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Universidad Rey Juan Carlos
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Abstract. In this paper we extend the concept of Competitivity Graph to

compare series of rankings with ties (partial rankings). We extend the usual
method used to compute Kendall’s coefficient for two partial rankings to the

concept of evolutive Kendall’s coefficient for a series of partial rankings. The

theoretical framework consists of a four-layer multiplex network. Regarding
the treatment of ties, our approach allows to define a tie between two values

when they are close enough, depending on a threshold. We show an application

using data from the Spanish Stock Market; we analyse the series of rankings
defined by 25 companies that have contributed to the IBEX-35 return and

volatility values over the period 2003 to 2013.

1. Introduction. The analysis of series of rankings has a vast tradition in the
literature (see, e.g. [10, 36, 30] for a review on applications) and in recent years
has attracted the interest of big companies that handle massive amount of data on
the Internet. One of the most studied issues is the computation of a consensus (or
aggregated) ranking that best summarizes a series of rankings. A typical application
of that approach is the set of web pages shown following a user query on a web
searcher [15]. The studies interested in obtaining a consensus ranking often define a
distance (see [12, 13]) to properly define their goal: that is, a ranking that minimizes
such a distance. One of the seminal works dealing with distances in rankings can
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be found in chapter II of [25]. The problem of finding a ranking that minimizes
the distance to a series of rankings, sometimes called Kemeny optimal aggregation
problem [5], is NP-hard (for 4 rankings or more) but some approximation techniques
exist, see e.g. [2, 11, 24, 4].

One of the most successful approaches to measure the distance between two
rankings is based upon the number of permutations, or crossings, that occur when
passing from one ranking to the other. The study of permutations in series of
rankings has a long history and its origin can be situated around the 40’s in the
works of Kendall [26, 27]. The Kendall’s τ correlation coefficient, a measure of the
number of pairs of elements that flip their positions, has been extensively used. For
example, in the 70’s, Kendall’s coefficient (including the treatment of ranking with
ties) was used to compare political alliances among states; see references in [35].
Kendall’s τ can be computed in O(n log n) time, being n the number of elements
to rank [15].

When applied to web search, it is usually sufficient to worry about the top-k
elements [22]. As a consequence, the rest of the n− k elements can be supposed to
be tied. The treatment of ties when comparing rankings has an intrinsic importance
and it is one of our main focus in this paper. Sometimes in the literature, for
example in [17], rankings with ties are called partial rankings. This kind of rankings
(rankings with ties) arises naturally in many applications: for example, when users
(r1, r2, . . . , rm) score the service offered by some hotels (1, 2, · · · , n) on a scale of 1
to 5 there can be a user that assign the same score to different hotels, producing a
tie in that ranking.

Some variations of Kendall’s τ , including treatment of ties, have been proposed.
For example, in [9] the authors focus on some problems arisen on Information Re-
trieval applications; in [16] the authors analyse the treatment of ties and show some
problems in the original treatment of Kendall; in [29] the authors show different
alternatives to weight a crossing depending on the initial and/or final position of
the swapped elements; in [17] the authors show the equivalence of some metrics,
and set up an appropriate framework to extend Kendall’s τ to the case of partial
rankings, by defining a Kendall distance with penalty parameter p.

In the field of graphs the topic of counting crossings is known as permutation
graphs (see, e.g., [33, 28]). The theoretical definition of a graph that shows succes-
sive permutations can be situated, as far as we know, in the work of [19].

In this paper we are interested in the crossings that occur between successive
rankings when these rankings show ties. As a starting point we use the method
presented in [14] based on measures of complex networks, such as mean strength
and mean degree. In this paper we extend this technique to partial rankings and
we make use of multiplex networks [37], [20], [21], to achieve that goal.

The structure of the paper is the following. In Section 2 we give the basic defi-
nitions about scores and rankings with ties. In Section 3 we motivate our approach
based on multiplex networks and we extend the concept of Kendall distance with
penalty parameter p of [17] to the case of a series of partial rankings. Finally, in
Section 4 we show an application to analyse the competitiveness of IBEX index
from 2003 to 2013.

2. Scores, rankings with ties and basic definitions. The main goal of this
paper is analysing series of rankings with ties by using complex networks, and
therefore we start this section giving the basic definitions about rankings (with
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and without ties), scores and competitivity networks. Roughly speaking a ranking
(with or without ties) of a finite set of elements N = {1, · · · , n} is an ordering of
the elements of N with or without ties between elements. From a mathematical
point of view, this idea can be rewritten in the following way:

Definition 2.1. Given a finite set N = {1, · · · , n} a ranking r (without ties) of N
is a total order ≺r on N , i.e. it is a binary relationship on N such that

(i) ≺r is reflexive, i.e., i ≺r i for every i ∈ N ,
(ii) ≺r is antisymmetric, i.e. if i ≺r j and j ≺r i, then i = j,

(iii) ≺r is transitive, i.e. if i ≺r j and j ≺r k, then i ≺r k,
(iv) ≺r is total, i.e. if i 6= j ∈ N , then either i ≺r j or j ≺r i.

Remark 2.2. In other references of the literature, a ranking r (without ties) of N is
defined as a bijection r : N −→ N , since any bijection r defines a binary relationship
≺r on N given by i ≺r j if and only if r(i) > r(j) that it is straightforward to check
that it is a total order on N . Similarly, it can be proved that if ≺r is a total order
on N , a bijection σ : N −→ N can be defined such that σ(i) ≤ σ(j) if and only if
j ≺r i. Furthermore, a ranking r (without ties) of N can be defined as any injective
function r : N −→ R, as we will point out later when we remind the concept of
score.

Note that if we take a ranking without ties, if we consider i 6= j ∈ N , then either
i ≺r j or j ≺r i, and therefore , if i 6= j, they are always ranked differently. This
fact is not always possible in real cases, since, for example, two teams can be tied
in a competition or two web pages could have the same PageRank and therefore we
should also consider rankings with ties, as the following definition shows.

Definition 2.3. Given a finite set N = {1, · · · , n} a ranking r with ties of N is a
weak order ≺r on N , i.e. it is a binary relationship on N such that

(i) ≺r is reflexive, i.e., i ≺r i for every i ∈ N ,
(ii) ≺r is transitive, i.e. if i ≺r j and j ≺r k, then i ≺r k,

(iii) ≺r is total, i.e. if i 6= j ∈ N , then either i ≺r j or j ≺r i.
If r is a ranking with ties, and we have two different elements i 6= j ∈ N , we say
that i and j are tied if i ≺r j and j ≺r i.

Many times in real problems, the rankings (with or without ties) of a finite set
N = {1, · · · , n} are defined from a numerical function that weights the relevance of
each element of N : a score.

Definition 2.4. Given a finite set N = {1, · · · , n} a score (also called a rating) of
N is a function s : N −→ R.

If we take a score s : N −→ R, it is straightforward to check that s induces a
ranking (with or without ties) r = rs given for every pair of elements i, j ∈ N by

i ≺r j ⇐⇒ s(i) ≥ s(j).
It is easy to check that several scores s can produce the same ranking rs. Roughly
speaking, the ranking is the qualitative version of an ordering while the correspond-
ing score is the quantitative version of it, but in many real-life applications it is
enough considering the qualitative version, i.e. the ranking itself.

Note that r is a ranking without ties if and only if the score s is injective, as we
pointed out in Remark 2.2 and since the fact that two different elements i 6= j ∈ N
are tied (with respect to rs) if and only if s(i) = s(j). This fact makes that the
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existence of ties in many real-life rankings can be very unstable: if the raking is given
by an empirical score with non-integer values, the ties could disappear by round-off
errors. In order to avoid this problem, we suggest considering approximated ties,
when the scores of two elements are below a (small) precision threshold, as it is
introduced in the following definition.

Definition 2.5. Given a finite set N = {1, · · · , n}, a score s : N −→ R and
∆x ∈ (0,+∞), we define the precision intervals [L1, L2), [L2, L3),· · · , [Ln̂, Ln̂+1),
where:

(i) n̂ =

⌊
M −m

∆x
+ 1

⌋
, with M = max{s(i); i ∈ N}, m = min{s(i); i ∈ N}

and b·c is the floor function,

(ii) δx =
M −m+ ∆x

n̂
,

(iii) L1 = m− ∆x

2
,

(iv) Li = L1 + (i− 1)δx, for every 2 ≤ i ≤ n̂+ 1.

The ranking with (approximated) ties associated to the score s and precision thresh-
old ∆x is the ranking ≺ (also denoted by ≺s,∆x) such that if i 6= j ∈ N

(i) i ≺ j but j ⊀ i if and only if there is 1 ≤ k < ` ≤ n̂ such that s(j) ∈ [Lk, Lk+1)
and s(i) ∈ [L`, L`+1),

(ii) i and j are tied if there is 1 ≤ k ≤ n̂ such that s(i), s(j) ∈ [Lk, Lk+1).

The intuitive idea behind the formalism of the previous definition is considering
ties between elements whose scores are below a fixed precision threshold, as it is
presented in the following example. In the sequel, we always construct ranking with
(approximated) ties associated to a score s and a precision threshold ∆x and we
simply call it ranking with ties associated to the score s and with precision threshold
∆x.

Example 2.6. Let us consider the following m = 5 scores of elements N =
{1, 2, 3, 4, 5, 6} given by the columns of Table 1.

s1 s2 s3 s4 s5

1 3 5 −7 −7 20
2 23 7 24 20 8
3 22 7 20 10 8
4 −5 3 −7 −5 9
5 22 15 30 20 8
6 3 12 30 10 15

Table 1. A family of five scores on the set N = {1, · · · , 6}

If we consider the precision threshold ∆x = 0.5, then the rankings with (approx-
imated) ties associated to the scores s1, · · · , s5 is given in Table 2.

In ranking σ1 the first position is for node 2, while in the second position we
have a tie between the nodes 3 and 5; in third position we have a tie between nodes
1 and 6. The last position is for node 4.

On the other hand, if we take the precision threshold ∆x = 2, then we obtain
the rankings with (approximated) ties associated to the scores s1, · · · , s5 presented
in Table 3.
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σ1 σ2 σ3 σ4 σ5

2 5 5, 6 2, 5 1
3, 5 6 2 3, 6 6
1, 6 2, 3 3 4 4
4 1 1, 4 1 2, 3, 5

4

Table 2. Rankings with (approximated) ties associated to the
scores s1, · · · , s5 and precision threshold ∆x = 0.5

σ1 σ2 σ3 σ4 σ5

2, 3, 5 5 5, 6 2, 5 1
1, 6 6 2 3, 6 6
4 2, 3 3 4 4

1 1, 4 1 2, 3, 5
4

Table 3. Rankings with (approximated) ties associated to the
scores s1, · · · , s5 and precision threshold ∆x = 2

In this case, the ranking σ1, in the first position we have a triple tie among nodes
2, 3 and 5 and in second position there is a tie between nodes 1 and 6.

Once we have presented all the notation needed about rankings, ties, scores
and precision thresholds, we introduce the second ingredient of this paper: the
competitivity networks and the evolutive competitivity networks, introduced in [14].

Definition 2.7. If we take a family of rankings (without ties) R = {σ1, . . . , σm}
of elements N = {1, . . . , n}, we say that the pair of elements (i, j) ∈ N compete if
there exist cs, ct ∈ {1, 2, . . . ,m} such that i ≺σs j but j ≺σt i, i.e., i and j exchange
their relative positions between the rankings σs and σt.

We define the competitivity network of the family of rankings R as the undirected
network Gc(R) = (N , ER), where the set of edges ER is given by the following rule:
there is a link between nodes i and j if (i, j) compete. This notion had already been
introduced in [19] as intersection graphs of concatenations of permutation diagrams,
and was shown to being equivalent to the notions of co-comparability graphs and
to f -graphs [19, Theorem 1].

We say that the pair of elements (i, j) ∈ N compete k-times if k is the maximal
number of rankings where i and j compete. The evolutive competitivity network
of R, denoted by Gec(R) = (N , EeR), will be the weighted undirected network,
where the set of edges EeR is given by the rule: there is a link between nodes i
and j labeled with weight k if (i, j) compete k times. Note that the underlying
(unweighted) network behind the (weighted) network Gec(R) is Gc(R).

There are several ways of extending this notion to families of rankings with
ties, but in the next section, we will see how to define the multiplex (evolutive)
competitivity network, which is the natural extension of competitivity graphs that
helps to analyse properties of families of rankings with ties.
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3. Multiplex networks associated to a family of rankings with ties. In
this section we introduce a multiplex network associated to a family of rankings,
some of them with ties among its nodes. We extend the notion of Kendall distance
with penalty and show that it can also be computed by considering the associated
projected multiplex network. Moreover, we relate the classical notion of normalized
mean strength of such network with the extension of the Kendall distance.

3.1. The multiplex evolutive competitivity network associated to a family
of rankings with ties. In this subsection we introduce the notion of multiplex evo-
lutive competitivity network associated to a family of rankings with ties, extending
the previous notion of [14] defined for rankings with no ties.

Definition 3.1. Let α, p, q, γ ≥ 0 be four given parameters. Given a set of n nodes
N = {1, . . . , n} and a finite family of rankings with ties R = {σ1, . . . , σm} of N ,
we define the multiplex evolutive competitivity network of R in the following way:
this multiplex network, denoted by MG(σ1, · · · , σm), contains four layers, called
the crossing layer, the semi-crossing layer, the long-term-crossing layer and the tie
layer. All of them have n nodes {1, . . . , n} and the edges in each layer are given as
follows:

- The edges in the crossing layer are defined in the following way: there is an
edge between nodes i and j labelled with weight kα if i and j exchange their
relative positions between two consecutive rankings σt` and σt`+1, ` = 1, . . . , k,
in R.

- The edges in the semi-crossing layer are defined in the following way: there
is an edge between nodes i and j labelled with weight kp if there exist k
consecutive rankings σt` and σt`+1, ` = 1, . . . , k, in R such that i and j are
tied in σt` and not tied in σt`+1 or i and j are not tied in σt` but tied in σt`+1,
i.e., nodes i and j go from tied to not tied or not tied to tied in k consecutive
rankings of R.

- The edges in the long-term-crossing layer are defined in the following way:
there is an edge between nodes i and j labelled with weight kq if there exists
a maximal set of rankings σt1 , . . . , σtk ∈ R such that for each ` = 1, . . . , k the
pair i and j are not tied in σt` , are tied in σt`+1, σt`+2, . . . , σt`+s, with s ≥ 1,
are not tied in σt`+s+1 and i and j exchange their relative positions between
σt` and σt`+s+1.

- The edges in the tie layer are defined in the following way: there is an edge
between nodes i and j labelled with weight kγ if there exist k consecutive
rankings σt` and σt`+1, ` = 1, . . . , k, in R such that i and j are both tied in
σt` and σt`+1, i.e., nodes i and j are tied in k pairs of consecutive rankings of
R.

The use of multiplex networks in the context of competitivity graphs allows to
analyse the interplay between ties, crossings and long term crossings since, multi-
plex networks are a sharp tool for studying complex systems with heterogeneous
interactions [6].

Definition 3.2. The projected evolutive competitivity network or simply the evo-
lutive competitivity network associated to a finite family of rankings with ties
R = {σ1, . . . , σm} of n nodes N = {1, . . . , n} is just the projection of the four
layers of the multiplex evolutive competitivity network onto a single label, i.e., con-
sists on a network of n nodes, and edges between pairs of nodes i and j with weight
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k1α+k2p+k3q+k4γ if there is a link between i and j of weight k1α in the crossing
layer, a link between i and j of weight k2p in the semi-crossing layer, a link between
i and j of weight k3q in the long-term-crossing layer, and a link of weight k4γ in
the tie layer. We denote it by PG(σ1, · · · , σm)

If none of the rankings of the family R = {σ1, . . . , σm} contains any tie, then
there are no weighted edges in the semi-crossing label, no weighted edges in the
long-term-crossing layer and no weighted edges in the tie label of the multiplex
evolutive competitivity network of R, so the evolutive competitivity graph defined
in [14] corresponds to the projected evolutive competitivity network associated to
R with fixed α = 1.

Example 3.3. Let us consider the following family of rankings with ties R =
{σ1, σ2, σ3, σ4, σ5} of 6 nodes N = {1, 2, 3, 4, 5, 6}, obtained in Example 2.6.

σ1 σ2 σ3 σ4 σ5

2 5 5, 6 2, 5 1
3, 5 6 2 3, 6 6
1, 6 2, 3 3 4 4
4 1 1, 4 1 2, 3, 5

4

These rankings were obtained with a precision threshold ∆ = 0.5 from the family
of scores {s1, · · · , s5} (see Table 2). The multiplex evolutive competitivity network
MG(σ1, · · · , σ5) associated to R and the projected evolutive competitivity network
PG(σ1, · · · , σ5) associated to R are presented in Figure 1. Note that in this case
the number of crossings (appearing in layer `1) and the number of semi-crossings
(appearing in layer `2) is much bigger than the number of long-term-crossings (layer
`3) and ties (layer `4).

3.2. The evolutive Kendall distance. Now we extend the notion of Kendall
distance given in [17] for two rankings with ties. Let us first recall the original
definition for two rankings with ties:

Definition 3.4. Let σ1 and σ2 be two rankings with ties of the nodes N =
{1, . . . , n}, α ∈ [0,+∞) and a penalty p ∈ [0, 1

2 ]. The Kendall distance with penalty
parameter p is defined as

K(p)(σ1, σ2) =
∑
{i,j}∈N

K̄
(p)
i,j (σ1, σ2) (1)

where K̄
(p)
i,j (σ1, σ2) corresponds to one of the three following cases:

Case 1. If i and j are not tied in σ1 nor in σ2 and they exchange their relative

positions between σ1 and σ2 then K̄
(p)
i,j = α. Otherwise K̄

(p)
i,j = 0.

Case 2. If i and j are tied in both σ1 and σ2 then K̄
(p)
i,j = 0.

Case 3. If i and j are tied in one of σ1 or σ2 but not tied in the other ranking then

K̄
(p)
i,j = p.

Remark 3.5. Notice that Kendall distance with penalty parameter p of [17] is
exactly the addition of the weights of all the edges of the evolutive competitivity
network given in Definition 3.2 for the family of rankings R = {σ1, σ2} with fixed
parameters p ∈ [0, 1

2 ], and γ = 0.
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Figure 1. Multiplex evolutive competitivity network
MG(σ1, · · · , σ5) associated to the family of rankings R and
the projected evolutive competitivity network PG(σ1, · · · , σ5) as-
sociated to R. Layer `1 is the crossing layer, `2 is the semi-crossing
layer, `3 is the long-term-crossing layer and `4 is the tie layer.

The extension of the previous concept to a Kendall distance for a family of m
ordered rankings with ties R = {σ1, σ2, . . . , σm} is straightforward:

Definition 3.6. Given a set of n nodes N = {1, . . . , n}, α ∈ [0,+∞), p ∈ [0, 1
2 ]

and a finite family of rankings with ties R = {σ1, . . . , σm} of N , we can define the
evolutive Kendall distance with penalty parameter p as

K(p)
ev (σ1, σ2, . . . , σm) =

m−1∑
i=1

K(p)(σi, σi+1). (2)

Example 3.7. Let us consider again the family of rankings with ties given in
Example 3.3 and fix α = 2. In order to obtain the evolutive Kendall’s distance
given by (2) we need to compute the 4 Kendall’s distances K(p)(σi, σi+1). The first
one is:

K(p)(σ1, σ2) =
∑
{i,j}∈N

K̄
(p)
i,j (σ1, σ2)

where we have N = {1, 2, . . . , 6} and there are 15 pairs of indices {i, j}. The pairs
that contribute with non-zero penalties are shown in Table 4. Therefore,

K(p)(σ1, σ2) = 6 + 3p.

In an analogous way it is easy to compute the rest of the Kendall distances K(p)(σi,
σi+1)

K(p)(σ2, σ3) = 3p, K(p)(σ3, σ4) = 2 + 4p, K(p)(σ4, σ5) = 20 + 3p.
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{i, j} K̄
(p)
i,j (σ1, σ2)

1, 6 p since they go from tied to untied from σ1 to σ2

2, 3 p since they go from tied to untied from σ1 to σ2

2, 5 2 since they cross from σ1 to σ2

2, 6 2 since they cross from σ1 to σ2

3, 5 p since they go from tied to untied from σ1 to σ2

3, 6 2 since they cross from σ1 to σ2

Table 4. Details of the computation of K(p)(σ1, σ2)

Therefore, by Definition 3.6 we obtain

K(p)
ev = 28 + 13p.

Notice that this value of K
(p)
ev could also be obtained from the projected evolutive

competitivity network of {σ1, σ2, σ3, σ4, σ5} for α = 2, γ = 0 (see Figure 1) by
computing the sum of the weights of all the edges of this network.

In the previous example, we would like to point out the following fact: The
evolutions of the positions of the pair {1, 4} from non adjacent rankings σ2 to σ4

and the pair {3, 6} from non adjacent rankings σ3 to σ5 are different. There has
been a crossing between {1, 4} that has not been counted and there has been no
crossings between 3 and 6. Nevertheless, these two cases contribute with a penalty
of 2p to the calculation of the evolutive Kendall distance.

In order to take into account this long term crossings we introduce a new case in
the list of penalties for the case of evolutive Kendall’s distance for m rankings with
ties.

Definition 3.8. Given a family R = {σ1, σ2, . . . , σm} of m rankings with ties of
nodes N = {1, . . . , n}, α ∈ [0,+∞) and p ∈ [0, 1

2 ], we define the corrected evolutive
Kendall distance with penalty parameter p as follows:

K(p)
cev(σ1, . . . , σm) = K(p)

ev (σ1, . . . , σm) +
∑

{i,j} verifies Case 4

K̄c
i,j(σ1, . . . , σm), (3)

where K̄c
i,j(σ1, σ2, . . . , σm) is a penalty for the pairs {i, j} that verify the following

case:

Case 4. if there exists a maximal set of rankings σt1 , . . . , σtk ∈ R such that for each
` = 1, . . . , k the pair i and j are not tied in σt` , are tied in σt`+1, σt`+2, . . . ,
σt`+s, with s ≥ 1, are not tied in σt`+s+1 and i an j exchange their relative
positions between σt` and σt`+s+1. In this case K̄c

i,j(σ1, σ2, . . . , σm) = k,
where k is the number of rankings in the maximal set of rankings σt1 , . . . , σtk ∈
R verifying the previous property.

Remark 3.9. Note that it is easy to check that the previous definition coincides
with the addition of the weights of all the edges of the evolutive competitivity
network given in Definition 3.2 for the family of rankings R = {σ1, . . . , σm} with
fixed parameters p ∈ [0, 1

2 ], q = 1 and γ = 0.

Example 3.10. Let us consider the 5 rankings of Example 3.7, α = 2 and a penalty
p ∈ [0, 1

2 ]. It is easy to see that the only pair of nodes that verifies Case 4 is the
pair {1, 4} commented above. Therefore∑

{i,j} verifies case 4

K̄c
i,j(σ1, . . . , σ5) = K̄c

1,4(σ1, . . . , σ5) = 1
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and

K(p)
cev(σ1, . . . , σ5) = K(p)

ev (σ1, . . . , σ5) +
∑

{i,j} verifies case 4

K̄c
i,j(σ1, . . . , σ5)

= 28 + 13p+ 1 = 29 + 13p.

Note that the corrected evolutive Kendall distance and the evolutive Kendall
distance are strongly related, but, as we will see in Section 4 they can give quite
different values in some cases. The next result gives the analytical relationship

between K
(p)
cev(σ1, . . . , σm) and K

(p)
ev (σ1, . . . , σm).

Proposition 3.11. Given a family R = {σ1, σ2, . . . , σm} of m rankings with ties
of nodes N = {1, . . . , n} and α, p ∈ R, then

K(p)
ev (σ1, . . . , σm) ≤ K(p)

cev(σ1, . . . , σm) ≤ K(p)
ev (σ1, . . . , σm) +

n(n− 1)

2

⌊
m− 1

2

⌋
,

(4)
where b·c is the floor function. Furthermore, these two inequalities are sharp.

Proof. On the one hand, it is straightforward to check that

K(p)
cev(σ1, . . . , σm) ≤ K(p)

cev(σ1, . . . , σm),

simply by using (3). This first inequality is obviously sharp if and only if the family
R of rankings has no long-term-crossings.

On the other hand, in order to get the upper bound, it is enough to maximize
the value of the expression ∑

{i,j} verifies Case 4

K̄c
i,j(σ1, . . . , σm). (5)

Note that the maximal value of (5) could be derived from two principles: max-
imizing the number of pairs i, j ∈ N that verify the Case 4 in the definition

of K
(p)
cev(σ1, . . . , σm) and maximizing the value of K̄c

i,j(σ1, . . . , σm) for each pair
i, j ∈ N that verifies the Case 4. If we want to maximize the number of pairs of
nodes that verifies the Case 4, we should ensure that all the pairs of nodes have a
long-term-crossing. This can be performed, for example, if the family of rankings
R contains the following rankings as non-consecutive elements of R:

σ σ̄
1 n
2 n− 1
· · · · · ·
n− 1 2
n 1

If σ, σ̄ ∈ R and they are not consecutive (i.e. there is 1 ≤ i, j ≤ n with |i− j| > 1
such that σi = σ and σj = σ̄), then all the pairs have a long-term-crossing, since
all the pairs exchange their relative position between σi and σj and in addition to
this, σi and σj are not consecutive rankings.

If we want to maximize the value of K̄c
i,j(σ1, . . . , σm) for each pair i, j ∈ N

that verifies the Case 4, we should consider a family of rankings that maximizes
the number of long-term-crossings between each pair of nodes. Since the minimal
number of consecutive rankings in order to get a long-term-crossing is 3 (if we fix
i, j ∈ N , we need at least three rankings σk, σk+1, σk+2 such that i and j are tied in
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σk+1, they are not tied in σk and σk+2 and they have different relative ordering in σk
and σk+2), then it is easy to check that the maximal number of long-term-crossing
between a pair of nodes is

⌊
m−1

2

⌋
, where b·c is the floor function.

Hence∑
{i,j} verifies Case 4

K̄c
i,j(σ1, . . . ,σm) ≤

∑
{i,j} verifies Case 4

max{K̄c
s,t(σ1, . . . , σm); {s, t} verifies Case 4}

≤
∑

i6=j∈N

max{K̄c
i,j(σ1, . . . , σm); {s, t} verifies Case 4}

=
n(n− 1)

2
max{K̄c

i,j(σ1, . . . , σm); {s, t} verifies Case 4}

≤ n(n− 1)

2

⌊
m− 1

2

⌋
.

Finally note that this bound is attained if we consider, for example the family of
rankings R = {σ1, σ2, . . . , σm}, where

σi =

 σ if i = 3k − 2 for some k ∈ N
σo if i = 3k − 1 for some k ∈ N
σ̄ if i = 3k for some k ∈ N

where σ and σ̄ are given before and σo is the ranking with all the nodes tied. In
this case all the pairs of nodes verify Case 4 and the number of long-term-crossings
is maximal, which makes that the upper bound is also attained.

3.3. The normalized mean strength. The classical network notion of normal-
ized mean strength of the evolutive competitivity network of a family of rankings
with ties and the notion of corrected evolutive Kendall distance with penalty pa-
rameter p of the same family of rankings are strongly related.

Definition 3.12. Given an undirected weighted network of n nodes, the strength
S(i) of each node i is the sum of the weights of the edges incident to i. The mean
strength MS of the network is the sum of all the node strengths divided by the
total number of nodes n, and the normalized mean strength NS of the network is
its mean strength divided by the mean strength of a complete network of n nodes
with maximal weight in each edge.

The connection between the normalized mean strength of the evolutive competi-
tivity network of a family of rankings with ties and the corrected evolutive Kendall
distance of the same family of rankings is given in the following result:

Proposition 3.13. Given a family of rankings with ties R = {σ1, . . . , σm} of n
nodes and p ∈ [0, 1

2 ], then

NS(σ1, σ2, . . . , σm) =
1

(m− 1)n(n− 1)
K(p)
cev(σ1, σ2, . . . , σm), (6)

where NS(σ1, σ2, . . . , σm) is the normalized mean strength of the projected evolutive
competitivity network of R for fixed parameters α = 2, p ∈ [0, 1

2 ], q = 1 and γ = 0.

Proof. Note that Remark 3.9 pointed out that we can compute the corrected evo-
lutive Kendall distance with penalty parameter p by the addition of the weights of
all the edges of the projected evolutive competitivity network associated to R, for
fixed parameters α = 2, p ∈ [0, 1

2 ], q = 1 and γ = 0. From this observation, since
the maximal weight of each edge occurs when there are no ties in the rankings of
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R (it is in fact 2(m− 1)) then the normalized mean strength NS(σ1, σ2, . . . , σr) of
the projected evolutive competitivity network of R is

1

(m− 1)n(n− 1)
K(p)
cev(σ1, σ2, . . . , σm).

4. An application to the competitiveness of IBEX index from 2003 to
2013. The expected return on an investment and the investment risk are key de-
terminants in the decision of a market economy investor to invest [8, 18].

In this section we use the methodology developed in previous sections for analy-
sing the return and the volatility from the stock market prices of the IBEX-35
(Data from Spanish Stock Exchange) corresponding to the twenty-five companies
that have been trading on the market contributing to this stock market index during
the whole period 2003-2013.

4.1. Description of the dataset and methods used. For each year we have
about 250 data for each company, corresponding to the daily values. The specific
number of trading days for each year is given in Table 5. The data from the IBEX-35
returns and volatilities have been extracted from the Invertia website [23].

Year Trading days (Ny)
2003 250
2004 251
2006 254
2007 253
2008 253
2009 254
2010 256
2011 257
2012 256
2013 255

Table 5. Details of the number of trading days year by year

In both cases (return and volatility) the values have been annualised. Specifically,
the (annualised) daily return Ri for the twenty-five considered stocks in the IBEX
35 has been calculated according to the formula

Ri = Ny

(
SPi − SPi−1

SPi−1

)
, (7)

where Ny is the number of trading days of the previous year as it is reflected in
Table 5 (the same for every day i of that year), and SPi and SPi−1 are the daily
Stock Price of that stock in, respectively, the considered day and the day before.

In the studied period the data corresponding to return show a minimum of
−2.8223 and a maximum of 1.8423. In the same period, the data corresponding
to volatility show a minimum of 0.1013 and a maximum of 1.0699. This informa-
tion is crucial to select in a proper way the parameter ∆x which allows us to define
a tie between two values when they are close enough. In order to estimate the risk
of an investment, some parameters may be considered. The simplest is the range
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of the share prices considered along a period of time, i.e., the difference between
the greatest and the smallest value during that period of time. Another usual pa-
rameters are the variance and the standard deviation. It is worth mentioning that
although the most commonly used concept to estimate the risk of an investment is
the variance, many academics prefer to use the standard deviation since it offers
advantages with respect to the number of decimals we have to employ [7]. For
example, we prefer to say that a stock share has an annual performance of 8 per
cent instead of saying that it has a variance of 0.0064. For this reason, we have
employed the standard deviation instead of the variance in our analysis as the risk
indicator.

Specifically, the (annualised) daily volatility Vi has been calculated according to
the formula

Vi =

 1

N(i)

N(i)−1∑
j=0

(Ri−j − µi)2

1/2

, (8)

where N(i) is the number or Trading Days from day i (of the year k) to the same day
of the previous year (k − 1), Ri, Ri−1, · · · , Ri−N(i)+1 are the daily return of all the
days Trading Days from day i (of the year k) to the same day of the previous year
(k − 1) and µi is the mean of these values (also called annualized moving average
of the daily return at day i).

4.2. Analysis and results. It is known that Financial Market is a chaotic system
in the sense that it is sensitive to initial conditions and gives rise to effectively
unpredictable long-term behaviour [34, 32]. A possible reason for this development
may be that it contains positive feedback (which tends to amplify trends over time)
and negative feedback (which tends to reduce trends over time). However, some
attempts to detect the presence of chaos in certain systems have not had any success.
For example, in [1] the authors tested for the presence of chaos in the FTSE 100
Index using a six month sample of about 60,000 minute by-minute returns and found
little to support the view that the process is chaotic at any frequency. A question
to investigate is the evidence of chaos in the evolution of some other parameters
related to the stock markets which give information about the stock of the different
companies.

We have investigated the evolution of competitivity for the daily values of return
and volatility for the twenty-five considered stocks in the IBEX 35 during the period
2003-2013. The analysis is based on the study of global (structural) properties of
the corresponding competitivity networks. As the theoretical framework established
in previous sections differs from those traditionally used in the analysis of stock
markets, the information we get is completely different from that obtained through
a traditional analysis, since we have analysed the ranking fluctuations of the stock
values rather than the actual values. In particular, we have considered the evolution
of the Normalized Mean Strength (NS) for the competitivity networks obtained
from return and volatility during the period 2003-2013, but many other structural,
global or local, parameters could be considered as it happened in [14]. NS is a
good indicator of the number of fluctuations in the daily rankings, since by using
Proposition 3.13, the higher NS is the more fluctuations in the rankings of return
or volatility we get. Furthermore, since a high number of fluctuations in the daily
rankings of return or volatility can be economically understood as uncertainty in
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the investment strategies or non-preconditioned markets, NS could be considered
as a quantitative indicator of such economical variables.

Once we have fixed the economical dataset to be analysed (in this case the ranking
fluctuations of the return and volatility of the common twenty-five companies that
have been trading on the Spanish Stock Market contributing to this stock market
IBEX35 index during the whole period 2003-2013), the rankings to be considered
must be fixed. Note that the rankings are given by the return or the volatility and
therefore they are actually rankings with ties. Furthermore, these ties must be also
considered as approximated ties as we introduced in Definition 2.5. Note that either
return and volatility are non-integer scores and therefore the use of approximated
ties helps avoiding the instability of ties due to round-off errors. In addition to this,
some stock markets values which are very similar (but different) could be considered
equivalent for an investor, and therefore they are approximately tied.

In order to fix the setting of the analysis the precision threshold ∆x must be
stated. The right choice of ∆x should consider the coexistence of tied and non-
tied nodes, since a very low value of ∆x produces unstable results due to round-off
errors, while a very high value of ∆x forces to all the nodes to be tied and therefore
produce a rough analysis. The trade-off between number of ties, accuracy and
stability of the analysis is obtained for values of ∆x that produce a significant but
not too high number of ties. Figure 2 shows the relationship between ∆x and the
number of ties for the rankings of the return (panel (a)) and volatility (panel (b))
for the IBEX index along 2003-2013. This figure illustrates that there is a phase
transition for values ∆x between 0.02 and 1 and therefore a good choice of ∆x could
be ∆x = 0.05.
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Figure 2. Number of ties versus ∆x resulting for the rankings
given by the return (panel (a) or the volatility (panel (b)) along
2003-2013

∆x = 0.05 produces a not too high number of ties and also makes that K
(p)
cev

exhibits different values from K
(p)
ev , as Figure 3 shows. Figure 3 presents the values

of K
(p)
cev and K

(p)
ev for the rankings of the return (panel (a)) and volatility (panel (b))

for the IBEX index along 2003 in terms of ∆x. Note that either for very high or

for very low values of ∆x, we get that K
(p)
cev ≈ K(p)

ev , as it is shown in Figure 3. This
is due to the following facts: (i) low values of ∆x make a very low number of ties
and therefore a very low number of long-term crossings that fix to the Case 4 in
Definition 3.8, (ii) high values of ∆x make that all the nodes are always tied with
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high probability and therefore the number of long-term crossings that fix to the
Case 4 in Definition 3.8 is very low. The value ∆x = 0.05 produces a non-negligible

number of ties (see Figure 2) and makes that K
(p)
cev exhibits different behaviour to

K
(p)
ev (see Figure 3), so we will fix this value for the analysis.
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Figure 3. K
(p)
cev (in red) and K

(p)
ev (in black) versus ∆x for the

rankings given by the return (panel (a) or the volatility (panel (b))
resulting from year 2003, with p = 0.5

It is quite remarkable that the choice of ∆x could deeply modify the results
obtained in the analysis. Figure 4 shows the evolution of the Normalized Mean
Strength (NS) for the competitivity networks of return (left panels) and volatility
(right panels) and three different values of ∆x = 0.5, 0.05, 0.005. The differences are
stronger when we change ∆x from 0.5 to 0.05 than when we move from ∆x = 0.05
to ∆x = 0.005. These differences also affect the tendencies, which is specially visible
in the case of the evolution of the competitivity networks of volatility.

A similar situation occurs when the evolution of the Normalized Mean Strength
(NS) for the competitivity networks along each year is considered. Figure 5 shows
the evolution NS for the competitivity networks of return (left panels) and volatility
(right panels) and three different values of ∆x = 0.5, 0.05, 0.005 in each year of the
period 2003-2013. In these cases, different values of ∆x produce quite different
tendencies in each year and also a different rankings according to NS.

The information encapsulated in the competetivity graphs of the return and
volatility is different to the information included in the classic analysis of return
and volatility themselves. While the classic and widely accepted studies about the
evolution of the return and volatility measures the global changes in the markets,
they do not take into account the intrinsic fluctuations of the companies that have
been trading on the stock market. This fact is plotted in Figures 6, 7 and 8,
where the evolution of return, volatility and the Normalized Mean Strength (NS)
for the competitivity of the return and volatility during 2004, 2008 and 2013 are
presented. We have chosen these three years since they correspond to three quite
different instances of the economical cycle. While 2004 was an expansive year for
the Spanish Stock Market, 2008 was the year of the bankruptcy of Lehman Brothers
Holdings Inc. that witnessed the first whole year of one of the deepest economical
crisis in Spanish Stock Market and 2013 was the last year with complete data (and
it should be the staring point of the recovering process for the Spanish Economy).



116 F. PEDROCHE, R. CRIADO, E. GARCÍA, M. ROMANCE AND V. E. SÁNCHEZ
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Figure 4. Evolution of the Normalized Mean Strength (NS) for
the competitivity networks of return (left panels) and volatility
(right panels) during the period 2003-2013 and for ∆x = 0.5 (top
panels), ∆x = 0.05 (central panels) and ∆x = 0.005 (bottom pan-
els)

According to the Official Reports of the Madrid Stock Market (see [31]), 2004
was an excellent year for the Spanish markets. Despite the economical uncertainty
caused by the volatility of the petroleum prices, the brilliant results of the major
Spanish Companies boosted the Spanish Stock Markets that ended 2004 with profits
beyond 17%, going ahead of Wall Street (New York), the German Stock Market,
London and Euronext. As a consequence, this year ended with high return and low
volatility, as it is shown in Figure 6, panels (a) and (b) respectively. If we have a
look at the evolution of NS of the competitivity of return and volatility, we can
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Figure 5. Evolution of the Normalized Mean Strength (NS)
for the return (left panels) and volatility (right panels) during the
period 2003-2013 and for ∆x = 0.5 (top panels), ∆x = 0.05 (central
panels) and ∆x = 0.005 (bottom panels)

see a quite stable situation (see Figure 6, panels (c) and (d) respectively) around
the values NS ≈ 0.037 for the competitivity of the return and NS ≈ 0.01 for the
competitivity of the volatility.

On a completely different scenario, 2008 was the worst year for the Spanish Stock
Markets. The period from the summer 2007 to the latest weeks of 2008 was one of
the most negative and complex moments of the financial recent history worldwide.
The economical crisis originated in the American Property and Financial Markets
infected the worldwide financial markets setting off mistrust on the economical
agents. Official Reports of the Madrid Stock Market (see [31]) point out that the
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Figure 6. Evolution of the Return of IBEX (panel (a)) Volatility
of IBEX (panel (b)) Normalized Mean Strength (NS) for the com-
petitivity of the return (panel (c)) and for the competitivity of the
volatility (panel (d)) during 2004 and for ∆x = 0.05

IBEX35 drops around 40% this year and the volatility suffered an amazing increase
getting their maximal values in 20 years. These facts are shown in Figure 7, panels
(a) and (b). The evolution of NS for the competitivity networks of return and
volatility suffered a significant change in their tendencies along the first two months
of 2008. On the one hand, NS for the competitivity networks of return fell at
the end of February but tried recovering along the rest of the year, getting values
around NS ≈ 0.023 (see Figure 7, (c)), which means that fluctuations of the ranking
obtained for the return were reduced during the first two months of the year but
this ranking changed more and more since then. On the other hand, NS for the
competitivity networks of volatility started the year quite erratic, but it dropped
between day 60 and 100, and it couldn’t recover its value during the rest of the
year. This fact can be understood as the fact that the ranking obtained for the
volatility was very rigid and stable from April until the end of the year with values
NS ≈ 0.008 (see Figure 7, (d)).

Finally, along 2013 the economical tensions in the international financial markets
remitted, which improved the expectations about the global economic growth. The
Spanish Stock Market followed these tendencies and gave positive results (with a
return around 21, 5%), outstripping a black period of three years of deep looses.
Figure 8, panel (a), shows the good evolution of return along 2013, that continued
the tendency started in July 2012, while panel (b) illustrates the fall in volatility,
specially clear in the fourth-quarter of the year. The evolution of NS for the
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Figure 7. Evolution of the Return of IBEX (panel (a)) Volatility
of IBEX (panel (b)) Normalized Mean Strength (NS) for the com-
petitivity of the return (panel (c)) and for the competitivity of the
volatility (panel (d)) during 2008 and for ∆x = 0.05

competitivity networks of return and volatility shows a soft increase along 2013
(see Figure 8, panels (c) and (d)) with values between 0.015 and 0.025 in the case
of return and between 0.001 and 0.004 in the case of volatility. If we compare these
values with the corresponding for 2004 and 2008, we can deduce that the rankings
obtained for the return and volatility are more stable in 2013 than in the previous
scenarios.

In any case, Figures 6, 7 and 8 show that the information encapsulated in the
competetivity graphs of the return and volatility is different from the information
included in the classic analysis of return and volatility themselves and therefore it
could be considered in order to give a sharper analysis of the stock markets. Further
studies can be done by considering other structural parameters of the competitivity
networks, including clustering or modularity, among others, and they would give
information about the fluctuations in the rankings of the stock markets.

In addition to the analysis of the projected competitivity network (including NS,
degree distribution, clustering, modularity,...), the multiplex nature of the network
it is also remarkable and further information can be obtained if we have a look at
the structure and correlations between different layers. Figures 9 and 10 illustrate
these phenomena.

Figure 9 presents the adjacency matrix of each layer of the competitivity network
obtained from the ranking of the return along 2013. Note that since the crossing
layer `1 (Figure 9, top panel, on the left) is quite dense, the number of crossings is



120 F. PEDROCHE, R. CRIADO, E. GARCÍA, M. ROMANCE AND V. E. SÁNCHEZ
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Figure 8. Evolution of the Return of IBEX (panel (a)) Volatility
of IBEX (panel (b)) Normalized Mean Strength (NS) for the com-
petitivity of the return (panel (c)) and for the competitivity of the
volatility (panel (d)) during 2013 and for ∆x = 0.05

very high, while the number of ties appearing in the tie layer `4 (Figure 9, bottom
panel, on the right) is quite low. The layer of long-term-crossing `3 (bottom panel,
on the left) it is always a subgraph of the semi-crossing layer `2 (top panel, on the
right), but in this case the two layers are not too similar.

The adjacency matrices for each layer of the multiplex competitivity network
obtained from the rankings of the volatility along 2013 are shown in Figure 10. Note
that the behaviour is different from the case of return for the same year (Figure 9).
In this case there is a very low number of crossings, since the crossing layer `1
(Figure 10, top panel, on the left) is almost empty, while the number of ties is much
higher than in the case of return. In addition to this, there are stronger correlations
among the semi-crossing layer `2 (top panel, on the right), the layer of long-term-
crossing `3 (bottom panel, on the left) and the tie layer `4 (bottom panel, on the
right). Note that the multiplex behaviour of the multiplex competitivity networks
obtained from the ranking of the return and volatility are different, exhibiting these
differences in multiplex properties.

5. Conclusions and future work. The classic idea of comparing rankings by
using the number of crossings -or permutations- that occur when going from one
ranking to the other, can be straightforward extended to compare series of several
rankings when one focus on pairs of consecutive rankings. This work was already
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Figure 9. The adjacency matrix of each layer of the multiplex
competitivity network of the return for the IBEX along 2013 with
∆x = 0.005, i.e. the crossing layer `1 (top panel, on the left),
the semi-crossing layer `2 (top panel, on the right), the long-term-
crossing layer `3 (bottom panel, on the left) and the tie layer `4
(bottom panel, on the right)

done in [14] by introducing a tool from Complex Networks: the so-called Competi-
tivity Graph. In this paper, we have extended this procedure for the case when ties
are allowed in each ranking. Given that the treatment of ties in rankings has a long
tradition in the literature we have adopted (and extended) the procedures defined
in [17] to compute Kendall’s distance between rankings when ties are present. We
have used the technique of multiplex networks and we have considered the cross-
ings distinguishing when the crossing occurs between adjacent rankings (we take
account of this on layer 1, or crossing layer), when the crossing is a change from
tied to untied or vice versa (layer 2, or semi-crossing layer), when the crossing oc-
curs after a period of consecutive ties (layer 3, or long-term crossing) and when
there is a situation of tie among two elements in two consecutive rankings (layer 4,
or tie layer) see Figure 9. We have denoted this network as the multiplex evolutive
competitivity network associated to a family of rankings with ties. We have also
contributed with two theoretical issues. On the one hand, we have introduced a
technique to convert a family of scores (or ratings) to a family of rankings by in-
troducing the concept of approximated ties: that is, a way to define a tie when two
elements have a score close enough depending on a certain threshold. On the other
hand, we have shown theoretical results relating our concept of Normalized Mean
Strength (NS) with the corresponding background concept of evolutive Kendall’s
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Figure 10. The adjacency matrix of each layer of the multiplex
competitivity network of the volatility for the IBEX along 2013
with ∆x = 0.005, i.e. the crossing layer `1 (top panel, on the left),
the semi-crossing layer `2 (top panel, on the right), the long-term-
crossing layer `3 (bottom panel, on the left) and the tie layer `4
(bottom panel, on the right)

distance. As an application of the introduced concepts we have shown an analysis
of the Spanish stock market for 25 values during the period 2003-2013. The main
conclusions of this analysis are the following:

• Since the number of crossings depends on the number -and the type- of ties
presented in the rankings, the first step in an analysis of a series of scores is to
study how the variations in the threshold for ties (that we denote ∆x) affects
the number of ties (see Figure 2). By using the data of return for year 2003
we have shown (see Figure 3) that our treatment of crossings is equivalent to
the model of [17] in the two limit cases: when no ties are present (that is, for
small values of ∆x) or when all the elements are tied (that is, when ∆x is
very large) .

• During the period 2003-2013 the maximum competitivity regarding the return
values corresponded to year 2004 (see Figure 4 and Figure 5, for ∆x = 0.05 or
0.005, where there are not too many ties). That is, a year that corresponded
to a growing period of the Spanish stock market, presented a lot of crossings
between the values of the companies. In fact, such number of crossings (NS =
0.07 at the end of the year, for ∆x = 0.05) has not reached yet, not even in
the year 2013 that was also a growing period but with a level of crossings of
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NS = 0.042. Therefore we conclude that the competitivity level (as measured
by NS) of 2004 has not been reached yet.

• We have shown that although the values of the return may show a great
variation (for example see Figure 6) the competitivity may rest invariant or
with minimal changes: that is, stock values may go up and down preserving the
number of crossings between their values: they go up and down maintaining
the level of competitivity of the whole system. That is why we say that our
information gives a different information than the usual one.

• Regarding volatility, that is a measure of the dispersion of the stock along a
year, we recall that a crossing in volatility means that stocks more volatile
than other become less volatile and vice versa. In year 2004 (Figure 6, down
right) we see that the crossings in volatility tend to decrease, while the values
of volatility decrease (Figure 6 up right). In the year 2008 (a crisis year)
volatility was growing up (Figure 7 up right) while the crossings in volatility
grew up from days around 40 to 60 in that year (reaching values of NS around
0.014 such as in 2004) and then the crossings fall down to values of NS around
0.008 such as the values of 2004. Therefore we see that two years with different
trend in volatility show the same trend in NS. Observing Figure 8 down right,
we see that in the year 2013 the volatility was decreasing while the NS was
slowly growing up but without reaching the values of the year 2004.

A comparison of the evolution of NS of the competitivity networks obtained for
the return and volatility along years 2004, 2008 and 2013 is presented in Figure 11.

50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06

Day

N
S

Return dx=0.05

 

 
2004
2008
2013

50 100 150 200 250

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Day

N
S

Volatility dx=0.05

 

 
2004
2008
2013

Figure 11. A comparison of the Evolution of the Normalized
Mean Strength (NS) for the competitivity of the return (panel
(a)) and for the competitivity of the volatility (panel (b)) along
years 2004 (in black), 2008 (in red) and 2013 (in green) with ∆x =
0.05

5.1. Future work. Usual notions of (Classic) Complex Network Analysis and of
Multiplex Complex Network Analysis, such as modularity, clustering coefficient,
centrality, etc., could be studied for the (multiplex) networks associated to series
of rankings with ties, and extract conclusions about the rankings themselves. The
introduction of Multiplex Nature in the analysis of rankings with ties, enables the
use of multiplex-native measures and techniques, such as inter-layer correlations,
that could be considered in the future.
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Let us illustrate this with an example: Imagine a group of cyclists going up to
the top of a hill. They can go up in an ordered way, with no interchange in their
relative positions or they can go up in a turbulent way changing their positions so
that the head of the group is occupied by different cyclists as long as they climb the
hill. Now imagine that each cyclist is a stock value and the group is composed of
25 values that are going up or down during a year. Our measure of competitiveness
NS gives an idea of the turbulences in this process of going up or down. If NS is
high it means that the group moves in a disordered way, crossing their positions.
When NS is low it means that the movement is made with small changes in the
relative positions. We think it could be interesting to analyse if there are subgroups
of stocks (or communities in the language of Complex Network Analysis) that move
together in these crossings. It would be useful to analyse the crossings of each
individual stock with respect to the others and could help analysing the optimal
composition of an investment portfolio and studies about investment funds.
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