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Abstract. In this article, we discuss the optimization of a linearized traf-

fic flow network model based on conservation laws. We present two solution
approaches. One relies on the classical Lagrangian formalism (or adjoint calcu-

lus), whereas another one uses a discrete mixed-integer framework. We show

how both approaches are related to each other. Numerical experiments are
accompanied to show the quality of solutions.

1. Introduction. Modeling, simulation and optimization of traffic flow networks
based on partial differential equations have been investigated intensively during the
last years, see for instance for an overview [4, 5, 10, 11, 12, 13, 17, 23, 24, 26, 32,
35, 36].

For optimization purposes, different applications such as optimal routing of traffic
at intersections [17, 23, 24, 36], traffic light control [21], evacuation planning [20, 36]
and air traffic control [1] are of interest. Since in all problems the underlying opti-
mization problem is restricted by partial differential equations, relaxed models with
simplified dynamics have been investigated. In this context, two different solution
approaches emerge. On the one hand, continuous optimization techniques have
been successfully applied to compute optimal solutions. The first order optimality
system is derived and solved by a descent type method [30, 39]. On the other hand,
suitable discretizations of the dynamics lead to network flow models that have been
widely considered in the field of combinatorial optimization [3].

In fact, there exist a few research results comparing both optimization tools,
see [8, 14, 15, 17, 42]. One might assume that a direct relation between continuous
and discrete optimization techniques exist. This is especially the case when the
governing dynamics in the network are (closely) linear. Appropriate numerical
discretizations can be chosen, such that the original optimization problem either
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leads to numerically solving the finite-dimensional optimality system, i.e. the so-
called discretize-then-optimize approach, or the interpretation as a mixed-integer
programming model (MIP). However, it remains the question of detecting local or
global optima. We know from the theory of linear programming, in particular the
strong duality theorem [37], that under certain circumstances a global optimum can
be reached. This is usually not the case for the adjoint calculus. The solution of
the optimality system via gradient methods often gets stuck in local optima.

In this work we intend to close the gap between the two solution procedures that
first appear to be different. To do so, we start in section 2 with the traffic flow
network model where the evolution of traffic density on roads is governed by the
linearized Lighthill-Whitham-Richards (LWR) equations, see [9]. For the coupling
conditions at the intersections, we stick to the ones presented by Coclite-Garavello-
Piccoli [5]. In a next step, we discretize the full network model in space and time
and formally derive the adjoint equations and the mixed-integer model (MIP) as
well, see sections 3-5. In section 6, we point out the equivalence of both approaches
by comparing the dual variables of the MIP and the adjoint variables for a linear
network formally and numerically. Furthermore, a more complex network is treated
numerically.

2. Traffic flow network model. In this section, we briefly review the main mod-
eling issues, see [5, 23, 26].

Definition 2.1 (Traffic Flow Network). A traffic flow network is a finite, connected
directed graph denoted by G = (V,E), where the edges E correspond to roads and
vertices V to junctions. Each edge e ∈ E is associated with an interval [ae, be] and
x represents the position on each edge. For a fixed vertex v ∈ V, δ−(v) denotes
the set of edges leading into vertex v and δ+(v) is the set of edges leading out of
vertex v.

On each edge e ∈ E the dynamics of traffic flow is described by the well-known
Lighthill-Whitham-Richards equations [35] for the density ρe(x, t), x ∈ [ae, be], t ≥
0. Thus the following equations are assumed to hold on each edge e:

∂tρe(x, t) + ∂xfe(ρe(x, t)) = 0 ∀e ∈ E, x ∈ (ae, be) , t ≥ 0

ρe(x, 0) = ρ̃e
(1)

where ρ̃e are constant functions, i.e. we assume Riemann initial data. As flow
function fe we consider a symmetric hat function

fe(ρe) =

{
veρe 0 ≤ ρe ≤ σe
fe(σe)− ve (ρe − σe) σe < ρe ≤ ρmax,e

(2)

borrowed from [7, 9, 38], also sometimes called Newell-Daganzo-Flux.

Remark 1. The hat function (2) is only piecewise differentiable on the intervals
[0, σe) and (σe, ρmax,e] with the property f ′e(ρe) = ±ve. Since differentiability
is needed for the adjoint calculus performed in section 4, the function has to be
smoothed in an appropriate way.

Looking for a network solution, coupling conditions have to be posed for the
problem (1) to be well-defined. For an ingoing edge e ∈ δ−(v) the density at a
vertex v is denoted by ρ̄e(t) = ρe(x = be, t) and an outgoing edge ẽ ∈ δ+(v) is
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referred to by ρ̄ẽ(t) = ρẽ(x = aẽ, t). Then, to guarantee flow conservation for all
inner vertices v ∈ V with |δ±(v)| > 0, the following condition must be fulfilled:∑

e∈δ−(v)

fe(ρ̄e(t)) =
∑

ẽ∈δ+(v)

fẽ(ρ̄ẽ(t)) ∀t ≥ 0. (3)

Due to the choice of constant initial data as in [5, 23, 26], the computation of the
coupling condition may be done using the theory about Riemann problems [27].
This means, to get admissible solutions at junctions, we look for waves of negative
speed for incoming edges and waves of positive speed for outgoing edges. Thus, we
impose the following restrictions to the density values at the vertex

ρ̄e ∈ [σ, ρmax,e] ρe(be)≥ σe e∈ δ−(v)

ρ̄e ∈ {ρe(be)} ∪ (τ(ρe(be)), ρmax,e ] ρe(be)≤ σe e∈ δ−(v)

ρ̄ẽ ∈ [0, σẽ] ρẽ(aẽ)≤ σẽ ẽ∈ δ+(v)

ρ̄ẽ ∈ [ 0, τ(ρẽ(aẽ))) ∪ {ρẽ(aẽ)} ρẽ(aẽ)≥ σẽ ẽ∈ δ+(v)

(4)

where for each ρ 6= σ, ρ ∈ [0, ρmax] the value τ(ρ) is the unique number τ(ρ) 6= ρ,
s.t. f(τ(ρ)) = f(ρ).

Resulting from (4) bounds for the density values at the boundaries of a road are
known and the flow going in or out of an edge can be bounded from above by the
following functions:

dee(ρe(ae)) = maxFlowIngoing(ρe(ae)) = fe(σe) ·min

{
1, 2− ρe(ae)

σe

}
, (5a)

sue(ρe(be)) = maxFlowOutgoing(ρe(be)) = fe(σe) ·min

{
ρe(be)

σe
, 1

}
, (5b)

being illustrated in figures 1, 2, respectively.

ρ

f(ρ)

0 σ ρmax

f(σ)

Figure 1. Maximal
flow entering (demand
of) edge e, compare (5a).

ρ

f(ρ)

0 σ ρmax

f(σ)

Figure 2. Maximal
flow leaving (supply by)
edge e, compare (5b).

However, condition (3) is not sufficient to obtain unique solutions. Thus, analo-
gously to Coclite-Garavello-Piccoli [5] we define a time-dependent distribution ma-
trix α = (αeẽ( t)) for all dispersing vertices v ∈ V (i.e. |δ+(v)| > 1), where 0 ≤
αeẽ ≤ 1 is the percentage of flow from edge e going to edge ẽ and

∑
ẽ∈δ+(v) αeẽ = 1
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for all e ∈ δ−(v). We get

fẽ (ρ̄ẽ(t)) =
∑

e∈δ−(v)

αeẽfe (ρ̄e(t)) ∀ẽ ∈ δ+(v) . (6)

As explained in [5, 26], this still leaves a degree of freedom. Assuming that all
drivers like to move forward as fast as possible, the throughput at each vertex v
shall be maximized. Therefore we solve the following optimization problem at each
vertex

max
∑

e∈δ−(v)

fe (ρ̄e(t))

s.t. (3) and (6)

0 ≤ fe (ρ̄e) ≤ sue (ρ̄e) ∀e ∈ δ−(v)

0 ≤ fẽ (ρ̄ẽ) ≤ deẽ (ρ̄ẽ) ∀ẽ ∈ δ+(v) .

(7)

Remark 2. For simulation purposes the distribution matrix α is predefined and
we consider the traffic flow network model consisting of the equations

(1), (3), (4), (7)
}

(8)

However, considering the optimal routing of cars through the network, the entries
of the matrix α will be the control parameters.

By imposing certain conditions on the matrix α and restricting to networks
without merging vertices, Coclite-Garavello-Piccoli [5] proved the existence of a
unique solution for the optimization problem (7) (Theorem 3.2 in [5]) and the whole
traffic flow network problem (8). For a merging junction with two ingoing and one
outgoing edge the unique solvability of the maximization problem (7) is shown,
among others, by Klar-Herty [23] by proposing FIFO-conditions for the flow through
the vertex or Daganzo [6] and Göttlich-Herty-Ziegler [19] by defining a priority road.

In our study we restrict to three types of junctions presented in figure 3. The
solution of the coupling conditions is explicitly given in equations (9)–(11).

v
1 2

(a) One-to-one

v

1

2

3

(b) Two-to-one

v
1

3

2

(c) One-to-two

Figure 3. Junction types considered. Types 3(a) and 3(c)
are solved using the techniques described by Coclite-Garavelo-
Picolli [5], whereas for type 3(b) we use the approach of Klar-
Herty [23].

For a simple junction connecting two edges (cf. fig. 3(a)) the unique solution of
the coupling is then

f1(ρ̄1) = f2(ρ̄2) = min {su1(ρ1(b1)),de2(ρ2(a2))} . (9)
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Considering a merging junction (cf. fig. 3(b)), the approach of Klar-Herty [23]
yields the optimal solution

f1(ρ̄1) =


min


su1(ρ1(b1))

max

{
de3(ρ3(a3))− su2(ρ2(b2))
de3(ρ3(a3))/2

} su1(ρ1(b1)) + su2(ρ2(b2))
> de3(ρ3(a3))

su1(ρ1(b1)) else

(10a)

f2(ρ̄2) =


min


su2(ρ2(b2))

max

{
de3(ρ3(a3))− su1(ρ1(b1))
de3(ρ3(a3))/2

} su1(ρ1(b1)) + su2(ρ2(b2))
> de3(ρ3(a3))

su2(ρe(b2)) else

(10b)

f3(ρ̄3) =

{
f1(ρ̄1) + f2(ρ̄2) su1(ρ1(b1)) + su2(ρ2(b2)) > de3(ρ3(a3))

f1(ρ̄1) + f2(ρ̄2) else
(10c)

to (7).
The coupling at the dispersing junction (cf. fig. 3(c)) is solved using the conditions

of Coclite-Garavello-Piccoli [5]

f1(ρ̄1) = f2(ρ̄2) + f3(ρ̄3) (11a)

f2(ρ̄2) = min {α1,2 su1(ρ1(b1)),de2(ρ2(a2))} (11b)

f3(ρ̄3) = min {α1,3 su1(ρ1(b1)),de3(ρ3(a3))} . (11c)

2.1. Discretization. For the numerical solution of equation (1), there exist several
standard discretization schemes. Since the focus of this work is on optimization
and the comparison of two different optimization approaches, we apply the sim-
ple staggered Lax-Friedrichs scheme as in [21, 29, 33]. In particular, this scheme
does not necessitate the solution of Riemann problems in the interior of the com-
putational domain and can thus be handled (easier) within both considered op-
timization approaches. We apply a staggered Lax-Friedrichs scheme on the grid
xe,j = ae + j∆xe = ae + jLe/Nx e, where Le = be − ae denotes the length of edge e
and Nx e the number of cells. The time horizon [0, T ] is divided into parts of equal
length, tn = n∆t = nT/Nt , where the time step ∆t has to satisfy the CFL-condition

∆t ≤ min
e∈E

{
∆xe
2ve

}
. (12)

Then, for a fixed edge (neglecting the index), with λ = ∆t/∆x the evolution of the
discretized density reads (j ∈ {2, . . . ,Nx − 1}, n ∈ {0, . . . ,Nt − 1})

ρn+1
0.5 = 1

4 (3ρn0.5 + ρn1.5)− λ
2 [f(ρn1.5) + f(ρn0.5)− 2f(ρn0 )] (13a)

ρn+1
j−0.5 = 1

4 (ρnj−1.5 + 2ρnj−0.5 + ρnj+0.5)− λ
2 [f(ρnj+0.5)− f(ρnj−1.5)] (13b)

ρn+1
Nx−0.5 = 1

4 (ρnNx−1.5 + 3ρnNx−0.5)− λ
2 [2f(ρnNx )− f(ρnNx−0.5)− f(ρnNx−1.5)]. (13c)

The initial conditions ρ0
j−0.5 (j ∈ {1, . . . ,Nx}) are calculated using

ρ0
j−0.5 =

1

∆x

xj∫
xj−1

ρ̃(x)dx. (14)



320 SIMONE GÖTTLICH, OLIVER KOLB AND SEBASTIAN KÜHN

The values f(ρn0 ) and f(ρnNx ) result from the coupling conditions (4) and are affected
by ρn0.5 and ρnNx−0.5, respectively. So for instance, at a vertex with one entering edge
e and one leaving edge ẽ, we get

f(ρne,Nxe
) = f(ρnẽ,0) = min

{
sue(ρ

n
e,Nxe−0.5),deẽ(ρ

n
ẽ,0.5)

}
. (15)

Remark 3. In equation (15) another advantage of the staggered Lax-Friedrichs
scheme can be seen: The flow values at the boundaries needed in (13a), (13c)
are directly computed from the coupling conditions. In contrast to other schemes,
like the standard Lax-Friedrichs scheme, no computation of densities has to be
done. This fact speeds up the computation and saves a lot of technical effort in the
optimization part (see sections 4 and 5).

Note that the boundaries of the network have to be treated separately. At the
inflow boundary with a desired inflow rate f in

e (tn) the actual inflow to the edge e
is given by

f(ρne,0) = min
{
f in
e (tn),de(ρne,0.5)

}
, (16)

i.e. either the desired inflow rate is allowed to enter the edge or the edge is already
jammed and thus the inflow rate is reduced to the amount of flow being able to be
processed. At the outflow boundary at edge e we have

f(ρne,Nx ) = f(ρne,Nx−0.5) , (17)

which ensures that the flow reaching the end of an outflow edge is able to leave the
network without being stopped (Neumann boundary condition).

3. Optimization problem. For the traffic flow control in a road network, it is
relevant to have an upper bound on the maximal flow in a certain time horizon.
However, for evacuation purposes [20], a lower bound on the minimal evacuation
time is desired. In both cases, these bounds may be calculated by the traffic flow
network model (8) where at dispersing junctions the drivers/evacuees are assigned
to the connected roads in an optimal way, i.e. control of the distribution matrix
α. In this optimization problem the drivers do not choose their routes themselves
but are directed to a special route. Therefore they do not act selfish and a system
optimum is achieved rather than a Nash equilibrium [2]. In order to achieve such a
system optimum, we solve the following optimization problem:

max J(ρ)

s.t. (13), (14), (15), (16), (17)
(18)

where J(ρ) is the objective function depending on the density of drivers.
There are actually two ways to solve the optimization problem (18). On the one

hand, we can apply an adjoint approach based on the Lagrangian formalism, which
is explained in section 4. This procedure is the natural choice for PDE-restricted
optimization problems. On the other hand, we use a mixed integer programming
(MIP) approach, see section 5. This means a reformulation of the traffic flow model
using suitable discretizations. Although both approaches initially seem to be dif-
ferent, they are closely related to each other.

The goal of the remaining article is to show the connection between the adjoint
and the mixed integer approach as illustrated in figure 4.

Starting from the discretized traffic flow network model and the corresponding
optimization problem (18), we follow two strategies to compute an optimal solution.
In a first step, (A in figure 4), the first order optimality system (KKT-system) based
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Traffic Flow
Network Model

(8)

Discretized Traffic
Flow Network Model

(13)–(17)

Discretized First
Order Opti-

mality System
(KKT-System)

Discretized
Mixed
Integer

Program

discretization

A B

C

Figure 4. Sketch of the interaction between the discrete first or-
der optimality system (section 4) and the mixed integer program
(MIP) model (section 5) for the traffic flow network model with
hat-function (2).

on the discretization introduced in section 2.1 is formally derived, i.e. the forward
equations, the backward equations (adjoints) and the gradient equations. This
procedure is called discretize-then-optimize approach, see [8, 22]. From a numerical
point of view, gradient type methods are used to solve the KKT-system.

Alternatively, (B in figure 4), a special discretization of the problem (18) yields a
linear mixed integer program (MIP), see [8, 15, 16]. In the discretization of (1) with
(2), one has to distinguish whether the flux derivative is positive (f ′(ρe) > 0) or
negative (f ′(ρe) < 0). Therefore binary variables will enter the problem. Further
differences to the adjoint approach appear in the representation of the coupling
conditions (3). The entire optimization model resulting in the MIP approach can
be solved using Branch-and-Bound-techniques, e.g. CPLEX [28].

The connection between the two approaches (C in figure 4) will be illustrated in
section 6. The idea is to consider the dual problem of the MIP and to compare the
resulting dual variables with the adjoint variables.

To refine our ideas we present the following example for a LP.

Example 1. We consider a linear program of the form

min
x

J(x) = cTx

s.t. Ax = b

x ∈ Rn
(19)

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n and m,n ∈ N. The dual of (19) is given by

max
Φ

bTΦ

s.t. ATΦ = c

Φ ∈ Rm.
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Furthermore the Lagrangian formulation of the linear program (19) with Lagrangian
multiplier ϕ is given by

min
x

sup
ϕ
J(x)− ϕT (Ax− b)

s.t. x ∈ Rn, ϕ ∈ Rm.

This leads to the following KKT-system (state and gradient conditions)

Ax = b (20a)

∇J(x)−ATϕ = 0 (20b)

for (19).
Equation (20b) can be interpreted as the adjoint equation of (19). Since the

objective function J(x) = cTx is linear, we get from the adjoint equation (20b)

ATϕ = c.

We directly see that the dual variables Φ and the adjoint variables ϕ obey the same
restrictions.

4. Adjoint equations. Adjoint calculus has been used for optimization purposes
in a wide variety of applications, among others traffic flow problems [22, 23], supply
chains [8], optimal control of gas and water supply networks [14, 25, 33, 34]. In
this section we present an approach to solve the optimization problem (18), i.e.
finding optimal distribution rates at each vertex subject to the considered objective
function, by explicitly solving the so-called discrete adjoint equations, which are
part of the discrete first order optimality system.

Within this section we start with a description of the general way to approach
the adjoint equations. Then we dedicate a section to the application of the general
approach to the different parts of the traffic flow network model, beginning with
propagation (eq. (1) and its discretization (13)). We go on with the coupling con-
ditions for a simple junction (eq. (15)) and close with the treatment of boundary
conditions (eqs. (16) and (17)).

4.1. First-discretize adjoint approach. The discretized equations (13), (14),
(15), (16) and (17) are of the form C(ρ, α) = 0. So, the optimization tasks we
consider are of the form

min J(ρ)

s.t. C(ρ, α) = 0

αmin ≤ α ≤ αmax

(21)

with lower and upper bounds αmin, αmax for the distribution rates α. For a given
control α, the state equations C(ρ, α) = 0 uniquely determine the state variables ρ.
Therefore, the state variables can be considered as a function of the control variables,
i.e. ρ = ρ(α), which is implicitly given via the state equations, C(ρ(α), α) = 0. The
resulting so-called reduced optimization problem reads

min J(ρ(α))

s.t. αmin ≤ α ≤ αmax
(22)

To solve (22) with derivative-based optimization techniques, one needs to compute
the total derivative of J with respect to α. Formally, this leads to

d

dα
J(ρ(α)) = −ϕT ∂

∂α
C(ρ(α), α)
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with the so-called adjoint state ϕ being the solution of the adjoint equation(
∂

∂ρ
C(ρ(α), α)

)T
ϕ =

(
∂

∂ρ
J(ρ(α))

)T
. (23)

Rewriting (23) in the form

∂

∂ρ
J(ρ(α))− ϕT ∂

∂ρ
C(ρ(α), α) = 0

directly shows that (23) is part of the KKT system of (21) with Lagrangian multipli-
ers ϕ. Note that we need to smoothen the kink in the hat function (2) as well as the
minima in the supply/demand functions (5) and in the coupling conditions (9)–(11)
to make the state equations C differentiable with respect to ρ.

Since we consider a time-dependent problem, the state equations and therewith
the adjoint equation (23) have a very special structure. In general, this can be
easily exploited to reduce the computational effort in practice (cf. [33, 34]) and will
be used below to explicitly solve the adjoint equation for the comparison with the
dual variables of the MIP formulation.

4.2. Propagation. In this section, we explicitly give the solution of the adjoint
system (23) for the adjoint variables corresponding to the staggered Lax-Friedrichs
discretization presented in section 2.1. Neglecting the index for the underlying edge,
we consider the adjoint variables ϕn+1

j−0.5 for (13a)–(13c) (with j ∈ {1, . . . ,Nx}, n ∈
{0, . . . ,Nt − 1}). Note that we have to subtract the densities on the left-hand sides
of (13a)–(13c) to bring these state equations into the right form (C(ρ(α), α) = 0).

A short computation yields the adjoint initial conditions

ϕNt
j−0.5 = − ∂

∂ρNt
j−0.5

J(ρ(α)) (24)

at the final time (for j ∈ {1, . . . ,Nx}). For the other times (n ∈ {0, . . . ,Nt − 1}),
we get for the (spatially) inner points (j ∈ {2, . . . ,Nx − 1})

ϕnj−0.5 = 1
4

(
ϕn+1
j−1.5 + 2ϕn+1

j−0.5 + ϕn+1
j+0.5

)
+ λ

2 f
′(ρnj−0.5)

(
ϕn+1
j+0.5 − ϕn+1

j−1.5

)
− ∂

∂ρnj−0.5

J(ρ(α)) (25)

corresponding (as expected) to the adjoint PDE

∂

∂t
ϕ+ f ′(ρ)

∂

∂x
ϕ =

∂

∂ρ
J(ρ(α)) . (26)

4.3. Coupling and boundary conditions. For a simple junction connecting the
end of edge e to the beginning of edge ẽ we consider the state variables (negative
cell indices corresponding to the last cells of the left edge, i.e. ρn−2.5 = ρne,Nx−2.5,

and the positive ones to the first cells of the right edge, i.e. ρn2.5 = ρnẽ,2.5, cf. figure 5)

{. . . , ρn−2.5, ρ
n
−1.5, ρ

n
−0.5, f(ρn0 ), ρn0.5, ρ

n
1.5, ρ

n
2.5, . . . }

for n ∈ {0, . . . ,Nt} and the adjoint variables

{. . . , ϕn−2.5, ϕ
n
−1.5, ϕ

n
−0.5, ϕ̃

n
0 , ϕ

n
0.5, ϕ

n
1.5, ϕ

n
2.5, . . . }

for the initial conditions (14), the scheme (13a)–(13c) and the coupling condition
(cf. (15))

min
{

sue(ρ
n
−0.5),deẽ(ρ

n
0.5)
}
− f(ρn0 ) = 0 .
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ρn−2.5 ρn−1.5 ρn−0.5 ρn0.5 ρn1.5 ρn2.5
f(ρn0 )

e ẽ

Figure 5. Discretization points and variables at a simple junction
connecting edges e and ẽ.

A short computation yields for the adjoint variables at the coupling node

ϕn−0.5 = 1
4

(
ϕn+1
−1.5 + 3ϕn+1

−0.5

)
+ λ

2 f
′
e(ρ

n
−0.5)

(
ϕn+1
−0.5 − ϕn+1

−1.5

)
− ∂

∂ρn−0.5

J(ρ(α))

+∂1 min
{

sue(ρ
n
−0.5),deẽ(ρ

n
0.5)
}
·su′e(ρn−0.5)

(
λ
(
ϕn+1

0.5 − ϕn+1
−0.5

)
− ∂

∂f(ρn0 )
J(ρ(α))

)
,

ϕ̃n+1
0 = λ

(
ϕn+1

0.5 − ϕn+1
−0.5

)
− ∂

∂f(ρn0 )
J(ρ(α), α) (27)

and

ϕn0.5 = 1
4

(
3ϕn+1

0.5 + ϕn+1
1.5

)
+ λ

2 f
′
ẽ(ρ

n
0.5)

(
ϕn+1

1.5 − ϕn+1
0.5

)
− ∂

∂ρn0.5
J(ρ(α))

+∂2 min
{

sue(ρ
n
−0.5),deẽ(ρ

n
0.5)
}
·de′ẽ(ρ

n
0.5)

(
λ
(
ϕn+1

0.5 − ϕn+1
−0.5

)
− ∂

∂f(ρn0 )
J(ρ(α))

)
,

where ∂1 and ∂2 are the partial derivatives with respect to the first and second
argument of the min-function, respectively. The derivatives of the (non-smooth)
functions sue and deẽ defined in section 2, (5) are given by

su′e(ρ) =

{
f ′e(ρ) = ve for ρ < σe

0 for ρ > σe

and

de′ẽ(ρ) =

{
0 for ρ < σẽ

f ′ẽ(ρ) = −vẽ for ρ > σẽ
.

Obviously,

∂1 min
{

sue(ρ
n
−0.5),deẽ(ρ

n
0.5)
}
· su′e(ρn−0.5) = X1 · f ′e(ρn−0.5)

with

X1 =

{
1 if ρn−0.5 < σe and sue(ρ

n
−0.5) < deẽ(ρ

n
0.5)

0 if ρn−0.5 > σe or sue(ρ
n
−0.5) > deẽ(ρ

n
0.5)

, (28)

and thus

ϕn−0.5 = 1
4

(
ϕn+1
−1.5 + 3ϕn+1

−0.5

)
+ λ

2 f
′
e(ρ

n
−0.5)

(
2X1ϕ

n+1
0.5 + (1− 2X1)ϕn+1

−0.5 − ϕn+1
−1.5

)
−X1 · f ′e(ρn−0.5)

∂

∂f(ρn0 )
J(ρ(α))− ∂

∂ρn−0.5

J(ρ(α)) . (29)

Analogously, with

X2 =

{
1 if ρn0.5 > σẽ and sue(ρ

n
−0.5) > deẽ(ρ

n
0.5)

0 if ρn0.5 < σẽ or sue(ρ
n
−0.5) < deẽ(ρ

n
0.5)

, (30)
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we get

ϕn0.5 = 1
4

(
3ϕn+1

0.5 + ϕn+1
1.5

)
+ λ

2 f
′
ẽ(ρ

n
0.5)

(
ϕn+1

1.5 + (2X2 − 1)ϕn+1
0.5 − 2X2ϕ

n+1
−0.5

)
−X2 · f ′ẽ(ρn0.5)

∂

∂f(ρn0 )
J(ρ(α))− ∂

∂ρn0.5
J(ρ(α)) . (31)

Similar to the coupling conditions, adjoint boundary conditions can be derived.
Let us begin with an inflow boundary: For a desired ingoing flow rate fnin, the
resulting inflow is given by (compare (16))

f(ρn0 ) = min
{
fnin,dee(ρ

n
0.5)
}
.

With

Xin =

{
1 if dee(ρ

n
0.5) < fnin and ρn0.5 > σe

0 if dee(ρ
n
0.5) > fnin or ρn0.5 < σe

one gets

ϕn0.5 = 1
4

(
3ϕn+1

0.5 + ϕn+1
1.5

)
+ λ

2 f
′
e(ρ

n
0.5)

(
ϕn+1

1.5 + 2(Xin − 1)ϕn+1
0.5

)
−Xin · f ′e(ρn0.5)

∂

∂f(ρn0 )
J(ρ(α))− ∂

∂ρn0.5
J(ρ(α)) . (32)

At outflow boundaries, we have (compare (17))

f(ρnNx ) = f(ρnNx−0.5) .

Here, we get from the adjoint system

ϕnNx−0.5 = 1
4

(
3ϕn+1

Nx−0.5 + ϕn+1
Nx−1.5

)
− λ

2 f
′
ẽ(ρ

n
Nx−0.5)

(
ϕn+1
Nx−0.5 + ϕn+1

Nx−1.5

)
− f ′ẽ(ρnNx−0.5)

∂

∂f(ρnNx )
J(ρ(α))− ∂

∂ρnNx−0.5

J(ρ(α)) . (33)

In the following, we summarize the discrete adjoint equations given above for a
better referencing

initialisation: (24)

propagation: (25)

coupling at a node: (29), (31)

in- and outflow: (32), (33)

 (34)

5. Mixed Integer Program (MIP). As already announced, an alternative way
to solve the optimal control problem (18) might be the derivation of a mixed integer
program (MIP). To do so, we proceed similarly as in section 4. We discretize the
constraints of (18) in a straightforward way following the ideas in [8, 16, 17, 18, 21].
We start with the reformulation of the hat function (2) introducing binary variables.
Then we go on with the discretization of (1) using the staggered Lax-Friedrichs
scheme, cf. section 2.1. The coupling conditions (3) and (7) are rewritten accord-
ingly. We close the section with a summary of the complete mixed integer program.
The latter can be solved using a commercial solver as for instance CPLEX [28].
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5.1. Reformulation of the hat function. The hat function (2) is a piecewise
linear, symmetric function. This can be understood as a composition of two linear
parts where a binary variable κ ∈ B indicates whether the density ρ is less (κ = 1)
or greater (κ = 0) than the breakpoint σ. This is guaranteed by

0 ≤
(
κ− 1

2

)
(σ − ρ) . (35)

Thus the binary variable κ enables us to write the hat function (2) in one line only

f(ρ) =

{
vρ; 0 ≤ ρ ≤ σ; κ = 1
f(σ)− v (ρ− σ) ; σ ≤ ρ ≤ ρmax; κ = 0

= κvρ+ (1− κ) (f(σ)− v (ρ− σ)) .

However, for a standard MIP, we need all constraints to be linear. We introduce
an auxiliary variable κ̃ representing the product κρ. Following [18] we get some
additional technical constraints and may rewrite the hat function as a linear function
in the variables ρ, κ and κ̃

f(ρ) = 2vκ̃− vρ+ 2f(σ)− 2f(σ)κ. (36)

5.2. Propagation. As described in section 2.1, the discretization of the transport
equation (1) is done applying a staggered Lax-Friedrichs scheme (13). In order to
deduce a mixed integer formulation, we use this discretization with λ = min {1/2ve}
being the largest possible time step. This yields (omitting the index e for the edge)

ρn+1
0.5 =

1

4
(3ρn0.5 + ρn1.5)− λ

2
[f(ρn1.5) + f(ρn0.5)− 2fn1 ] (37a)

ρn+1
j−0.5 =

1

4

(
ρnj−1.5 + 2ρnj−0.5 + ρnj+0.5

)
− λ

2

[
f(ρnj+0.5)− f(ρnj−1.5)

]
(37b)

ρn+1
Nx−0.5 =

1

4

(
ρnNx−1.5 + 3ρnNx−0.5

)
− λ

2

[
2fn2 − f(ρnNx−0.5)− f(ρnNx−1.5)

]
, (37c)

where the index j describes the spatial discretization point and n the time step
considered. The variable fn1 denotes the inflow into the edge, i.e. f(ρn0 ) = f(ρ(a, tn))
and fn2 describes the outflow of the edge, i.e. f(ρnNx ) = f(ρ(b, tn)). The expression
f(ρnj ) is an abbreviation for the expression of (36) for each j and n.

Thus, we get the set of equations (37) for each time step n, each discretization
point j and each edge e, making a total of (Nt − 1)×Nx × |E| constraints.

Note that the initial conditions of (1) have to be discretized as well:

ρ0
e,j =

1

∆xe

xj∫
xj−1

ρ̃e(x)dx = ρ̃e (38)

for all discretization points j and edges e ∈ E. Accordingly the variables describing
the in- and outflow to the edges are initialized by

f0
e,i = f(ρ̃e). (39)
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5.3. Coupling and boundary conditions. For the coupling at a simple junction
connecting the end of edge e to the beginning of edge ẽ we need to consider the flow
conservation (3) yielding

fne,2 = fnẽ,1 ∀0 ≤ n ≤ Nt . (40)

Furthermore we need to implement the constraint for maximal throughput (9) in
order to guarantee a unique solution

fne,2 = min
{

sune,2,denẽ,1
}
. (41)

This minimum is included in the MIP by introducing a binary variable deciding
on which term is smaller. Hereby we follow the approach in Göttlich et al. [18,
Proposition 2.2]. The equations (5) are rewritten in the same way by making use
of the binary variable κ, which has already been defined in (35).

Remark 4. The coupling of more than two edges in a junction is a straightforward
extension of equation (41) adding technical constraints and four more variables per
junction.

For the boundaries of the network, boundary conditions have to be specified.
First we consider the inflow boundaries, i.e. all edges going into the network, e ∈ Ein.
For these edges the inflow variable fe,1 has to be calculated by

fne,1 = f in
e (tn) (42)

for all 0 ≤ n ≤ Nt , where f in
e (t) is a function describing the inflow to this edge. For

the edges leading out of the network, we assume that all flow is leaving the network.
Thus we set

fne,2 = f(ρne,Nx−0.5). (43)

Summarizing, the constraints of the mixed integer formulation of (18) are

initialisation: (38),(39)

propagation: (37)

coupling at a node: (40), (41)

in- and outflow: (42), (43)

 . (44)

Remark 5. Note that the controls α are only implicitly given in the MIP (44).
They will be computed from the optimized flow values fne,i in a post processing step.

6. Comparison and numerical experiments.

6.1. Dual problem and connection to discrete adjoints. We start with a
formal comparison of the two optimization approaches. For simplicity, we stick to
the situation depicted in figure 3(a). The computations are numerically validated
in subsection 6.2 and extended in subsection 6.3.

For our investigations, we stick to linear objective functions J , e.g. the maximiza-
tion of outflow. In order to dualize the MIP we introduce a dual variable Φ for each
constraint of (44). Applying complementary slackness conditions, the number of
dual variables reduces and simplifies the problem. We mainly distinguish between
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the free flow (f ′(ρ) > 0) or the heavy traffic regime (f ′(ρ) < 0). This leads to the
dual problem of the MIP (44)

Propagation:

Φne,0.5 =
1

4

(
3Φn+1

e,0.5 + Φn+1
e,1.5

)
+
λv

2

(
2X̃n+1

e,2 − 1
) (

Φn+1
e,1.5 − Φn+1

e,0.5

)
+ vX̃n+1

e,2 Φn+1
coup −

∂J(ρ)

∂ρn+1
e,0.5

,
(45a)

Φne,j−0.5 =
1

4
( Φn+1

e,j−1.5 + 2Φn+1
e,j−0.5 + Φn+1

e,j+0.5

)
+
λv

2

(
2κn+1

e,j−0.5 − 1
) (

Φn+1
e,j+0.5 − Φn+1

e,j−1.5

)
− ∂J(ρ)

∂ρn+1
e,j−0.5

,
(45b)

Φne,Nx−0.5 =
1

4

(
Φn+1
e,Nx−1.5 +3Φn+1

e,Nx−0.5

)
+
λv

2

(
2X̃n+1

e,1 − 1
)(

Φn+1
e,Nx−0.5 − Φn+1

e,Nx−1.5

)
+ vX̃n+1

e,1 Φn+1
coup −

∂J(ρ)

∂ρn+1
e,Nx−0.5

.

(45c)

Coupling at a node:

Φn+1
coup = λ

(
Φn+1
ẽ,0.5 − Φn+1

e,Nx−0.5

)
− ∂J(ρ)

∂fn+1
e,2

. (45d)

Initialisation:

ΦNt
e,j−0.5 = − ∂J(ρ)

∂ρNt
e,j−0.5

. (45e)

In- and outflow:

Φne,0.5 =
1

4

(
3Φn+1

e,0.5 + Φn+1
e,1.5

)
+
λv

2

(
Φn+1
e,1.5 − Φn+1

e,0.5

)
− ∂J(ρ)

∂ρn+1
e,0.5

, (45f)

Φne,−0.5 =
1

4
( Φn+1

e,Nx−1.5 + 3Φn+1
e,Nx−0.5

)
− λv

2

(
Φn+1
e,Nx−0.5 + Φn+1

e,Nx−1.5

)
− v ∂J(ρ)

∂fn+1
e,2

− ∂J(ρ)

∂ρn+1
e,Nx−0.5

.
(45g)

with X̃n
e,1 ∈ B and X̃n

e,2 ∈ B being the counter parts of the binary variables defined
in equations (28) and (30), respectively. They take their values according to the
optimal primal solution being in the according regimes. Obviously, the equations
of (45) correspond to the adjoint problem in the following way:

Dual MIP Adjoints
Propagation (45a), (45b), (45c) (31), (25), (29)
Coupling (45d) (27)
Initialization (45e) (24)
In- and Outflow (45f), (45g) (32), (33)

For the initialization and the coupling the restrictions directly correspond. For
all other constraints to be compared we note that f ′(ρ) = ±v due to the use of the

hat function. Inserting X̃n
e,i also decides on the sign of the velocity v and thus the

comparison is straightforward again.
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Note that for the numerical solution of (45), we first solve the primal MIP (44)

and then insert the values for X̃n
e,i of the optimal solution. The numerical results can

be found in subsection 6.2. Our investigations can be extended to general network
topologies including junctions of merging and dispersing type. However, we omit
the details of this representation in this work and solely refer to a numerical study
in section 6.3.

Next, we solve the optimization problem (18) numerically with the adjoint ap-
proach presented in section 4 (to compute derivatives for the reduced problem),
which is done within the software package ANACONDA [33], and applying DONLP2
[40, 41] as well as the mixed integer program (MIP) presented in section 5 applying
CPLEX [28]. For the latter we employ a barrier procedure as starting algorithm
(as it performs better than the default setting of CPLEX) and a tolerance gap of 0.

6.2. Chain of roads. We present numerical examples for two different network
scenarios. For all settings we give the properties of edges (maximal density ρmax,
maximal flow f(σ), velocity v and length L := b−a) in tables 7, 10 and display the
corresponding graphs in figures 6, 9. Furthermore, we choose a spatial discretization
of Nx = 4, i.e. ∆x = L/Nx , and satisfy the corresponding CFL-condition with
equality yielding ∆t = L/8v. The initial values as well as the inflows are given for
each example separately.

In the first example, the chain of roads, the focus is on the numerical equivalence
of the adjoint variables and the dual variables of the mixed integer program (MIP).
Note that there are no control variables in this example, i.e. no degrees of freedom
for optimization. Nevertheless, the objective function influences the adjoint and
dual variables.

The second example deals with a more complex setting, which can be considered
as a straightforward extension of our previous results. In contrast to the work of
Fügenschuh et al. [17], backtravelling waves enter into the adjoint and MIP problem.
To the best of our knowledge, this effect has not been treated in the network context
so far.

We come to the first example: a chain of roads, i.e. a vertex with one ingoing
and one outgoing edge (see fig. 6). The properties of the edges are given in table 7.

v1 v2 v3
1 2

Figure 6. A chain of roads.

edge nr. ρmax f(σ) v L
1 20 10 1 1
2 12 6 1 1

Figure 7. Properties of edges.

Since the setting consists of a single junction we use the coupling conditions
given in (15) and (40), (41) for the adjoint approach and the mixed integer program
(MIP), respectively. We consider the following linear objective function for the MIP,

max J1 = −3

Nx∑
j=1

∆x

Nt∑
n=1

∆tρn1,j−0.5 − 4

Nx∑
j=1

∆x

Nt∑
n=1

∆tρn2,j−0.5

+
1

2

Nt−1∑
n=0

∆tfn1,1 +
3

2

Nt−1∑
n=0

∆tfn1,2 +
5

2

Nt−1∑
n=0

∆tfn2,2 ,

(46)

and the corresponding objective function for the adjoint approach. The given ob-
jective function can be interpreted in the following way: The density on each edge
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shall be minimized, where the second edge has a larger influence than the first edge,
and the throughput in each vertex shall be maximized.

For this objective function we compare the solutions obtained with the two ap-
proaches, evaluated at the first and the last cell of both edges (figure 8). We observe
that the match is perfect, i.e. the adjoint variables (solid line) and the dual variables
of the MIP (dots) coincide for all time steps. The maximal error is 5 · 10−7.

Φ
/
ϕ

time
0 1 2 3 4 5

−1

−0.8

−0.6

−0.4

−0.2
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Φ
/
ϕ

time
0 1 2 3 4 5

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05
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/
ϕ

time
0 1 2 3 4 5

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Φ
/
ϕ

time
0 1 2 3 4 5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 8. Adjoint variables (dashed line, x) compared to the dual
variables of the MIP (solid line, dots). Above: edge 1. Below:
edge 2. Left: cell 1. Right: cell 4.

6.3. Diamond network. Next we study a more complicated network (figure 9).
There are both two dispersing (v2 and v3) and two merging vertices (v4 and v5).
The properties of the edges are given in table 10. We stick to this kind of network
since we want to show, at least experimentally, that the computations we did in
sections 4, 5 still hold true for interlinked networks.

This example is motivated by evacuation dynamics, where the objective is to
maximize the total number of rescued evacuees while ensuring a safest possible
evacuation. Thus we consider the following objective function, which on the one
hand maximizes the throughput and on the other hand penalizes high densities on
certain edges

max J2 = 5

Nt−1∑
n=0

∆tfn7,2 −
Nx∑
j=1

∆x

Nt∑
n=1

∆t

(
2ρn3,j−0.5 +

1

4
ρn4,j−0.5 +

1

4
ρn6,j−0.5

)
. (47)

The controls are the distribution rates α2 and α3 at the vertices v2 and v3, respec-
tively, and similar degrees of freedom in v4 and v5 (for backtravelling waves). The
inflow is constant, i.e. f in(t) = 1.5, and the considered time horizon is T = 5. Now,
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v1 v2

v3

v4

v5 v6
1

2

3

4

5

6

7

Figure 9. The dia-
mond network.

edge nr. ρmax f(σ) v L
1 6 3 1 1
2 3 1.5 1 1
3 2 1 1 1
4 1 0.5 1 1
5 1 0.5 1 1
6 2 1 1 1
7 3 1.5 1 1

Figure 10. Properties of edges.

we compare both approaches by looking at the optimal solutions (see table 11, fig-
ures 12, 13, 14, 15). The mixed integer program (MIP) is solved using CPLEX [28]
and the adjoint approach is solved by the software packages ANACONDA [33] and
DONLP2 [40, 41] (the latter for the reduced problem).

Comparing the optimal solutions we see that the mixed integer program (MIP)
yields (as expected) the best objective value, since the approach guarantees a global
optimal solution, but at significantly longer running times. Due to the internal
use of the Branch and Bound algorithm, the CPLEX solver tends to prefer bang-
bang-solutions, cf. figure 12. This phenomenon has been observed before in [31].
Solving the KKT-system and thus the adjoint equation is much faster and leads to
a smoother solution, and in this case not reaching the global optimum, at least not
with the same accuracy. In general, this cannot be expected since the optimization
problem is not convex and hence the method may get stuck in a local optimum.
Using the optimal MIP solution as a starting solution for the adjoint approach
improves the results (see table 11). DONLP2 recognizes the optimality of the
starting solution and stops after just three iterations.

Alternatively, using the solution of the adjoint approach as a starting solution
improves the running time of the mixed integer program (MIP) enormously (about
40 times faster, see table 11), yielding the same solution as before.

MIP DONLP2
objective value 31.0628 31.0606
running time [sec] 40463.65 4
objective value with
MIP as start

— 31.0628

running time with
DONLP2 as start [sec]

1114.80 —

Figure 11. Comparison of optimal solutions.

In figure 13 we plot the density in the last cell of edge 7, i.e. the outflow of the
network for both solution methods and a uniform distribution at the vertices, i.e.
α2 = α3 = 0.5. Since we present the original solutions without using any starting
solutions, the distribution rates and also the outflow slightly differ. This differ-
ence immediately vanishes when using the solution of the mixed integer program
as a starting solution to the adjoint approach. Finally, we observe that both so-
lution approaches yield an increased output compared to the non-optimal uniform
distribution.
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Figure 12. Distribu-
tion rates at vertex
v2 (solid, dots: MIP;
dashed, x: adjoints,
dash-dotted, circle:
uniform distribution).
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Figure 13. Density in
the last cell of edge 7
(outflow). Solid, dots:
MIP. Dashed, x: ad-
joints. Dash-dotted, cir-
cle: uniform distribu-
tion.
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Figure 14. Density in
the last cell of edge 3.
Solid, dots: MIP.
Dashed, x: adjoints.
Dash-dotted, circle:
uniform distribution.
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Figure 15. Density in
the last cell of edge 6.
Solid, dots: MIP.
Dashed, x: adjoints.
Dash-dotted, circle:
uniform distribution.

In figures 14, 15 we present the density on the last cell of the penalized edges 3
and 6, respectively. Consequently, the MIP and the adjoint method as well result in
lower densities compared to the uniform distribution. This is due to the penalization
of density on these edges in the objective function (47). The difference between the
optimized values and those from the uniform distribution are larger on edge 3 in
comparison with edge 6. This is on the one hand caused by the higher penalization
of density on edge 3. On the other hand, edge 3 is congested, if the flow is uniformly
distributed. This drawback is avoided by both optimization approaches.



OPTIMIZATION FOR A SPECIAL CLASS OF TRAFFIC FLOW MODELS 333
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