
NETWORKS AND HETEROGENEOUS MEDIA doi:10.3934/nhm.2015.10.127
c©American Institute of Mathematical Sciences
Volume 10, Number 1, March 2015 pp. 127–148

STRUCTURAL ANALYSIS AND TRAFFIC FLOW IN THE

TRANSPORT NETWORKS OF MADRID

Mary Luz Mouronte 1,2

1 Grupo de Sistemas Complejos. Universidad Politécnica de Madrid
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Abstract. As the framework to characterize the subway and urban bus net-

works of Madrid city three topological spaces: geographical stop space, transfer

space and route space, are considered. We show that the subway network ex-
hibits better structural parameters than the urban bus network, with higher

performance since in average a stop is reachable passing through less number
of stops and carrying out less number of transfers between lines. We have

found that the cumulative degree distributions of the subway and urban bus

networks correspond to an exponential function, while the degree-degree cor-
relations present a power law distributions in both transport systems. The

relationship between transport flows and population are also studied at the

city level by analyzing the flow between all the district (administrative areas)
of Madrid. We prove that these flows can be described by a Gravity Model

which takes into account the population from the origin and destination dis-

tricts as well as the number of sections of a transport line that passes through
two different districts.

1. Introduction. Urban transport systems (TS) are responsible for the mobility
of many passengers in a city. This system is also responsible of negative traffic
impact both in the citizens and the environment. The improvement of the energy
efficiency of the TS can be achieved by improving the urban public transport net-
work. A city public TS that is appealing, is a requirement so that people be able
to reduce the usage of their own vehicles. As public TS become more complex, an
analysis of their network features can be of substantial help for planners since an
increased knowledge of the features of a transport network (TN) is required in order
to identify possible actions to be undertaken within the network.

The goal of this study is to characterize the urban bus and subway networks of
Madrid by applying tools of network science [1]. It allows to compare both TN and
to identify some common features.

The main public TS in Madrid is the urban bus and subway networks, which are
highly developed. Madrid is the third-most populated municipality in the European
Union after London and Berlin, and has a population of 3, 254, 950 in an area of
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60, 683 hectares. Madrid is also subdivided into 21 districts, administrative regions
that distribute and manage the exercise of civil or political rights, public functions,
and services.

Madrid subway network consists of 16 lines and 322 stops. The first line began
operations in 1919 and had 8 stops along 3.5 km, now, this network has a length of
283 km and it is the sixth largest subway network in the world after London, New
York, Moscow, Seoul and Shanghai. The network transported 635 million passen-
gers in 2011. The Madrid urban bus network consists of 230 lines with 4, 635 stops
and its current length is 4, 074 km. Around 423 million passengers travelled on the
network in 2011. This network is a large, reliable and ever-growing network.

This paper uses the network theory [1] to investigate urban bus and subway net-
works in Madrid in three topological spaces: Space L (Geographical Stop Space),
Space P (Transfer Space) and Space R (Route Space) which, allow us to describe
both TS from a structural point of view [13]. There are several pieces of research
that have studied the structural characteristics of TN in different countries. Y.Z.
Chen et al. [5], present empirical results for the urban bus TN of four major cities
in China. They analyse the distribution of the number of nodes that are connected
by a link when the stops belong to a common line, as well as the distribution of
the bus lines that a stop joins. The authors show that both distribution present
exponential function forms. B. Jiang [7], derives a topological pattern of urban
street networks using a large sample, 40 U.S. cities and a few more from elsewhere
of different sizes. It was found that all the topologies of urban street networks based
on street-street intersections demonstrated a small-world structure, and a scale-free
property for both street length and street intersections. M. Ke et al [8], shown
that the urban public bus networks of Beijing and Chengdu in China exhibit small-
world behavior and are hierarchically organized. C. von Ferber et al. [21], show
some properties of public transport network of 14 large cities, which are analysed
in different spacial representations. The studied features are: connectivity degrees,
clustering coefficients and path length distributions, betweenness centralities and
finally, the harness distribution (number of sequences of consecutive stations that
are serviced by a specific number of parallel routes). The authors also formulated a
model based on simple growth rules, which supports the statistics properties of the
analysed public transport network. The novelty of our invesigation, with respect
to the analysis of the structural properties in TN, is that it analyses the urban bus
and subway networks of the Madrid metropolis by using the aforementioned three
topological spaces. Similar results for the cummulative degree distribution to those
shown in the papers [5] for urban bus transport network in chinese cities and in [21]
for different countries have been obtained. However, in [5] only urban bus networks
are studied and, in [21] all PTN analysed are either operated by a single operator
or by a small number of operators with a coordinated schedule (e.g. expressed
by a central website), rather than dividing these centrally organized networks into
subnetworks of different transport means like bus and subway or in an urban and
a sub-urban part the study treats each full PTN as an entity. In contrast, our
investigation analyse two PTN operated by different companies that correspond to
different transport means. The TN assortativity feature, which has been obtained
calculating the correlation between the node degrees of neighboring nodes in terms
of the correlation normalized coefficient (Pearson correlation coefficient) [14], and
the distribution of the nearest network degree, which exhibits a similar behaviour
in both TN, are also estimated. Adittionally, we analyse the efficiency and the
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redundancy level in these networks.
The function that regulates vehicle movement between two areas of Madrid (dis-

tricts) and their inhabitants is also calculated. A similar study has been carried
out previously for the intercity express bus flow between two korean cities [9], the
intercity bus flow was described using a Gravity Model [20] that took into account
the population of the origin and destination cities and the distance between them.
However our work focus to characterize the urban bus and subway train flows be-
tween two districts within the city of Madrid. It analyses a different type of traffic
that takes place inside a city and it is analyzed at a smaller geographical scale. In
this case, in applying the gravity model we consider the population of origin and
destination districts as well as the number of sections of the transport lines that
passes through them. The behaviour of the traffic flow is modeled taking into ac-
count the total number of vehicles during the five working days of a week. There
are several pieces of research that have studied the dynamical characteristics of TN
in different countries. S. Ondǒs et al. [15], use the daily schedules for ordinary
workdays, weekend days, and school vacation workdays of public TS in Bratislava,
to pool them into a representative day, but useful as an analytical generalization.
The authors shown that the TS behaves systematically throughout the daily cycle
in response to changing demand. The daytime rhythm which the authors call “the
urban heartbeat”, can be clearly identified in the network structure. H. Soh et al.
[17], studied the Singapore rail and bus transportation systems, using topological
and dynamical analysis. The review of the weighted eigenvector centrality high-
lighted an important difference in traffic flows for both networks during weekdays
and weekends, suggesting the importance of adding a temporal perspective missing
from many previous studies. However, we model the traffic flow of urban buses and
subway trains between two districts considering the strength of their relationship,
which is determined by the number of line sections that passes through them.

The rest of the paper is organized as follows: Section 2 presents the topologi-
cal analysis of Madrid subway and urban bus networks, in which several statistical
features are investigated. In Section 3 we characterize the vehicle flow between dis-
tricts by a Gravity Model and study how the changes of topology impact over the
relationship between the population of one district and its transport flow. Finally,
in Section 4 we end with some conclusions.

2. Topological analysis.

2.1. Building networks. Although a long distance may not exist between two
stops on one TN, the displacement between them can take a significant time due
to the fact that a bus line may make many loops or because might be necessary
to make several transfers between lines before reaching the destination stop. These
facts can be analysed by studying two different representations of a TN: Space L
(Geographical Stop Space) and Space P (Transfer Space).

In Space L, each node represents one stop (bus shelter or subway station), and
a link between two nodes means that the two stops are consecutive in the same
line. The distance between two nodes is measured by the total number of stops
(nodes) passed on the shortest path between them. However, distance measured
in this way does not take into account the need to make transfers during a trip.
This characteristic can be studied by taking into account Space P, where each node
represents one stop, and one link joins a pair of stops when one line provides a direct
service between them, that is, both stops are linked if they belong to the same bus
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or subway line. In Space P the shortest path magnitude is the minimum number of
lines that is required to be used to reach a destination stop, the distance between
nodes represents the number of necessary transfers between lines plus one. Finally,
it is interesting to know whether the passengers can directly transfer between two
lines without involving additional lines. This feature can be analysed by considering
Space R (Route Space). In this space, nodes are defined as lines and common stops
determine the links. Here a link means that passengers can directly transfer between
two lines.

We represent Madrid urban bus and subway networks in three topological spaces:
Space P , Space L and Space R. In these spaces, both TN are mapped in a graph
G′ = (E′;V ′), in which E′ is the set of nodes and V ′ is the set of links between
them. An adjacency matrix of N x N dimension A(G′) can be constructed as a
bidimensional representation of the relationships between nodes, where Aij = 1
when a connection between nodes i and j exists and Aij = 0 in the other case. N
is the number of nodes in E′.

An scheme of the construction of the three topological spaces is illustrated in
Figure: 1.

2.2. Degree distributions. The degree of a node i is the number of nodes directly
connected to it:

Ki = ΣjAij (1)

The meaning of Ki is different in each topological space. In Space L, Ki is the
number of stops (i.e. bus shelter or subway station) with direct connections with
stop i, this parameter represents the number of directions one passenger can take
from a given stop i. In Space P , Ki is the total number of existing paths, without
transfer, from stop i, that is, the number of stops that can be accessed without
switching between lines. In Space R, Ki is the number of stops that link line i with
other lines.

With respect to the urban bus network of Madrid in Space L, the stop with the
highest connectivity is Plaza de Cibeles which has 13 lines, there is 1 stop that
has 12 lines, 2 stops which have 2 lines and 5 stops that have 10 lines. It is also
detected that most stops have less than 6 lines (96.63%) and only 9 stops have more
than 9 lines. With respect to the subway network, the stops that have more lines
are Alonso Mart́ınez and Avenida de América which have 7 lines; there are 5 stops
which have 6 lines; 97.83% of stops have less than 6 lines and only 7 stops have
more than 5 lines.

Taking into account the networks corresponding to Space R, we can get infor-
mation of the lines with the largest number of connections with other lines. The
results are depicted in Table 1 and Table 2 for the urban bus and subway networks
respectively. It can be noticed that the lines most connected are lines 10 and 103
for the subway and urban bus networks respectively.

The degree distribution of G′, P (K), determines the probability that a randomly
chosen node will have degree K. In Figure 2 the cumulative degree distributions
CP (K) for both urban TN in the Space L, P and R are shown. They can be in all
cases well fitted to an exponential function defined as:

CP (K) = b1 exp
−K
α

(2)
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Figure 1. (a) An example of Urban Transport Network (UTN)
consisting of two lines (R1 (red) and R2 (black)) and five stops
(S1, S2, S3, S4 and S5). R1: S1 → S5 → S2, R2: S3 → S5 → S2 →
S4. (b) Network visualisation in Space L. (c) Network visualisation
in Space P. (d) Network visualisation in Space R.

Table 1. Madrid urban bus network lines with the largest number
of connections to other lines (lines with the largest degree and the
value of degree in Space R).

Line Degree
103 150
116 132
150 124
N24 122
132 110
137 104

172L 102
71 102
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Table 2. Madrid subway network lines with larger number of con-
nections to other lines (lines with larger degree and the value of
degree in Space R).

Line Degree
10 13
4 10
1 9
2 9
5 9
6 9
7 9
9 9

Using natural logarithms:

ln(CP (K)) =
−K
α

+ ln(b1) (3)

multiple linear regression (MLR) is applied to model the relationship between
ln(CP (K)) and K, by fitting a linear equation to the observed data:

ln(CP (K)) = n1K + n2 (4)

The values of the fitted parameters (n1, n2) together with the determination
coefficient (DC) and the mean squared error (MSE) for all the networks considered
are given in Table 3.

We can establish that urban bus and subway networks are single scale networks
[3], [10], [11], [22] for all spaces. This distribution, which is characterised by a
connectivity distribution with a fast decaying tail, decreases exponentially much
faster than a power law distribution which characterises scale-free networks. The
absence of a power-law distribution in these networks can be explained as result
of the limited capacity of the nodes (bus shelter, subway station or line). Physical
costs of adding links between nodes also limit the number of possible links attaching
to a given node. Both causes shorten a power-law regime, since a single node cannot
acquire the number of links necessary to reach a scale free network. Amaral et al.
[3] also infered that physical constraints would prevent the formation of scale free
networks in air traffic networks.

In the urban bus and subway networks of Madrid exist a small number of nodes
with high degree. The urban bus network, for example, has 0.02% of its nodes with
the highest degree K = 13 and K = 450 in Space L and P respectively, and 0.04%
of its nodes with the highest degree K = 150 in Space R. The subway network,
for example, has 0.80% of its nodes with the highest degree K = 7, 0.4% of its
nodes with the highest connectivity K = 99 and 5.88% of its nodes with the highest
K = 13 in Spaces L, P and R respectively. This distribution implies that these TN
can withstand random attacks of several nodes (stops or lines) but are vulnerable in
the case of directed attacks towards particular nodes. A random attack on a single
or on a very few nodes will, in general, not bring down the network.

Although a directed attack towards a node (bus shelter, subway station or line)
with high connectivity can be very relevant [18], [2], [6] and [25]. Nodes with large
numbers of links give shelter to one relatively higher number of passengers. In
order to the functioning of a node be suitable, its number of passengers (load)
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must be less than those for which the node was planned (its capacity). If a node
has problems (i.e. subway station that has a power failure, subway line halts due
to signal failures, bus line suspended due to a demonstration, bus shelter with
access problems, etc.) its passengers should be directed to other nodes, causing a
redistribution of them in the nodes (e.g. a problem in a shelter implies that the
passengers should move to another stop, or, a failure in a line implies that the
passengers should switch to another line). If the failing node deals with a small
amount of passanger, there will be little effect on the network because the amount
of passangers that needs to be redistributed is small. This is the common situation
of random failure of nodes. However, if the node with problems contains a large
amount of passengers, the consequences could be relevant because this number of
passengers would redistribute themselves and it is possible that for some nodes (bus
shelter, subway station or lines), the new number of passengers could exceed their
capacity. If these nodes also fail, it will cause a further redistribution of passengers,
and so on.
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Figure 2. Left side: Cumulative degree distribution CP (K) in
the Spaces L, R and P for the urban bus network. Right side:
CP (K) in the Spaces L, R and P for the subway network.

Table 3. Parameters (n1, n2) of the fit of CP (K) to an expo-
nential funtion (equation 4), and the correspondent determination
coefficient (DC) and mean squared error (MSE) for both TS net-
works.

Space n1 n2 DC MSE
Subway network L -0.809950819 5.766582843 0.964370312 0.368414537

P -0.059522044 5.268155424 0,979913554 0.246030897
R -0.253785351 5.221173662 0.836015539 0,457193529

Urban bus network L -0.759935391 5.910276419 0.997937408 0.130647084
P -0.022880518 4.727338432 0.968773483 0.337766063
R -0.036563518 5.339890129 0.946964537 0.315484262

The mean degree of a network (< K >) is the average of the degrees of all nodes
in a network.

< K >= Σi
Ki

N
(5)
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Table 4. Topological properties of the Madrid subway networks
in the three considered spaces.

M 16

Ns 322

% 0.84736842

Space L P R

< K > 2.42 29.39 6.00

Kmax 7 99 13

< Knn > 3.17 36.36 7.77

KnnMax 4.1 45.66 10.25

KnnMin 2.23 15.06 1.67

< l > 10.19 2.26 1.62

EGlob 0.08140987 0.29839786 0.63888889

rD 0.270223 0.092046 −0.154867

Table 5. Topological properties of the Madrid urban bus networks
in the three considered spaces.

M 230

Ns 4,635

% 0.41140757

Space L P R

< K > 2.71 43.86 23.41

Kmax 13 450 150

< Knn > 3.66 98.63 29.78

KnnMax 4.54 182.19 37.06

KnnMin 2.33 55.20 8

< l > 18.77 3.20 2.33

EGlob 0.064930854 0.33642985 0.48056732

rD 0.199994 0.034606 0.232538

This magnitude is not representative, since the degree distribution is skewed. In
this case, a more appropriate magnitude is the Maximum Degree of the network
(KMax), which is the highest degree of its nodes.
< K > and KMax for the subway and urban bus networks are shown in Tables

4 and 5 respectively. These networks verify:

KMax(L) ≤ KMax(R) ≤ KMax(P )

and

< K > (L) ≤ < K > (R) ≤ < K > (P )

These facts are due to the different connectivity of the topological spaces. The
average (< K >) and the maximum value (KMax) of K are smaller in the subway
network.

2.3. Nearest neighbour degree. The nearest neighbour degree Knn(K) is de-
fined as:

Knn(K) = Σ∞K′=0K
′P (K ′/K) (6)
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where P (K ′/K) is the conditional probability that a link belonging to a node with
degree K links to a node with degree K ′. Statistical variations in Knn can be
supressed by obtaining the corresponding cumulative distribution, CKnn.

In both networks CKnn can be fitted by means of a power law, such as:

CKnn = b2m
K
1 (7)

Using natural logarithms:

ln(CKnn) = ln(m1)K + ln(b2) (8)

Where b2 and m1 are fitted parameters.
Analogously, MLR method is applied to model the relationship between the

cumulative neighbour degree distribution with K.
Table 6 shows the values of the parameters: m1, b2, DC and MSE for Spaces L,

P and R in the urban bus and subway networks. As it can be seen, all the cumulative
distributions can be well fitted to power law. Figure 3 shows CKnn(K ′ ≥ K) as a
function of K.

Table 6. Fitted parameters of the cumulative distribution of the
nearest neighbour degree CKnn(K‘ > K) given by equation 8. The
determination coefficient (DC) and mean squared error (MSE) are
also given.

Space ln(m1) ln(b2) DC MSE

Subway network L 0.765634513 35.46252791 0.882592399 0,23049165

P 0.964464371 3470.429487 0.904636214 0.272055784

R 0.829266757 108,2103956 0.908903839 0.257374745

Urban bus network L 0.840552334 76.47270121 0.884550132 0.255249454

P 0.98786125 28109.14075 0.977398745 0.151441537

R 0.954207558 2800.009178 0.885119331 0.303441252
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Figure 3. Left side: Cummulative nearest neighbours degree dis-
tributions CKnn for the urban bus network in Spaces L, R and
P. Right side: Cummulative nearest neigbours degree distributions
CKnn for the subway network in Spaces L, R and P.
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In both networks the values of < Knn >, KnnMin and KnnMax are larger in
Space P than in Space L, which is due to the fact that Space P is more dense
than Space L. Space R presents an intermediate position between Spaces L and
P , since this space has a densitity mid-way between the densities of the other two
spaces. These facts are also supported by the values of the coefficient m1 in all
Spaces m1(L) ≤ m1(R) ≤ m1(P ), as can be observed in Figure 3.

In Space L, < Knn >, KnnMax and KnnMin are similar in both TN, that is, the
average nearest neighbour degree of one stop is nearly identical in both TN. However
in the Spaces P and R these parameters are very different, as can be observed in
Table 4 and Table 5.

2.4. Network efficiency. The network efficiency allows evaluate the operation of
a TS. We study the network efficiency in the urban bus and subway networks of
Madrid by analysing two topological parameters: the average shortest path of the
network (< l >) and the Global Network Efficiency (EGlob).

The average shortest path, < l >, is defined as:

< l >=
1

N
Σi < l(i) >=

1

N2
Σi,j l(i, j) (9)

Where:

< l(i) >=
1

N
Σj l(i, j) (10)

and l(i, j) symbolises the distance between i and j nodes, i.e., the number of links
for the shortest path between them.

In Space L, < l > means the number of stops required by passengers to reach
the destination stop (bus shelter or subway station), on average.

In Space P , < l >, is the minimum number of lines that is required to be used
to reach a destination stop. We can define the Transfer Capacity as < l > - 1,
this parameter is a relevant indicator in order to estimate the adequacy of a TN. A
passenger wishes to reach the destination stop through the least number of transfers.
Often, passengers cannot reach the destination without a transfer on a long distance
trip. In general the minimum number of transfers should not be more than two,
otherwise it could be considered that the passanger trip is bothersome.

From Tables 7 and 8, we can observe that the most percentage of nodes are
reachable through one, two or three transfers in both TS. 99.77% of the paired nodes
are reachable within four transfers and the average minimum number of transfers
is 2.20 in the urban bus network. In the subway network, 100% of the nodes are
reachable within three transfers and the average minimum number of transfers is
1.26. The higher the transfer number, the worse the performance for one TS. The
Global Network Efficiency (EGlob) is a measure of the performance of the network
under the supposition that the efficiency for sending information between two nodes
i and j is proportional to their reciprocal distance l(i, j). Accordingly [4], EGlob is
defined as:

EGlob =
Σi 6=j∈G′ l(i, j)−1

N(N − 1)
0 ≤ EGlob ≤ 1 (11)

EGlob quantifies the efficiency of communication between all pairs of nodes on
the network (stops or lines), under the assumption that communication flows along
the shortest paths available. Considering just one pair of nodes, if a link joins these
two nodes, the path between them has length 1 and so communication is maximally
efficient for that pair, therefore that path has an efficiency of 1. If the shortest
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Table 7. Percentage of reachable nodes according to the number
of transfers in the urban bus network

% Number of transfers
1.19 0
15.08 1
50.34 2
29.76 3
3.40 4
0.23 ≥ 4

Table 8. Percentage of reachable nodes according to the number
of transfers in the subway network

% Number of transfers
11.85 0
54.09 1
30.43 2
3.63 3

path between a pair of nodes, i and j, has length l(i, j), then its efficiency is 1
l(i,j) .

The mean value of that efficiency of each pair, taken over all pairs of nodes in the
network, is EGlob. Only a completely connected network (where all possible links
are present) has a global efficiency of 1. All other networks have an EGlob ≤ 1.
EGlob(L) in the subway network is bigger than in the urban bus network. This

states that passengers, on average, will reach one destination stop by subway more
easily (the mean steps to get from one stop to another is smaller). EGlob(L) in
the subway network is similar to the obtained EGlob(L) in the subway network of
Seoul [4].
EGlob(P ) in the subway network is bigger than in the urban bus network. This

means that on average less transfers are required in a trip by subway.
Likewise, EGlob(R) in the subway network is bigger than in the urban bus net-

work, one passenger arrives to one line, on average, passing through less stops in
the subway network.

2.5. Mean service efficiency. The mean service efficiency of a network, %, is
defined as the ratio between the total number of stops of the network and the
product of the total number of lines multiplied by the average number of stops per
line:

% =
Ns

Mφ
0 ≤ % ≤ 1 (12)

Where Ns is the total number of stops in the networks, M is the number of lines,
and φ is the mean number of stops per line, being φ ≤ Ns.

According to the equation 12 high levels of the redundancy in the network im-
ply low %. Taking into account that to provide high redundancy in a TN implies
to carry out large investments in infrastructures, the transport companies should
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get a good balance between these two magnitudes during the TN planning. The
TN planning should consider that the passengers wish to get from node i to other
node j fast but they will not choose an unreliable albeit fast TS. (e.g. in the case
of one line is down the passengers should have enough alternate lines to get their
destination).

The value of % is 0.84736842 and 0.41140757 in the subway and urban bus net-
works respectively. The subway network has a larger (%), that is, a smaller redun-
dancy, than the urban bus network.

There are several pieces of investigations that analyse the service efficiency all of
them use different methods to the those used in our research, for instance, Takeuci
et al. [19] discuss the situation and reason which make the public subsidy inevitable,
and propose a method of practicing subsidies. They introduce and define a measure-
ment named the route-potential, which can distinguish the bus route which may be
subsidized, this calculation is applied in each bus route in Nagoya and usefulness of
this measurement is confirmed. The authors clasify a bus route into a competitive
and sustainable business course and a civil minimum course giving priority to mo-
bility of citizens by using route potential as index. Mizokami et al. [12] evaluates
bus routes in Kunamoto area by two different aspects, productive efficiency and the
possibility of boosting the potential demand. The bus riding survey was performed
in order to investigate the actual condition of bus utilization and propose a rational
method of reorganization on bus network on Kumamoto urban area. The author
also use a behavioral intention (BI) method to forecast the Kumamoto-Dentetsu
railway, in this method, the behavioral intention is directly measured from targeted
people to imagine actual behavior in new traffic environment. BI method is based
on the attitude theory, therefore, all factors which affect traffic behavior do not
need to be specified and converted into quantity to get included in function model.

2.6. Correlations. In this section the degree−degree correlation between con-
nected nodes of the analysed TN is estimated for the three studied topological
spaces. This correlation can be estimated calculating the normalized correlation
coefficient rD, which is defined as [14]:

rD =
1

σD(q)2
ΣK′,KK

′K{eD(K ′,K)− qD(K ′)qD(K)} (13)

where PD(K) and qD(K) are the normalized degree distribution and the normalized
remaining degree distribution respectively. The remaining degree distribution refers
to the probability that following a randomly chosen link, the remaining degree of
the reached node is K.
eD(K ′,K) is the joint probability that the two nodes on each side of a randomly

chosen link have K ′ and K remaining degrees, respectively.

qD(K) =
(K + 1)PD(K + 1)

ΣK′K ′PD(K ′)
(14)

σD(q)2 = ΣKK
2qD(K)− < ΣKKqD(K) >2 (15)

In an assortative network, in terms of their degree-degree correlation behavior,
high-degree nodes interact with high-degree nodes, in a neutral network the nodes
connect to each other with the expected random probabilities and finally, in a
disassortative network high-degree nodes tend to avoid linking to each other.

The values of rD are shown in Tables 4 and 5 in Spaces L, P and R for the
subway and urban bus networks respectively. The urban bus network is assortative
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(rD ≥ 1) for the three studied spaces, this means that one line or one stop preferably
links to another one with many connections; therefore a district with many bus lines
preferentially attaches to a district with a large number of bus lines and one line
with a large number of stops tends to connect to another one with high number of
stops. On the contrary, the subway network is assortative (rD ≥ 1) for Spaces L
and P, but dissassortative (rD ≤ 1) for Space R. These facts are based on the size of
the three spaces, that is, Space R for the subway network, which has only 16 lines,
is the smallest space. These results are in agreement with the study of Sienkiewicz
and Holyst [16] related to 22 public transport networks in Poland, which establishes
that when the number of nodes is larger than 500 in some of those polish public
transport networks, the network is usually assortative. Zhang et al. also validated
this property in the bus network of Beijing [26].

3. Urban transport flow. Transport flow is defined as the movement of vehicles
carrying passengers between different geographic destinations or within a certain
region. The distribution of transportation flows in a network defines the rational
variation of passenger flow in a TN that meets the needs for the transportation
of passengers. Therefore, the understanding of the mathematical function and the
factors that control the transportation flows is highly relevant.

In this section we will characterise the transport flow in Madrid. To this end
we will consider Madrid is divided into 21 administrative areas and study the flow
of urban buses and subway trains from one district to another. In Figure 4 the
total flow of vehicles from each district of Madrid is represented. It can be noticed
that the highest flow correspond to districts 13 and 15 with 1,210,082 and 1,177.725
vehicles (total number of urban buses and subway trains) for the 5 working days of
a week respectively.

Figure 4 shows the 21 district locations inside Madrid. Tables 9 and 10 and
Figures 5 and 6 present some data related to transport flow in Madrid. Tables 9
and 10 show the highest and smallest values of the vehicle flow between districts
for the urban bus and subway networks respectively. Figures 5 and 6 present the
different flows between districts for both TS.

Figure
5. Visualization
of buses flow be-
tween districts
(darker links
means higher
flow).

Origin District Destination District Buses Flow
5 4 29,185.3
4 5 25,629.6
7 1 25,119.6
.. .. ..
.. .. ..
.. .. ..
10 16 93
9 12 59.7
6 13 21.9

Table 9. Ranking of
outward bound bus flow
by district in the 5 work-
ing days of a week.
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Figure 4. Geographic representation of the vehicle flow (total
number of urban buses and subway trains) corresponding to dif-
ferent districts inside Madrid (darker red tones corresponding to
higher flows).

Figure
6. Visualization
of subway train
flow between
districts (darker
links means
higher flow).

Origin District Destination District Subway Trains Flow
5 7 16,106
7 5 16,106
7 1 10,229.2
1 7 10,229.2
9 7 11,769
7 9 11,769
.. .. ..
.. .. ..
.. .. ..
8 19 186.5
6 19 186.5
7 19 186.5
5 19 186.5
4 19 186.5
19 4 186.5
19 5 186.5
19 7 186.5
19 6 186.5
19 8 186.5

Table 10. Ranking of
outward bound subway
train flow in the 5 work-
ing days of a week.
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In the following sections we study the characteristics of traffic flow in Madrid
subway and urban bus networks. Our analysis uses the data about vehicle move-
ments during the 5 working days of a week. This information is available on the
web sites of the Empresa Municipal Transportes (EMT) [23] and Metro Madrid
(MM) [24].

3.1. Urban bus flow. In order to study the urban bus flow, we build a graph
G′′ = (E′′;V ′′), in which E′′ is the set of nodes and V ′′ is the set of links between
them. A node represents a district and a link symbolises that at least one line
stretch of a bus line which goes from one district to another exists. A line stretch
is a section of a transport line that passes through two different districts. The
beginning and the end of a line stretch are the two consecutive stops in the line,
which are located in different districts. In Figure 7 an schematic example of the
construction of G′′ is shown.
G′′ represents a weighted networks whose nodes are the districts and the weighted

links identify the existing interaction between two nodes and its strength. The
weight of a link wij between two districts i, j is the total number of line stretches
between them. The cost of a link between two districts i and j (Cij), can be
established as the total number of line stretches between i and j divided by the
maximum number of existing line stretches between two any districts in the TN:

Cij = wij/Maximun(wij 4ijεE′′ ) (16)

The relationship between the population of a district and the number of urban

11
c

1
cc

W1,6=2/2=1
ad

W1,6=2/2=1
W = 1/2=0.5ad W6,2= 1/2=0.5

3 2
ad W6,2= 1/2=0.5

W2,1=1/2=0.53 2 W2,1=1/2=0.5
W6,1=1/2=0.5W6,1=1/2=0.5
W =1/2=0.5

be W6,3=1/2=0.5

6
be W6,3=1/2=0.5

6
b

6

Figure 7. Schemes of the construction of G′′ for the analysis of
traffic flow between districts (nodes). In this example, traffic be-
tween all districts is shown for one line. The movement of vehicles
happens between districts 1 → 6, 6 → 2, 2 → 1, 1 → 6, 6 → 3. The
line stretches (a, b, c, d, e) between districts are shown.

buses during the five working days of a week departing from each district can be
defined as:

Tij = f(Pi, Pj , Cij) (17)

Where Tij is the traffic from i to j district, that is the number of vehicles that leaves
the district i and arrives to district j. Pi and Pj are the population of districts i
and j, that is, the number of people living in the districts i and j respectively.
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We found that Tij can be well described by the Gravity Model given by the
following equation:

Tij = W
P g1
i P g2

j

Cg3
ij

(18)

We apply the MLR method to model the existing relationship between log(Pi),
log(Pj), log(Cij), and log(Tij) by fitting a linear equation to the empirical observed

data. The values fitted by the linear equation are denoted as: log(T̂ij).

log(T̂ij) = log(W ) + g1log(Pi) + g2log(Pj) + g3log(Cij) (19)

For the available information, DC = 0.964131014 and MSE = 0.112516415.
Therefore, log(Tij) can be well fitted by means of a linear equation, where:
log(W ) = 5.253284138, g1 = 0.991209323, g2 = −0.098554038 and g3 =
−0.013005331.

Figure 8 shows the normalized values of T̂ij ( ˆTijN ) as function of the normalized

values of the empirical data Tij (TijN ). The normalization of T̂ij and Tij have been

done with respect to the maximum values of T̂ij and Tij respectively. It can be
noticed that the data are well clustered along the straight line:

ˆTijN=−0.035661556 TijN −0.463841329.
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Figure 8. For the urban bus network, normalized values of T̂ij
( ˆTijN ) with respect to the maximum T̂ij , as function of the nor-
malized values of Tij (TijN ) with respect to the maximum Tij .

We apply the Gravity Model with the fitted data given above, between all the
pairs of i and j districts (where i, j vary between 1 and 21). The calculation of the
total number of buses Ti for the district i is carried out by summing Tij over j,

Ti = Σj=21
j=1 Tij . We show the total number of buses Ti for a district i depends on

its population Pi, with a relationship:

Ti ∼ Ph
i (20)

Using logarithms:
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log(Ti) ∼ hlog(Pi) (21)

by applying the MLR method, we obtain that the value of h is 1.273672338 and
the value of DC is 0.890794517. The results are shown in Figure 9 that depicts
the relation between the number of buses that leaves the district i (Ti) and its
population (Pi). We observe the data can be well fitted to the equation 20.
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Figure 9. Correlation of the number of buses that leaves the dis-
trict i (Ti) as function of its population (Pi). The red line corre-
spond to the fitting to log(Ti) ∼ hlog(Pi), where h = 1.273672338
and DC = 0.890794517.

Next, we apply the Gravity Model to study how the changes of topology impact
over the proportionality between the population of one district and its urban bus
flow. Two methods to modify the structure of the network were used:

• Method 1: two links are randomly chosen from the network, one connecting
districts i and j, and other joining q and o districts; next the partner of each
district is changed, by modifying the original links i− j and q− o to i− o and
j−q. This method maintains the degree of each node. We repeat this process
a significant number of times (2,000 times).

• Method 2: one link is randomly eliminated from the network and then this
link is connected between two randomly chosen districts. This action is done
2,000 times. This algorithm does not conserve the original degree distribution.

A total of 506 networks were generated with each method.
Table 11 shows the obtained results by applying the MLR method to model

the existing relationship between log(Ti) and log(Pi) in the aforementioned 506
networks, where < h > represents the average value of h, σh is the typical deviation
of h, < DC > represents the average value of DC and σDC is the typical deviation
of DC.

It can be noticed that the average exponent < h > is equivalent for both types of
generated random networks and it has also a similar value to the obtained exponent
for the real urban bus network.
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Table 11. Exponent h of the relationship between the total num-
ber of buses, Ti , and the population, Pi of the district i given
by the equation 20, in the random networks. For these networks,
< h > represents the average value of h, σh is the typical deviation
of h, < DC > represents the average value of DC and σDC is the
typical deviation of DC.

Method used to generate the random network < h > σh < DC > σDC

Method 1 1.274 0.002 0.944 0.001

Method 2 1.2699 0.0006 0.9403 0.0003

3.2. Subway flow. We apply the same methods described in the previous section
to analyse the subway flow between districts in Madrid city. We fit the empirical
observed data to the equation 19 and obtain that DC = 0.948760437 and MSE =
0.11282044. Therefore, we can conclude that log(Tij) can be well fitted by a linear
equation where: log(W ) = 2.740974027, g1 = 1.122587533, g2 = 0.137863317 and
g3 = 0.137863317.

Figure 10 shows the normalized values of T̂ij as function of the normalized values
of Tij . It can be noticed that the data are well clustered along the straight line:

ˆTijN=0.143663494 TijN+8.649260843.
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Figure 10. For the subway network, normalized values of T̂ij
( ˆTijN ) with respect to the maximum T̂ij , as function of the nor-
malized values of Tij (TijN ) with respect to the maximum Tij .

Similar to the case of the urban bus network, the total number of subway trains
Ti of a district i depends on its population Pi following the relationship given by
equations 20 and 21.

The values of the exponent h that is 1.417400199, with DC = 0.907918443 was
gotten from MLR method. The corresponding results are plot in Figure 11, that
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shows the relation between the number of subway trains that leaves the district i
(Ti) and its population (Pi).
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Figure 11. Correlation of the number of subway trains that
leaves the district i (Ti) as function of its population (Pi). The
red line correspond to the fitting to log(Ti) ∼ hlog(Pi), where
h = 1.417400199 and DC = 0.907918443.

We also study how the changes of topology impact over the proportionally be-
tween the population of one district and its subway train flow. Methods 1 and 2,
which were described in the previous section, are applied.

Table 12 shows the obtained results by means of MLR method to describe the
existing relationship between log(Ti) and log(Pi) in the 506 generated networks.

Table 12. Parameters of the relationship between the total num-
ber of subway trains, Ti , and the population, Pi, for a district i
in the random networks generated by two methods. For these net-
works, < h > represents the average value of h, σh is the typical
deviation of h, < DC > represents the average value of DC and
σDC is the typical deviation of DC.

Method used to generate the random network < h > σh < DC > σDC

Method 1 1.239 0.008 0.825 0.002

Method 2 1.247 0.006 0.826 0.002

Analogously to the case of the urban bus flow, we observed that the exponent h
is similar for both types of generated random networks. However, the value of h is
lower in these networks than in the real subway network.

4. Conclusion. In this research, we have investigated several structural parame-
ters and traffic flows of Madrid urban bus and subway networks.

In order to detect the fundamental characteristics of these networks, three topo-
logical spaces were analysed: Space L (Geographical Stop Space), Space P (Transfer
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Space) and Space R (Route Space). The interest of the aforementioned spaces lies
in the fact that they allow us to know specific static structural aspects of both TN,
such as: directions one passenger can take from one given stop, number of stops
passed on the shortest path between two given stops, needed transfers during a trip,
whether one passenger can transfer directly between two lines or must pass through
other additional ones, etc.

We find that, on average, pasengers can reach a destination in less steps, that is,
passing through less number of stops travelling by subway (10.19 stops) than taking
the bus (18.77 stops). The required number of transfers to reach a destination stop
is also, on average, less in the subway network (2.26) than in the urban bus network
(3.20). Likewise, the average number of necessary line steps to reach a destination
line from an origin line is less in the subway network (1.62 lines). In the subway
network, the Mean Service Efficiency, which was defined as the ratio between the
total number of stops and the product of the total number of lines multiplied by the
average number of stops per line, is the double of its value in the urban bus network.
We can conclude, the subway network exhibits better topological parameters and
therefore, some measures to improve the urban bus network could be studied, such
as: modifying some existing stops and lines to reduce the average path length, or,
increasing stop redundancy.

The maximum number of lines that one stop has is higher in the urban bus
network (13 lines), than in the subway network (7 lines). The largest number of
existing paths (without transfer) from one stop is 99 and 450 in the subway and
urban bus network respectively. The largest number of stops that link two lines is
13 in the subway network and 150 in the urban bus network.

We also show that the cumulative degree distribution of the urban bus and sub-
way networks can be described by an exponential function in all studied spaces,
while the degree-degree correlations correspond to a power law (CKnn ∼ mK

1 ) in
both TS. Taking into account the cumulative degree distribution of both networks,
we can establish they are single-scale, which implies these TN can withstand the
random attacks of several nodes (stops or lines) but it is vulnerable in the case of
direct attacks towards particular nodes.

Considering the assortativity property, we detect that one stop with high connec-
tivity preferably links to another one with many connections in both TS. However, a
district with many bus lines preferentially attaches to a district with a large number
of bus lines, whereas the opposite occurs in the subway network, where a district
with a few links preferentially links to another one with a large number of lines.

Regarding the traffic flow between districts, it has been adequately described by
a Gravity Model taking into account the population from the origin and destina-
tion districts as well as the total number of line stretches between them. We have
got similar results to those obtained for the intercities Korean express bus system
[9] and detected similar behaviour in two types of urban TN considered in Madrid
city. It should be remarked that the results found are on a smaller geographic scale
since we have studied the vehicle flow between two districts (existing administrative
areas inside a city) in the same city. In [9] the authors also described the intercity
bus flow using a gravity model. They estabished that the total bus flow of a city
depended only on its population and we show that the total vehicle flow (buses and
subway trains) for a district depend exclusively on the district population.

In the future, we will analyse more deeply the vulnerability of Madrid subway



STRUCTURE AND TRAFFIC FLOW 147

and urban bus networks using different existing methods. One of them is the gener-
alised concept of percolation through which resilience is evaluated. This procedure
is based on the calculation of the giant component size (largest connected cluster)
once an arbitrary problem in a node or set of nodes has ocurred.
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