collaborative recommendation task in the work of F. Fouss et al.
[19].

Hitting time and commute time: Hitting time is a random walks based feature
that counts the time required by a random walker to go from node x to node y
in a graph. It is defined as the expected number of steps required for a random
walker to walk from one node to the other. Shorter hitting time may denote
the nodes are similar and can have higher chance of linking in future. As this
metric is not symmetrical, often for undirected graphs, average commute time
is used instead. If HT (x, y) is the hitting time to reach node y from node x,
average commute time is given by

CT (x, y) = HT (x, y) +HT (y, x) (8)

A negated value of hitting or commute time can be used as a score for pre-
dicting links.

Rooted Pagerank: Pagerank denotes the importance of a node x by summing up
the importance of all other nodes linked to x. This importance can also be
represented by stationary distribution weight of a node. This feature can be
altered to find a similarity score between two nodes and is termed as rooted
pagerank in [29]. The similarity between two nodes x andy is measured as the
stationary probability of y in a random walk that returns to x with probability
1− α in each step, moving to a random neighbor with probability α. Rooted
pagerank for all node pairs can be computed as follows.

RPR = (1− α)(I − αN)−1 (9)

where D is the diagonal degree matrix and N = DA−1 is ajacency matrix
with row sums normalized to 1.
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PropFlow : PropFlow captures the probability that a restricted random walk start-
ing from one node x ends at another node y in l or less step using link weights
as the transition probabilities. The restriction is that a walk terminates on
reaching y or on revisiting any node including x. The walk selects links based
on their weights which produces a score to estimate likelihood of new links.
This measure is a more localized measure of propagation and is insensitive to
topological noise far from the source node [30].

Aggregation of node features.

Preferential attachment : Preferential attachment combines the degrees of the
two concerned nodes and can be used as a score for predicting links. Here the
probability of appearance of a new link is directly proportional to the degree
of the observed nodes [5].

PA(x, y) =| kx × ky | (10)

For a simple un-directed and un-weighted graph the degree of a node is equal
to the number of neighbors i.e. kx = Γ(x).

Sum of neighbors: In the work of [21], the authors have used sum of neighbors
as a topological feature for characterizing an unlinked node pairs. Formally,
it can be defined as Γ(x) + Γ(y)

Aggregation of clustering coefficients: Clustering coefficient of a node quan-
tifies the probability of the neighbors of the node to get connected to each
other.

cf(x) =
3×#Triangles adjacent to x

#Possible triples adjacent to x
(11)

This property can also be used for link prediction by taking an aggregation
(sum or product) of the clustering coefficients of two unconnected nodes. So
the similarity score for any two nodes x and y will be

CC(x, y) = cf(x)× cf(y) or CC(x, y) = cf(x) + cf(y) (12)

In a seminal work proposed in [28], authors have shown that simple topological
measures representing relationships between pairs of unlinked nodes in a complex
network, can be used for predicting formation of new links. Let’s consider the case
of applying common neighbors as a topological measure. Let L by the list of pairs of
unlinked nodes (belonging to same connected component). We have L = {(x, y)}.
Let Γ(x) be the function returning a set of direct neighbors of node x in the graph.
The common neighbors function of two nodes x, y is then defined by:

CN(x, y) = |Γ(x) ∩ Γ(y)| (13)

The list L is sorted according to the values obtained by applying the common
neighbors function to couples of unlinked nodes. The top k couples of nodes are
then returned as the output of the prediction task. The assumption here is that,
the more a couple of unlinked nodes share common neighbors, the more they are
likely to have a link in future. In [28] k is equal to the number of really appearing
links. Other types of topological measures can be applied for the same purpose.

Many other works have been published focusing on how to combine different
topological metrics in order to enhance prediction performances. One widely applied
approach is based on expressing the problem of link prediction as a problem of
binary classification. The idea is to compute for each unlinked couple of nodes in
L, a set of topological measures. Then with each element in L, associate one of
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the labels: Linking (positive) or Not-linking (negative) based on the status of
the graph at a future step. The dataset hence computed (topological features with
classes) can then be used to learn a model, for discriminating the linking class from
the not-linking one using classical supervised machine learning approaches [21, 7].

Another main category is matrix based approches. In the work presented by A.K.
Menon and al. [35], the authors use supervised matrix factorization approach for
link prediction. The model learns latent features from the structure of a graph. The
authors show that combining these latent features with explicit node features and
also with outputs of other models to make better prediction. They propose a new
approach to deal with class imbalance problem by directly optimizing a ranking
loss. The model is optimized with stochastic gradient descent and also scales to
large graphs. Another work on temporal link prediction given in [20] is a model
based on matrix factorization. Authors exploit multiple information sources in the
network to predict link occurrence probabilities as a function of time. They propose
a unique model combining global network structure, content information of nodes
and local proximity information. For combining the temporal information of the
network, they use a weighted exponentially decaying model to build an aggregate
weighted link matrix over a set of T time slices.

Other approaches include Probabilistic models, Stochastic block models, Heirar-
chical models etc. A more detailed survey on link prediction and approches can be
found in [36] and [34].

4. Supervised rank aggregation based link prediction. None of the previous
work, attempt to combine the prediction power of individual topological measures
by applying computational social choice algorithms (or what is also known as rank
aggregation methods) [13]. Rank aggregation can be defined as a process of com-
bining a number of ranked lists or rankings of candidates or elements to get a single
list and with least possible disagreement with all the experts or voters who provide
these lists. These methods were a part of social choice theory and were mostly
applied to political and election related problems [15, 10, 44]. These techniques
were designed to ensure fairness among experts while combining their rankings and
hence all experts are given equal weights. Expressing the link prediction problem in
terms of a vote is straightforward: candidates are examples (pairs of unconnected
nodes), while voters are topological measures computed for these pairs of unlinked
nodes. Then we have a voting problem with quite huge set of candidates and rather
a reduced set of voters. These settings are very similar to those encountered when
considering the problem of ranking documents in a meta-search engines where vot-
ing schemes has also been applied with success [17, 4, 37].

In our settings, prediction performances can be boosted by weighting differently
the different applied topological measures (voters) in function of their individual
performances in predicting new links. We propose here two different weighting
scheme. Weights are used in two different weighted rank aggregation methods:
the first one is based on the classical Borda count approach [15], while the second
is based on the Kemeny aggregation rule. The later is known to compute the
Condorcet winner of an election (if it exists): the candidate that wins each duel
with all other candidates.

Before describing the approaches based on supervised rank aggregation which
refers to the same process of combining rankings but giving different weights to
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experts and these weights are learned in a due process of training, here is a brief
description about two of the well known classical rank aggregation methods.

• Borda’s method[15] is a truly positional method as it is based on the ab-
solute positioning of the ranked elements rather than their relative rankings.
A Borda score is calculated for each element in the lists and based on this
score the elements are ranked in the aggregated list. For a set of full lists
L = [L1, L2, L3, ...., Ln], the Borda’s score for a element x and a list Lk is
given by:

BLi(x) = {count(y)|Li(y) < Li(x)&y ∈ Li} (14)

The total Borda’s score for an element is given as:

B(x) =

n∑
t=1

BLi(x) (15)

Borda’s method is mostly applicable to full lists and is not very suitable for
partial lists.

• Kemeny optimal aggregation proposed in [17], makes use of Kendall Tau
distance to find the optimal aggregation. Kendall Tau distance counts the
number of pairs of elements that have opposite rankings in the two input lists
i.e. it calculates the pairwise disagreements.

K(L1, L2) =| (x, y) s.t. L1(x) < L2(y) & L1(x) > L2(y) | (16)

The first step is to find a initial aggregation of input lists using any standard
method. The second step is to find all possible permutations of the elements
in the initial aggregation. For each permutation, a score is computed which
is equal to the sum of distances between this permutation and the input lists.
The permutation having the lowest score is considered as optimal solution. For
example, for a collection of input rankings τ1, τ2, τ3, ....., τn and an aggregation
π , the score is given by:

SK(π, τ1, τ2, τ3, ....., τn) =
∑
i∈n

K(π, τi) (17)

The speciality of Kemeny optimal aggregation is that it complies with Con-
dorcet principle which is not the case with positional methods like Borda’s
algorithm. Condorcet principle [44] states that if there exists an item that
defeats every other item in simple pairwise majority voting then, it should be
ranked above all other.

In spite of all advantages Kemeny optimal aggregation is computationally
hard to implement. So while looking for an alternative solution that gives
similar kind of aggregation but is computationally feasible, we are led to an-
other approach named Local kemenization [17]. A full list π is locally Kemeny
optimal aggregation of partial lists τ1, τ2, τ3, ....., τn, if there is no full list π′

that can be obtained from π by performing a single transposition of a single
pair of adjacent elements and for which

SK(π′, τ1, τ2, τ3, ....., τn) < SK(π, τ1, τ2, τ3, ....., τn)

In other words, it is impossible to reduce the total distance of an aggregation
by flipping any adjacent pair of elements in the aggregation.

Looking into the work based on rank aggregation techniques, we can say that
not much have been explored when it comes to application of rank aggregation in
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link prediction. Moreover these work apply mostly unsupervised rank aggregation
algorithms giving equal weight to all the experts who provide the ranked lists. One
of the well known work is weighted majority algorithm proposed in [32] where the
authors have proposed to use weights for predictors, all having equal weights in the
beginning. There is a master predictor which makes the final prediction based on
the class which corresponds to a maximum total weights of predictors. If the final
prediction is wrong then weights of all predictors who disagreed with that label, is
increased by a factor β such that 0 ≤ β < 1 and thus reducing the effect of unworthy
predictors at each iteration. This approach has a limitation that the performance of
the master predictor can be at most equal to the best performing predictor. On the
contrary, the use of rank aggregation can provide even better prediction at times.
This may be due the fact that, in these algorithms, the “likes” of majority of the
predictors is given higher preference. At the same time, the “dislikes” are given
least preference. So these algorithms are much more spam/noise resistant.

A significant work on supervised rank aggregation has been done in [33] where
authors propose supervised aggregation by Markov chain to enhance the ranking
result on meta-searches. However, it has been shown that Local Kemenization
improves on Markov chain-based approaches [17].

Another very recent work is in [41] where the authors use supervised rank aggre-
gation to find influential nodes and future links. Authors propose their own super-
vised Kemeny aggregation method based on quick sort and applied it to Twitter
and citation networks. However, their method is mostly based on the topologi-
cal features of nodes. Where as our work is based on the features of a couple of
nodes(edges) with a use of merge sort algorithm to find supervised local Kemeny
aggregation. The reason why we use merge sort is that it is seemingly more stable
than quick sort.

In the next part (subsection 4.1), is the description about our work on link
prediction using rank aggregation. We contribute in three ways: first we provide
a way to generate weights for the topological measures; second, we propose a new
way of introducing weights to approximate Kemeny aggregation; and third, we
use supervised or weighted rank aggregation to link prediction task in complex
networks. Our approach is evaluated in the context of a link prediction task applied
to academic co-authorship networks. Experiments are conducted on real networks
extracted from the now well known DBLP bibliographical server.

4.1. Link prediction by supervised rank aggregation . Each attribute of an
example has the capacity to provide some unique information about the data when
considered individually. The training examples are ranked based on the attribute
values. So, for each attribute we will get a ranked list of all examples. Considering
only the top k ranked examples and with an assumption that when we rank the
examples according to their attribute values, the positive examples should be ranked
on the top, we compute the performance of each attribute. This performance is
measured in terms of either precision (maximization of identification of positive
examples) or false positive rate (minimization of identification of negative examples)
or a combination of both. Based on the individual performances, a weight is assigned
to each attribute.

For validation, we use examples obtained from the validation graph characterized
by same attributes and try to rank all examples based on their attribute values. So
for n different attributes we shall have n different rankings of the test examples.
These ranked lists are then merged using a supervised rank aggregation method and
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the weights of the attributes obtained during learning process. The top k ranked
examples in the aggregation are taken to be the predicted list of positive examples.
Using this predicted list, we calculate the performance of our approach. k in this
case is equal to the number of positive examples in the validation graph.

4.1.1. Weights computation. We propose to compute voters (topological measures)
weights based on their capability to identify correct elements in top k positions of
their rankings. Weights associated to applied topological measures are computed
based on the following criteria :

• Maximization of positive precision: Based on maximization of identi-
fication of positive examples the attribute weight is calculated as

wi = n ∗ Precisioni (18)

where n is the total number of attributes and Precisioni is the precision
of attribute i based on identification of positive examples. Just to remind,
precision is defined as the fraction of retrieved instances that are relevant.

• Minimization of false positive rate: By minimizing the identification of
negative examples we get a weight as below

wi = n ∗ (1− FPRi) (19)

where n is the total number of attributes and FPRai is the false positive rate
of attribute ai based on identification of negative examples examples. False
positive rate is defined as the fraction of non-relevant instances that are re-
trieved as relevant.

4.1.2. Supervised rank aggregation. First let’s define some basic functions used later
in defining weighted aggregation functions. Let Li be a ranked list of n candidates
(a vote). Li(x) denotes the rank of element x in the list Li. The top ranked element
has the rank 0. The basic individual Borda score of an element x for a voter i is
then given by:

Bi(x) = n− Li(x)

Let x and y be two candidates. We define the local preference function as follows :

Prefi(x, y) =

{
1 if Bi(x) > Bi(y)

0 if Bi(x) < Bi(y)
(20)

Introducing weights in Borda aggregation rule is rather straightforward: Let (w1, w2,
. . . , wr) be the weights for r voters providing r ranked lists on n candidates. The
weighted Borda score for a candidate x is then given by:

B(x) =

r∑
i=1

wi ∗Bi(x) (21)

For approximate Kemeny aggregation[17] we introduce weights into the definition
of the non-transitive preference relationships between candidates. This is modified
as follows. Let wT be the sum of all computed weights i.e. wT =

∑r
i=1 wi. For each

couple of candidates x, y we compute a score function as follows:

score(x, y) =

r∑
i=1

wi ∗ Prefi(x, y) (22)
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The weighted preference relation(�w) is then defined as follows :

x �w y : score(x, y) >
wT
2

(23)

This new preference relation is used to sort an initial aggregation of candidates in
order to obtain a supervised Kemeny aggregation. The initial aggregation can be
any of the input lists or an aggregation obtained by applying any other classical
aggregation method like Borda. In our algorithm, we have applied merge-sort for
the time being.

4.2. Experimentation. We evaluated our approach using data obtained from
DBLP 1 databases. DBLP is a scientific bibliography website containing a large
database of articles mostly related to computer science. Our network consists of
authors as nodes and they are linked if they have co-published at least one paper
during the observed period of time. The data corresponds to year between 1970-
1979. We create three datasets out of that. Following the procedure described in
the previously, we generate examples for each dataset. Table 1 provides information
about the training graphs while table 2 summarizes information about the examples
generated.

Years Properties Co-Author

1970-1973 Nodes 91
Edges 116
Density 0.028327

1972-1975 Nodes 221
Edges 319
Density 0.013122

1974-1977 Nodes 323
Edges 451
Density 0.008673

Table 1. Basic statistics about the co-authorship networks ex-
tracted from DBLP database

Years # Positive # Negatives
Train/Test Labeling

1970-1973 1974-1975 16 1810
1972-1975 1976-1977 49 12141
1974-1977 1978-1979 93 26223

Table 2. Examples from co-authorship graph

We applied our approach to the complete datasets. For rank aggregation, we have
used supervised Borda and supervised Kemeny methods. We compare our approach
with link prediction approaches using basic machine learning algorithms like Deci-
sion tree, Naive bayes and k-Nearest neighbors algorithm. We name our approaches

1http://www.dblp.org

http://www.dblp.org
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as Supervised Borda 1 and Supervised Borda 2 based on how the attribute weights
are computed. 1 represents weights computed based on maximization of positive
precision and 2 represents weights being computed based on minimization of false
positive rates. We will follow the same convention to represent supervised Kemeny.
We selected the following topological attributes: Number of common neighbors
(CN), Jaccard coefficient (JC ), Preferential attachment (PA)[22], Adamic Adar
coefficient (AA)[2], Resource allocation (RA)[45] and Shortest path length (SPL).

Learning:1970-1973 Learning:1972-1975
Test:1972-1975 Test:1974-1977

Decision tree 0.0357 0.0168
Naive Bayes 0.1032 0.0070
Kemeny 0.2449 0.0860
Supervised Kemeny 1 0.4286 0.2581
Supervised Kemeny 2 0.4286 0.2258

Table 3. Link prediction results in terms of F1-measure, using
different machine learning and supervised rank aggregation ap-
proaches

Table 3 summarizes the results obtained in terms of F1-measure. While K-
nearest neighbors and our method based on Borda and supervised Borda failed to
provide any substantial results (due to which we have not listed them in the table),
our approximate Kemeny and supervised Kemeny based methods outperform the
decision tree and naive bayes algorithms for both datasets. This shows the validity
of our approach.

Although it is still early to say that rank aggregation based methods are better
performing than the other approaches of link prediction, the preliminary results do
show that rank aggregation especially with Kemeny method indeed adds some new
information which may enhance the result of prediction task. This is quite encour-
aging for us to continue this work further. Still fact remains that rank aggregation
methods especially Kemeny method has a high computational complexity which
questions its applicability for link prediction in large scale networks. To cope with
this we will be working on application of top-k rank aggregation. Much work needs
to be done in this regards.

5. Link prediction using multiplex links. All these work that we saw till now,
address the link prediction in only simple networks having homogeneous links. In
this section we explain how prediction of links can be done in a multiplex scenario
and how prediction performances can be enhanced using multiplex information.

To our knowledge, not much have been explored in this aspect. Some recent has
tackled the problem of link prediction in heterogeneous networks [42]. There have
also been few work on extending simple structural features like degree, path, to the
context of multiplex networks [6, 8] but none have attempted to use them for link
prediction.

We propose a new approach for exploring the multiplex relations to predict future
collaboration (co-authorship links) among authors. The applied approach is super-
vised machine learning based, where we attempt to learn a model for link formation
based on a set of topological attributes describing both positive and negative exam-
ples. While such an approach has been successfully applied in the context on simple
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networks, different options can be used to extend it to the multiplex network con-
text. One option is to compute topological attributes in each layer of the multiplex.
Another one is to compute directly new multiplex-based attributes quantifying the
multiplex nature of dyads (potential links). Both approaches will be discussed in
the next section.

5.1. Our approach. Our approach includes computing simple topological scores
for unconnected node pairs in a graph. We extend these attributes to include
information from other layers of the network. This can be done in three ways:

• Compute simple topological measures in all layers.
• Compute simple aggregation values of these scores across all layers
• Compute an entropy-aggregation of values across all layers. This gives impor-

tance to the presence of a non-zero score of the node pair in each layer.

All above mentioned attributes can be combined in various ways to form different
sets of vectors of attribute values characterizing each example or unconnected node
pair. Formally, if we have a multiplex network G =< V,E1, . . . , Em > which in
fact is a set of graphs < G1, G2, . . . , Gm > and a topological attribute X. For any
two unconnected nodes u and v in graph Gi (where we want to make a prediction),
X(u, v) computed on Gi will be direct attribute and the same computed on all
other dimension graphs will be indirect attributes. The second category computes

an average of the attribute over all the dimension i.e. Xaverage =
∑m
α=1X(u,v)[α]

m
for u, v ∈ V and (u, v) /∈ Ei. where m is the number of types of relations in the
graph (dimension or layer). In the third category we propose a new attribute called
product of node degree entropy (PNE) which is based on degree entropy, a multiplex
property proposed by F. Battistion et al. [6]. If degree of node u is k(u), the degree

entropy is given by: E(u) = −
∑m
α=1

k(u)[α]

ktotal
log(k(u)[α]

ktotal
) where ktotal =

∑m
α=1 k(u)[α]

and we define product of node degree entropy as

PNE(u, v) = E(u) ∗ E(v) (24)

We also extend the same concept to define entropy of a simple topological attribute,
say Xent

Xent(u, v) = −
m∑
α=1

X(u, v)[α]

Xtotal
log(

X(u, v)[α]

Xtotal
) (25)

where Xtotal =
∑m
α=1X(u, v)[α]. The entropy based attributes are more suitable

to capture the distribution of the attribute value over all dimensions. A higher
value indicates uniform distribution attribute value across the multiplex layers. We
address average and entropy based attributes as multiplex attributes.

5.2. Experiments. We evaluated our approach using data obtained from DBLP
databases of which we created three datasets, each corresponding to a different pe-
riod of time. Table.4 summarizes the information about the graphs of each dataset.
Each graph has four years for learning or training and next two years are used to
label the examples generated from the learning graphs. Examples are unconnected
node pairs and they are labeled as positive or negative based on whether they are
connected during the labeling period or not. Table.5 shows the number of examples
obtained for each dataset.

We use the same attributes that were used in the previous section for supervised
rank aggregation based approach i.e. Number of common neighbors (CN), Jaccard
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Years Properties Co-Author Co-Venue Co-Citation

1970-1973 Nodes 91 91 91
Edges 116 1256 171

1972-1975 Nodes 221 221 221
Edges 319 5098 706

1974-1977 Nodes 323 323 323
Edges 451 9831 993

Table 4. Basic statistics about the 3-layer multiplex networks ex-
tracted from te DBLP database

Years # Positive # Negatives
Train/Test Labeling

1970-1973 1974-1975 16 1810
1972-1975 1976-1977 49 12141
1974-1977 1978-1979 93 26223

Table 5. Number of examples extracted from co-authorship layer

coefficient (JC ), Preferential attachment (PA)[22], Adamic Adar coefficient (AA)[2],
Resource allocation (RA)[45] and Shortest path length (SPL). For any attribute XX

• XXaut : Value of attribute was computed on co-authorship graph during
learning period

• XXven : Value of attribute was computed on co-venue graph
• XXcit : Value of attribute was computed on co-citation graph
• AvgXX : Average of the attribute value over the different relation graphs

n our case m = 3 as we are using co-authorship, co-venue and co-citation
graphs.

• PNE : Product of node degree entropy. If degree of node i is k(i), the entropy
for node i is calculated as

Ei = −
m∑
α=1

k(i)[α]

ktotal
log(

k(i)[α]

ktotal
) (26)

where ktotal =
∑m
α=1 k(i)[α] and

PNE(i, j) = Ei ∗ Ej (27)

• XXent : Entropy value of the corresponding attribute (based on the entropy
equation proposed for node degree in the work of F. Battiston and al.)

XXent(i, j) = −
m∑
α=1

XX(i, j)[α]

XXtotal
log(

XX(i, j)[α]

XXtotal
) (28)

We apply decision tree algorithm on one dataset to generate a model and then
tested it on another dataset. We are using data mining tool Orange2 for that. We
use four types of combinations of the attributes creating five different sets namely:
Setdirect(attributes computed only in the co-authorship graph); Setdirect+indirect
(attributes computed in co-authorship, co-venue and co-citation graphs);

2http://orange.biolab.si

http://orange.biolab.si
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Setdirect+multiplex(attributes computed from co-authorship graph with average at-
tributes obtained from three dimension graphs, and also entropy based attributes);
Setall(attributes computed in co-authorship, co-venue and co-citation graphs, with
average of the attributes, and also entropy based attributes) and Setmultiplex(aver-
age attributes and entropy based attributes). Table.6 shows the result obtained in
terms of F1-measure and area under the ROC curve (AUC). We can see that there
is improvement in the F1-measure when we use multiplex attributes. AUC is better
for all the sets that include multiplex and indirect attributes for both datasets.

Learning:1970-1973 Learning:1972-1975
Attributes Test:1972-1975 Test:1974-1977

F-measure AUC F-measure AUC

Setdirect 0.0357 0.5263 0.0168 0.4955
Setdirect+indirect 0.0256 0.5372 0.0150 0.5132
Setdirect+multiplex 0.0592 0.5374 0.0122 0.5108
Setall 0.0153 0.5361 0.0171 0.5555
Setmultiplex 0.0374 0.5181 0.0185 0.5485

Table 6. Comparative link prediction results applying decision
tree algorithm using different types of attributs

6. Conclusion. In this paper we present the problem of link prediction in complex
networks and multiplex networks. We present here a brief state of art of various
link prediction approaches focusing mainly on dyadic topological approaches. The
unsupervised methods involve computation of scores for unlinked pairs of nodes.
While neighborhood based scores are easy to compute, some path based measures
like Katz, commute time, rooted pagerank can be really be time consuming. Same
is the case of other matrix based approaches which have issues of computation time
and memory when applied on real large scale networks. This makes them difficult
to be employed for evolving real networks. So some approximate solutions for these
measures such as truncated Katz and more can be a good choice.

In supervised approaches, especially machine learning based methods attempt
is made to combine the effect of various topological attributes to generate a model
which is then used to predict links on a test graph. The same is done in our proposed
approach based on supervised rank aggregation. While machine learning methods
have been in use since a long time and have given reliable performances in various
contexts, supervised rank aggregation method is quite new and requires much work
to establish its applicability in real applications. Also the fact remains that as
they involve use of aggregation methods like approximate Kemeny aggregation,
they have a computational complexity of O(rn log(n)) where r is the number of
attributes used and n is the number of examples in each input ranked list provided.
But the preliminary results we get on the DBLP datasets validate the approach and
encourage us to explore the method further.

A major challenge faced while using these types of supervised approaches, is
the well known extreme class skewness or class imbalance problem. The number
of actual new links is very small as compared to the number of possible links. As
we can see, in the DBLP datasets we have used, the ratios of positive vs negatives
links are 1:113 ,1:248 and 1:282 in the three datasets respectively. Also note that
this imbalance increases with the size of graphs used for experimentation. This
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makes it more difficult for an algorithm to generate a good model and give a good
inference on the test data. Although very few of the negative examples have actual
predictor value as positive examples, the model ends up giving a large number of
raw false positives. Also in presence of large class skew, the information carried by
the positive examples gets diluted in the vast negative class. Moreover unlike clas-
sical machine learning context, in link prediction, correct classification of positive
examples are more important. Most common solution to this problem, as suggested
by the existing research, is sampling of negative examples. This can be done by
random methods or by using some filters by distance, node degree etc. Another way
on which we are working is to use a filter based on community detection algorithm.
The assumption here is that, two nodes that do not belong to the same community,
tend to remain unlinked for a longer period than compared to those belonging to the
same community. Thus they can have more meaning as negative examples during
the learning of model. Each method has its own advantages and disadvantages, but
some some can be fairer than others. The sampling of data is mostly done on the
learning data. Sometimes it is required to sample test data like the case when ex-
tremely large number of test examples causes unreasonable demands on processing
resources and storage. If for any reason this has to be done, proper care should be
taken based on the context where link prediction is to be done. More details about
class imbalance problem can be found in [36, 31]. In [31], there is a detailed de-
scription about how the predictor performance changes with sampling of test data.
They also provide valuable information about which performance measure is to be
used for evaluating different link prediction techniques.

Last but not the least, we have presented in the end of this paper, how to
extend the traditional supervised machine learning based link prediction approach
to predict links in multiplex networks. We propose new attributes that capture
multiplex information. By applying them for the prediction of co-authorship links,
we show that the use of multiplex attributes improves the prediction result. The
same method can be used to predict links in any of the multiplex layers. With the
preliminary results, we are really excited and hopeful that the multiplex information
can prove to be very useful for different tasks in the analysis of the network.
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