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Abstract. We address the exponential consensus problem for the linearized

Vicsek model which was introduced by Jadbabaie et al. in [10] under a joint

rooted leadership via the (sp) matrices. This model deals with self-propelled
particles moving in the plane with the same speed but different headings in-

teracting with neighboring agents by a linear relaxation rule. When the time-

varying switching topology of the neighbor graph satisfies some weak connec-
tivity condition, namely, “joint connectivity condition” in the spatial-temporal

domain, it is well known that the consensus for the linearized Vicsek model

can be achieved asymptotically. In this paper, we extend the theory of (sp)
matrices and apply it to revisit this asymptotic consensus problem and give an

explicit estimate on the maximum Lyapunov exponent, when the underlying
network topology satisfies the joint rooted leadership which is directed and

non-symmetric.

1. Introduction. Consensus problem on dynamic networks is an active topic in
many different disciplines such as computer sciences, communications and control
theory due to its engineering applications in the formation control of robots, un-
manned aerial vehicles, underwater gliders and sensor networks etc. In [15], Vicsek
et al. proposed a simple discrete-time multi-agent model consisting of self-propelled
particles moving in the plane with the same speed but different headings. The agents
interact with neighboring agents within a finite range to update their heading angles
through a nonlinear coupling rule. By numerical simulations, they demonstrated
that the finite range interaction rule can lead to consensus for their headings, de-
spite the absence of centralized coordination and the fact that the neighbor graph
changes with time. An analytic study on the original Vicsek model was given in
[13]. In 2003, Jadbabaie et al. [10] studied a variant version of the Vicsek model,
where the coupling between the test particle and its neighboring particles is given
in a linearized form. They gave the first mathematical proof for the emergence of
asymptotic consensus for a large class of switching signals fulfilling some infinity
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conditions on the connectivity of the undirected neighbor graph time series. Af-
ter its publication, it has attracted lots of attention from various communities, in
particular, it brought attention to the authors of [5] in which the Cucker-Smale
flocking model was proposed and its flocking estimates were studied in terms of
initial configurations and spatial decay rate of communication weights.

The approach in [10] is closely related to undirected neighbor graph and switching
systems. In [7], Gao et al. pointed out that the proof of the consensus result
for leader-following case in [10] is questionable and gave an amendment with an
extension to directed graphs. Other considerations of this model appear in [9]. In
this paper, we revisit the consensus problem for the linearized Vicsek model by
improving the theory of (sp) matrices (where the adjective (sp) was coined from
“simple”) and its switching stability theory [17]. Moreover, we also give an explicit
estimate for the Lyapunov exponent for the linearized Vicsek model under “joint
rooted leadership” across time intervals.

Recently, the idea of (sp) matrices has been applied to the discrete-time Cucker-
Smale consensus model to analyze its flocking behavior [11, 12] and was further
extended to the study of the model in continuous-time [8] in a large coupling limit.
However, for the general continuous-time Cucker-Smale model under rooted lead-
ership, the asymptotic consensus has not been verified analytically, although the
numerical simulations suggest asymptotic consensus.

The paper after this introduction is organized as follows. In Section 2, we present
the linearized Vicsek model under joint rooted leadership and some related results
about (sp) matrices. In Section 3, we give our main result and its proof. Finally,
Section 4 is devoted to the summary of our result.

2. The consensus model and (sp) matrices. In this section, we recall the lin-
earized Vicsek model and its graph theoretical interpretation, and present some new
results on the theory of (sp) matrices for a later use.

2.1. The linearized Vicsek model for consensus. In this paper we will apply
the theory of (sp) matrices to the linearized Vicsek model with a leader-follower
topology. In this case, the system consists of N autonomous follower agents, labeled
by 1, 2, . . . , N , plus a leader agent, labeled by 0. The leader moves independently
with a fixed heading, say θ0, whereas the headings of followers are updated such
that they approach to the local average headings in their neighbor set. Here j is
a neighbor of i means that the agent i is influenced by the agent j, i.e., j sends
some information to i. In this situation, the heading angles θi, i = 0, 1, . . . , N are
governed by the following difference system:

θ0(t+ 1) = θ0(t), t ∈ N,
θi(t+ 1) = θi(t) + ui(t), i = 1, 2, . . . , N,

ui(t) :=
1

1 + ni(t) + bi(t)

bi(t)(θ0(t)− θi(t)) +
∑

0 6=j∈Ni(t)

(θj(t)− θi(t))

 ,
bi(t) :=

{
1, 0 ∈ Ni(t),
0, otherwise,

(1)

where Ni(t) is the agent i’s neighbor set and ni(t) is its cardinality.
Note that the heading of the leader agent is fixed, i.e., θ0(t) = θ0(0) =: θ0 and

the feedback control term ui(t) is defined to push the i-th agent’s heading angles
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to move toward the local heading average of its neighbor set. Thus, to study the

consensus, we can consider the fluctuation θ̂i := θi− θ0 instead of the original state
θi. As we shall see it in the sequel, the consensus problem is linked to (sp) matrices.

We next review a graph theoretic interpretation of the Vicsek model (1) from
the view point of a directed graph (or digraph) without self-loops as in [10]. The
graph Ḡ = (V̄, Ē) associated with the system (1) is defined as follows:

V̄ := {0, 1, . . . , N}, Ē :=
{

(j, i) ∈ V̄ × V̄ : i 6= j, j is a neighbor of i
}
.

The graph Ḡ can be regarded as the information flow chart of the network structure,
so we write

j → i ⇐⇒ (j, i) ∈ Ē .
A directed path from j to i means a sequence of distinct arcs of the form j → k1 →
k2 → · · · → kn → i. In the sequel we use the symbol I to denote a set indexing all
such digraphs Ḡp = (V̄p, Ēp). For p ∈ I, we use Gp = (Vp, Ep) to denote the proper
subgraph of Ḡp by deleting vertex 0 and all edges issued from the vertex 0. Next
we introduce three classes of matrices associated to the digraphs Gp and Ḡp:
(a) Ap: the adjacency matrix of Gp, i.e.,

(Ap)ij =

 1, j 6= i, (j, i) ∈ Ep,
0, j 6= i, (j, i) /∈ Ep,
0, j = i.

(b) Dp: the diagonal matrix of valences of Gp, i.e., (Dp)ii =
∑N
j=1(Ap)ij .

(c) Bp: N ×N diagonal matrix such that

(Bp)ii :=

{
1, (0, i) ∈ Ēp,
0, (0, i) /∈ Ēp.

The adjacency and valence matrices of the full digraph Ḡp can be defined similarly.
Using these notations, system (1) can be written as a compact form:

θ(t+ 1) =
(
I +Dσ(t) +Bσ(t)

)−1 (
(I +Aσ(t))θ(t) +Bσ(t)1θ0

)
, (2)

where θ = (θ1, θ2, . . . , θN )>, 1 = (1, 1, . . . , 1)> ∈ RN and σ : N → I is a switching
signal. Consider the fluctuation vector

θ̂(t) := θ(t)− θ01.

Then the fluctuation θ̂ satisfies

θ̂(t+ 1) = Fσ(t)θ̂(t), (3)

which gives a compact form for the fluctuation, where Fp is given by

Fp :=
(
I +Dp +Bp

)−1
(I +Ap), p ∈ I. (4)

Lemma 2.1. The matrix Fp in (4) has the following properties:

(1) Fp is a nonnegative matrix, and (Fp)ij > 0 if and only if i = j or (j, i) ∈ Ep;
(2)

∑N
j=1(Fp)ij ≤ 1, and

∑N
j=1(Fp)ij < 1 if and only if (0, i) ∈ Ēp.

Proof. (1) Since the matrices Dp and Bp are diagonal matrices with nonnegative

elements, the matrix
(
I +Dp +Bp

)−1
is a diagonal matrix with positive diagonals.

This means that the matrices Fp and I + Ap have the same sign pattern, i.e.,
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(Fp)ij > 0 (= 0) ⇐⇒ (I +Ap)ij > 0 (= 0). On the other hand, the matrix I +Ap
is a nonnegative matrix with positive diagonals and for i 6= j,

(I +Ap)ij > 0 ⇐⇒ (Ap)ij > 0 ⇐⇒ (j, i) ∈ Ep.
Therefore, we conclude the property (I).

(2) First of all, we notice that
(
I+Dp+Bp

)−1
is a diagonal matrix with positive

diagonals given by(
(I +Dp +Bp)

−1
)
ii

=
1

1 + (Bp)ii +
∑N
j=1(Ap)ij

.

Therefore, we have

N∑
j=1

(Fp)ij =
(
(I +Dp +Bp)

−1
)
ii

 N∑
j=1

(
I +Ap

)
ij


=

1 +
∑N
j=1(Ap)ij

1 + (Bp)ii +
∑N
j=1(Ap)ij

.

If (0, i) ∈ Ēp, then we have

(Bp)ii = 1 and

N∑
j=1

(Fp)ij < 1.

If (0, i) /∈ Ēp, then we have

(Bp)ii = 0 and

N∑
j=1

(Fp)ij = 1.

Remark 1. (1) Because the updating rule (1) or (2) is given by the averaging
algorithm, we have the following observations:

(i) For any i = j or (j, i) ∈ Ep;, we have (Fp)ij ≥ 1
N+1 .

(ii) For any i with (0, i) ∈ Ēp, we have
∑N
j=1(Fp)ij ≤ N

N+1 .

(2) Lemma 2.1 implies that the updating rule of the fluctuation is given by sub-
stochastic matrices, i.e., nonnegative matrices with row sum less than or equal to
1. We refer to [17] and references therein for brief introduction to this kind of
matrices. In literature [3, 4], the consensus problem was studied via the theory
of stochastic matrices since the updating rule of the (original) state variables, f or
example, the variables θ0, θ1, . . . , θN in system (1), can be described by stochastic
matrices, i.e., nonnegative matrices with rows sum to 1. In this work, we will focus
on the fluctuation and employ the (sp) matrices, a special class of sub-stochastic
matrices, to investigate the consensus problem for system (1) with a leader-follower
structure.

For an undirected graph with bidirectional information exchange [10], one says
that the follower agents 1, 2, . . . , N are linked to the leader 0 across an interval [t, τ)
(t, τ ∈ N, t < τ) if the collection of undirected graphs

{
Ḡσ(t), Ḡσ(t+1), . . . , Ḡσ(τ−1)

}
encountered along the time interval is jointly connected, i.e., the union graph
Ḡσ(t)

⋃
Ḡσ(t+1)

⋃
· · ·
⋃
Ḡσ(τ−1) is connected. In the framework of digraphs, the con-

cept of “joint rooted leadership” is given as follows.
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Definition 2.2 (Joint rooted leadership). The system (1) is under joint rooted
leadership across the time interval [t, τ) if the agent 0 does not have incoming path
from others, whereas each agent in {1, 2, . . . , N} has a directed path from 0 in the
union graph of Ḡσ(t), Ḡσ(t+1), . . . , Ḡσ(τ−1).

Note that the union graph topology is exactly under rooted leadership in the
sense of [8, 12]. As shown in [12], the rooted leadership structure is closely related
to an (sp) matrix which will be presented in the next subsection (see Definition
2.3).

2.2. Properties of (sp) matrices. In this subsection, we will present some theory
of (sp) matrices independently of Vicsek model. Actually, the idea of (sp) matrices
has been applied to the Cucker-Smale consensus model with leader-follower inter-
action topologies [8, 11, 12]. Thus, this theory is not only limited to the consensus
problem of Vicsek model. For the readers’ convenience, we next give some back-
grounds of (sp) matrices and related results.

In 2007, Xue et al. introduced a subclass of nonnegative matrices, so called
(sp) matrices, by describing the distribution of non-zero elements. For the original
definition of an (sp) matrix, please refer to [16, Definition 2.1]. The motivation to
introduce (sp) matrices is to characterize a class of asymptotically stable discrete-
time linear systems given by a sub-stochastic matrix, i.e.,

A ∈ S :=

{
(aij) ∈ RN×N : aij ≥ 0, i, j = 1, 2, . . . , N,

N∑
k=1

aik ≤ 1

}
.

In [17], an alternative definition for the (sp) matrix was given in the terminology
of graphs, which appears rather simple. It is known that any nonnegative square
matrix of size N , say A = (aij), can be associated with some weighted digraph
(see [6]) with vertices 1, 2, . . . , N . The graph is defined so that (j, i) is a directed
arc from j to i if and only if aij > 0. Then the definition of (sp) matrix in the
terminology of graphs is as follows.

Definition 2.3. [17] Let A = (aij) ∈ S, and (V, E) be its associated digraph.

(1) The vertex i is called non-saturated (saturated) if and only if the i-th row sum
of A is strictly less than 1 (exactly 1).

(2) The matrix A is an (sp) matrix if and only if each saturated vertex has a directed
path from a non-saturated vertex.

Remark 2. (1) For A = (aij) ∈ S, we use I1(A) and I2(A) to denote the non-
saturated and saturated vertex sets, respectively:

I1(A) :=

i :

N∑
j=1

aij < 1

 , I2(A) :=

i :

N∑
j=1

aij = 1

 .

We denote by SP the set of all (sp) matrices in S. If all row sums of A are
strictly less than 1, i.e., I2(A) = ∅, then A is called a trivial (sp) matrix, denoted
by A ∈ SP0. Obviously, A ∈ SP0 is equivalent to

‖A‖∞ := max
1≤i≤N

N∑
j=1

|aij | < 1

as long as A is a nonnegative matrix. Throughout this paper we use ‖ · ‖∞ to
denote the infinity norm of vectors or matrices.
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(2) Note that the above definition appears different from the previous one in [17]:
each saturated vertex has a directed path “from” a non-saturated vertex, whereas
in [17] has a path “to” a non-saturated vertex. This is because, in this paper,
we interpret the neighbor graph as an information flow chart and we want to
make Definition 2.3 to be consistent with the information flow meaning of a
neighbor graph.

(3) By Lemma 2.1 (2), we see that the non-saturated vertices for Fp are exactly
the agents directly led by the root agent 0.

The reason for introducing the concept of (sp) matrices is apparent from the
following proposition.

Proposition 1. [16] Suppose that the matrix A is in the set S. Then the linear
discrete-time system

x(t+ 1) = Ax(t), x(t) ∈ RN , t ∈ N (5)

is asymptotically stable if and only if A is an (sp) matrix.

Given a finite set of N × N matrices M = {A1, A2, . . . , Am}, the associated
switched system of (5) is

x(t+ 1) = Aσ(t)x(t), x(t) ∈ RN , t ∈ N, (6)

where σ : N→ {1, 2, . . . ,m} is a switching signal and the time-invariant system (5)
with matrix Ai is called a subsystem. We next present a subset of S which was
introduced in [17]:

P :=

(aij) ∈ S : aii 6= 0 for i with

N∑
j=1

aij = 1

 .

To make a switching system (6) uniformly asymptotically stable, it requires that all
subsystems should be asymptotically stable. Here we say “uniformly” with respect
to the arbitrarity of the switching signal. We now state a result about the stability
of the system (6) arising from a given finite set of (sp) matrices.

Proposition 2. [17] If A1, A2, . . . , Am ∈ P
⋂
SP, then the associated switched

linear system (6) is uniformly exponentially stable, i.e., there exist positive constants
C̄ and µ̄ such that

‖x(t)‖ < C̄e−µ̄t, ∀ t ∈ N, ∀ σ.
Remark 3. In [17, Theorem 4.1], the uniform asymptotic stability is concluded.
Furthermore, as mentioned in [17, Remark 4.1], the proof of Proposition 2 gives an
estimate below 1 for the joint spectral radius ρ(M) [1]:

ρ(M) := lim sup
t→∞

max
{
‖AikAik−1

· · ·Ai1‖
1
k : Aij ∈M

}
,

where ‖·‖ is some norm of matrices. It is known that the logarithm of the joint spec-
tral radius of a set of matrices coincides with the Lyapunov exponent (asymptotic
growth rate) of the associated linear switched system (see [1]). Thus, ρ(M) < 1
implies the uniform exponential stability of system (6).

We next present two lemmas on (sp) matrices which will be crucially used in our
approach for consensus analysis for the linearized Vicsek model. For an ordered set
of two N ×N matrices A1, A2, we set

Ie(A2, A1) := {i ∈ I2(A2) : ∃ l ∈ I1(A1) such that (A2)il > 0} . (7)
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In other words, i ∈ Ie(A2, A1) means that i is a saturated vertex for A2 and has
some information inflow in the digraph of A2 from a non-saturated vertex for A1.
The set Ie(·, ·) describes the expanding of non-saturated vertices under the matrix
multiplication. More precisely, we have the following results.

Lemma 2.4. Let A1, A2 ∈ P
⋂
SP . Then

I1(A2A1) =I1(A2)
⋃
I1(A1)

⋃
Ie(A2, A1). (8)

Proof. (i) We first show that

I1(A2)
⋃
I1(A1)

⋃
Ie(A2, A1) ⊂ I1(A2A1). (9)

Step 1. We claim that

I1(A2)
⋃
I1(A1) ⊆ I1(A2A1). (10)

For i ∈ I1(A2), we have

N∑
j=1

(A2A1)ij =

N∑
j=1

N∑
k=1

(A2)ik(A1)kj

=

N∑
k=1

(A2)ik

N∑
j=1

(A1)kj

<

N∑
k=1

(A2)ik < 1.

(11)

For i ∈ I1(A1)\I1(A2), since A2 ∈ P, we have

(A2)ii > 0,

N∑
j=1

(A1)ij < 1.

This yields

N∑
j=1

(A2A1)ij =

N∑
j,k=1

(A2)ik(A1)kj =

N∑
k=1

(A2)ik

 N∑
j=1

(A1)kj


=

N∑
k=1,k 6=i

(A2)ik

 N∑
j=1

(A1)kj

+ (A2)ii

 N∑
j=1

(A1)ij


≤

N∑
k=1,k 6=i

(A2)ik + (A2)ii

 N∑
j=1

(A1)ij


<

N∑
k=1,k 6=i

(A2)ik + (A2)ii ≤ 1.

(12)

We now combine (11) and (12) to get (10).

Step 2. We claim that

Ie(A2, A1) ⊂ I1(A2A1). (13)
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Let i ∈ Ie(A2, A1), that is, i ∈ I2(A2) and there exists l ∈ I1(A1) such that
(A2)il > 0. Then we have

N∑
j=1

(A2A1)ij =

N∑
k=1

(A2)ik
( N∑
j=1

(A1)kj
)

=

N∑
k=1,k 6=l

(A2)ik
( N∑
j=1

(A1)kj
)

+ (A2)il
( N∑
j=1

(A1)lj
)

≤
N∑

k=1,k 6=l

(A2)ik + (A2)il
( N∑
j=1

(A1)lj
)

<

N∑
k=1,k 6=l

(A2)ik + (A2)il = 1.

This yields i ∈ I1(A2A1), and (13) follows. Then we combine (10) and (13) to find
(9).
(ii) We next show that

I1(A2A1) ⊂ I1(A2)
⋃
I1(A1)

⋃
Ie(A2, A1). (14)

Suppose that i /∈ I1(A2)
⋃
I1(A1)

⋃
Ie(A2, A1). Then we have

N∑
j=1

(A2)ij = 1, and (A2)ik = 0 for any k ∈ I1(A1).

Therefore, we have

N∑
j=1

(A2A1)ij =

N∑
k=1

(A2)ik
( N∑
j=1

(A1)kj
)

=

N∑
k∈I1(A1)

(A2)ik
( N∑
j=1

(A1)kj
)

+

N∑
k∈I2(A1)

(A2)ik
( N∑
j=1

(A1)kj
)

=

N∑
k∈I2(A1)

(A2)ik
( N∑
j=1

(A1)kj
)

=

N∑
k∈I2(A1)

(A2)ik = 1,

which implies i /∈ I1(A2A1). Thus we have (14). Finally, (9) and (14) implies the
desired result (8).

Lemma 2.5. Let A1, A2 ∈ P
⋂
SP, A1 /∈ SP0. Then we have

I1(A1) ( I1(A2A1).

Proof. It follows from Lemma 2.4 that

I1(A1) ⊂ I1(A2A1),

thus to derive the desired estimate, we need to show

I1(A2A1) \ I1(A1) 6= ∅.
We consider two cases according to the relationship between I1(A1) and I1(A2).
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• Case 1. If I1(A2) has some vertex i0 /∈ I1(A1), then again by Lemma 2.4, we
have i0 ∈ I1(A2A1) and thus i0 ∈ I1(A2A1) \ I1(A1).
• Case 2. If I1(A2) ⊂ I1(A1), we claim that Ie(A2, A1) 6= ∅. Suppose not, i.e.,
Ie(A2, A1) = ∅, then by the definition of Ie(A2, A1) in (7), any vertex i ∈ I2(A2) 6= ∅
cannot be reached by vertices in I1(A1) in the digraph of A2. Note that I1(A2) ⊂
I1(A1), thus any vertex i ∈ I2(A2) cannot be reached by vertices in I1(A2) in the
digraph of A2, which contradicts to the fact that A2 ∈ SP. Therefore, we have
Ie(A2, A1) 6= ∅. Again by Lemma 2.4 we find that Ie(A2, A1) ⊂ I1(A2A1) and thus,

∅ 6= Ie(A2, A1) ⊂ I1(A2A1) \ I1(A1).

We combine Case 1 and Case 2 to get the desired result.

Proposition 3. Let Ai ∈ P
⋂
SP, i = 1, 2, · · · , N be N ×N matrices. Then

AN · · ·A2A1 ∈ SP0, i.e., is a trivial (sp) matrix.

Proof. Recall that a trivial (sp)-matrix is the (sp)-matrix that all row sums are
strictly less than 1. For the proof, we divide it into two cases.
• Case 1. Suppose that the matrix A1 is in SP0, i.e., ‖A1‖∞ < 1. In this case, we
use ‖Ai‖∞ ≤ 1, i = 2, · · · , N to get

‖AN · · ·A2A1‖∞ ≤ ‖AN‖∞ · · · ‖A2‖∞‖A1‖∞ < 1.

Therefore, we have

AN · · ·A2A1 ∈ SP0.

• Case 2. Suppose that the matrix A1 is not in SP0, i.e.,

I2(A1) 6= ∅, i.e., I1(A1) ( {1, . . . , N}.

Consider the set I1(AkAk−1 · · ·A1). If there exists k0 ∈ {2, . . . , N − 1} such that

I1(Ak0Ak0−1 · · ·A1) = {1, . . . , N}, i.e., Ak0Ak0−1 · · ·A1 ∈ SP0.

Then by the same arguments in Case 1, we have

AkAk−1 · · ·A1 ∈ SP0, for k0 ≤ k ≤ N.
If all AkAk−1 · · ·A1, k = 2, . . . , N satisfy

I1(AkAk−1 · · ·A1) ( {1, . . . , N},
then by Lemma 2.5, the finite sequence I1(AkAk−1 · · ·A1) is strictly increasing such
that

I1(A1) ( I1(A2A1) ( · · · ( I1(ANAN−1 · · ·A1) ( {1, . . . , N}.
This yields

1 ≤ |I1(A1)| < |I1(A2A1)| < · · · < |I1(ANAN−1 · · ·A1)| < N, (15)

where |G| is the cardinality of the set G. One the other hand, since |I1(AkAk−1 · · ·
A1)| − |I1(Ak−1Ak−2 · · ·A1)| ≥ 1, we have

|I1(ANAN−1 · · ·A1)| ≥ N.
This contradicts to (15).

3. Asymptotic exponential consensus. In this section, we apply the relevant
theory of (sp) matrices to estimate the asymptotic exponential consensus. Before
that we consider a simple motivating example consisting of four agents (one leader,
three followers).
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3.1. A motivating example. Consider a four-agent model governed by (1). The
neighbor graph has node set V̄ = {0, 1, 2, 3} and the arc set in each time is given by
the following possibilities:

Ē1 = {(0, 1)}, Ē2 = {(1, 2)}, Ē3 = {(2, 3)}.

We assume that across each time interval [3k, 3k+3), k ∈ N, of length 3, the graphs
Ḡσ(t)’s exactly consist of (V̄, Ē1), (V̄, Ē2), (V̄, Ē3), whereas the ordering of the three
graphs across time interval [3k, 3k+ 3) changes with k. Obviously, the union of the
three graphs is given by 0 → 1 → 2 → 3, which means that the topology is under
jointly rooted leadership at 0 across each time interval.

We set θ̂i(t) = θi(t)− θ0, and θ̂ = (θ̂1, θ̂2, θ̂3)>, we find that

θ̂(t+ 1) =

 1
2 0 0
0 1 0
0 0 1

 θ̂(t),
if σ(t) = 1, i.e.,
(V̄, Ē1) is active,

θ̂(t+ 1) =

 1 0 0
1
2

1
2 0

0 0 1

 θ̂(t),
if σ(t) = 2, i.e.,
(V̄, Ē2) is active,

θ̂(t+ 1) =

 1 0 0
0 1 0
0 1

2
1
2

 θ̂(t),
if σ(t) = 3, i.e.,
(V̄, Ē3) is active.

We denote the three matrices above by F1, F2, and F3 respectively. By assumption,

across each time interval [3k, 3k+ 3), the updating rule of the fluctuation θ̂ is given
by some product of the three matrices, i.e., Fτ(1)Fτ(2)Fτ(3) where τ is a permutation
of {1, 2, 3}. we now calculate all possible Fτ(1)Fτ(2)Fτ(3) to get 6 outputs. We can
easily verify that all the 6 outputs are (sp) matrices. Then we choose three of
them (note that multiplicity is allowed here) and multiply in any ordering to get 63

outputs. Taking the infinity norms for the 63 outputs, we find that the maximum of
the infinity norms is 7

8 . Note that under the assumption on the switching signal, all
possible products of the updating matrices across time interval [3k, 3k + 9), k ∈ N
must be one of the 63 outputs, so we find that the updating matrix from t = 3k to
t = 3k + 8 has an infinity norm dominated by 7

8 . Then we easily see that for the
above class of switching signals,

‖θ̂(t)‖∞ ≤
(7

8

)[ t
9 ]‖θ̂(0)‖∞ ≤

(7

8

) t
9−1‖θ̂(0)‖∞ =

8

7
‖θ̂(0)‖∞e−

1
9 (ln 8−ln 7)t, t ∈ N,

where ‖ · ‖∞ denotes the infinity norm of vectors and [a] denotes the integer part of
a positive number a. This gives an exponential decay estimate for the consensus.

3.2. Results on the consensus model. In this section we apply the theory of
(sp) matrices to the consensus problem of model (1) or (3) in compact form.

Lemma 3.1. Consider the consensus system (1) or a compact form (3). Suppose
that this system is under joint rooted leadership across the time interval [t0, t0 +T ).
Then, the product of iterative matrices in (3) across this time interval is an (sp)
matrix:

Fσ(t0+T−1) · · ·Fσ(t0+1)Fσ(t0) ∈ P
⋂
SP.

Proof. By the definition of Fp in (4) and Lemma 2.1, we see that

Fp ∈ S and (Fp)ii > 0, i = 1, 2, . . . , N, ∀p ∈ I,
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which means that any product satisfies

Fσ(t+s) · · ·Fσ(t+1)Fσ(t) ∈ S
⋂
P, t, s ∈ N. (16)

Next we verify the graph condition in Definition 2.3 for the product

Fσ(t0+T−1) · · ·Fσ(t0+1)Fσ(t0).

We set

I∗ :=
{
i∗ ∈ {1, 2, . . . , N} : ∃ t∗(i∗) ∈ [t0, t0 + T ) such that (0, i∗) ∈ Ēσ(t∗(i∗))

}
.

By the joint rooted leadership, I∗ is not empty. Moreover, from the property (2) in
Lemma 2.1, we know that any i∗ ∈ I∗ is a non-saturated vertex for Fσ(t∗(i∗)). We
now present two properties for the graph associated with the product Fσ(t0+T−1) · · ·
Fσ(t0+1)Fσ(t0).

(1) Every i∗ ∈ I∗ is a non-saturated vertex for the product. This is simply a
consequence of Lemma 2.4.

(2) If (j, i) ∈ Ēσ(t0)

⋃
· · ·
⋃
Ēσ(t0+T−1), i, j 6= 0, then (j, i) is also a directed arc in

the graph associated to Fσ(t0+T−1) · · ·Fσ(t0+1)Fσ(t0). To show this, we suppose

(j, i) ∈ Ēσ(t0)

⋃
· · ·
⋃
Ēσ(t0+T−1), then there exists a time t ∈ [t0, t0 + T ) such

that (j, i) ∈ Eσ(t). Note that (Fσ(t))ii > 0 for all t ≥ 0 and i = 1, 2, . . . , N .
Then the following implication gives the desired result:

(Fp)ij > 0 =⇒
{

(FpFq)ij ≥ (Fp)ij(Fq)jj > 0
(FqFp)ij ≥ (Fq)ii(Fp)ij > 0.

Now we observe that the first assertion means that any agent i with (0, i) ∈ Ēσ(t)

for some time t ∈ [t0, t0 + T ) must be a non-saturated vertex in the digraph
associated to Fσ(t0+T−1) · · ·Fσ(t0+1)Fσ(t0). The second one means that any arc

(j, i), i, j 6= 0 in Ēσ(t0)

⋃
· · ·
⋃
Ēσ(t0+T−1) is still an arc in the digraph associated to

Fσ(t0+T−1) · · ·Fσ(t0+1)Fσ(t0). Combining with the definition of joint rooted leader-
ship, we find

Fσ(t0+T−1) · · ·Fσ(t0+1)Fσ(t0) ∈ P
⋂
SP.

Proposition 4. Suppose that the state θ0 for the leader agent is fixed and σ is a
switching signal for which there exists an infinite sequence of contiguous, nonempty,
bounded, time-intervals [ti, ti+1), i ≥ 0, starting at t0 = 0, with the property that the
system is under joint rooted leadership across each such interval. Then the solution
of system (1) or (2) exponentially converges to the consensus state, i.e., there exist
positive constants C and λ such that

|θi(t)− θ0| < Ce−λt, ∀ t ∈ N, i = 1, 2, . . . , N.

Proof. From Lemma 3.1 we see that

Fσ(ti+1−1) · · ·Fσ(ti+1)Fσ(ti) ∈ P
⋂
SP, ∀ i. (17)

The iterative product of the matrices Fσ(t), t ∈ N, can be viewed as the product
of a sequence of (sp) matrices, each of which is a product as in (17). Then, by
Proposition 2 we can conclude the desired result, since there is only a finite number
of possible neighbor digraphs for the products in (17).

Proposition 4 qualitatively gives the exponential convergence of θ̂(t). Next, we
refine the estimates on (sp) matrices to get an explicit estimate for consensus given
by a simple formula. To do this, we first give the following lemma.
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Lemma 3.2. The matrices Fσ(t−1) · · ·Fσ(1)Fσ(0) satisfy the following property:

(1) If

(Fσ(t−1) · · ·Fσ(1)Fσ(0))ij > 0,

then (Fσ(t−1) · · ·Fσ(1)Fσ(0))ij ≥ ( 1
N+1 )t;

(2) If

i ∈ I1(Fσ(t−1) · · ·Fσ(1)Fσ(0)),

then

N∑
j=1

(Fσ(t−1) · · ·Fσ(1)Fσ(0))ij ≤ 1−
( 1

N + 1

)t
.

Proof. (1) This statement simply follows from the fact that every non-zero element
of Fσ(i) must be not less than 1

N+1 (see Lemma 2.1 and Remark 1 (1)).

(2) We prove the second assertion by induction on t.
• Initialization step (t = 1). By Lemma 2.1 (2) and Remark 1 (1), we have

N∑
j=1

(Fσ(0))ij ≤ 1− 1

N + 1
for any i ∈ I1(Fσ(0)).

In the sequel, for notational simplicity, we denote F t0 := Fσ(t0−1) · · ·Fσ(1)Fσ(0).
• Induction step. Assume that the desired estimate holds for t = t0, i.e., for any
i ∈ I1(Fσ(t0−1) · · ·Fσ(1)Fσ(0)),

N∑
j=1

(F t0)ij ≤ 1−
( 1

N + 1

)t0
. (18)

We now consider (t0 + 1)-product Fσ(t0)F
t0 .

� Case 1 (F t0 ∈ SP0). By induction hypothesis (18) and ‖Fσ(t0)‖∞ ≤ 1, we have

‖Fσ(t0)F
t0‖∞ ≤ ‖Fσ(t0)‖∞‖F t0‖∞ ≤ 1−

( 1

N + 1

)t0
< 1−

( 1

N + 1

)t0+1

.

� Case 2 (F t0 /∈ SP0). In this case, Lemma 2.4 yields that the set I1(Fσ(t0)F
t0)

consists of three disjoint parts, that is,

I1(Fσ(t0)F
t0) =I1(Fσ(t0))

⋃(
I1(F t0) \ I1(Fσ(t0))

)⋃
(Ie(Fσ(t0), F

t0) \ I1(Fσ(t0))).

We consider there subcases according to this partition.
. Subcase 2.1. If i ∈ I1(Fσ(t0)), then

N∑
j=1

(Fσ(t0)F
t0)ij =

N∑
k=1

(Fσ(t0))ik

N∑
j=1

(F t0)kj

≤
N∑
k=1

(Fσ(t0))ik ≤ 1− 1

N + 1

< 1−
( 1

N + 1

)t0+1

.
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. Subcase 2.2. If i ∈ I1(F t0) \ I1(Fσ(t0)), we have

1−
N∑
j=1

(Fσ(t0)F
t0)ij = 1−

N∑
k=1

(Fσ(t0))ik
( N∑
j=1

(F t0)kj
)

= 1−
N∑

k=1,k 6=i

(Fσ(t0))ik
( N∑
j=1

(F t0)kj
)

− (Fσ(t0))ii
( N∑
j=1

(F t0)ij
)

≥ 1−
N∑

k=1,k 6=i

(Fσ(t0))ik − (Fσ(t0))ii
( N∑
j=1

(F t0)ij
)

≥ (Fσ(t0))ii − (Fσ(t0))ii

[
1−

( 1

N + 1

)t0]
= (Fσ(t0))ii

( 1

N + 1

)t0
≥
( 1

N + 1

)t0+1

,

where we used the facts:

N∑
j=1

(F t0)kj < 1, and

N∑
k=1

(Fσ(t0))ik =

N∑
k=1,k 6=i

(Fσ(t0))ik + (Fσ(t0))ii ≤ 1.

. Subcase 2.3. If i ∈ Ie(Fσ(t0), F
t0) \ I1(Fσ(t0)), we first recall that

Ie(Fσ(t0), F
t0) :=

{
i ∈ I2(Fσ(t0)) : ∃ l ∈ I1(F t0) such that (Fσ(t0))il > 0

}
.

By the similar arguments as in Subcase 2.2, we have

1−
N∑
j=1

(Fσ(t0)F
t0)ij = 1−

N∑
k=1

(Fσ(t0))ik
( N∑
j=1

(F t0)kj
)

= 1−
N∑

k=1,k 6=l

(Fσ(t0))ik
( N∑
j=1

(F t0)kj
)

− (Fσ(t0))il
( N∑
j=1

(F t0)lj
)

≥ (Fσ(t0))il − (Fσ(t0))il

[
1−

( 1

N + 1

)t0]
= (Fσ(t0))il

( 1

N + 1

)t0
≥ (

1

N + 1
)t0+1,

which implies
∑N
j=1(Fσ(t0)F

t0)ij ≤ 1−( 1
N+1 )t0+1. We now combine subcases 2.1-2.3

to see that the estimate is true for t = t0 + 1. Therefore, by induction we conclude
the estimate in (2).

We are now ready to present the consensus estimate for the linearized Vicsek
model.
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Theorem 3.3. Consider the consensus system (1) or a compact form (3). Suppose
that the conditions in Proposition 4 hold, and we denote the uniform bound of the
time interval [ti, ti+1) by T ≥ 1. Then we have:

(1) The product of iterative matrices for the fluctuation across each time interval
is an (sp) matrix:

Fσ(ti+1−1) · · ·Fσ(ti+1)Fσ(ti) ∈ P
⋂
SP.

(2) The fluctuation decays at least exponentially fast:

‖θ̂(t)‖∞ ≤ ‖θ̂(0)‖∞
(

1 +
1

(N + 1)NT − 1

)
e−

ln(N+1)NT −ln((N+1)NT −1)
NT t, t ∈ N.

Proof. In Lemma 3.1, we already found that along any time interval [ti, ti+1 − 1),

Fσ(ti+1−1) · · ·Fσ(ti+1)Fσ(ti) ∈ SP.

Thus, we only need to refine the qualitative estimate in Proposition 4 to verify the
inequality in Theorem 3.3 (2). Lemma 3 claims that an N -product of (sp) matrices
becomes trivial; thus,

Fσ(ti+N−1) · · ·Fσ(ti+1−1) · · ·Fσ(ti+1)Fσ(ti) ∈ SP0.

By Lemma 3.2, we derive that the infinity norm of

Fσ(ti+N−1) · · ·Fσ(ti+1−1) · · ·Fσ(ti+1)Fσ(ti)

is dominated by the deterministic constant 1 − ( 1
N+1 )NT . Thus, we have the fol-

lowing estimate:

‖θ̂(t)‖∞ ≤ ‖θ̂(0)‖∞
(

1−
( 1

N + 1

)NT)[ t
NT ]

≤ ‖θ̂(0)‖∞
(

1−
( 1

N + 1

)NT) t
NT −1

= ‖θ̂(0)‖∞
(

1 +
1

(N + 1)NT − 1

)
e−

ln(N+1)NT −ln((N+1)NT −1)
NT t, t ∈ N.

Here [ t
NT ] denotes the integer part of t

NT .

3.3. Remarks. In the proof of Theorem 3.3, we used the fact that any NT -product
of Fσ(t) is a trivial (sp) matrix, which is implied by Lemma 3.1 and Proposition 3.
We note that NT is indeed necessary to build a trivial (sp) matrix. To show this,
we consider the configurations in Subsection 3.1 for which N = 3 and T = 3. For
F1, F2 and F3 in this case, Lemma 3.1 claims that any product Fτ(1)Fτ(2)Fτ(3) is
an (sp) matrix where τ is a permutation of {1, 2, 3}. Then, by Proposition 3 we
see that any 9-product of Fp’s built from the joint rooted leadership, for example,
F3F1F2︸ ︷︷ ︸F1F2F3︸ ︷︷ ︸F1F2F3︸ ︷︷ ︸ , must be a trivial (sp) matrix. However, the 8-product

F1F2 F1F2F3︸ ︷︷ ︸F1F2F3︸ ︷︷ ︸ =

 1
8 0 0
3
8

1
8 0

1
4

1
2

1
4


is not a trivial (sp) matrix. This shows that the number NT is not improvable. This
example also shows that the product of (N−1) (sp) matrices may build a non-trivial
(sp) matrix; in other words, the result in Proposition 3 is not improvable.
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Theorem 3.1 gives an upper bound for the maximum Lyapunov exponent (de-
noted by λ) of the linearized Vicsek model:

λ ≤ −
ln(N + 1)NT − ln

(
(N + 1)NT − 1

)
NT

< 0.

We set the bound for the decay exponent by f(N,T ):

f(N,T ) := −
ln(N + 1)NT − ln

(
(N + 1)NT − 1

)
NT

=
1

NT
ln
[ (N + 1)NT − 1

(N + 1)NT

]
< 0.

Consider the function defined on the continuous-time domain, i.e., t ∈ R+:

fN (t) := − ln(N + 1) +
ln
(
(N + 1)Nt − 1

)
Nt

< 0.

Note that for all t > 0,

f ′N (t) =

(N+1)Nt

(N+1)Nt−1
Nt ln(N + 1)− ln

(
(N + 1)Nt − 1

)
Nt2

>
ln(N + 1)Nt − ln

(
(N + 1)Nt − 1

)
Nt2

> 0.

This means f(N,T ) is an monotonically increasing function in T , thus our upper
bound gives faster exponential decay when the time length for the joint connectivity
is smaller. This is consistent with the intuition. On the other hand, we observe
that

lim
T→∞

f(N,T ) = 0, lim
N→∞

f(N,T ) = 0.

This means that as T →∞ or N →∞, our upper bound does not provide the decay
estimate, which suggests plausible occurrence of glassy behavior in the convergence
toward the consensus in the asymptotic limits.

Variant consensus problems have been largely studied in the past decades, see for
example [2, 3, 4, 7, 9, 14] and references therein. Many of them have been carried out
by studying the product of stochastic matrices [2, 3, 4, 9, 14]. In [3, 9], systematic
studies on the graph and consensus problem were carried out. We acknowledge that
our consensus result is not new since the assumption of joint rooted leadership can
be covered by the interaction topologies in related literature. For example, in [9,
Theorem 9.2], the consensus is established with an explicit decay estimate if there
exists a sequence of contiguous intervals of bounded length over each of which at
least one vertex is connected to all others. Here, they say “j is connected to i over
an interval [t1, t2]” if “there exists a sequence of vertices j = vt1 , vt1+1, . . . , vt2 = i
such that (vt, vt+1) ∈ Et holds for any t ∈ [t1, t2]” (see [9, pp. 149]). Then, in [9,
Corollary 9.1] the consensus is concluded if the union graph over the time interval
[t, t+ T ] contains a spanning tree for any t; this assumption indeed covers the joint
rooted leadership. But, in [9, Corollary 9.1] there is no direct bound given for B to
fulfill the conditions in [9, Theorem 9.2] by which a decay rate is derived. The usage
of (sp) matrices in this work gives the direct bound NT for B in [9, Theorem 9.2]
and α = 1

N+1 . Hence, the results in Theorem 3.1 are the same as [9, Theorem 9.2]

provided one knows an upper bound for B in [9, Theorem 9.2]. In [3, Proposition
12] the consensus is established if the neighbor graphs satisfy “repeatedly jointly
rooted”; this also covers the joint rooted leadership in this paper. An exponential
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decay estimate is concluded in [3, Proposition 12] but it is given by the maximum
of all possible products of those matrices built from the repeatedly jointly rooted
interactions. The approach of (sp) matrices in this work gives an explicit and direct
estimate on the decay rate.

The main purpose of this paper is to extend the theory of (sp) matrices and use
it to revisit the linearized Vicsek model with a joint rooted leadership. Due to the
leader-follower structure, we study the consensus problem by considering the zero-
convergence of fluctuation and thus the discrete-time dynamics can be modeled by
sub-stochastic matrices. Then we can employ the approach of (sp) matrices. This
approach has been applied in Cucker-Smale flocking [11, 12] and we hope to see it
in a wider context.

4. Conclusion. In this paper, we revisited the consensus problem for the linearized
Vicsek model. We improved the theory of (sp) matrices to cover the joint rooted
leadership topology, and applied the improved theory to the consensus problem
for the linearized Vicsek model. Our consensus estimate provides an explicit upper
bound for the Lyapunov exponent of the discrete-time linearized Vicsek model under
the “joint connectivity” across time intervals. Our results essentially employ the
theory of (sp) matrices and its switching stability theory.
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Ph.D Thesis, Université Catholique de Louvain, Department of Mathematical Engineering,
February 2008.

[10] A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile agents using nearest

neighbor rules, IEEE Trans. Autom. Control , 48 (2003), 988–1001.
[11] Z. Li, S.-Y. Ha and X. Xue, Emergent phenomena in an ensemble of Cucker-Smale particles

under joint rooted leadership, Math. Mod. Meth. Appl. Sci., 24 (2014), 1389–1419.

http://dx.doi.org/10.1109/CDC.2005.1582510
http://www.ams.org/mathscinet-getitem?mr=MR2324268&return=pdf
http://dx.doi.org/10.1109/TAC.2007.895885
http://dx.doi.org/10.1109/TAC.2007.895885
http://www.ams.org/mathscinet-getitem?mr=MR2385854&return=pdf
http://dx.doi.org/10.1137/060657005
http://dx.doi.org/10.1137/060657005
http://www.ams.org/mathscinet-getitem?mr=MR2385855&return=pdf
http://dx.doi.org/10.1137/060657029
http://dx.doi.org/10.1137/060657029
http://www.ams.org/mathscinet-getitem?mr=MR2324245&return=pdf
http://dx.doi.org/10.1109/TAC.2007.895842
http://www.ams.org/mathscinet-getitem?mr=MR1448665&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2182751&return=pdf
http://dx.doi.org/10.1109/TAC.2005.858635
http://dx.doi.org/10.1109/TAC.2005.858635
http://www.ams.org/mathscinet-getitem?mr=MR1986266&return=pdf
http://dx.doi.org/10.1109/TAC.2003.812781
http://dx.doi.org/10.1109/TAC.2003.812781
http://www.ams.org/mathscinet-getitem?mr=MR3192593&return=pdf
http://dx.doi.org/10.1142/S0218202514500043
http://dx.doi.org/10.1142/S0218202514500043


CONSENSUS OF VICSEK MODEL AND A SPECIAL MATRIX 351

[12] Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching
topologies, SIAM J. Appl. Math., 70 (2010), 3156–3174.

[13] Z.-X. Liu and L. Guo, Connectivity and synchronization of Vicsek model, Sci. China Ser.

F-Inf. Sci., 51 (2008), 848–858.
[14] L. Moreau, Stability of multiagent systems with time-dependent communication links, IEEE

Trans. Autom. Control , 50 (2005), 169–182.
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