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Abstract. We derive a two-scale homogenization limit for reaction-diffusion

systems where for some species the diffusion length is of order 1 whereas for the
other species the diffusion length is of the order of the periodic microstructure.

Thus, in the limit the latter species will display diffusion only on the microscale

but not on the macroscale. Because of this missing compactness, the nonlinear
coupling through the reaction terms cannot be homogenized but needs to be

treated on the two-scale level. In particular, we have to develop new error

estimates to derive strong convergence results for passing to the limit.

1. Introduction. The theory of periodic homogenization is concerned with partial
differential equations with periodically oscillating coefficients with small period ε
and describes ways for finding a homogenized partial differential equation of which
the solutions are the weak limits for ε → 0 of the original solutions. We refer to
the books [25, 28, 49] for general introductions and surveys. An important step in
homogenization theory was the introduction of two-scale convergence in [41], which
allows for the treatment of more general equations. While the original notion of
two-scale convergence in [41, 1, 9] can be called weak two-scale convergence, it is
crucial that one can also introduce a notion of strong two-scale convergence, see
[53, 54, 35]. It is this strong convergence which can be used to study fully nonlinear
problems like nonsmooth elastoplasticity (cf. [39, 55, 48, 22, 20]) and to allow for
efficient numerical approximation [30].
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The present work applies the ideas of strong two-scale convergence to nonlinear
reaction-diffusion systems, which for fixed ε > 0 are simple semilinear parabolic
systems. The difficulty arises in the limit of ε → 0, since we allow some of the
diffusion constants to scale with ε. Hence, we lose the compactness from the diffu-
sion terms, but the nonlinearities in the reaction term can only be treated by strong
convergence. The latter will be obtained by exploiting the fact that strong two-scale
convergence can be measured in the norm topology of the two-scale functions and
that these errors can be controlled by suitable Gronwall estimates.

To be more precise, we consider the following inhomogeneous system of coupled
reaction-diffusion equations:

uεt (t, x) = div(D1(x, xε )∇uε(t, x)) + f1(t, x, xε , u
ε(t, x), vε(t, x)),

vεt (t, x) = div(ε2D2(x, xε )∇vε(t, x)) + f2(t, x, xε , u
ε(t, x), vε(t, x)),

(1.1Pcp
ε )

for t ≥ 0 and on a bounded Lipschitz domain Ω ⊂ Rd. We also add no-flux boundary
conditions on ∂Ω. Here, Di ∈ Rmi×mi are diffusion tensors and fi are reaction terms
acting on the vector of concentrations uε ∈ Rm1 , resp. vε ∈ Rm2 referring to m1,
resp. m2 different species. The scaling ε2 of D2 takes into account that the species
related to the concentration vector vε diffuse much slower than those related to uε.
Therefore, we call vε the slow diffusive variable and uε the “classically” diffusing
one. We also call (1.1Pcp

ε )1 the non-degenerating part, while (1.1Pcp
ε )2 is called the

degenerating part.
The coupling of the variables (uε, vε) occurs via the reaction terms (f1, f2). To

focus on the difficulties of the homogenization limit ε→ 0, we avoid any questions
concerning global existence or positivity of the concentrations by assuming Lipschitz
continuity, namely

(f1, f2) is differentiable and globally Lipschitz continuous in (uε, vε), (1.2)

see (2.5L)&(2.6C∞) for a precise statement of the assumptions and Example 2.3
for a discussion. But as we explain in the following, the assumption of nonlinear-
ity complicates the limit passage ε → 0 in (1.1Pcp

ε ). In particular, confining the
analysis to given data (D1,D2) and (f1, f2) being spatially O(ε)-periodic in the x/ε-
component, we show that for ε→ 0, the limit model is a two-scale model, given for
t ≥ 0 on (x, y) ∈ Ω× Y by

ut(t, x) = div(Deff(x)∇u(t, x)) + feff(t, x, u(t, x), V (t, x, ∗)),
Vt(t, x, y) = divy(D2(x, y)∇yV (t, x, y)) + f2(t, x, y, u(t, x), V (t, x, y)).

(1.3Pcp
0 )

Above, Deff denotes the classical effective diffusion tensor, cf. [2, 1, 26]. However,
the reaction term feff is a macroscopic, one-scale function, but depending on the
microscopic function V (t, x, ∗), namely

feff(t, x, u(t, x), V (t, x, ∗)) :=

∫
Y
f1(t, x, y, u(t, x), V (t, x, y)) dy,

where Y = Rd/Zd denotes the so-called periodicity cell, which can be obtained from
the unit cell Y = [−1/2, 1/2)d by identifying opposite faces of Y . In contrast, the
effective data D2 and f2 in (1.3Pcp

0 )2 are indeed two-scale functions, which addition-
ally depend on y ∈ Y. We use the term effective model rather than homogenized
model, since in our case it is not possible to reduce the two-scale model (1.3Pcp

0 ) to
a homogenized macroscopic one-scale model. Nevertheless, our effective model is
independent of ε and hence it can be analyzed (or discretized) without any singular
perturbation through a small parameter, cf. [30, 36, 4, 5].
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In Section 2 we discuss the existence and uniqueness of a weak solution for both
the original one-scale problem (1.1Pcp

ε ) and the effective problem (1.3Pcp
0 ) simul-

taneously, making use of a suitable abstract setting. To perform the limit passage

(1.1Pcp
ε )

ε→0−−−→ (1.3Pcp
0 ) we develop the necessary tools of two-scale convergence in

Section 3. Since the equations in (1.1Pcp
ε ) feature different scalings, their limit pas-

sage can be carried out using different methods. The limit in the non-degenerating
equation (1.1Pcp

ε )1 can be obtained with the classical theory of G- or two-scale
convergence and by exploiting the compact embedding of H1(Ω) into L2(Ω) for
handling the nonlinear reaction terms f1. For homogenization results based on
two-scale convergence in the case of non-degenerating quasilinear parabolic PDEs
we refer to e.g. [40, 13, 56, 16, 27, 47] and for monotone parabolic operators and
multiscale-convergence in space and time, to [19, 43] and references therein.

Compared to the treatment of (1.1Pcp
ε )1, the limit passage in the degenerating

equation (1.1Pcp
ε )2 is much more involved and needs special attention. This is why

we first elaborate this limit passage separately in Section 4 and then merge it with
the classical procedure to pass to the limit with the full system in Section 5. Let
us explain the difficulties coming along with the degenerating equation and the
nonlinear reaction terms.

Since the ellipticity of the diffusion tensor in (1.1Pcp
ε )2 degenerates for ε → 0,

the general theory of G-convergence (see e.g. [37]) is not suited here. But the
concept of two-scale convergence, introduced in [41], is applicable, if Dεi and fεi ,
i = 1, 2, are ε-periodic in x ∈ Ω. Hereby, we operate with the equivalent definition
of two-scale convergence formulated in [6, 35, 7] via the periodic unfolding operator
Tε : L2(Ω) → L2(Rd × Y), see (3.2). With the aid of Tε, weak and strong L2–two-
scale convergence can be defined in terms of weak and strong L2–convergence of
two-scale functions, see Definition 3.3.

For the degenerating equation (1.3Pcp
0 )2 we will make use of the following com-

pactness result, cf. [1, 6], Theorem 3.5: If (vε)ε ⊂ H1(Ω) satisfies the a priori bound

∃C ≥ 0 ∀ ε > 0 : ‖vε‖L2(Ω) + ε‖∇vε‖L2(Ω) ≤ C, (1.4)

then there exists a two-scale function V ∈ L2(Ω;H1(Y)), and, up to a subsequence,
we have weak two-scale convergence in the following sense

Tε(vε) ⇀ V ex and Tε(ε∇vε) ⇀ (∇yV )ex weakly in L2(Rd × Y). (1.5)

For a function A ∈ L2(Ω × Y), Aex ∈ L2(Rd × Y) denotes its extention with
0 outside of Ω, which, throughout this work, will be assumed to have Lipschitz
boundary. Moreover, H1(Y) ⊂ H1(Y ) is the subspace of functions with periodic
boundary values.

The weak two-scale convergence from (1.5) is well suited to pass to the limit
ε→ 0 in linear equations of the type vεt = div(ε2D∇vε) + fε · vε, see [1, 44, 31, 34].
But since we deal with nonlinear reaction terms, we need the strong convergence of
Tε(vε)→ V ex in L2(Rd×Y), which does not follow from (1.4)&(1.5). Therefore the
limit passage in the semilinear equation (1.1Pcp

ε )2 is not straightforward and needs
additional assumptions. For example, in [24], an effective system is rigorously de-
rived for a degenerating equation with nonlinear reaction terms that are not directly
coupled, i.e. fε1 (uε, vε) = f1(uε) and fε2 (uε, vε) = f2(vε). Assuming further that f2

is the gradient of a λ-convex potential φ, a homogenization result is established using
methods from convex analysis, solely based on weak two-scale convergence; strong
two-scale convergence is not investigated. Moreover, in light of the general gradient
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structures for reaction-diffusion systems in [32, 33] it is clear that the assumption
that f2 has a potential φ is only reasonable for v2 being scalar. For nonlinear prob-
lems, without the property of compactness, it is necessary to use concepts based on
strong two-scale convergence, see e.g. [51, 35, 22, 52]. In a similar spirit, [11] uses
two-scale correctors to prove strong convergence with explicit convergence rates.
However, there the assumptions are rather strong, e.g. ∇xV ∈ L2(Ω;H1(Y)) and
continuity w.r.t. y ∈ Y of all functions in (1.3Pcp

0 )2. Quantitative homogenization
results also exist for attractors for nonlinear reaction-diffusion systems, e.g. [17, 18].

In some sense, we are following a similar strategy as in [11], but we do not need
any additional regularity in the x or y variables. Our main result Theorem 4.1
shows that the weak solutions vε and V of (1.1Pcp

ε )2 and (1.3Pcp
0 )2, respectively,

satisfy

‖ Tε vε(t)− V ex(t)‖L2(Rd×Y)
ε→0−−−→ 0 uniformly in [0, T ]. (1.6)

We neither assume that vε admits an asymptotic expansion in ε nor that V is
continuous in space, and yet we prove (1.6) rigorously. If V were spatially continu-

ous, then (1.6) would be equivalent to ‖vε(t) − [V ]ε(t)‖L2(Ω)
ε→0−−−→ 0, where we set

[V ]ε(x) := V (x, x/ε) as in [11], see Remark 5.4.
The general strategy for proving this strong convergence is explained in an ab-

stract way in Section 4.2. For the difference W ε(t) = Tε vε(t)− V ex(t) we derive a
Gronwall estimate of the form

d

dt
‖W ε(t)‖22 ≤ L‖W ε(t)‖22 + ∆ε

1(t) + ∆ε
2(t) + ∆ε

3(t) + ∆ε
4(t),

where the error terms ∆ε
i are shown to converge pointwise to 0. To derive this

estimate, we reformulate the weak formulations of (1.1Pcp
ε )2 and (1.3Pcp

0 )2 via the
unfolding operator Tε, the folding operator Fε, and the gradient folding operator
Gε, see (3.5) and Definition 3.7. The rough idea is to subtract these prepared weak
equations and to test with the difference W ε. While the errors ∆ε

3 and ∆ε
4 measure

the standard approximation errors of the linear diffusion terms and the nonlinear
reaction terms, respectively, there occur two additional and more difficult errors
to be controlled. The error ∆ε

1 arises through the fact, that we need to invert the
unfolding operator Tε in two different ways, namely first by the classical folding
operator Fε and second by the gradient folding operator Gε, see Theorem 3.9 in
Section 3.4, where we follow ideas in [35, 22].

However, the most difficult error term ∆ε
2 arises from the fact that we cannot test

with W ε directly, since the unfolding operator Tε is incapable to directly implant
Y -periodicity, as Tε vε ∈ L2(Rd;H1(Y )) * L2(Rd;H1(Y)) for all vε ∈ H1(Ω), see
Theorem 3.2. But as a consequence of the compactness result (1.5), Y -periodicity
will be a characteristic feature of the admissible functions for the limit problem
(1.3Pcp

0 )2. It is a well-known fact (cf. [41, Thm. 3], [1, Prop. 1.14], [53, Thm. 6.1])
that the two-scale limit V is Y -periodic, although the unfolded sequence Tε vε is in
general not Y -periodic, see in particular [6, Prop. 3] and [10, Thm. 5.2] for a proof
in the periodic unfolding formulation. In other words, the unfolding operator Tε is
incapable to directly generate Y -periodicity, but automatically ensures the recovery
of periodicity in the weak two-scale limit. Since this effect plays a crucial role in
our analysis, we term it the

Tε-property of recovered periodicity: while Tε uε ∈ L2(Rd;H1(Y )) only,

we have U ex = w- lim
ε→0

Tε uε ∈ L2(Rd;H1(Y)) $ L2(Rd;H1(Y )).
(1.7)
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In principle, our method is strong enough to supply quantitative error estimates as
in [11], but this will be subject of future work.

As a further technical issue let us mention that a priori vεt (t) ∈ H1(Ω)∗, merely,
whereas the operator Tε is well-defined for integrable functions, only. To avoid tech-
nicalities we therefore improve the time-regularity of the weak solutions in Propo-
sition 2.2 by imposing the differentiability on (f1, f2) and additional regularity on
the initial datum (uε0, v

ε
0), see (2.9). For the reader’s convenience we here provide a

list of spaces used throughout this work:
H = L2(Ω), X = H1(Ω) function spaces in the abstract setting, see (2.2);

Xε = (X, ‖ · ‖Xε
) ε-weighted function space for the species vε, see (4.5);

H = L2(Ω× Y)
X = L2(Ω;H1(Y))

function spaces for the limit problem (4.4P0), see (4.6);

H, Xε, H, X function spaces for the coupled systems, see (5.4).

2. Assumptions and existence of weak solutions. Let Ω ⊂ Rd be a bounded
domain with Lipschitz boundary Γ = ∂Ω, which ensures the validity of the Sobolev
embedding theorems, and let T > 0 be fixed. We abbreviate the time-space cylinder
(0, T )×Ω with ΩT and analogously we write ΓT for (0, T )×Γ. Moreover let ~n denote
the outer unit normal vector of Ω. The focus of the paper are nonlinear reaction-
diffusion equations of the type

ut = Au+ f(u) in ΩT ,
0 = (D∇u) · ~n on ΓT ,

u(0) = u0 in Ω.
(2.1P)

Here A denotes an elliptic differential operator of the form Au = div (D∇u). For
the application we have in mind, u : [0, T ] × Ω → Rm denotes the concentration,
D : Ω → R(m×d)×(m×d) the diffusion tensor, and f : Ω × Rm → Rm the reaction
term.

Both systems, (1.1Pcp
ε ) and (1.3Pcp

0 ), can be reformulated in terms of (2.1P).
In this section, we present a mathematical setting that accounts for both systems
and that is independent of ε > 0 and y ∈ Y. We introduce the notion of weak
solutions in Section 2.1 and give results concerning the existence of weak solutions
and improved time-regularity in Section 2.2.

2.1. Weak formulation and data qualification. Let X and H denote two given
Hilbert spaces. We denote with X∗ the dual space of X and with 〈·, ·〉X∗,X the
associated dual pairing. We assume that H can be identified with its dual, i.e.
H = H∗, and we write (·, ·)H for the scalar product on H. Assume that X is dense
and continuously embedded in H, then we obtain the evolution triple X ⊂ H ⊂ X∗.
If not indicated otherwise, we set

X = H1(Ω) and H = L2(Ω), (2.2)

and we call X the space of test functions. We always abbreviate L2(Ω;Rm) with
L2(Ω). For the evolution triple X ⊂ H ⊂ X∗, the relevant space for our analysis
is L2(0, T ;X) ∩H1(0, T ;X∗). By [14, Thm. 3 p. 287], we have that L2(0, T ;X) ∩
H1(0, T ;X∗) is continuously embedded in C0([0, T ];H). We call u ∈ L2(0, T ;X) ∩
H1(0, T ;X∗) a weak solution to (2.1P), if u satisfies a.e. in (0, T ) the weak formu-
lation

〈ut, ϕ〉X∗,X = (−D∇u,∇ϕ)H + 〈f(u), ϕ〉X∗,X for all ϕ ∈ X (2.3WF)
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and it holds u(0) = u0. Since we are, among others, interested in the homogeniza-
tion of the reaction term f , we do not want to understand f(·, ·, u(·, ·)) as general
distribution (which is sufficient for the existence of weak solutions), but as an in-
tegrable function. Thus, we assume the reaction f : u 7→ f(u) to be differentiable
and globally Lipschitz continuous (and not just locally) which is not too restrictive
in practice as Example 2.1 shows.

Uniform Ellipticity: The diffusion tensor D ∈ L∞(Ω;R(m×d)×(m×d)) is mea-
surable and uniformly elliptic, i.e.

∃µ > 0 : D(x)A : A ≥ µ|A|2 for all A ∈ Rm×d, a.a. x ∈ Ω. (2.4µ)

Lipschitz continuity: The reaction f : [0, T ] × Ω × Rm → Rm is measurable
on Ω for all (t, A) ∈ [0, T ]×Rm and f(·, x, ·) ∈ C1([0, T ]×Rm) for a.a. x ∈ Ω.
Moreover,

∃L > 0 : |f(t, x,A)− f(t, x,B)| ≤ L|A−B| for all t, x,A,B. (2.5L)

Boundedness: It holds

∃D∞ ≥ 0 : |D(x)A| ≤ D∞|A| for all A ∈ Rm×d, a.a. x ∈ Ω, (2.6D∞)

∃C∞ ≥ 0 : |f(t, x, 0)| ≤ C∞ for a.a. (t, x) ∈ ΩT . (2.6C∞)

Here A : B = tr(AtB) and ~a ·~b denote the scalar product for matrices in Rm×d and
for vectors in Rm, respectively; | · | denotes the induced (matrix resp. vector) norm.
For the sets of parameters (µ,D∞) and (L,C∞) with µ,L > 0 and D∞, C∞ ≥ 0,
we introduce the classes of functions

M(Ω, µ,D∞) := {D : Ω→ R(m×d)×(m×d) |
D satisfies (2.4µ) and (2.6D∞) with (µ,D∞)} and

F(Ω, L, C∞) := {f : ΩT × Rm → Rm |
f satisfies (2.5L) and (2.6C∞) with (L,C∞)}.

For our analysis it is not necessary that D is symmetric. The assumptions (2.5L)
and (2.6C∞) guarantee (t, x) 7→ f(t, x, u(t, x)) ∈ L2(0, T ;H) for all u ∈ L2(0, T ;H).
Indeed, (2.5L) with B = 0 and (2.6C∞) give the growth-condition

|f(t, x,A)| ≤ max{L,C∞}(1 + |A|) for all A ∈ Rm, a.a. (t, x) ∈ ΩT . (2.7C1)

The existence result (Theorem 2.1) and the homogenization result (Theorem 4.1)
do not rely on the homogeneous Neumann boundary conditions in (2.1P). In the
case of non-homogeneous Neumann boundary conditions, the boundary integral∫

Γ
g · ϕdσ would appear as linear term on the right-hand side in (2.3WF). Other

choices such as Dirichlet or periodic boundary conditions are admissible as well and
then X = H1

0 (Ω) or X = H1
per(Ω), respectively, and (2.3WF) holds as it is. A

Poincaré-type inequality is not needed.

2.2. Existence of weak solutions and improved time-regularity. We em-
phasize that we do not use the compactness of the embedding X ⊂ H, recall (2.2),
because in Section 4 we choose spaces X ⊂ H (see (4.6)) that do not embed com-
pactly.

Theorem 2.1. Assume that D ∈ M(Ω, µ,D∞), f ∈ F(Ω, L, C∞) and u0 ∈ H.
Then there exists for every given T > 0 a unique weak solution u ∈ L2(0, T ;X) ∩
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H1(0, T ;X∗) to problem (2.1P). Moreover, there exists a positive constant Ca such
that it holds

‖u‖C([0,T ];H) +
√
µ‖∇u‖L2(0,T ;H) + ‖ut‖L2(0,T ;X∗) ≤ Ca

(
1 + D∞√

µ

)
, (2.8)

where Ca depends on the given quantities ‖u0‖H , T, L,C∞, |Ω|.

Proof. The existence of a unique weak solution is deduced by applying Banach’s
fixed-point theorem to un 7→ un+1, where un+1 ∈ L2(0, T ;X) ∩H1(0, T ;X∗) is the
unique weak solution of the linear equation un+1

t = div(D∇un+1)+f(un) according
to [50, Thm. 3.1], cf. [14, Thm. 2 p. 500]. (Similar existence results can be found
in e.g. [42, Thm. 1.2 p. 184] and [23, Thm. 3.3.3].) In the following three steps of
the proof, we derive (2.8).

Step 1. Let u be the unique weak solution of (2.1P). Testing (2.3WF) with ϕ = u
and using d

dt (u, u)H = 2〈ut, u〉X∗,X as well as (2.7C1) gives

1

2

d

dt
‖u‖2H = (−D∇u,∇u)H + (f(u), u)H

≤ −µ‖∇u‖2H + ‖C1(1 + 2|u|2)‖L1(Ω) ≤ c1(1 + ‖u‖2H),

where c1 = c1(C1, |Ω|) and C1 is from (2.7C1). Applying Gronwall’s lemma yields
‖u(t)‖2H + 1 ≤ (‖u0‖2H + 1) exp(2Tc1) for all t ∈ [0, T ]. Hence, there exists c2 =
c2(‖u0‖H , T, L,C∞, |Ω|) ≥ 0, independent of t, such that ‖u‖C0([0,T ];H) ≤ c2.

Step 2. Again testing (2.3WF) with ϕ = u and integrating over (0, t) for 0 < t ≤ T ,
yields

µ

∫ t

0

‖∇u‖2H dτ ≤
∫ t

0

(D∇u,∇u)H dτ =

∫ t

0

〈f(u)− uτ , u〉X∗,X dτ

≤
∫ t

0

−1

2

d

dτ
‖u(τ)‖2H + ‖C1(1 + 2|u|2)‖2L1(Ω) dτ

≤ 1
2

(
‖u(0)‖2H − ‖u(t)‖2H

)
+ C(c2).

Since t ∈ (0, T ] was chosen arbitrarily, we obtain
√
µ‖∇u‖L2(0,T ;H) ≤ c3 < ∞ and

c3 depends on the same set of parameters as c2.

Step 3. Analogously to Step 2, we obtain by applying Hölder’s inequality, (2.6D∞),
and (2.7C1):

‖ut‖2L2(0,T ;X∗) =

∫ T

0

(
sup
‖ϕ‖X=1

−(D∇u,∇ϕ)H + 〈f(u), ϕ〉X∗,X dx

)2

dt

≤
∫ T

0

(
sup
‖ϕ‖X=1

D∞‖∇u‖H‖ϕ‖X + C2
1 (|Ω|+ ‖u‖H)‖ϕ‖X

)2

dt

≤ T
(
D∞

1√
µc3 + C(c2)

)2

.

Hence Step 1–3 imply the existence of a constant Ca, depending on ‖u0‖H , T, L,C∞,
and |Ω|, such that (2.8) holds true.

We complete Section 2 with Proposition 2.2 that gives improved time-regularity
for weak solutions u of (2.1P), i.e. ut ∈ C0([0, T ];H) $ L2(0, T ;X∗). This is
motivated by the fact that the folding and unfolding operators, defined in Section
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3.2, are only well-defined for integrable functions. Finally Example 2.3 gives an
exemplary system satisfying all the assumptions presented in this section.

Proposition 2.2 (Improved time-regularity). Let the assumptions of Theorem 2.1
hold true. We assume the additional regularity for the initial value:

Au0 ∈ H. (2.9)

Then we have for all weak solutions u to (2.1P) that u ∈ H1(0, T ;X)∩H2(0, T ;X∗)
and

‖u‖C1([0,T ];H) +
√
µ‖∇u‖H1(0,T ;H) + ‖ut‖H1(0,T ;X∗) ≤ C∗a

(
1 + D∞√

µ

)
(2.10)

with the constant C∗a ≥ 0 depending on Ca from (2.8) and ‖Au0‖H .

Proof. We follow the idea of the proof to [50, Thm. 3.2]. By setting w = ut and re-
calling the definition of A from (2.1P), we obtain wt = utt = (div(D∇u) + f(u))t =
div(D∇w) + ft(u) + Df(u) · w. This leads to a reaction-diffusion equation of the
type (2.1P), i.e.

wt = div(D∇w) + f̃(w) in ΩT . (2.11)

Here f̃(t, x,A) := ft(t, x, u(t, x)) + Df(t, x, u(t, x))A and Df denotes the derivative
of f w.r.t. A with |Df(x,A)| ≤ L for all (t, x,A) ∈ ΩT × Rm. It holds further

that t 7→ f̃(t, x, w(t, x)) = ft(t, x, u(t, x)) + Df(x, u(t, x))w(t, x) ∈ L2(0, T ;H) for
all u,w ∈ L2(0, T ;H) due to the continuity of ft and Df (in the third argument).
With (2.9), the initial value for w in (2.11) satisfies

w(0) = ut(0) = div(D∇u0) + f(u0) ∈ H.

Furthermore we have for a.e. (t, x) ∈ ΩT that |f̃(t, x,A)− f̃(t, x,B)| ≤ L|A−B| for

all (A,B) ∈ Rm×Rm and f̃(t, x, 0) = 0. Regardless that f̃ is not differentiable with
respect to time, it satisfies (2.5L) and (2.6C∞) and hence the necessary assumptions
of Theorem 2.1. Therefore w ∈ L2(0, T ;X) ∩ H1(0, T ;X∗) is the unique weak
solution of (2.11) and hence u ∈ H1(0, T ;X) ∩H2(0, T ;X∗) ⊂ C1([0, T ];H).

The additional assumption (2.9) seems to be quite restrictive, on the initial value
u0 and on the diffusion tensor D, but actually D can be as general as in Theorem
2.1. We interpret (2.9) as a restriction on the choice of the initial value u0, while
D is possibly discontinuous. Indeed for D ∈ M(Ω, µ,D∞) and arbitrary g ∈ H, we
can solve the static equation

div(D∇u0)− u0 = g in Ω (2.12)

and we obtain (by the Lax-Milgram lemma) a unique weak solution u0 ∈ X. In
particular, we have Au0 = div(D∇u0) ∈ H.

We emphasize that the improved time-regularity, and therefore the more restric-
tive assumptions on f (differentiability) and u0 (as in (2.12)), are only needed for
technical reasons, i.e. the application of Tε. In particular, we expect that Theorem
4.1 can be proved without this improved time-regularity, but then the proof would
become more technical by e.g. using time-discretized approximations of ut.

Assuming further structural assumptions on f and u0, one can prove even L∞(Ω)–
estimates for the solutions, cf. e.g. [21, Thm. 4.2], [3, Lem. 1], [40, Lem. 3.1], and
[45, Lem. 1.1]. Such boundedness is meaningful, when ui denote chemical concen-
trations. In particular, it justifies the modification of the nonlinear reaction term
outside a large ball and hence, the assumption of global Lipschitz continuity can be
fulfilled easily.
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Example 2.3 (A system with quadratic nonlinearity). We consider a system with
two species Xu and Xv, with densities u, v ≥ 0 interacting through one reaction of
the type Xu 
 2Xv. Normalizing the densities suitably, the mass-action law leads
to the system

ut = δu∆u+ k (v2 − u), vt = δv∆v + 2k (u− v2), (2.13)

where δu, δv > 0 and the reaction coefficient k is given via k(u, v) =
k0

1 + αu+ βv
.

The numerator k0 > 0 denotes the empirical reaction rate and the denominator 1 +
αu+βv, for 0 < α, β � 1, leads to partial saturation of the reaction for large values

of u, v > 0. The nonlinearity f(u, v) = k(u, v)

(
v2 − u

2(u− v2)

)
is differentiable and

globally Lipschitz continuous with constant L = O(max{ αβ2 ,
1
β }). Hence f satisfies

the assumptions (2.5L)–(2.6C∞). In many applications (cf. e.g. [32, 33] for general
reaction-diffusion systems based on the mass-action law) the reaction terms are
given by polynomials and choosing suitable prefactors one obtains globally Lipschitz
continuous f ∈ F(Ω, L, C∞), e.g. the Shockley-Read-Hall term in semiconductor
equations [29, Eq. (3.1.9)] or in Michaelis-Menten kinetics for enzymatic catalysis
[38, pp. 175].

3. Two-scale convergence. In the introduction, the original model (1.1Pcp
ε ) is

formulated on one scale, i.e. x ∈ Ω, while the limit model (1.3Pcp
0 ) is defined on the

two-scale space (x, y) ∈ Ω × Y. Here the microscopic variable y captures periodic
oscillations in x/ε and x denotes the macroscopic variable. In order to describe the
convergence from (1.1Pcp

ε ) to (1.3Pcp
0 ), we introduce the concept of two-scale con-

vergence, which is designed for problems with underlying periodic microstructure.
But before giving the definition (in Section 3.3), we introduce the concept of the
periodicity cell Y, the decomposition in macro- and microscopic scale (in Section
3.1) and the unfolding and folding operators Tε and Fε (in Section 3.2).

3.1. Microstructure and the periodicity cell Y. Following [7, Sec. 2.1], let
Ω ⊂ Rd be a bounded domain and let Y ⊂ Rd denote the unit cell. Here and
afterwards, we set Y = [− 1

2 ,
1
2 )d, but more general choices for Y are possible, see

e.g. [35, Sec. 2.1], so that Rd is the disjoint union of translated cells λ+ Y , where
λ ∈ Zd. Furthermore, we distinguish the unit cell Y from the periodicity cell Y,
which is obtained by identifying the opposite faces of Y , i.e. the torus

Y := Rd/Zd .

But, in notation, we will not distinguish between elements of the unit cell y ∈ Y
and the ones of the periodicity cell y ∈ Y. Using the mappings [·]Y : Rd → Zd
and {·}Y : Rd → Y defined via the relation x = [x]Y + {x}Y , each point x ∈ Rd is
uniquely decomposed into an element of the unit cell {x}Y ∈ Y and a lattice point
[x]Y ∈ Zd. A function f ∈ L1

loc(Rd) is called Y -periodic, if f(x) = f({x}Y ) for a.a.

x ∈ Rd. Then we can identify every periodic function f with a function f̃ on Y.
Whereas Lp(Y) and Lp(Y ) can be identified, H1(Y) = H1

per(Y ) is a closed subspace

of H1(Y ).
For our problem (1.1Pcp

ε ), we introduce the small length-scale parameter ε > 0
and we use the abbreviation Nε(x) := ε

[
x
ε

]
Y

for the nodes of the microscopic cells

{ε(λ + Y ) |λ ∈ Zd}, which describe the macroscopic scale. The microscopic scale
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is given by y = {xε }Y ∈ Y so that we obtain for all x ∈ Rd the decomposition

x = Nε(x) + εy. Since the domain Ω is bounded and not the whole Rd, we have
to treat the cells close to the boundary ∂Ω with care so that cells intersecting
∂Ω are sorted out for each ε > 0 fixed. We set Ω̂ε := int

(⋃
λ∈Z ε(λ+ Y )

)
with

Z := {λ ∈ Zd | ε(λ + Y ) ⊂ Ω}. Hence Ω̂ε denotes (the interior of) the union of all
microscopic cells ε(λ + Y ) strictly contained in Ω. For bounded domains Ω with
Lipschitz boundary Γ, we have by [22, Eq. (2.3)] that

vol(Ω\Ω̂ε)→ 0. (3.1)

3.2. Folding and periodic unfolding operators. Two-scale convergence is suited
to describe convergences on different scales, namely the macroscopic scale, repre-
sented by x ∈ Ω, and the microscopic scale for y ∈ Y. Therefore the notion of a
suitable embedding of the function space L2(Ω) into the two-scale space L2(Rd×Y)
is desirable in order to find a “natural” definition of two-scale convergence. Here,
we call such a mapping periodic unfolding operator. Vice versa, for any two-scale
function U defined on Ω × Y we seek a one-scale dependent uε defined on Ω, and
we call a corresponding mapping from the two-scale space L2(Rd × Y) into L2(Ω)
folding operator.

Following [6, 7, 35], the periodic unfolding operator Tε : L2(Ω)→ L2(Rd × Y) is
defined via

(Tε u)(x, y) := uex(Nε(x) + εy), (3.2)

where uex ∈ L2(Rd) is obtained from u by extension with 0 outside of Ω. By
definition, we have immediately the product rule

u ∈ L2(Ω), v ∈ L2(Ω) =⇒ Tε(uv) = (Tε u)(Tε v) ∈ L1(Rd × Y). (3.3)

Moreover, we obtain (see [10, p. 121]) the crucial identity∫
Ω

udx =

∫
Rd×Y

Tε udxdy for all u ∈ L1(Ω). (3.4)

With [Ω×Y]ε := { (x, y) ∈ Rd×Y | Nε(x)+εy ∈ Ω } we have supp(Tε u) ⊆ [Ω× Y]ε,
i.e. in general the support of a two-scale function Tε u is not contained in Ω × Y.
For a proper definition of the reverse operation taking care of the overhanging
supports, we follow the construction of the folding operator in [35], which involves
the characteristic functions 1Ω and 1ε := Tε 1Ω of Ω and [Ω×Y]ε, respectively. The
folding operator Fε : L2(Rd × Y)→ L2(Ω) is defined via

(Fε U)(x) :=

(
1

εd

∫
Nε(x)+εY

1ε(ξ, {xε }Y ) · U(ξ, {xε }Y ) dξ

)∣∣∣∣∣
Ω

, (3.5)

whereby vol(Nε(x) + εY ) = εd. We will use several properties of Tε and Fε, see e.g.
[35, Prop. 2.1]:

Proposition 3.1. For all ε > 0 we have the following properties:
(a) ‖ Tε u‖L2(Rd×Y) = ‖u‖L2(Ω) and supp(Tε u) ⊂ [Ω× Y]ε for all u ∈ L2(Ω).

(b) ‖Fε U‖L2(Ω) ≤ ‖U‖L2(Rd×Y) for all U ∈ L2(Rd × Y).
(c) Fε ◦ Tε = idL2(Ω).

(d) Fε is the adjoint of Tε, i.e. Fε = Tε′.

The following result states in which sense the periodic unfolding operator Tε is
compatible with differentiation and composition of functions.
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Theorem 3.2 (Properties of Tε).
(a) For u ∈ H1(Ω) we have Tε u ∈ L2(Rd;H1(Y )) and Tε(ε∇u) = ∇y(Tε u).
(b) For f ∈ F(Ω, L, C0) and u ∈ L2(Ω) we have Tε[f(u)] = Tε f(Tε u).

Proof. For part (a), we refer to [10, Thm. 5.1]. Part (b) follows from (3.2), i.e.

Tε [f(u)] (x, y) =

{
f(Nε(x) + εy, u(Nε(x) + εy)), if (x, y) ∈ [Ω× Y]ε
0, if (x, y) ∈ (Rd × Y)\[Ω× Y]ε

= f(Nε(x) + εy, u(Nε(x) + εy)ex)ex = Tε f(Tε u)(x, y).

3.3. Weak and strong two-scale convergence. We are now in the position to
give the definition of weak and strong two-scale convergence following again [35].
The notion of two-scale convergence was first introduced in [41] and coincides for
bounded sequences with Definition 3.3(a), here below, and a more detailed com-
parison of the different definitions is given in [35, Sec. 2.3]. Since the construction
of the periodic unfolding operator was quite technical, the definition of weak and
strong two-scale convergence can now be stated easily:

Definition 3.3 (Weak and strong two-scale convergence). For (uε)ε ⊂ L2(Ω)
(a) we say that uε weakly two-scale converges to U in L2(Ω × Y) and we write

“uε
2w−−⇀U in L2(Ω× Y)”, if Tε uε ⇀ U ex weakly in L2(Rd × Y);

(b) we say that uε strongly two-scale converges to U in L2(Ω× Y) and we write

“uε
2s−→U in L2(Ω× Y)”, if Tε uε → U ex strongly in L2(Rd × Y).

Note that the weak and strong convergence is asked to occur in L2(Rd ×Y) and
not in L2(Ω×Y). Otherwise a slightly different notion of convergence is generated,
see e.g. [35, Ex. 2.3]. The unfolding operator Tε : L2(Ω) → L2(Rd × Y) is defined
for the class of Lebesgue-integrable functions, where boundary values play no role,
so that in particular L2(Rd × Y) = L2(Rd × Y ). In view of the Tε-property of
recovered periodicity (1.7), we carefully distinguish the spaces H1(Y ) and H1(Y) =
H1

per(Y ), where the latter one is a closed subspace of H1(Y ). We now collect various
properties of two-scale convergence.

Proposition 3.4. For all ε > 0, we have the following properties:

(a) uε
2w−−⇀U in L2(Ω× Y) =⇒ ‖uε‖L2(Ω) is bounded for all ε > 0.

(b) uε
2w−−⇀U in L2(Ω × Y) and vε

2s−→V in L2(Ω × Y) =⇒ (uε, vε)L2(Ω) →
(U, V )L2(Ω×Y).

(c) For all U ∈ L2(Ω×Y) there exists a sequence (uε)ε so that uε
2s−→U in L2(Ω×

Y). (for example uε = Fε U ex)

(d) uε → u in L2(Ω) =⇒ uε
2s−→u in L2(Ω× Y).

(e) uε
2w−−⇀U in L2(Ω× Y) =⇒ uε ⇀ u in L2(Ω), where u(x) =

∫
Y U(x, y) dy.

We refer to [35, Prop. 2.4] for a proof of (a)–(d) and to [10, Thm. 3.3] for (e).
The following theorem states the fundamental results for two-scale convergence, in
particular parts (b) and (c) are crucial for the proofs of Theorem 4.1 and Theorem
5.1. We define

H1
av(Y) :=

{
u ∈ H1(Y) |

∫
Yu(y) dy = 0

}
..
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Theorem 3.5 (Compactness). Let (uε)ε be a sequence of functions.
(a) If uε ∈ L2(Ω) and ‖uε‖L2(Ω) ≤ C, then there exists U ∈ L2(Ω × Y) and a

subsequence ε′ of ε such that it holds uε
′ 2w−−⇀U in L2(Ω× Y).

(b) If uε ∈ H1(Ω) and ‖uε‖L2(Ω) + ε‖∇uε‖L2(Ω) ≤ C, then there exists U ∈
L2(Ω;H1(Y)) and a subsequence ε′ of ε such that uε

′ 2w−−⇀U & ε′∇uε′ 2w−−⇀∇yU
in L2(Ω× Y).

(c) If uε ∈ H1(Ω) and ‖uε‖H1(Ω) ≤ C, then there exists u ∈ H1(Ω), a two-scale

function U1 ∈ L2(Ω;H1
av(Y)), and a subsequence ε′ of ε such that uε

′
⇀ u in

H1(Ω) and ∇uε′ 2w−−⇀∇u+∇yU1 in L2(Ω× Y).

Proof. For the proof of (a), we refer to [41], alternatively one can apply Prop. 3.1(a)
and Banach’s selection principle. Items (b) and (c) are shown in e.g. [1, Prop. 1.14]
or [10, Thm. 5.2, Thm. 5.4]. For other scalings such as εγ with 0 ≤ γ <∞, we refer
to [44, Thm. 3.4].

We finish this subsection by stating two results, needed in the proof of Theorem
4.1, concerning the multiplication and composition of sequences in L2(Ω× Y).

Lemma 3.6 (Multiplication and composition of sequences in L2(Ω×Y)). Let ε > 0.
(a) Let (Uε)ε ⊂ L2(Ω×Y) with Uε → U in L2(Ω×Y) and (Mε)ε ⊂ L∞(Ω×Y)

such that ‖Mε‖L∞(Ω×Y) ≤ C for some constant C > 0 and Mε(x, y) →
M(x, y) for almost every (x, y) ∈ Ω× Y. Then MεUε →MU in L2(Ω× Y).

(b) Let fε ∈ F(Ω, L, C0), F ∈ F(Ω × Y, L, C0) and keep t ∈ (0, T ) fixed. If

for all vectors A ∈ Rm it is fε(t, A)
2s−→F (t, A) in L2(Ω × Y), then for all

U ∈ L2(Rd × Y) we have Tε fε(t, U)→ F ex(t, U) in L2(Rd × Y).

Proof. Ad (a): Extracting from (Uε)ε a pointwise convergent subsequence, we
find that MεUε → MU pointwise a.e. in Ω × Y for this subsequence. Moreover,
since |MεUε| ≤ C|Uε| a.e. in Ω× Y by assumption, the sequence (CUε)ε serves as
an L2–convergent majorant. Thus, Pratt’s theorem, see [12, Thm. 5.1 p. 260], a
variant of the dominated convergence theorem, yields the strong L2–convergence of
the subsequence. Arguing by contradiction for a different subsequence and by the
uniqueness of the limit we conclude the convergence of the whole sequence.

Ad (b): For shorter notation we omit indicating the t-dependence of the func-
tions. We approximate U ∈ L2(Rd×Y) with a sequence of integrable step functions
Un =

∑n
i=1 1Ui

· Ai, where Ai ∈ Rm and Ω × Y ⊂
⋃n
i=1 Ui. Hence Un → U ex in

L2(Rd×Y) and it follows by assumption that Tε fε(Un) =
∑n
i=1 1Ui ·Tε fε(Ai)

ε→0−−−→∑n
i=1 1Ui

· F ex(Ai) = F ex(Un) in Lp(Rd × Y). Exploiting moreover (2.5L), we ob-
tain ‖ Tε fε(U)−F ex(U)‖L2(Rd×Y) → 0 by introducing suitable nils, i.e. Tε fε(U)−
F ex(U) = [Tε fε(U)−Tε fε(Un)]+[Tε fε(Un)−F ex(Un)]+[F ex(Un)−F ex(U)].

3.4. Gradient folding and two-scale convergence of Sobolev functions.
Even for smooth functions U : Ω×Y → R the folded function Fε U is only piecewise
constant in x, hence ∇(Fε U) cannot be determined in the classical sense. There-
fore we now define a so-called gradient folding operator Gε, which assigns to each
differentiable two-scale function U ∈ H1(Ω × Y) a one-scale function uε ∈ H1(Ω).
The definition of the above mentioned gradient folding operator Gε follows [22] for
γ = 1. There, the operator Gε is constructed via Tε and various projections, but
then it is shown that Gε is uniquely characterized by solving a linear elliptic PDE,
see [22, Prop. 2.11] based on [53, Thm. 6.1] and [35, Prop. 2.10].
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Definition 3.7 (Gradient folding). The gradient folding operator Gε : L2(Ω;H1(Y))
→ H1(Ω) maps a two-scale function U ∈ L2(Ω;H1(Y)) to uε := Gε U , where
uε ∈ H1(Ω) is the unique weak solution of the elliptic problem∫

Ω

(uε −Fε U ex)·ϕ+(ε∇uε −Fε[∇yU ]ex) : ε∇ϕdx = 0 for all ϕ ∈ H1(Ω). (3.6)

While Fε : L2(Rd × Y) → L2(Ω), we have Gε : L2(Ω;H1(Y)) → H1(Ω). Thus
the domains of the two operators differ not only with respect to the regularity of
the admissible functions, but also with respect to the underlying domains for the
space variable x, i.e. x ∈ Rd versus x ∈ Ω. However, since both operators require
L2–regularity in x only, extending U ∈ L2(Ω;H1(Y)) by 0 outside of Ω yields
U ex ∈ L2(Rd;H1(Y)). Thus, Fε U ex indeed is well-defined in (3.6). In particular,
Fε U ex and Fε[∇yU ]ex ∈ L2(Ω) can be understood as linear operators acting on U
and moved, as inhomogeneities for the determination of uε, to the right-hand side of
(3.6). Thus for ε > 0 fixed, the Lax-Milgram lemma yields the existence of a unique
weak solution uε ∈ H1(Ω), so that the gradient folding operator Gε is indeed well-
defined. Since (3.6) implies ‖ Gε U‖L2(Ω) + ε‖∇(Gε U)‖L2(Ω) ≤ C, Theorem 3.5(b)
supplies the existence of a weakly two-scale convergent subsequence. However, for
given U ∈ L2(Ω;H1(Y)) the gradient folding operator guarantees even strong two-
scale convergence. Since (Gε U)ε ⊂ H1(Ω) recovers any function U ∈ L2(Ω;H1(Y))
via strong two-scale convergence, Gε is also called recovery operator in [22, pp. 10-
12].

Proposition 3.8 (Recovery property of Gε, [22, Prop. 2.11]). For all two-scale

functions U ∈ L2(Ω;H1(Y)), we have Gε U
2s−→U & ε∇[Gε U ]

2s−→∇yU in L2(Ω ×
Y).

Later on, in the proof of Theorem 4.1, it will be essential to interchange differen-
tiation and folding of two-scale functions U ∈ L2(Ω;H1(Y)). However, convenient
commutation relations, such as Fε(∇yU ex) = ε∇(Fε U ex) or Gε(∇yU) = ε∇(Gε U),
cannot be expected, since Fε U /∈ H1(Ω) and ∇yU /∈ L2(Ω;H1(Y)). Instead, we
establish a kind of commutation between Fε(∇yU ex) and ε∇(Gε U). More precisely,
the following result shows that Fε U ex and Gε U are comparable in the sense that
their difference vanishes.

Theorem 3.9 (Comparison of Fε and Gε). For all U ∈ L2(Ω;H1(Y)) we have

‖Fε U ex − Gε U‖L2(Ω) + ‖Fε(∇yU)ex − ε∇(Gε U)‖L2(Ω) → 0 for ε→ 0.

Proof. Recalling the abbreviation H = L2(Ω), we have

‖Fε U ex − Gε U‖H + ‖Fε(∇yU)ex − ε∇(Gε U)‖H
≤ ‖Fε U ex−U‖H + ‖U−Gε U‖H + ‖Fε(∇yU)ex−∇yU‖H + ‖∇yU−ε∇(Gε U)‖H ,

which converges to 0 by Proposition 3.4(d) for the terms involving Fε and by Propo-
sition 3.8 for the terms involving Gε.

4. Homogenization of the degenerating equation. In this section we consider
reaction-diffusion systems with nonlinear reactions and a diffusion term degenerat-
ing for ε→ 0,

vεt = div(ε2Dε∇vε) + fε(vε) in ΩT ,
0 = (ε2Dε∇vε) · ~n on ΓT ,

vε(0) = vε0 in Ω.
(4.1Pε)
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Relying on the fruits of Section 2.2, we rigorously derive a homogenization result for
ε→ 0 in (4.1Pε), stating the existence of a uniquely determined effective equation
given by (4.4P0) below. In Section 4.3, we prove that the weak solutions of (4.1Pε)
converge in the two-scale sense to the weak solution of (4.4P0).

We will assume that Dε  D and fε  F in a suitable manner, specified in

assumption (4.9Aε→0) in Section 4.1. In view of the convergences vε
2w−−⇀V and

ε∇vε 2w−−⇀∇yV in L2(Ω×Y), see Theorem 3.5(b), we formally expect a result of the
following type:∫

Ω
vεt · ϕdx =

∫
Ω
−Dεε∇vε : ε∇ϕ+ fε(vε) · ϕdx for all ϕ ∈ Xε

↓ ↓ for ε→ 0∫
Ω×Y Vt · Φ dxdy =

∫
Ω×Y −D∇yV : ∇yΦ + F (V ) · Φ dxdy for all Φ ∈ X.

(4.2)

To deduce the convergence of the weak forms (4.2), we have to cope with the fact
that (vε)ε converges a priori only weakly in the two-scale sense and therefore the
passage fε(vε)  F (V ) is not straight forward, because fε and F are in general
nonlinear. If we had the strong two-scale convergence of the sequence of solutions
(vε)ε, then fε(vε) F (V ) would follow easily. For the special case of fε being the
gradient of a λ-convex potential φ, a rigorous convergence result of the type (4.2)
was deduced in [24, Prop. 12] via methods of convex analysis. In contrast to this,
our approach to verify convergence (4.2) (in Theorem 4.1), indeed is to show that
the sequence of solutions (vε)ε ⊂ H1(0, T ;H1(Ω)) converges even strongly in the
two-scale sense to some limit V ∈ H1(0, T ;L2(Ω;H1(Y))), more precisely:

uniformly for all t ∈ [0, T ] : vε(t)
2s−→V (t) in L2(Ω× Y),

i.e. max0≤t≤T ‖ Tε vε(t)− V ex(t)‖L2(Rd×Y) → 0,
(4.3a)

pointwise for all t ∈ [0, T ] : ε∇vε(t) 2s−→∇yV (t) in L2(Ω× Y)

and ε∇vε 2s−→∇yV in L2(0, T ;L2(Ω× Y)),
(4.3b)

vεt
2w−−⇀Vt in L2(0, T ;L2(Ω× Y)), (4.3c)

where V ∈ H1(0, T ;L2(Ω;H1(Y))) is the unique weak solution of the effective
equation

Vt = divy (D∇yV ) + F (V ) in ΩT × Y,
V (0, x, y) = V0(x, y) in Ω× Y. (4.4P0)

The proof of convergence (4.2), in particular of the strong two-scale convergence
results in (4.3a)–(4.3b), relies on a clever choice of test functions, suitable for the
weak formulations of the ε- and the limit problem, i.e. (4.1Pε) and (4.4P0), re-
spectively. For the latter, suitable test functions must belong to L2(Ω;H1(Y)),
in particular they have to be Y -periodic. The most direct candidate (Tε vε(t))ε
for t ∈ [0, T ] fixed, supplies the required convergence but is incompatible with Y -
periodicity, since Tε vε(t) ∈ L2(Rd, H1(Y )), only, and H1(Y) = H1

per(Y ) $ H1(Y ).
But the Tε-property (1.7) guarantees the recovery of Y -periodicity for the limit,
which thus is compatible with the space of test functions of the limit problem. This
is an essential observation for the proof of the strong two-scale convergence (4.3a).

In Section 4.1, we state the assumptions on the given data, which are needed
to rigorously carry out the limit passage in (4.2). Based on these assumptions, we
expound the existence of unique weak solutions vε to (4.1Pε) and V to (4.4P0),
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independently of the limit passage. From the uniform boundedness of the solutions

(vε)ε, by Theorem 3.5(b), we conclude that there exists a two-scale function Ṽ such

that vε
2w−−⇀Ṽ and ε∇vε 2w−−⇀∇yṼ , up to subsequences, and it is not known a-priori

that Ṽ solves (4.4P0). In Theorem 4.1, Section 4.3, it is shown that vε
2s−→V , where

V solves (4.4P0) and hence that Ṽ = V , which makes the passage to the limit in
(4.2) rigorous. The abstract strategy of the proof is presented in Section 4.2.

4.1. Assumptions and a priori bounds. Adjusted to the structure of problem
(4.1Pε), respectively (4.4P0), we introduce the following function spaces so that the
definitions and results from Section 2 are immediately applicable. Recalling (2.2),
we set for ε > 0

Xε := X equipped with the norm ‖v‖Xε
:= ‖v‖H + ε‖∇v‖H . (4.5)

Since for ε > 0 fixed, both norms, ‖ · ‖X and ‖ · ‖Xε
, are equivalent, we have that

X = Xε ⊂ H. Thus Xε ⊂ H is dense and continuously embedded and we obtain
that Xε ⊂ H ⊂ X∗ε is an evolution triple. Moreover we define

X := L2(Ω;H1(Y)) and H := L2(Ω× Y), (4.6)

which again yields an evolution triple X ⊂ H ⊂ X∗. Throughout Section 4, we
impose the following assumptions on the given data:

Data specification for the ε-problem (4.1Pε):

∀ ε > 0 : Dε ∈M(Ω, µ,D∞), fε ∈ F(Ω, L, C0), and
∃C ≥ 0 : ‖ div(ε2Dε∇vε0)‖H + ‖vε0‖H ≤ C.

(4.7Aε)

Data specification for the limit problem (4.4P0):

D ∈M(Ω× Y, µ,D∞), F ∈ F(Ω× Y, L, C0), and
divy(D∇yV0), V0 ∈ H. (4.8A0)

Convergence of data:

Tε Dε(x, y)→ Dex(x, y) for a.a. (x, y) ∈ Rd × Y,
fε(t, ·, A)

2s−→F (t, ·, ·, A) in H, for all (t, A) ∈ [0, T ]× Rm,
vε0

2s−→V0 in H.
(4.9Aε→0)

By (4.7Aε), relying on Theorem 2.1 and Proposition 2.2, we have the existence of
a unique weak solution vε ∈ H1(0, T ;Xε)∩H2(0, T ;X∗ε ) of (4.1Pε). The additional
regularity assumptions in (4.7Aε), i.e. div(ε2Dε∇vε0) uniformly bounded in H, as
well as their analogies in (4.8A0), ensure improved time-regularity for the solutions
via Proposition 2.2, see (4.10), respectively (4.11), below. On the one hand, this
improved time-regularity helps to overcome the technical difficulty that the opera-
tors Tε and Fε from Section 3.2 are defined for integrable functions only. On the
other hand, it allows us to find uniform upper bounds pointwise and uniform in
time, which will simplify the proof of Theorem 4.1:

‖vε‖C1([0,T ];H) + ‖vε‖H1(0,T ;Xε) + ‖vε‖H2(0,T ;X∗ε ) ≤ Cb. (4.10)

To determine the constant Cb we have used that, by (4.7Aε), the diffusion tensor Dε,
resp. reaction term fε, belong to the same class for all ε > 0, namely M(Ω, µ,D∞),

resp. F(Ω, L, C0). Therefore ε2D∞√
ε2µ
≤ D∞√

µ provides a uniform bound on vε in (2.8)

and (2.10) for all ε ∈ (0, 1). In view of the definition of Xε, we obtain the existence
of a constant Cb ≥ 0, independent of ε, such that (4.10) holds for all ε ∈ (0, 1).
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Analogously, for the limit problem (4.4P0), we may apply Theorem 2.1 and
Proposition 2.2 to obtain the existence of a unique weak solution V ∈ H1(0, T ;X)∩
H2(0, T ;X∗) of (4.4P0). Again, estimates (2.8) and (2.10) imply

‖V ‖C1([0,T ];H) + ‖V ‖H1(0,T ;X) + ‖V ‖H2(0,T ;X∗) ≤ Cb, (4.11)

with Cb from (4.10), since the given data belong to the same classes of diffusion
tensors and reaction terms, in particular with the same parameters (µ,D∞, L, C∞).

4.2. Abstract strategy for proving strong two-scale convergence. To high-
light the general approach to the proof of the strong two-scale convergence result
(4.3a), we consider the two abstract systems

vεt = Aεvε + fε(vε) and Vt = AV + F(V ) (4.12)

in the Hilbert spaces X ⊂ H and X ⊂ H, respectively. The operators Aε and A are
given in terms of uniformly bounded and uniformly elliptic quadratic forms, namely

Bε(v, w) = 〈−Aεv, w〉 and B(V,W ) = 〈〈−AV,W 〉〉.

We consider an unfolding operator Tε : H → H which also satisfies Tε : X → X̃,

where X $ X̃ is a closed subspace. For the corresponding folding operators Fε : H→
H and Gε : X → X , we assume that Tε′ = Fε and that Fε and Gε are comparable
in the sense of Theorem 3.9.

We want to show that the solution vε converges to V , i.e. W ε → 0 in H or wε → 0
in H, where

W ε := Tε vε − V and wε := vε − GεV.

For the proof we resort to working with W ε instead of wε, since this gives the desired
two-scale convergence more directly. In particular, to establish this convergence for
(W ε)ε, we derive a Gronwall estimate

1

2

d

dt
‖W ε‖2 ≤ L‖W ε‖2 + ∆ε, (4.13)

where ‖ · ‖ stands for the norm in the Hilbert space H. From

1

2

d

dt
‖W ε‖2 = 〈〈W ε

t ,W
ε 〉〉 = 〈〈(Tε vε)t,W ε 〉〉 − 〈〈Vt,W ε 〉〉 (4.14)

we see that it is desirable to test the equations (4.12) with FεW ε and W ε, respec-
tively. However this is not possible as we do neither have FεW ε ∈ X nor W ε ∈ X.
Indeed wε ∈ X is an admissible test function for (4.12)1, but Tε wε /∈ X, due to

Tε vε ∈ X̃ % X.
Observe that Bε : X × X → R, whereas B : X × X → R. To overcome this

discrepancy in the underlying spaces X and X, we replace Bε with a quadratic form
Bε : X×X→ R with the same properties as Bε and compensate their mismatch by
an additional error term. Thus, we obtain four different types of errors, namely

1. ∆ε
1 for the folding mismatch between Fε V and GεV ,

2. ∆ε
2 for the incompatibility of Tε vε ∈ X̃ % X,

3. ∆ε
3 for the approximation error between B and Bε, and

4. ∆ε
4 for the approximation error between fε and F.
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More precisely, we test (4.12)1 with wε = (vε − Fε V ) + (Fε V − GεV ), transform
the equation from X to X using Tε and Bε so that we obtain

〈〈(Tε vε)t,W ε 〉〉 = −Bε(Tε vε,W ε) + 〈〈Tε fε(Tε vε),W ε 〉〉+ ∆ε
1, (4.15)

where ∆ε
1 := 〈〈(Tε vε)t,W ε 〉〉+ Bε(Tε vε,W ε)− 〈〈Tε fε(Tε vε),W ε 〉〉

− 〈vεt , wε〉 − Bε(vε, wε) + 〈fε(vε), wε〉.

We may additionally assume that B is well-defined on X̃ as well. However, testing

(4.12)2 with W ε ∈ X̃ is not allowed, since equation (4.12)2 is valid in the subspace
X, only. Nevertheless, each of the expressions 〈〈 Vt,W ε 〉〉, B(V,W ε), 〈〈 F(V ),W ε 〉〉
is well-defined. Therefore we test (4.12)2 with V only, include the missing terms
containing Tε vε and compensate them by the incompatibility error term ∆ε

2 via

〈〈Vt,W ε 〉〉 = −〈〈Vt, V 〉〉+ 〈〈Vt, Tε vε 〉〉 = B(V, V )− 〈〈F(V ), V 〉〉+ 〈〈Vt, Tε vε 〉〉
= −B(V,W ε) + 〈〈F(V ),W ε 〉〉 −∆ε

2, (4.16)

where ∆ε
2 := −〈〈Vt, Tε vε 〉〉 − B(V, Tε vε) + 〈〈F(V ), Tε vε 〉〉.

Since V is a weak solution in X, the error ∆ε
2 would vanish, if Tε vε ∈ X, i.e.

Tε vε would be an admissible test function. In general this is not the case, but
in analogy to the Tε-property of recovered periodicity (1.7), we may assume that
V = w- limε→0 Tε vε is compatible with the space X, despite the fact that Tε vε /∈ X.
Thus, we have limε→0 ∆ε

2 = 0.
Inserting (4.15)&(4.16) into (4.14), we obtain

1

2

d

dt
‖W ε‖2 = −Bε(Tε vε,W ε) + B(V,W ε) + 〈〈Tε fε(Tε vε),W ε 〉〉 − 〈〈F(V ),W ε 〉〉

+ ∆ε
1 + ∆ε

2

= −Bε(W ε,W ε) + 〈〈Tε fε(Tε fε)− Tε fε(V ),W ε 〉〉+ ∆ε, (4.17)

where ∆ε :=
∑4
i=1 ∆ε

i collects also the approximation errors of the given data, viz.

∆ε
3 := B(V,W ε)− Bε(V,W ε) and ∆ε

4 := 〈〈Tε fε(V ),W ε 〉〉 − 〈〈F(V ),W ε 〉〉.

Exploiting the uniform ellipticity of Bε and the global Lipschitz continuity of fε,
equation (4.17) yields the Gronwall estimate (4.13). It is then left to show that the
error ∆ε vanishes for ε → 0. Together with the assumption W ε(0) → 0, one then
obtains the desired result W ε(t)→ 0 for all t > 0.

4.3. Main theorem on the strong two-scale convergence. In this section we
prove the strong two-scale convergence of the slow diffusive variable vε, which is
the most critical ingredient for the homogenization of the degenerating equation
(4.1Pε) and the system of coupled equations (1.1Pcp

ε ).

Theorem 4.1 (Strong two-scale convergence of the slow diffusive variable). Let the
assumptions (4.7Aε), (4.8A0), and (4.9Aε→0) hold true; then the weak solutions
(vε)ε of (4.1Pε) two-scale converge to the weak solution V of (4.4P0) as stated in
(4.3).
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The proof goes along the abstract strategy explained in Section 4.2, where we
set

H = H = L2(Ω), X = X = H1(Ω), H = L2(Ω× Y),

X = L2(Ω;H1(Y)) ⊂ X̃ = L2(Ω;H1(Y )), (4.18)

Aεv = div(ε2Dε∇v) and AV = divy(D∇yV ) for v ∈ X and V ∈ X.

Integrating by parts and using the no-flux resp. periodic boundary conditions, the
quadratic forms read

Bε(v, w) = 〈− div(ε2Dε∇v), w〉X∗,X =

∫
Ω

Dεε∇v : ε∇w dx,

B(V,W ) = 〈〈−divy(D∇yV ),W 〉〉X∗,X =

∫
Ω×Y

D∇yV : ∇yW dx dy.

For technical reasons, we prove the convergence W ε(t)→ 0 in L2(Rd×Y) for all
t ∈ [0, T ] and not in H = L2(Ω× Y). Here,

W ε(t) := Tε vε(t)− V ex(t) ∈ X̃, (4.19)

by Theorem 3.2(a). To this end, we extend all functions V ∈ H, resp. V ∈ X, to the
whole Rd with 0 outside of Ω so that V ex ∈ L2(Rd×Y), resp. V ex ∈ L2(Rd;H1(Y )).
Thereby no regularity is lost, since in any case V is only square-integrable with
respect to x ∈ Ω.

Before entering the details of the proof, let us now sketch its main steps:
Step 1. Extraction of weakly convergent subsequences: The a priori bound (4.10)

allows us to extract a weakly two-scale converging subsequence of (vε)ε with a

limit Ṽ . By improving the convergence from weak to strong in the subsequent

steps, we are able to show that Ṽ equals the unique solution V of (4.4P0) and
to conclude the convergence of the whole sequence.

Step 2. Reformulation of (4.1Pε) and specification of the folding mismatch ∆ε
1:

The underlying domains of the ε-problem (4.1Pε) and the effective one (4.4P0)
are Ω and Ω×Y. To subtract their weak formulations, as in (4.14)–(4.16), we
unfold the ε-problem to the common domain of integration Rd × Y by using
the folding and unfolding operators from Sections 3.2 and 3.4. Inserting a
suitable test function, we arrive at the definition of the folding mismatch ∆ε

1

as specified in (4.15).
Step 3. Specification of the incompatibility error ∆ε

2: We derive equation (4.16)
and the exact form of the error term ∆ε

2 induced by the incompatibility of
Tε vε, see (1.7). The error terms ∆ε

1 and ∆ε
2 look in principle as in Section

4.2, but are a little more involved owing to the precise definition of the folding
and unfolding operators.

Step 4. Preparation of the Gronwall estimate and the approximation errors ∆ε
3 and

∆ε
4: As in (4.13) & (4.17), we subtract the reformulated weak formulations of

(4.1Pε) and (4.4P0), derived in Step 2–3, and we precise the error terms ∆ε
3

and ∆ε
4, which contain the approximation errors Dε  D and fε  F .

Step 5. Estimation of W ε via Gronwall’s lemma as in (4.13).
Step 6. Control of the error terms ∆ε

i and the strong two-scale convergence (4.3a).
Step 7. Derivation of the remaining convergences (4.3b)–(4.3c).

Proof of Theorem 4.1. Step 1. Extraction of weakly convergent subsequ-
ences. The uniform bound (4.10) implies ‖vε‖C1([0,T ];H) + ‖ε∇vε‖H1(0,T ;H) ≤ C.
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Using the Arzelà-Ascoli theorem together with Theorem 3.5(b), we find a subse-

quence ε′ of ε and a limit Ṽ ∈ C1([0, T ];H) ∩H1(0, T ;X) such that

∀ t ∈ [0, T ] : vε
′
(t)

2w−−⇀Ṽ (t) and ε′∇vε
′
(t)

2w−−⇀∇yṼ (t) in H. (4.20)

For the subsequent steps we resort to working with the above extracted subsequence,
labeling it by ε again for notational simplicity.

Step 2. Reformulation of (4.1Pε) and specification of the folding mismatch
∆ε

1. Let t ∈ [0, T ] be arbitrary but fixed and let all upcoming equations hold for all
t ∈ [0, T ], if not stated otherwise. The weak formulation of (4.1Pε) reads∫

Ω

vεt · ϕdx =

∫
Ω

−Dεε∇vε : ε∇ϕ+ fε(vε) · ϕdx for all ϕ ∈ Xε. (4.21)

Let V ∈ H1(0, T ;X) ∩H2(0, T ;X∗) be the unique weak solution of (4.4P0) and we
choose the test function ϕε = vε − Gε V ∈ Xε, according to Definition 3.7. Using
the identity Fε Tε = id|L2(Ω) and adding ±Fε V and ±Fε(∇yV ), we obtain∫

Ω

vεt · Fε(Tε vε−V ) dx =

∫
Ω

−Dεε∇vε : Fε [Tε(ε∇vε)−∇yV ]

+fε(vε) · Fε(Tε vε−V ) dx+ ∆ε
1 (4.22)

with the folding mismatch error

∆ε
1 :=

∫
Ω

−εDε∇vε : [Fε(∇yV )−ε∇(Gε V )] + [fε(vε)− vεt ] · (Fε V−Gε V ) dx.

Since Tε is a linear and bounded operator, it commutes with differentiation, i.e.
Tε(vεt ) = (Tε vε)t. Exploiting Fε′ = Tε, as well as Tε[Dεε∇vε] = Tε Dε Tε(ε∇vε),
Tε[fε(vε)] = Tε fε(Tε vε) and Tε(ε∇vε) = ∇y(Tε vε) (Theorem 3.2 and (3.3)), we
arrive at∫

Rd×Y

(Tε vε)t ·W ε dx dy =

∫
Rd×Y

Tε fε(Tε vε) ·W ε − TεDε∇y(Tε vε) : ∇yW ε dx dy + ∆ε
1. (4.23)

Hence, the reformulation of (4.1Pε) is completed, and (4.15) is established with

Bε(V,W ) =

∫
Rd×Y

Tε Dε∇yV : ∇yW dxdy.

Step 3. Specification of the incompatibility error ∆ε
2. Next we consider

the weak formulation of the effective equation (4.4P0)∫
Ω×Y

Vt · Φ dx dy =

∫
Ω×Y

−D∇yV : ∇yΦ + F (V ) · Φ dxdy for all Φ ∈ X. (4.24)

We aim to derive (4.16), but we observe a discrepancy in the domains of integration
in (4.23) and (4.24). Therefore we reformulate (4.24) by extending all the functions
by 0 outside of Ω, i.e.∫

Rd×Y
V ex
t · Φ dxdy =

∫
Rd×Y

−Dex∇yV ex : ∇yΦ + F ex(V ex) · Φ dxdy

for all Φ ∈ L2(Rd;H1(Y)). (4.25)
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Although Φ = Tε vε is not admissible in (4.25) because of the Tε-property (1.7), each
integral expression in (4.25), considered on its own, is well-defined for Φ = Tε vε.
Because of this, we test (4.25) with Φ = V ex only and then add and subtract the
missing terms −V ex

t · Tε vε + D∇yV ex : ∇y(Tε vε) − F ex(V ex) · vε at the cost of
creating the error ∆ε

2:

−
∫
Rd×Y

V ex
t ·W ε dxdy =

∫
Rd×Y

V ex
t · V ex dxdy −

∫
Rd×Y

V ex
t · Tε vε dxdy

=

∫
Rd×Y

−Dex∇yV ex : ∇yV ex + F ex(V ex) · V ex dx dy −
∫
Rd×Y

V ex
t · Tε vε dxdy

=

∫
Rd×Y

Dex∇yV ex : ∇yW ε − F ex(V ex) ·W ε dxdy + ∆ε
2, (4.26)

where the incompatibility error is given by

∆ε
2 :=

∫
Rd×Y

−Dex∇yV ex : ∇y(Tε vε) + [F ex(V ex)− V ex
t ] · Tε vε dxdy.

Thus (4.16) is established.

Step 4. Preparation of the Gronwall estimate and the approximation
errors ∆ε

3 and ∆ε
4. For applying Gronwall’s lemma at the end of Step 5, we now

prepare the estimate (4.13). We begin by adding (4.23) and (4.26), as suggested in
(4.14) & (4.17),

1

2

d

dt
‖W ε‖2L2(Rd×Y) =

∫
Rd×Y

W ε
t ·W ε dxdy =

∫
Rd×Y

(Tε vε)t ·W ε − V ex
t ·W ε dxdy

=

∫
Rd×Y

−Tε Dε∇y(Tε vε) : ∇yW ε + Tε fε(Tε vε) ·W ε dxdy + ∆ε
1

+

∫
Rd×Y

Dex∇yV ex : ∇yW ε − F ex(V ex) ·W ε dx dy + ∆ε
2. (4.27)

Rewriting the gradient terms via

− TεDε∇y(Tε vε) : ∇yW ε + Dex∇yV ex : ∇yW ε

= −Tε Dε∇yW ε : ∇yW ε + (Dex − Tε Dε)∇yV ex : ∇yW ε,

equation (4.27) takes the form

1

2

d

dt
‖W ε‖2L2(Rd×Y)

=

∫
Rd×Y

−Tε Dε∇yW ε : ∇yW ε + Tε fε(Tε vε) ·W ε − F ex(V ex) ·W ε dx dy

+ ∆ε
1 + ∆ε

2 + ∆ε
3, (4.28)

where ∆ε
3 :=

∫
Rd×Y

(Dex − TεDε)∇yV ex : ∇yW ε dxdy.

Analogously we rearrange the reaction terms in (4.28) via

Tε fε(Tε vε) ·W ε − F ex(V ex) ·W ε

= [Tε fε(Tε vε)− Tε fε(V ex)] ·W ε + [Tε fε(V ex)− F ex(V ex)] ·W ε. (4.29)
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Moreover we define the approximation error ∆ε
4 for fε via

∆ε
4 :=

∫
Rd×Y

[Tε fε(V ex)− F ex(V ex)] ·W ε dx dy and ∆ε :=

4∑
i=1

∆ε
i .

Hence, ∆ε(t) depends implicitly on t via the functions fε, F and the solutions
vε, V .

Step 5. Estimating W ε in terms of ∆ε via Gronwall’s lemma. Using (4.29),
the ellipticity of Dε and the global Lipschitz continuity of fε in (4.28) yield for all
t ∈ [0, T ]

1

2

d

dt
‖W ε(t)‖2L2(Rd×Y)

=

∫
Rd×Y
−Tε Dε∇yW ε(t):∇yW ε(t) + [Tε fε(t, Tε vε(t))−Tε fε(t, V ex(t))] ·W ε(t) dx dy

+ ∆ε(t)

≤ −µ‖∇yW ε(t)‖2L2(Rd×Y) + L‖W ε(t)‖2L2(Rd×Y) + ∆ε(t)

≤ L‖W ε(t)‖2L2(Rd×Y) + ∆ε(t). (4.30)

Applying Gronwall’s lemma we obtain, for all t ∈ [0, T ], the estimate

‖W ε(t)‖2L2(Rd×Y) ≤ e2Lt
(
‖W ε(0)‖2L2(Rd×Y) + 2

∫ t

0

∆ε(s) ds
)

≤ e2LT
(
‖W ε(0)‖2L2(Rd×Y) + 2

∫ T

0

∆ε(s) ds
)
. (4.31)

Step 6. Controlling the error terms ∆ε
j and the strong convergence (4.3a).

To show that the right-hand side in (4.31) vanishes as ε → 0, we provide an ε-
independent and integrable majorant for each ∆ε

i : [0, T ]→ [0,∞) and show further
that ∆ε

i (t)→ 0 for all t ∈ [0, T ] as ε→ 0.
For the folding mismatch error ∆ε

1 we apply Hölder’s inequality, the assumptions
on the given data (4.7Aε), and the uniform bound (4.10) so that we arrive at

|∆ε
1(t)| =

∣∣∣∣ ∫
Ω

−vεt (t) · (Fε V (t)−Gε V (t))− Dεε∇vε(t) : (Fε[∇yV (t)]−ε∇[Gε V (t)])

+ fε(t, vε(t)) · (Fε V (t)−Gε V (t)) dx dy

∣∣∣∣
≤ C(Cb) (‖Fε V (t)−Gε V (t)‖H + ‖Fε[∇yV (t)]−ε∇[Gε V (t)]‖H) .

By the a priori estimate (4.11) we find the uniform L∞–majorant |∆ε
1(t)| ≤ C(Cb).

Moreover, Theorem 3.9 guarantees the pointwise convergence ∆ε
1(t)

ε→0−−−→ 0 for all
t ∈ [0, T ].

For the incompatibility error ∆ε
2(t) the uniform bounds (4.10)-(4.11) provide an

L∞–majorant, whereas the pointwise convergence follows form the Tε-property of

recovered periodicity (1.7), since Ṽ (t) ∈ X obtained in (4.20) is an admissible test
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function for the weak solution V . Indeed, we have

∆ε
2(t) =∫
Rd×Y

−Dex∇yV ex(t) : ∇y(Tε vε(t)) + [F (t, V ex(t))− V ex
t (t)] · Tε vε(t) dxdy

ε→0−−−→
∫
Rd×Y

−Dex∇yV ex(t) : ∇yṼ ex(t) + [F ex(t, V ex(t))− V ex
t (t)] · Ṽ ex(t) dx dy

= 0,

since V solves (4.24).
With the same arguments we obtain L∞–majorants for the approximation errors

∆ε
3 and ∆ε

4. Moreover, Lemma 3.6(a&b) and (4.9Aε→0)1,2 yield

|∆ε
3(t)| =

∣∣∣∣∫
Rd×Y

(Dex − Tε Dε)∇yV ex(t) : ∇yW ε(t) dx dy

∣∣∣∣
≤ 2Cb‖(Dex − TεDε)∇yV ex(t)‖L2(Rd×Y)

ε→0−−−→ 0 and

|∆ε
4(t)| =

∣∣∣∣∫
Rd×Y

[Tε fε(t, V ex(t))− F ex(t, V ex(t))] ·W ε(t) dxdy

∣∣∣∣
≤ 2Cb‖ Tε fε(t, V ex(t))− F ex(t, V ex(t))‖L2(Rd×Y)

ε→0−−−→ 0 for all t ∈ [0, T ].

Since the dominated convergence yields
∫ T

0
|∆ε(t)|dt ε→0−−−→ 0 and (4.9Aε→0)3

implies ‖W ε(0)‖2L2(Rd×Y) = ‖ Tε vε0 − V ex
0 ‖2L2(Rd×Y)

ε→0−−−→ 0, we conclude

maxt∈[0,T ] ‖W ε(t)‖L2(Rd×Y)
ε→0−−−→ 0 and the strong convergence of the subsequence

extracted in (4.20) is established.
With the usual arguments, by considering another, different subsequence and

since V ∈ C0([0, T ];H) is the unique weak solution of (4.4P0), we conclude that

W ε(t)
2s−→ 0 in H uniformly for all t ∈ [0, T ], even for the whole sequence. Hence,

(4.3a) is proved.

Step 7. Proof of the remaining convergence results (4.3b)–(4.3c). Let
t ∈ [0, T ] be arbitrary but fixed. From (4.30) we obtain

µ‖∇yW ε(t)‖2L2(Rd×Y) ≤
∫
Rd×Y

TεDε∇yW ε(t) : ∇yW ε(t) dxdy

≤
∫
Rd×Y

−W ε
t (t) ·W ε(t) + [Tε fε(t, Tε vε(t))− Tε fε(t, V ex(t))] ·W ε(t) dxdy

+ ∆ε(t)

≤ 2Cb‖W ε(t)‖L2(Rd×Y) + L‖W ε(t)‖2L2(Rd×Y) + ∆ε(t)→ 0, (4.32)

where we have used ‖W ε
t (t)‖L2(Rd×Y) ≤ ‖vεt (t)‖H + ‖Vt(t)‖H ≤ 2Cb, (4.3a) and

∆ε(t)→ 0 pointwise for all t ∈ [0, T ]. Integrating (4.32) over (0, T ) yields ∇yW ε →
0 strongly in L2(0, T ;L2(Rd × Y)) and hence (4.3b).

It remains to prove vεt
2w−−⇀Vt in H = L2(0, T ;H). By the a priori bound (4.10) we

know that vεt is bounded in the Hilbert space H, and hence has a weakly convergent
subsequence with limit U . Choosing Φ ∈ C∞c ([0, T ];H), the definition of the weak
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time derivative gives

(U,Φ)H
ε→0←−−− (Tε(vεt ),Φ)H = ((Tε vε)t,Φ)H

= −(Tε vε,Φt)H
ε→0−−−→ −(V,Φt)H = (Vt,Φ)H.

Since Φ was arbitrary we conclude U = Vt and (4.3c) is established. Thus, the proof
of Theorem 4.1 is complete.

5. Homogenization of the coupled system. In this section we consider the
system of two coupled reaction-diffusion systems (5.1Pcp

ε ), where the coupling arises
via the reaction term fε = (fε1 , f

ε
2 ), whereas the diffusion tensor Dε has block

structure. We write (1.1Pcp
ε ) shortly in the form

wεt = (Dε∇wε) + fε(wε) in ΩT ,
0 = (Dε∇wε) · ~n on ΓT ,

wε(0) = wε0 in Ω.
(5.1Pcp

ε )

We are looking for solutions wε := (uε, vε) : ΩT → Rm1+m2 of (5.1Pcp
ε ), where the

diffusion tensor Dε : Ω→ R([m1+m2]×d)×([m1+m2]×d) is assumed to have the form

Dε(x) =

(
Dε1(x) 0

0 ε2Dε2(x)

)
with Dε1,Dε2 ∈M(Ω, µ,D∞). (5.2)

Hence the component vε diffuses much slower than the “classically” diffusing one
uε.

The main result of this section is Theorem 5.1, which states that wε converges
(for ε → 0) to a limit W that decomposes into a one-scale function u and a two-
scale function V , i.e. W (t, x, y) = (u(t, x), V (t, x, y)). We prove that W solves the
coupled effective system

Wt =

(
div(Deff∇u)

divy(D2∇yV )

)
+

(
feff(W )
F2(W )

)
in ΩT × Y,

0 = (Deff∇u) · ~n on ΓT ,
W (0) = W0 in Ω,

(5.3Pcp
0 )

where the effective diffusion tensor Deff and the effective u-reaction feff only depend
on the macroscopic variable x ∈ Ω, while the diffusion tensor D2 and the V -reaction
F2 depend on the two-scale variables (x, y) ∈ Ω × Y, see (5.5A0) and (5.6)-(5.8)
below.

5.1. Notation and existence for the coupled and effective systems. Fol-
lowing the notations (2.2) and (4.5)–(4.6), we define the function spaces

Xε := X ×Xε, X := X × X, H := H ×H, and H := H ×H (5.4)

and we obtain the two evolution triples Xε ⊂ H ⊂ X
∗
ε and X ⊂ H ⊂ X∗. In the

spirit of Section 4.1, we impose the following assumptions on the data of (5.1Pcp
ε )-

(5.3Pcp
0 ):

(4.7Aε) holds for Dεi in (5.2), fε := (fε1 , f
ε
2 ), and wε0 = (uε0, v

ε
0)

satisfies ‖ div(Dε1∇uε0)‖H + ‖ div(ε2Dε2∇vε0)‖H + ‖wε0‖H ≤ C;
(5.5Aε)

(4.8A0) holds for Di : Ω× Y → R(mi×d)×(mi×d), i = 1, 2,
F := (F1, F2) : [0, T ]× Ω× Y × Rm1+m2 → Rm1+m2 and W0;

(5.5A0)

(4.9Aε→0) holds for Dεi  Di, fεi  Fi, i = 1, 2, and wε0  W0. (5.5Aε→0)
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The effective diffusion tensor Deff and the effective reaction term feff of the
classical equation (5.3Pcp

0 )2 are given as follows. The function-to-function map
feff : [0, T ]× Ω× Rm1 × L2(Y;Rm2)→ Rm1 is defined as

feff(t, x, u, Z) :=

∫
Y
F1(t, x, y, u, Z(y)) dy. (5.6)

The effective diffusion tensor Deff : Ω → R(m1×d)×(m1×d) is given componentwise
via the classical homogenization formula, see e.g. [2, Eq. (2.20)], [1, Eq. (2.6)-(2.7)],
[26, Eq. (46)-(47)],

Deff(x)ijkl :=

∫
Y
D1(x, y)ijkl +

d∑
r=1

D1(x, y)ijkr · ∂yrz(y)kl dy, (5.7)

for i, k = 1, ...,m1, j, l = 1, ..., d, where the so-called correctors zij ∈ H1
av(Y) solve

the local problem in the weak sense:

divy

(
D1(x, y)ijkl +

d∑
r=1

D1(x, y)ijkr · ∂yrz(y)kl

)
= 0 in Y for a.a. x ∈ Ω. (5.8)

It is easy to check that feff ∈ F(Ω, L, C∞) and Deff again satisfies Deff ∈M(Ω, µ,
D2
∞
µ ),

see e.g. [8, Thm. 13.4] or [37, Thm. 2], since Dε1 in particular H-converges to Deff.
For given T > 0 and all ε ∈ (0, 1), Theorem 2.1 and Proposition 2.2 yield the

existence of unique weak solutions wε ∈ H1(0, T ;Xε) ∩ H2(0, T ;X
∗
ε) of (5.1Pcp

ε )

and W ∈ H1(0, T ;X) ∩H2(0, T ;X∗) of (5.3Pcp
0 ) with

∃Cb ≥ 0 : ‖wε‖H1(0,T ;Xε)∩H2(0,T ;X
∗
ε) + ‖W‖H1(0,T ;X)∩H2(0,T ;X∗) ≤ Cb. (5.9)

Note that this improved time-regularity is valid in the weighted space Xε, i.e.
‖wε‖2

Xε
= ‖wε‖2L2(Ω) + ‖∇uε‖2L2(Ω) + ε2‖∇vε‖2L2(Ω).

5.2. Convergence of the coupled system. Finally we present the convergence
result for the coupled system involving the concentrations u(t, x) ∈ Rm1 for the
classical diffusive species and the concentrations v(t, x) ∈ Rm2 for the slow diffusive
species.

Theorem 5.1. Let the assumptions (5.5Aε), (5.5A0) and (5.5Aε→0) be satisfied.

The sequence of weak solutions wε = (uε, vε) ∈ H1(0, T ;Xε) ∩ H2(0, T ;X
∗
ε) of

(5.1Pcp
ε ) converges to the weak solution (u, V ) ∈ H1(0, T ;X) ∩ H2(0, T ;X∗) of

(5.3Pcp
0 ) in the following sense: There exists a function U ∈ L2(0, T ;L2(Ω;H1

av(Y)))
such that

uε ⇀ u in H1(0, T ;X), vε(t)
2s−→V (t) in H for all t ∈ [0, T ],

∇uε 2w−−⇀∇u+∇yU in L2(0, T ;H), ε∇vε(t) 2s−→∇yV (t) in L2(0, T ;H),

uεt ⇀ ut in H1(0, T ;X∗), vεt
2w−−⇀Vt in L2(0, T ;H).

(5.10)

Moreover, one can prove ∇uε 2s−→∇u +∇yU in L2(0, T ;H) in a similar manner

as ε∇vε(t) 2s−→∇yV (t) in L2(0, T ;H) is proved, by defining another gradient folding

operator G̃ε : X × X→ X, cf. [22, 35].
The proof relies heavily on Theorem 4.1 and the well-known techniques from the

classical theory of non-degenerating two-scale homogenization. In order to give a
rigorous derivation of (5.3Pcp

0 ), it is essential to know that vε converges strongly in
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the two-scale sense, otherwise one cannot pass to the limit with the term fε1 (uε, vε).
Hence, we want to use the improved time-regularity (Proposition 2.2) for vε in order
to apply Theorem 4.1. Therefore we need in particular uεt ∈ X∗ε ⊂ X∗, which is
satisfied for uεt ∈ H ⊂ X∗ε as stated in (5.9).

Proof of Theorem 5.1. Let wε be the weak solution of (5.1Pcp
ε ) satisfying (5.9).

Applying Banach’s selection principle yields the existence of a function u ∈ H1(0, T ;
X) ∩H2(0, T ;X∗) such that uε ⇀ u in H1(0, T ;X) and uεt ⇀ ut in H1(0, T ;X∗)
hold true, up to a subsequence. Moreover, Theorem 3.5(c) yields U ∈ L2(0, T ;L2(Ω;

H1
av(Y))) such that ∇uε 2w−−⇀∇u + ∇yU in L2(0, T ;H), up to a subsequence. In

particular, the compact embeddings X ⊂ H and H1(0, T ;X) ⊂ Cα([0, T ];X), for
α ∈ (0, 1

2 ), together with Proposition 3.4(d) yield

∀ t ∈ [0, T ] : uε(t)→ u(t) in H =⇒ uε(t)
2s−→u(t) in H. (5.11)

Testing (5.1Pcp
ε ) with functions of the kind (ϕ, 0) ∈ Xε or (0, ϕ) ∈ Xε, we can

consider the first, or “classical”, equation (5.1Pcp
ε )1 separated from the degenerating

second one (5.1Pcp
ε )2.

Step 1. Convergence of the slow diffusive variable vε. In view of the notation
from Section 4, we set gε(t, x,A) := fε2 (t, x, uε(t, x), A), F (t, x, y, A) := F2(t, x, y,

u(t, x), A) for A ∈ Rm2 and H̃ := L2(Rd×Y) for brevity. Then Lemma 3.6(b) with
U(x, y) = u(x) and the strong convergence (5.11) give

‖ Tε[gε(A)]− F ex(A)‖C0([0,T ];H̃)

≤ ‖Tε fε2 (Tε uε, A)− Tε fε2 (u,A)‖C0([0,T ];H̃) + ‖ Tε fε2 (u,A)− F ex
2 (u,A)‖C0([0,T ];H̃)

≤ L‖ Tε uε − uex‖C0([0,T ];H̃) + ‖ Tε fε2 (u,A)− F ex
2 (u,A)‖C0([0,T ];H̃) −→ 0, (5.12)

which implies gε(t, ·, A)
2s−→F ex(t, ·, ·, A) in H for all (t, A) ∈ [0, T ]×Rm2 . Thus we

can apply Theorem 4.1 to the degenerating equation vεt = div(ε2Dε2∇vε) + gε(vε)

in ΩT and we obtain vε(t)
2s−→V (t) in H for all t ∈ [0, T ], where V solves

Vt = divy(D2∇yV ) + F (V ) in ΩT × Y (5.13)

with F (V ) = F2(u, V ). The convergences ε∇vε 2s−→∇yV and vεt
2w−−⇀Vt in L2(0, T ;H)

follow from (4.3). Hence (5.10) is shown, up to a subsequence, and it is left to prove
that the limit W = (u, V ), in particular u, solves (5.3Pcp

0 ).

Step 2. “Classical” homogenization. We begin with considering the conver-
gence of the reaction term fε1 . Arguing as in (5.12) gives

‖ Tε[fε1 (uε, vε)]− F ex
1 (u, V )‖C0([0,T ];H̃)

≤ L‖(Tε uε, Tε vε)− (u, V )ex‖C0([0,T ];H̃) + ‖ Tε fε1 (u, V )− F ex
1 (u, V )‖C0([0,T ];H̃)

→ 0. (5.14)

From (5.14) and Proposition 3.4(e), we infer fε1 (uε, vε) ⇀ feff(u, V ) in L2(0, T ;H).
We derive (5.3Pcp

0 )1 by exploiting the convergences in (5.10), up to subsequences so
far, and by choosing two different test functions, one after another.
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(1) For ϕ ∈ X, we clearly have∇ϕ 2s−→∇ϕ in H. Testing (5.1Pcp
ε ) with (ϕ, 0) ∈ Xε

and using formula (3.4) gives∫
Ω

uεt · ϕdx =

∫
Ω

−Dε1∇uε : ∇ϕ+ fε1 (uε, vε) · ϕdx

⇐⇒
∫

Ω

uεt · ϕdx =

∫
Rd×Y

−TεDε1 Tε(∇uε) : Tε(∇ϕ) dx dy +

∫
Ω

fε1 (uε, vε) · ϕdx

ε→0−−−→
∫

Ω

ut · ϕdx =

∫
Ω

−
(∫
Y
D1[∇u+∇yU ] dy

)
: ∇ϕ+ feff(u, V ) · ϕdx (5.15)

a.e. in (0, T ). For the passage
ε→0−−−→, we have applied Lemma 3.6(a) to each compo-

nent of (Tε Dε1) Tε(∇uε) : Tε(∇ϕ). The strong formulation of (5.15) then reads

ut = div

(∫
Y
D1[∇u+∇yU ] dy

)
+ feff(u, V ) in ΩT , (5.16)

where
∫
Y D1[∇u +∇yU ] dy = Deff∇u with Deff from (5.7) will be deduced in part

(3) below. Note that (5.16) already resembles the structure of (5.3Pcp
0 )1.

(2) Secondly we test (5.1Pcp
ε ) with (ϕε, 0) ∈ Xε for ϕε(x) := εϕ1(x)ϕ2(xε ),

where ϕ1 ∈ C∞(Ω) and ϕ2 ∈ C∞(Y). Notice that ∇ϕε(x) = ε∇ϕ1(x)ϕ2(xε ) +

ϕ1(x)∇yϕ2(xε ) as well as (ϕ2( ·ε ),∇ϕ2( ·ε ))
2s−→(ϕ2,∇yϕ2) in X since Tε[ϕ(xε )] = ϕ(y).

Thus (ϕε,∇ϕε) 2s−→(0, ϕ1∇yϕ2) in X and we proceed as in (5.15), which gives

0 =

∫
Ω×Y

D1[∇u+∇yU ] : ϕ1∇yϕ2 dx dy.

Applying the fundamental lemma in the calculus of variations twice and using in-
tegration by parts once, we arrive at the local problem

divy(D1[∇u+∇yU ]) = 0 in ΩT × Y, (5.17)

which is an elliptic PDE on Y and ΩT may be considered as a set of parameters.
With the three equations (5.13), (5.16), and (5.17), the functions u, U , and V are
uniquely determined (in the sense of weak solutions).

(3) In order to derive (5.7)–(5.8), we use the ansatz of separation of variables

Ui(x, y) = ∇ui(x) · zi(y) =
∑d
k=1 ∂xk

ui(x) · zik(y) for zik ∈ H1
av(Y), i = 1, ...,m1,

k = 1, ..., d (cf. [26, Eq. (48)]). Let us assume we can write Deff∇u in the form

[Deff∇u] (x) =

∫
Y
D(x, y) [∇u(x) +∇yU(x, y)] dy. (5.18)

Inserting ∇yjUi(x, y) = ∇ui(x) · ∂yjzi(y), j = 1, ..., d, in (5.17)-(5.18) yields (5.7)-
(5.8).

Since the limit W solves (5.3Pcp
0 ) uniquely, the whole sequence converges in (5.10)

and the identity in (5.18) is justified.

5.3. Discussion of the assumptions. For given D ∈ M(Ω× Y, µ,D∞) and F ∈
F(Ω×Y, L, C∞), the natural choice for data satisfying (4.7Aε)-(4.9Aε→0) is to set,

Dε := Fε Dex and fε(t, ·, A) := Fε F ex(t, ·, ·, A) for all (t, A) ∈ [0, T ]× Rm. (5.19)

Clearly Dε ∈ M(Ω, µ,D∞) and fε ∈ F(Ω, L, C∞). It remains to verify (4.9Aε→0)

for the choice (5.19). Proposition 3.4(c) implies directly fε(t, ·, A)
2s−→F (t, ·, ·, A) in

H for all (t, A) ∈ [0, T ]×Rm. The pointwise convergence TεDε → Dex a.e. in Rd×Y
is proved in the following result.
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Proposition 5.2. For D ∈ L∞(Ω × Y), we have Tε Fε Dex(x, y) → Dex(x, y) for
a.a. (x, y) ∈ Rd × Y.

Proof. Recalling the notations introduced in Section 3.1, we set Aε := Ω̂ε × Y
and Bε := {x ∈ Rd | (Nε(x) + εY ) ∩ Ω = ∅} × Y. Let N2εdiam(Y )(Γ) denote the
2εdiam(Y )-neighborhood of the boundary Γ, then we set Nε := N2εdiam(Y )(Γ)× Y
and it holds Aε ∩Bε = ∅ and Aε ∪Nε ∪Bε = Rd × Y.

Let an arbitrary point (x, y) ∈ Rd × Y be given. Then there exists ε0 > 0 such
that (x, y) /∈ Nε for all ε ≤ ε0, see (3.1). Therefore it holds either (1) (x, y) ∈ Aε or
(2) (x, y) ∈ Bε.

Ad (1). For (x, y) ∈ Aε, the Lebesgue-Besicovitch differentiation theorem, cf.
[15, Thm. 1 p. 43], yields

(Tε Dε)(x, y) = (Tε Fε Dex)(x, y) =
1

εd

∫
Nε(x)+εY

D(ξ, y) dξ
ε→0−−−→ D(x, y).

Ad (2). If (x, y) ∈ Bε, then (Tε Dε)(x, y) = 0 = Dex(x, y) and the proof is
finished.

The choice of the initial values vε0 and V0 is more involved, cf. (2.12), and is
elaborated in the following proposition.

Proposition 5.3. For arbitrary G ∈ H given, let V0 be the unique weak solution of

divy(D∇yV0)− V0 = G in Ω× Y. (5.20)

Then there exists a sequence of functions (vε0)ε bounded in Xε such that vε0
2s−→V0

in X and

div(ε2Dε∇vε0)− vε0 = FεGex in Ω. (5.21)

Recalling (4.18), we have in particular that AV0 and Aεvε0 are uniformly bounded
in H and H, respectively. Hence choosing V0 and vε0 as in (5.20) and (5.21), re-
spectively, the assumption (4.9Aε→0) is satisfied. An obvious choice for G ∈ H is
G = F (V0).

Proof. It is well-known in the literature, cf. [1, 44, 22, 31], that the sequence (vε0)ε

of solutions of (5.21) are uniformly bounded in Xε and that vε0
2w−−⇀V0 in X, where

V0 solves (5.20). The strong two-scale convergence follows from the estimate (cf.
[22, Thm. 4.1 & Rem. 5.1])

min{µ, 1}‖ Tε vε0 − V ex
0 ‖2L2(Rd;H1(Y ))

≤
∫
Rd×Y

Tε Dε∇y(Tε vε0 − V ex
0 ) : ∇y(Tε vε0 − V ex

0 ) + (Tε vε0 − V ex
0 )2 dxdy

=

∫
Rd×Y

{
Tε Dε∇y(Tε vε0) : ∇y(Tε vε0) + (Tε vε0)2︸ ︷︷ ︸

= Tε FεGex·Tε vε0

+Dex∇yV ex
0 : ∇yV ex

0 + (V ex
0 )2︸ ︷︷ ︸

=Gex·V ex
0

− Tε Dε∇y(Tε vε0) : ∇yV ex
0 − Tε Dε∇yV ex

0 : ∇y(Tε vε0)− 2 Tε vε0 · V ex
0

+ (Tε Dε − Dex)∇yV ex
0 : ∇yV ex

0

}
dxdy

ε→0−−−→
∫
Rd×Y

2Gex · V ex
0 − 2Dex∇yV ex

0 : ∇yV ex
0 − 2(V ex

0 )2 + 0 dx dy = 0.
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Remark 5.4 (Connection to [11]). We assume that the solution of (4.4P0) is
smooth, i.e. V ∈ C1(Ω × Y), and we set [V ]ε(x) := V (x, xε ). Then one can easily
show that ‖vε − [V ]ε‖L2(Ω) = ‖vε −Fε V ex‖L2(Ω) +O(

√
ε) and hence

‖vε − [V ]ε‖L2(Ω) ≤ ‖Tε vε − V ex‖L2(Rd×Y) + ‖V ex − Tε Fε V ex‖L2(Rd×Y) +O(
√
ε)

ε→0−−−→ 0,

by Theorem 4.1 and Proposition 3.4(c). Under suitable smoothness assumptions,
our method reproduces the convergence rates in [11], see [46].
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