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Abstract. We analyze the continuous time evolution of a d-dimensional sys-

tem of N self propelled particles with a kinematic constraint on the velocities

inspired by the original Vicsek’s one [29]. Interactions among particles are spec-
ified by a pairwise potential in such a way that the velocity of any given particle

is updated to the weighted average velocity of all those particles interacting

with it. The weights are given in terms of the interaction rate function. The
interaction is not of mean field type and the system is non-Hamiltonian. When

the size of the system is fixed, we show the existence of an invariant manifold in

the phase space and prove its exponential asymptotic stability. In the kinetic
limit we show that the particle density satisfies a nonlinear kinetic equation

of Vlasov type, under suitable conditions on the interaction. We study the
qualitative behaviour of the solution and we show that the Boltzmann-Vlasov

entropy is strictly decreasing in time.

1. Introduction. The analysis of a network of a large number of coordinated self
propelled particles (agents) is a sub discipline of control theory which has seen a
rapid development during the last decade [8, 30, 21, 13, 4, 14, 12]. This is due
to its several potential application in understanding the collective behavior in bi-
ological systems (for example fish schools and bird flocks) [13], computer science
[25, 8], engineering [21, 14, 12], economy [18] and social sciences [30, 4]. Explaining
the emergence of these coordinated movements in terms of microscopic decisions
of each individual member of a network is a hot matter of research in the natural
sciences. To model the particle self-organized behavior one assigns to each particle
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a simple communication/interaction rule in order for the whole system to dynam-
ically reproduce, in a given regime of the model’s parameters, specific phase space
patterns.

The emergence of phase space patterns persistent in time described by a large
connected cluster of coherently moving particles is called flocking or swarming (also
schooling or herd behavior). Basic models of flocking behavior generally follow three
simple rules: 1) separation, that is to avoid crowding neighbors (usually modeled
by short range repulsive interactions); 2) alignment, i.e. to steer towards average
heading of neighbors; 3) cohesion, i.e. to steer towards the average position of
neighbors (usually modeled by long range attractive interactions).

The seminal work in the direction of modeling flocking behavior is the one of
Vicsek et al. [29]. They proposed a model of N interacting particles located on a
two-dimensional torus of diameter D. The velocity of each given particle belongs to
the unit circle and at each time step its direction is updated at the empirical average
of the velocity’s directions of all the particles lying in a neighborhood of radius 1
from the given one, including itself, plus a random perturbation. Particles positions
are then updated according to their velocity. Computer simulations proved that,
when the particle density N

D2 is sufficiently high and the noise intensity sufficiently
small, the distribution of the velocities of the particles concentrates around the
velocity of the barycenter of the system, although this is not a quantity preserved
by the dynamics.

We propose a simple model of continuous time noiseless multi-agent evolution
closely inspired to the original Vicsek’s one. The particles interact (communicate)
with each other trough a pairwise interaction potential in such a way that the
velocity of any given particle is updated to the weighted average velocity of all
those particles communicating with it. This choice makes the interaction not of
mean field type. Furthermore, the system is non Hamiltonian. As a result, there
is a tendency of neighboring particles to align their velocities. This is the crucial
element in the mechanism of the emergency of a coherent motion.

For what concerns flocking behaviour our model takes into account alignment
and cohesion, but violates the separation rule since the particles can overlap.

We prove for such model two type of results. First, we analyze the N particle
dynamics in Rd. We show that there exists an invariant manifold in the phase space
and prove exponential asymptotic stability of the invariant manifold when the initial
conditions for particles dynamics are suitably chosen. This implies that the system,
under the chosen initial conditions, will reach a state of flocking. Then, we study
the kinetic limit (N → ∞) of the system. Since the interaction is not of mean
field type care needs to be taken in the definition of the velocity field in the phase
space and consequently in the evolution of the particle density. We explain in more
details how to deal with these difficulties in Section 4. We prove that the particle
density satisfies a Boltzmann-Vlasov equation when the particles are confined on a
torus and subject to a short-range potential of Gaussian type. Similar result holds
in Rd when the interaction among particles is given by a suitable regularization of
a finite range potential. We further show that the Boltzmann-Vlasov entropy is
strictly decreasing in time. As a consequence, one can argue that, even if the initial
distribution of the particles is absolutely continuous w.r.t. Lebesgue measure, the
limit density distribution is singular w.r.t. Lebesgue measure. This is consistent
with what one expects from the model. For time long enough the position and
velocity particle distribution will concentrate on specific phase-space patterns.
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A continuous time version of Vicsek’s model, as well as its stochastic counterpart
driven by the Brownian motion, has been proposed in [15] and the corresponding
kinetic equations heuristically derived and studied. In fact, at present time, to our
knowledge, a rigorous derivation and analysis of Vicsek’s model kinetics, as well as
hydrodynamics, is lacking.

Another basic model for flocking is the Cucker-Smale one [14]. In this and re-
lated models [17, 3] the variation in time of the momentum of a given particle is
the weighted sum of the differences between the particle’s momentum and those
of the other system’s components, with weights depending of the relative distances
among particles divided by the total number of particles N. It is worth notice that,
for all these models, the interaction between two given particles is of order 1/N,
therefore when the size of the system becomes large, particles tend to decorrelate.
On the contrary, in the original Vicsek’s model, the interaction between a given
couple of particles is of order one. Moreover, Cucker-Smale dynamics preserves the
velocity of the barycenter, which is not the case for Vicsek’s. The order of the
interaction with respect to the size of the system is the peculiar feature distinguish-
ing Vicsek’s from Cucker-Smale algorithm. Therefore, in our opinion, variants of
the Cucker-Smale momenta updating rule taking into account only the differences
among the directions of the momenta of the particles, rather than those of the
momenta as vectors, are somewhat improperly ascribed to variants of the Vicsek’s
model [7]. Cucker-Smale and related models have been more deeply investigated in
the mathematical literature and their mean-field limit equations rigorously derived
and studied in [20, 19, 11, 9, 3] in the noiseless case and in [6, 7] in the stochastic
case driven by Brownian motion. Moreover, the hydrodynamics equations for these
models have also been rigorously studied but formally derived [20, 10, 9].

Recently, a model analogous to the one we propose in this paper, but with com-
munication rate function restricted to the Cucker-Smale model one has been intro-
duced and analysed in [23]. The authors prove that the strategy originally proposed
to study the emergence of flocking behaviour for a system of self-propelled particle
updating their velocity with the standard Cucker-Smale algorithm also applies to
this case with the same restrictions on the decay of the communication rate func-
tion. It turns out that the model we propose in the present paper is more general
than the one proposed in [23], since includes also sufficiently smooth compactly sup-
ported communication rate functions, and so are the results about the emergence
of flocking behaviour for the particle system.

The plan of the paper is the following. In Section 2 we describe the model, set
the notations and present the main results. In Section 3 we analyze the system
when the number of particles is fixed. In Section 4 we analyze the system when
the number of particles goes to infinity. In the appendix we collect proofs of results
used along the previous sections.

2. Description of the model, notation and results.

2.1. Notations. Given x ∈ Rd, d ≥ 1, we denote by xi its i-th component,
i = 1, .., d, with respect to the canonical basis (e1, .., ed) . For any x, y ∈ Rd we set

x · y :=
∑d
i=1 x

iyi to be the scalar product between x and y. Hence, we denote by
|x| :=

√
x · x the associated Euclidean norm and by Br (x) := {y ∈ Rd : |y − x| ≤ r}

the ball of radius r > 0 centered at x and Br := Br (0) . Furthermore we set
‖x‖∞ := maxi=1,..,d

∣∣xi∣∣ .
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Given an integer N ≥ 2, we denote a point in RNd by x := (x1, .., xN ) ∈ RNd, its

norm by |x| :=
√

x · y, where x · y :=
∑N
i=1 xi · yi. We denote by

Br (x) := {y ∈ RNd : |y − x| ≤ r} the ball of radius r > 0 centered at x.
Partial derivative w.r.t. any component xi of x ∈ Rd will be denoted by ∂xi , so

that ∇x stands for (∂x1 , .., ∂xd) while, for any q ∈ RNd, we set ∇q := (∇q1 , ..,∇qN ) .
Moreover, we denote by Ln (R) the space of linear operators from Rn to itself

and by ‖·‖ and ‖·‖∞ the operator norm induced by respectively the Euclidean and
the supremum norm. In particular In,0n ∈ Ln (R) denote respectively the identity
and the null operator.

2.2. The model. Let N ≥ 2 be an integer. We consider N particles of unitary
mass in Rd evolving according to the equations:

dqi(t)
dt = pi(t)

dpi(t)
dt =

∑N
j=1 U(qi(t)−qj(t))(pj(t)−pi(t))∑N

j=1 U(qi(t)−qj(t))
, i = 1, .., N

qi(0) = q0i ; pi(0) = p0i

(1)

where, for i = 1, .., N, (qi, pi) ∈ Rd × Rd, (q0i , p
0
i ) are the initial conditions and U

is a pairwise interaction. We assume that U(·) is a spherically symmetric positive
function, sufficiently smooth, with support the ball of radius R centred at zero
and so that U(0) > 0. This implies that the denominator in the second equation
of (1) is always strictly positive. The choice of R does not play any particular
role in the analysis. Without loss of generality we assume that

∫
U(x)dx = 1 and

supx∈Rd U(x) = U(0). Namely, for agent-based models it is reasonable to assume
that self-interaction is stronger than the interactions between two different particles.
A simple example to have in mind for the potential U is U(x) = C(d)(1−|x|)1IB1(x),
where C(d) is taken such that

∫
U(x)dx = 1 or smoother versions of this. In this

example, the particle qi interacts only with particles at distance 1. The vector field
in (1) is Lipschitz, therefore the existence and the uniqueness of the solution is
granted at least for short time. Since the vector field increases at most linearly in
w = (q,p) the solution w(t, w0) with initial datum w0 exists and it is unique for all
t ≥ 0.

To derive the kinetic limit results, the interaction must satisfy further require-
ments which will be presented and discussed in the following.

2.2.1. Flocking. Given a particle configuration q ∈ RNd we introduce the notion of
communication graph. We use only basic definition of graph theory useful to define
the flocking behaviour for the system (1). We refer the reader to basic textbooks
such as [5] for an account on this subject.

Definition 2.1. Given a particle configuration q ∈ RNd, we define the communi-
cation graph G (q) := (V (q) , E (q)) , where the set of vertices V (q) = {q1, . . . , qN}
is the collection of the N points of Rd associated to q and

E (q) := {(q, q′) ∈ V (q)× V (q) : U (q − q′) > 0} (2)

is the set of edges.

Two vertices q and q′ are said to be connected if there are q1, . . . , qk vertices
in V (q) , k ∈ {2, . . . , N}, such that q1 = q, qk = q′and U (qi − qi+1) > 0, for
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i = 1, . . . , k − 1. The graph G (q) is said to be connected if any two of its ver-
tices are connected1. We will set Vt := V (q (t)) and G (t) := G (q (t)) .

Definition 2.2. The system (1) with initial conditions w0 = (q0,p0) is said to
exhibit a flocking behavior if there exists v ∈ Rd such that, for any ε > 0,∃Tε > 0 :
∀t > Tε,

• pi
(
t, w0

)
∈ Bε (v) ,∀i = 1, .., N ;

• the communication graph G (t) is connected.

We remark that our definition of emergence of flocking behaviour differs from the
one given for models with long interaction (e.g. Cucker-Smale model [19], [11]). In
the latter case the communication graph is always connected, while this is not true
for short range interactions. Therefore we have in Definition 2.2 two conditions,
one on the particle velocities and the other on the particle positions.

2.3. Results for finite size system. Let I be the (N + 1)d linear manifold

I = ∪{v∈Rd}I(v) , (3)

where
I(v) = {(q,p) ∈ RdN × RdN : pi = v, i = 1, .., N} . (4)

It is immediate to see that I is invariant for the evolution (1). Namely, if the initial
data belong to I (v) the particles evolve independently one from the other with
constant velocity v. The only critical point of the system (1) is (0,0) . We denote,
for any w ∈ R2dN ,

dist (w, I) = inf
w0∈I

|w − w0| (5)

and by w(t, w1) the solution at time t of (1) starting from w1 ∈ R2dN . We have the
following results.

Theorem 2.3. The manifold I is stable for the evolution (1).

This means that, for any ε > 0, there exists δ(ε) ≤ ε such that, for all initial data
w0 ∈ R2dN satisfying dist(w0, I) ≤ δ(ε), then dist(w(t, w0), I) ≤ ε for all t ≥ 0.
Stability of the manifold I does not imply that the system exhibits a flocking
behaviour when starting from w0. Theorem 2.3 is quite easy to show, see for the
proof Corollary 1.

Next, we show a stronger result. Assume that at initial time the particle posi-
tions are chosen so that the communication graph is connected and their velocities
are conveniently taken; then, at later times, the particles will not split into non
interacting groups and the velocity of each one converges exponentially fast to a
velocity vector which is the same for all the N particles. In other words, the system
exhibits a flocking behaviour, see Definition 2.2.

Theorem 2.4. Let w0 = (q0,p0) ∈ I and assume that the communication graph
G
(
q0
)

is connected. There exist three positive constants r0 = r0(w0), T = T
(
w0
)
,

ε0 = ε0
(
w0
)

and a set B(r0, ε0, w
0) ⊂ R2Nd, such that, for any initial datum

w1 ∈ B(r0, ε0, w
0)

dist
(
w(t, w1), I

)
≤ ε0(w0)e−t

log 2
T . (6)

The proof of Theorem 2.4 is presented in Section 3.

1Since U is spherically symmetric, the communication graph is undirected. Hence, in this case,
the usual notions of strongly connected graph and connected graph coincide.
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2.4. Results for infinite size system. The main difficulty in deriving the kinetic
limit, from system (1) is that the interaction, see (1), is not mean field, i.e. it is not
divided by N, the total particle number. This creates problems in the definition of
the evolution of the particle density since the velocity field in the phase space may
be ill defined if further assumptions on the interaction U and on the configuration
space are not taken into account. We will discuss this point extensively in Section
4. We overcome these difficulties in two ways. The first way is adding ε > 0, which
will be kept fixed, to the denominator of the second equation of (1). We keep the
interaction U of compact support and assume for definiteness supx |∇U(x)| ≤ 1.
We will refer to the system (1) modified in such a way as ε−regularized system. A
second way is to confine the system (1) in the torus of linear size D > 0, TD, and
taking interactions U verifying the following assumptions.

Definition 2.5. Assumptions on the interaction Let Ũ : Rd → R+ be such
that either

sup
x∈Rd

∣∣∣∇ log Ũ(x)
∣∣∣ ≤ K (7)

or

Ũ(x) =
1

(2πR2)
d
2

e−
|x|2

2R2 . (8)

We then define U to be the periodization on the torus TD of one of the previous Ũ :

U(x) =
∑
n∈Zd

Ũ(x+ nD). (9)

Remark 1. The assumption (7) is quite strong. An interaction Ũ verifying this

assumption should decay for |x| large as e−
|x|
R , for some R > 0. Interactions with

compact support do not satisfy this assumption as well as the interaction (8).

Next, we define the space of measures and the metric we will be using. We
denote by M the space of probability measures on (X ×B1,B (X ×B1)), where
the symbol X stands either for Rd or for the torus TD, B1 denotes the ball of radius
1 in Rd and B (X ×B1) is the Borel σalgebra on X ×B1. We will prove that there
is no loss of generality to confine the velocity in a bounded set and for definiteness
we identify this set with B1. We will be using the same notations either to denote
the space of probability measure on TD×B1 or the space of probability measure on
Rd ×B1, unless we will have the need to distinguish between the two configuration
spaces in which case we will use the notationM(X×B1). In this space we introduce
the bounded Lipschitz distance dbL defined as follows. The dbL distance between
two measures µ and ν in M is given by

dbL(µ, ν) = sup
g∈D

∣∣∣∣∫ g(x, v)µ(dx, dv)−
∫
g(x, v)ν(dx, dv)

∣∣∣∣ , (10)

where

D :=

{
g | g : X ×B1 → [0, 1] ; |g(x, v)− g(y, w)| ≤

√
|v − w|2 + |x− y|2

}
.

(11)
The metric dbL generates the weak* topology2 on M: for a sequence µN ∈M and
µ ∈M

2We refer the reader to [22] for an account on the notion of weak convergence of measures and
to [28] for the relation between the bounded Lipschitz distance and the Kantorovich-Rubinstein

(Wasserstein) distance.
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lim
N→∞

dbL(µN , µ) = 0

is equivalent to

lim
N→∞

∫
g(w)µN (dw) =

∫
g(w)µ(dw) , (12)

for all bounded and continuous function g on X. In the following we denote the

convergence in (12) by µN
w

=⇒ µ.
For (qj , pj) ∈ R2d, j = 1, .., N , we denote by µN the empirical measure

µN (dx, dv) :=
1

N

N∑
j=1

δ(qj − x)δ(pj − v)dxdv, (13)

where δ(x− y)dx is the Dirac measure at y ∈ Rd. Hence, µNt denotes the empirical
measure (13) when the ((qj(t), pj(t)), j = 1, .., N , are the solutions of (1). In this
case we say that µNt is the empirical measure at time t associated to w(t, w0), where
w0 = (q0,p0). Given a smooth function g on X ×B1 and µ ∈M we denote by

µ(g) =

∫
X×B1

g(x, v)µ(dx, dv) (14)

and

(U ? µ)(x) =

∫
X×B1

U(x− y)µ(dy, du).

We have the following main results.

Theorem 2.6. Let w0 = (q0,p0) ∈ (TD × B1)N and µNt , t ≥ 0, be the empirical
measure associated to w(t, w0), the solution of (1) with U chosen as Definition 2.5.
Let µ0 ∈M be such that

lim
N→∞

dbL(µN0 , µ0) = 0. (15)

Then, there exists µt ∈M such that

lim
N→∞

dbL(µNt , µt) = 0, (16)

where µt is the measure solution of the following equation

∂(µt(g))

∂t
= µt(v · ∇xg) + µt(M (·, ·, µt) · ∇vg) ,∀g ∈ D , (17)

and for ν ∈M,

TD×B1 3 (x, v) 7−→M(x, v, ν) :=

(∫
TD×B1

U(x− y)uν(dy, du)∫
TD×B1

U(x− y)ν(dy, du)

)
−v ∈ Rd . (18)

The next result establishes that under regularity assumptions on the initial mea-
sure µ0 and on the interaction U the solution µt of (17) is regular as well.

Theorem 2.7. Take U as in Definition 2.5. If µ0(dx, dv) = f0(x, v)dxdv, then
µt(dx, dv) = ft(x, v)dxdv and ft is the weak solution of

∂

∂t
ft(x, v) + v · ∇xft(x, v) +∇v · [M(x, v, ft)ft(x, v)] = 0 . (19)

Furthermore, if f0 ∈ Ck(X ×B1), k ≥ 1, and U ∈ Ck(X) then ft ∈ Ck(X ×B1).
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In Section 4, see Remark 5 and Remark 6, we will show that Theorem 2.6 and
Theorem 2.7 hold also for the ε− regularized system (1) when considering the con-
figuration space X to be either Rd or TD and, for any ν ∈M, M (·, ·, ν) is replaced
by

X ×B1 3 (x, v) 7−→Mε(x, v, ν) :=

( ∫
X×B1

U(x− y)uν(dy, du)∫
X×B1

U(x− y)ν(dy, du) + ε

)
− v ∈ Rd .

(20)
The results are shown adapting to our context the method reported in Spohn’s book
[26, Section5] (see also Neunzert [24] and Dobrushin [16]) and some classical tools of
dynamical systems. The main difference between the case considered here and the
one presented in [26] is that, in our case, the dependence of M(·, ·, ν) from ν is not
linear. We are able to overcome this problem when the denominator of M(·, ·, ν)
is strictly bigger than a positive number. This is the case when the U in M(·, ·, ν)
is chosen as in Definitions 2.5. Notice that the denominator in Mε(·, ·, ν) is always
strictly bigger than ε.

The existence and the uniqueness of the measure solution of equation (17) is given
in Theorem 4.4. The existence of weak and strong solutions of (19) follows from
Theorem 4.5. The qualitative behaviour of the solution of equation (19) is analyzed
in Subsection 4.1. In particular, in Lemma 4.7, we show that the Boltzmann-Vlasov
entropy is strictly decreasing in time.

3. Particle dynamics. In the following we analyze the evolution of N particles
according equations (1). In this section N is kept fixed, so we omit in the notation
to write explicitly the dependence on N.

3.1. Stability. We first notice that if the velocities of the particles at time zero
are bounded, that is, for all i = 1, .., N, p0i ∈ Br for some r > 0, then they will lie
in Br for later times. In fact we have the following result:

Lemma 3.1. For any i = 1, .., N, assume that pi (0) ∈ Br. Then, pi(t) ∈ Br, for
all t > 0.

Proof. Assume, without loss of generality that r = 1 and that there is a t∗ such
that there is at least one pi(t

∗) such that |pi(t∗)| = 1 and |pj(t∗)| ≤ 1 for j 6= i.
Then

1

2

d

dt
|pi(t∗)|2 =

∑N
j=1 U(qi(t

∗)− qj(t∗)) [pj(t
∗)− pi(t∗)] · pi(t∗)∑N

j=1 U(qi(t∗)− qj(t∗))
≤ 0 . (21)

Remark 2. The result of Lemma 3.1 holds for any positive smooth interaction U,
regardless of its support. In particular, it holds if U does not have compact support.

Next result shows that if at time t = 0 the particle velocity vector is close to its
mean velocity vector, then, at any further time t, it will always remain close to the
mean initial velocity vector. Let Ω ∈ LNd be the operator such that

RNd 3 x 7−→Ωx ∈ RNd , (22)

where Ωx is the vector in RNd whose component are the vectors (Ωx)i = 1
N

∑N
j=1 xj

∈ Rd,∀i = 1, .., N. Notice that by definition Ω is the orthogonal projector on{
x ∈ RNd : x1 = · · · = xN

}
.
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Theorem 3.2. Let w(t, w0) = (q(t),p(t)) be the solution of (1) at time t starting
from w0 = (q0,p0) ∈ R2Nd. Given ε > 0, assume that |p0 − Ωp0| < ε. Then

|p(t)− Ωp0| ≤ ε, ∀t ≥ 0 . (23)

Proof. Denote by vi(t) := pi(t) −
(
Ωp0

)
i
∈ Rd, i = 1, .., N, then proceed as in the

proof of Lemma 3.1.

Note that, for any w ∈ R2Nd,

dist (w, I) = inf
w0∈I

|w − w0| = inf
{p0∈RNd:w=(q0,p0)∈I}

|p− p0| = |p− Ωp| , (24)

where Ω is the operator defined in (22). From Theorem 3.2 one deduces that the
invariant manifold I is stable for the evolution (1).

Corollary 1. For any ε > 0 let B(ε, I) =
{
w ∈ R2Nd : dist (w, I) ≤ ε

}
be a neigh-

borhood of radius ε of I. Let w(t, w0) be the solution of (1) at time t starting from
w0 = (q0,p0) ∈ B(ε, I). Then

dist
(
w(t, w0), I

)
≤ 2ε, ∀t > 0 . (25)

Proof. By (24) we have

dist
(
w(t, w0), I

)
= |p(t)− Ωp(t)| ≤ |p(t)− Ωp0|+ |Ωp(t)− Ωp0| . (26)

By definition of Ω, see (22),

|Ωp(t)− Ωp0| = |Ω(p(t)− Ωp0)| ≤ |p(t)− Ωp0| . (27)

Hence, by Theorem 3.2,

dist
(
w(t, w0), I

)
≤ 2|p(t)− Ωp0| ≤ 2ε , ∀t ≥ 0 . (28)

3.2. Asymptotic stability. To prove Theorem 2.4 we rewrite the non linear sys-
tem (1) as follows: 

(
dq(t)
dt

dp(t)
dt

)
= C (q(t))

(
q(t)
p(t)

)
q(0) = q0,p(0) = p0

(29)

where

RNd 3 q 7−→ C (q) :=

(
0Nd INd
0Nd L (q)

)
∈ L2Nd (R) , (30)

L (q) := A (q)− INd (31)

and A(q) is the linear operator valued function so defined

RNd 3 q 7−→ A(q) :=

a1,1(q)Id a1,2(q)Id . . . a1,N (q)Id
a2,1(q)Id a2,2(q)Id . . . a2,N (q)Id
aN,1(q)Id . . . aN,N−1(q)Id aN,N (q)Id

 ∈ LNd (R)

(32)

ai,j(q) :=
U(qi − qj)∑N
k=1 U(qi − qk)

, j = 1, .., N, i = 1, .., N. (33)
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Remark 3. Notice that for q ∈ RNd

ai,j(q) = ai,j(q + Ωx), ∀x ∈ RNd, j = 1, .., N, i = 1, .., N (34)

and
N∑
j=1

ai,j(q) = 1. (35)

These two properties are important when studying the spectrum of C (q) for a fixed
value of q.

3.2.1. Spectral analysis of C (q). Let q ∈ RNd be fixed. The eigenvalues of C (q)
are the roots of the characteristic equation

Det [C (q)− λI2Nd] = (−λ)Nd Det [L (q)− λINd] = 0. (36)

We need then to study the spectrum of L (q) and therefore, by (31) the spectrum of
A(q). To do this it is convenient to introduce the tensor space RN ⊗Rd. We denote
by F the isomorphism

RNd 3 x −→ F (x) :=

N∑
i=1

d∑
j=1

xjiei ⊗ ej ∈ RN ⊗ Rd , (37)

such that F(x)i,j = xji , i = 1, .., N and j = 1, .., d.
To ease the notation we omit in the following to write the dependence on q if

no confusion arises. We therefore set A := A (q). One obtains immediately that
A : RNd −→ RNd acts on RN ⊗ Rd as follows

Ã⊗ Id : RN ⊗ Rd −→ RN ⊗ Rd , (38)

where, by (33), setting ai,j := ai,j(q),

Ã :=

a1,1 a1,2 . . . a1,N
a2,1 a2,2 . . . a2,N
aN,1 . . . aN,N−1 aN,N

 . (39)

Namely, one has that (
Ã⊗ Id

)
F(x) = F (Ax) . (40)

Furthermore, denoting by Σ(A) ⊂ C the spectrum of A,

Σ(A) = Σ(Ã⊗ Id) = Σ(Ã)Σ(Id)3 . (41)

Since the only eigenvalue of Id is 1 with multiplicity d, the problem is reduced to
study the spectrum of Ã. The matrix Ã is a (right) stochastic matrix, that is it

has non-negative entries and, by (35),
∑N
j=1 ai,j = 1, ∀i = 1, .., N . Then, if it is

irreducible one can apply the Perron-Frobenius Theorem.
Recall that a matrixD ∈ Ln (R) with non-negative entries is said to be irreducible

if there exists an integer m such that Dm has strictly positive entries. We have the
following.

3If Z := {z1, .., zn} and W := {w1, .., wm} are two discrete subsets of C we denote by

ZW := {ziwj ∈ C : i = 1, .., n ; j = 1, ..,m} .
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Lemma 3.3. Let Ã(q), q ∈ RNd, be irreducible. Then 1 is the maximum eigenvalue
and all the other eigenvalues λ(q) ∈ C are strictly smaller in absolute value of 1,
i.e. |λ(q)| < 1. The eigenspace associated to the eigenvalue 1 is one dimensional
and it is generated by the eigenvector η, ηi = 1√

N
for i = 1, .., N . There are no

other positive eigenvectors except multiples of η.

Proof. Because for any q ∈ RNd, ‖Ã (q) ‖∞ ≤ maxi=1,..,N

∑N
j=1 ai,j (q) = 1, we

have that the maximum eigenvalue is 1 and any other eigenvalue λ(q) ∈ C is
strictly smaller in absolute value of 1. By Perron Frobenius Theorem the maximum
eigenvalue is simple and the associated positive eigenvector is η with ηi = 1√

N
for

i = 1, .., N.

It is possible to show, assuming that Ã (q) is irreducible, that the spectrum of

Ã (q) is indeed real, although this information is not relevant for the proofs of the
results.

Remark 4. For any q ∈ RNd, Ã (q) represents the transition matrix for the Markov

chain with state space SN := {1, ..., N} . By (33) we have that Ã (q) is reversible
w.r.t. the probability distribution {µi (q)}i∈SN such that ∀i ∈ SN ,

µi (q) :=

∑N
j=1 U (qi − qj)∑N
i,j=1 U (qi − qj)

> 0 , (42)

(for an account on reversible Markov chains we refer the reader to and [27]). Let
HN (q) be the space RN equipped with the scalar product

RN × RN 3 (f, g) 7−→ 〈f, g〉q :=
∑
i∈VN

µi (q) gifi ∈ R . (43)

It is easy to verify that Ã (q) is selfadjoint on HN (q), hence the eigenvalues of Ã (q)
are real.

Lemma 3.4. For any q ∈ RNd, such that Ã(q) is irreducible, let A(q) be the matrix
as in (32). We have that 1 ∈ Σ(A(q)) is the maximum eigenvalue. The associated
eigenspace is the d-dimensional manifold {p ∈ RNd : pi = v, i = 1, .., N ; v ∈ Rd}.
All the other eigenvalues λ(q) ∈ Σ(A(q)) are such that |λ(q)| < 1.

Proof. It is an immediate consequence of (41) and Lemma 3.3.

We have finally the following result.

Theorem 3.5. For any q ∈ RNd, such that Ã(q) is irreducible, let C(q) be defined
in (30). We have that 0 ∈ Σ(C(q)). The (N + 1)d dimensional manifold I defined
in (3) is the eigenspace associated to the eigenvalue 0. All the other eigenvalues of
C(q) have real part strictly negative.

Proof. From (36) and Lemma 3.4 we deduce that 0 ∈ Σ(C(q)) and all other ei-
genvalues have real part strictly negative. It is immediate to see that the algebraic
multiplicity of 0 is Nd + d. The (N + 1) d-dimensional manifold I defined in (3)
is the associated eigenspace. Namely, if w ∈ I then C (q)w ∈ I. From this one
deduces that I is an eigenspace for the matrix C(q). Moreover, since the kernel of
C2 (q) is I, we get that I is the eigenspace associated to the eigenvalue 0.
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We denote by α(q) the spectral gap of the matrix C(q), that is

α(q) := min {|Re(λ(q))| : λ(q) ∈ Σ(C(q)), Re(λ(q)) < 0} . (44)

Let q ∈ RNd such that Ã(q) is irreducible. By Theorem 3.5, I is the eigenspace
associated to the 0 eigenvalue of C(q) for any q. We can therefore decompose R2Nd

as follows:
R2Nd = W (q)⊕ I (45)

in such a way that W (q) and I are eigenspaces of C(q) and denote by Π(q) the
projection operator

Π(q) : R2Nd →W (q) . (46)

3.2.2. Asymptotic analysis. Let w0 = (q0,p0) ∈ I be such that Ã(q0) is irreducible
and let us set, for any r > 0 and ε > 0,

B̃(r, ε, w0) := {w = (q,p) ∈ R2Nd : |q− q0| ≤ r ; |p− p0| ≤ ε} . (47)

Denote by r0 the biggest value of r such that, for any w = (q,p) ∈ B̃(r0, ε, w
0), Ã(q)

is still irreducible and α(q) ≥ 1
2α(q0). We set

B(r0, ε, w
0) :=

{
w = (q,p) ∈ B̃(r0, ε, w

0) : α(q) ≥ 1

2
α(q0)

}
. (48)

The existence of r0 is granted since, by assumption, Ã(q0) is irreducible and U is
smooth. To apply the spectral results obtained for C(q) (q fixed) to the nonlinear
system (29) we write

C(q(t)) = C(q(0)) + Γ(q(t)) , (49)

where

Γ(q(t)) :=

(
0Nd 0Nd
0Nd B (q (t))

)
, (50)

and
B(q(t)) := A(q(t))−A(q(0)) . (51)

Next we estimate the norm of B(q(t)).

Lemma 3.6. Let (q(t),p(t)) be the solution of (29) starting from the initial data
(q0,p0). We have

‖B(q(t))‖ ≤ 2N
supx∈Rd |∇U(x)|

U (0) + (N − 1)η(q(t),q0)
×

× sup
i,k∈{1,..,N}

∣∣−(q0i − q0k) + qi(t)− qk(t)
∣∣ ,

where η(q(t),q0) ≥ 0 is defined in (147).

We defer the proof of this result to the appendix. In the proof of (2.4) we will
use Lemma 3.6 taking η(q(t),q0) = 0.

Proof of Theorem (2.4). For any s > 0, we define

Q̃(s, w0) := {w = (q,p) ∈ R2Nd : |[INd − Ω]
(
q− q0

)
| ≤ s} , (52)

where Ω is the operator defined in (22). Denote by s0 the largest value of s such

that, for any w = (q,p) ∈ Q̃(s0, w
0), Ã(q) is still irreducible and α(q) ≥ 1

4α(q0).

Such a value s0 exists since Ã(q0) is irreducible and U is smooth. Let us set

Q(s0, w
0) :=

{
w = (q,p) ∈ Q̃(s0, w

0) : α(q) ≥ 1

4
α(q0)

}
. (53)
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We have that

B(r0, ε, w
0) ⊂ Q(s0, w

0) , ∀ε > 0 . (54)

Namely we have that s0 ≥ r0 since requirement (48) is stronger than (53) and

|[INd − Ω](q− q0)| ≤ |q− q0| ≤ r0 . (55)

Let w(t, w1) = (q(t, w1),p(t, w1)) be the solution of system (29) starting from an
initial datum w1 ∈ B(r0, ε, w

0) and let t∗(w1) > 0 be the first exit time of w(t, w1)
from Q(s0, w

0). If w(t, w1) ∈ Q(s0, w
0) for all t ≥ 0, then we set t∗(w1) =∞. Next

we analyze the solution for t < t∗(w1) and we will show that t∗(w1) = ∞ for any
initial datum w1 ∈ B(r0, ε, w

0), provided that ε in (47) is suitably chosen. Let us
define

ξ(t) := Π(q(t, w1))w(t, w1) , (56)

χ(t) :=
(
I2Nd −Π(q(t, w1)

)
w(t, w1) , t < t∗(w1) . (57)

By construction χ(t) ∈ I, ξ(t) ∈W (q(t, w1)). We then have

d

dt
ξ(t) =

(
d

dt
Π(q(t))

)
w(t, w1) + Π(q(t))

d

dt
w(t, w1) (58)

=

(
d

dt
Π(q(t))

)
w(t, w1) + Π(q(t))C(q(t))w(t, w1) .

Taking into account that w(t, w1) = ξ(t) + χ(t) we get

d

dt
ξ(t) =

(
d

dt
Π(q(t))

)
ξ(t) +

(
d

dt
Π(q(t))

)
χ(t) + Π(q(t))C(q(t))ξ(t) . (59)

Since for any given w ∈ I, by the definition Π(q(t)), we have d
dtΠ(q(t))w = 0 and

C(q(t)) and Π(q(t)) commute, we obtain

d

dt
ξ(t) =

(
d

dt
Π(q(t))

)
ξ(t) + C(q(t))ξ(t) . (60)

Setting

C(q(t)) = C(q(0)) + Γ(q(t)) , (61)

where Γ(q(t)) is defined in (50), we get

d

dt
ξ(t) =

(
d

dt
Π(q(t))

)
ξ(t) + C(q(0))ξ(t) + Γ(q(t))ξ(t) . (62)

By the formula of variation of constants:

ξ(t) = eC(q(0))tξ(0) +

∫ t

0

eC(q(0))(t−s)
{(

d

ds
Π(q(s))

)
ξ(s) + Γ(q(s))ξ(s)

}
ds. (63)

Performing the exponential of the matrix C(q(0)) one needs to take into account
that, because of the possible presence of Jordan blocks, powers of t might appear.
We control such terms paying e−

1
2α(q(0))t and multiplying the remaining exponential

by a constant D(C(q(0))) which depends only on C(q(0)). Since q(0) ∈ Br0

(
q0
)
,

which is a compact set in RNd, we denote by D0 := supq∈Br0 (q0)D(C(q)), which

depends only on C(q0) and r0. Therefore, we get

|ξ(t)| ≤D0e
− 1

2α(q(0))t|ξ(0)|+

+D0

∫ t

0

e−
1
2α(q(0))(t−s)

{
|
(
d

ds
Π(q(s))

)
ξ(s)|+ |Γ(q(s))ξ(s)|

}
ds .
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Next we estimate
∥∥ d
dtΠ(q(t))

∥∥ . Let Π(q(t)) = {πi,j(q(t))⊗ Id}i,j=1,..,,N , we then

have

d

dt
Π(q(t)) =

{
∇q(t)πi,j(q(t)) · p(t)⊗ Id

}
i,j=1,..,,N

(64)

=
{
∇q(t)πi,j(q(t)) · [p(t)− Ωp(t)]⊗ Id

}
i,j=1,..,,N

.

The last equality holds since, by (34), Π(q(t)) = Π(q(0)),∀t ∈ R, when q(t) is the
evolution given by the flow on the invariant manifold, i.e. when p(t) = Ωp(t). We
get by Corollary 1∥∥∥∥ ddtΠ(q(t))

∥∥∥∥ ≤ sup
{q∈RNd : w=(q,p)∈Q(s0,w0)}

sup
i=1,..,N

N∑
j=1

|∇qπi,j(q)| |p(t)− Ωp(t)|

(65)

≤ D′(s0)ε , ∀t ∈ [0, t∗(w1)) ,

where D′(s0) > 0. Furthermore, by (50) and Lemma 3.6, we have

‖Γ(q(t))‖ = ‖B(q(t))‖ ≤2
N

U (0)
sup
x∈Rd

|∇U(x)|

max
1≤i,k≤N

∣∣−(q1i − q1k) + qi(t)− qk(t)
∣∣

and, by Theorem 3.2, for i, k = 1, .., N,∣∣qi(t)− qk(t)− (q1i − q1k)
∣∣ =

∫ t

0

|pi(s′)− pk(s′)| ds′ (66)

=

∫ t

0

∣∣pi(s′)− p0i + p0k − pk(s′)
∣∣ ds′ ≤ 2εt,

where p0i = p0k since (q0,p0) ∈ I. Thus, setting D1 := 2
sup

x∈Rd |∇U(x)|
U(0) ,

∀t ∈ [0, t∗(w1)) we obtain

|ξ(t)| ≤D0e
− 1

2α(q(0))t|ξ(0)|+

+D0ε

∫ t

0

e−
1
2α(q(0))(t−s) {[D′ (s0) + 2ND1s] |ξ(s)|} ds .

(67)

Given K ≥ max{D′ (s0) , 2D1}, take T ∈
(
0, t∗(w1)

)
. A suitable choice of T will be

done later. Then, ∀t ∈ [0, T ],

|ξ(t)| ≤ D0e
− 1

2α(q(0))t|ξ(0)|+ εD0K {1 + TN}
∫ t

0

e−
1
2α(q(0))(t−s)|ξ(s)|ds, . (68)

By the Gronwall’s inequality we get

|ξ(t)| ≤ D0|ξ(0)|e−t[
1
2α(q(0))−εδ] ≤ D0|ξ(0)|e−t[

1
8α(q

0)−εδ] , ∀t ∈ [0, T ] , (69)

where we made use of (53) and set δ := D0K {1 +NT} . Let us choose ε such that

1

16
α(q0) ≥ εD0K{1 +NT} . (70)

Then,

|ξ(t)| ≤ D0|ξ(0)|e−t 1
16α(q

0) , ∀t ∈ [0, T ] . (71)
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Since

dist
(
w(t, w1), I

)
= inf
w̃∈I
|w(t, w1)− w̃| = inf

w̃∈I
|χ(t) + ξ(t)− w̃| (72)

≤ |ξ(t)|+ inf
w̃∈I
|χ(t)− w̃| = |ξ(t)| ,

we have
dist

(
w(t, w1), I

)
≤ D0|ξ(0)|e−t 1

16α(q
0) , ∀t ∈ [0, T ] . (73)

Then, recalling that dist
(
w(t, w1), I

)
= |p(t)− Ωp(t)|, and, since for w1 ∈ B(r0, ε,

w0),
|ξ(0)| ≤ D(s0) dist

(
w1, I

)
≤ D(s0)ε , (74)

we have

|p(t)− Ωp(t)| ≤ D0D(s0)εe−
1
16α(q

0)t ≤ ε(D0D(s0) ∨ 1)e−
1
16α(q

0)t , ∀t ∈ [0, T ] .
(75)

From this we get

|[INd − Ω]
(
q(t)− q0

)
| ≤ |[INd − Ω]

(
q(0)− q0

)
|+
∫ t

0

| [INd − Ω] p(s)|ds (76)

≤ |q(0)− q0|+ (D0D(s0) ∨ 1)
16

α(q0)
ε(1− e− 1

16α(q
0)t)

≤ |q(0)− q0|+ (D0D(s0) ∨ 1))
16

α(q0)
ε .

Let us choose ε such that

r0 + (D0D(s0) ∨ 1))
16

α(q0)
ε ≤ 1

2
s0 , (77)

and denote this chosen value by ε̃1. Now we first choose T such that

(D0D(s0) ∨ 1)e−
1
16α(q

0)T =
1

2
∧ 1

2D0
(78)

and denote this chosen value by T0, then we choose ε̃2 in such a way that (70) holds
with T replaced by T0. We then set

ε0 := min {ε̃1, ε̃2} . (79)

Notice that, by (77),

ε̃1
16

α(q0)
≤ r0 + (D0D(s0) ∨ 1))

16

α(q0)
ε ≤ 1

2
s0 (80)

so, since α
(
q0
)
< 1,

ε0 ≤ ε̃1 ≤
1

32
s0 . (81)

We remark that the choice of T0 and ε0 depends on w0 ∈ I. Therefore, at time T0
we have

|[INd − Ω]
(
q(T0)− q0

)
| ≤ 1

2
s0 (82)

and
dist

(
w(T0, w

1), I
)

= |p(T0)− Ωp(T0)| ≤ ε0
2
. (83)

We can then repeat the previous argument for the solution of the system (1) starting
at time T0 from the initial datum (q(T0),p(T0)). We need to recall that α(q(T0)) ≥
1
4α(q0). In a similar way we can show that that for t ∈ [T0, 2T0],

|p(t)− Ωp(t)| ≤ D0|ξ(T0)|e−(t−T0)
1
16α(q

0) , ∀t ∈ [T0, 2T0] . (84)
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Therefore, by (78), we have

dist (w(2T0, w(T0)), I) = |p(2T0)− Ωp(2T0)| ≤ ε0
22(D0D(s0) ∨ 1)

≤ ε0
22

, (85)

and, by (84),

|[INd − Ω]
(
q(t)− q0) | ≤ |[INd − Ω]

(
q(T0)− q0) |+ ∫ t

T0

|[INd − Ω]p(s)|ds (86)

≤ |[INd − Ω]
(
q(T0)− q0) |+D0|ξ(T0)|

∫ t

T0

e−(s−T0)
1
16
α(q0)ds

≤ 1

2
s0 +

1

4
s0 ,

the last inequality being a consequence of (77) and (78). Thus, at time T1 = 2T0

|[INd − Ω]
(
q(T1)− q0

)
| ≤ 1

2
s0 +

s0
4
. (87)

Hence, we have that (q(T1),p(T1)) ∈ Q(s0, w
0). Iterating this procedure m times

we get

dist
(
w(Tm, w

1), I
)

= |p(Tm)− Ωp(Tm)| ≤ ε0
2m+1

, (88)

and

|[INd − Ω]
(
q(Tm)− q0

)
| ≤ s0

m∑
k=0

1

2k+1
. (89)

Since
∑
k≥1

1
2m = 1

2 we obtain the thesis of the theorem.

4. Kinetic limit: Vlasov type equation. We study system (1) when the number
of particles N goes to infinity and derive the kinetic equation for the density ft(x, v)
of particles at x with velocity v at time t. The heuristic argument goes as following.
Let µNt be the empirical measure, see (13), at time t associated to w(t, w0), solution
of the system (1), where w0 = (q0,p0), ‖p0j‖ ≤ 1, j = 1, .., N . By Lemma 3.1 and

Remark 2 µNt has support on Rd × B1, for all t ≥ 0. Writing the second equation
of (1) in term of µNt we get

dpi(t)

dt
=

∫
Rd×B1

U(qi(t)− y) (u− pi (t))µNt (dy, du)∫
Rd×B1

U(qi(t)− y)µNt (dy, du)

=: M(qi(t), pi(t), µ
N
t ).

(90)

Therefore, the evolution of µNt is given by

∂(µNt (g))

∂t
= µNt (v · ∇xg) + µNt (M

(
·, ·, µNt

)
· ∇vg) , (91)

where g is a smooth test function. In the equation (91), N is fixed. To study the
limit as N →∞ we assume that at t = 0 there exists µ0 ∈M such that

µN0
w

=⇒ µ0. (92)

We want to show that if (92) holds at time t = 0, then

µNt
w

=⇒ µt, (93)

where µt is the measure solution of the following equation

∂(µt(g))

∂t
= µt(v · ∇xg) + µt(M (·, ·, µt) · ∇vg) , (94)
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which is the formal limit of (91). To prove it rigorously one needs to have M (·, ·, ν)
well defined and Lipschitz continuous in (x, v) for all ν ∈ M. But, already at N
finite, the denominator of (90) is equal to zero when the supports of U and µNt are
disjoint. To overcome these problems we consider two classes of interaction U. The
first one is the class of interactions in Definition 2.5. In this case we define M(x, v, ν)
as in (18). The second one is the class of smooth interactions U with compact
support. In this case we fix ε > 0 and define Mε(x, v, ν) as in (20), the ε− regularized
system. Hence, in the case U has compact support, we modify the interaction
term in such a way that when

∫
X×B1

U(x − y)ν(dy, du) = 0 then Mε(x, v, ν) = 0,

when
∫
X×B1

U(x − y)ν(dy, du) > ε then Mε(x, v, ν) = M(x, v, ν) + O(ε), when

ε >
∫
X×B1

U(x−y)ν(dy, du) > 0 then Mε(x, v, ν) is a large perturbation of M(x, v,

ν). It is easy to see that for any measure ν on X ×B1 we have

sup
(x,v)∈X×B1

|M(x, v, ν)| ≤ 2 , sup
(x,v)∈X×B1

|Mε(x, v, ν)| ≤ 2 . (95)

The Lipschitz continuity of M(·, ·, ν) with respect to v follows from the linearity of
M(·, ·, ν) as a function of v. The Lipschitz continuity of M(·, ·, ν) with respect to x
does not hold in general even if one takes smooth interactions U , due to the presence
of the denominator in M(·, v, ν). In Lemma (4.1), Lemma 4.2 and Lemma 4.3 we

show for three different type of interactions, respectively for U defined trough Ũ as
in (7) and (9) and for the ε− regularised system, that M(·, v, ν) is Lipschiz for all
v and ν. We denote by

A(·, ν) :=

(∫
TD×B1

U(x− y)uν(dy, du)∫
TD×B1

U(x− y)ν(dy, du)

)
. (96)

Lemma 4.1. Let U be the interaction defined on TD through the periodization of
Ũ as defined in (7). For ν ∈M and A(·, ν) as in (96) we have∣∣Ai(x, ν)−Ai(z, ν)

∣∣ ≤ L |x− z| , x, z ∈ TD, i = 1, .., d, L = 2K . (97)

Proof. ∀i = 1, .., d, we have

(∇xAi)(x, ν) =

∫
ν(dy, du)ν(dy′, du′)ui [∇xU(x− y)U(x− y′)− U(x− y)∇xU(x− y′)]

[(U ? ν)(x)]2
.

(98)

Taking into account that |u| ≤ 1 we have∣∣(∇xAi)(x, ν)
∣∣ ≤ 2

∫
ν(dy, du)ν(dy′, du′) |∇xU(x− y)|U(x− y′)

[(U ? ν)(x)]2

= 2

∫
ν(dy, du)ν(dy′, du′) |∇xU(x− y)| U(x−y)

U(x−y)U(x− y′)
[(U ? ν)(x)]2

(99)

≤ 2 sup
y

|∇xU(x− y)|
U(x− y)

≤ 2K .

Lemma 4.2. Let U be the interaction defined on TD through the periodization of
Ũ as defined in (9). For ν ∈M and A(·, ν) as in (96) we have

|Ai(x, ν)−Ai(z, ν)| ≤ L |x− z| , x, z ∈ TD, i = 1, .., d, L =
D

R2
. (100)
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Proof. Let us write∣∣Ai(x, µ)−Ai(z, µ)
∣∣ =

∣∣∣∣∫ 1

0

ds
d

ds
Ai(sx+ (1− s)z, µ)

∣∣∣∣ (101)

≤ sup
s∈[0,1]

∣∣∣∣ ddsAi(sx+ (1− s)z, µ)

∣∣∣∣ , i = 1, .., d,

and set x0 = sx+ (1− s)z. We obtain

d

ds
Ai(x0, µ) =

(x− z)
R

Ci(x0, R, µ)

where

Ci(x0, R, µ) =

∫ (y′−y)
R U(x0 − y′)U(x0 − y)

∫
(u′)

i
µ(dy′, du′)µ(dy, du)∫

U(x0 − y′)U(x0 − y)
∫
µt(dy′, du′)µ(dy, du)

. (102)

Recalling that |u| ≤ 1, we obtain

|C(x0, R, µ)| ≤ D

R
, (103)

since in the torus |y′ − y| ≤ D and the result follows by (101).

For any v ∈ B1, ν ∈M,Mε(·, v, ν) is easily seen to be Lipschitz continuous in X.
In fact we have the following:

Lemma 4.3. Let ν ∈M, ε > 0, U(·) a smooth interaction whose support contained
in a ball of radius R such that supx∈BR |∇U(x)| ≤ 1 and Mε(·, ·, ν) as in (20).
Then, for any v ∈ B1,Mε(·, v, ν) is Lipschitz continuous in X:∣∣M i

ε(x, v, ν)−M i
ε(y, v, ν)

∣∣ ≤ L |x− y| , x, y ∈ X, i = 1, .., d, L =
2

ε
.

(104)

To prove the existence of the solution of (94) we prescribe a curve t → µt ∈ M
weakly continuous in t and we consider the following non-autonomous system of
ordinary differential equations:{

d
dtx(t) = v(t)
d
dtv(t) = M(x(t), v(t), µt)

. (105)

Under the assumption that M(·, ·, µt) is Lipschitz continuous in X×B1 there exists
an unique global solution of (105) for any given initial datum. The correspond-
ing time dependent two parameters flow is denoted by Tt,s[µ·]. Under this time
dependent flow any initial measure evolves as

νt = ν0 ◦ T0,t[µ·] , (106)

where ν0 ◦ T0,t[µ·] is the push forward of the measure ν0 under the flow. For any
test function g we have that

νt(g) = ν0(g ◦ Tt,0[µ·]) , (107)

where g ◦ Tt,0[µ·] is the pull back under the flow of any test functions g. By the
existence and uniqueness of the solution of (105) for any initial datum, the inverse
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flow (Tt,s[µ·])
−1 is well defined. The equation for the evolution of νt, easily derived,

is

∂(νt(g))

∂t
=
∂(ν0(g ◦ Tt,0[µ·]))

∂t
= ν0((v∇xg) ◦ Tt,0[µ·])+ (108)

+ ν0((M(x, v, µt)∇vg) ◦ Tt,0[µ·])

= νt(v · ∇xg) + νt(M(x, v, µt) · ∇vg) .

One immediately realizes that proving the existence and uniqueness of the solution
of (94) is equivalent to prove the existence of a fixed point for the time dependent
flow µt = µ0 ◦ T0,t[µ·]. This is the content of the next theorem.

Theorem 4.4. Let U be as in Lemma 4.1 or as in Lemma 4.2 and let M(·, ·, ν)
be defined as in (18) for any ν ∈ M(TD × B1). The equation (94) has an unique
solution in the space M(TD × B1) if µ0 ∈ M(TD × B1). Furthermore, take two
solutions of (94), µt starting at µ0 = µ and νt starting at ν0 = ν then in the
bounded Lipschitz distance

dbL(νt, µt) ≤ ectdbL(µ, ν) , (109)

where c is a constant which depends on the Lipschitz constant of M(·, ·, ν) and on
infx∈TD U(x) =: a > 0.

The proof is obtained adapting the method explained in [26, Chapter 5] to our
context. To facilitate the reader we report the proof of Theorem 4.4 in the Appendix.

Remark 5. Theorem 4.4 does not hold in Rd × B1 when U satisfies Lemma 4.1.
Although in this case U is globally Lipschitz continuous in Rd, we are not able to
show that M(x, v, ·) when x ∈ Rd, v ∈ B1 is Lipschitz continuous with respect to
ν ∈ M in the dbL metric. The theorem applies with obvious modification to the
ε−regularized system where M is replaced by Mε defined in (20) and holds either
for the system defined on TD ×B1 or on Rd ×B1. The constant c in the statement
of Theorem 4.4 will then depend on ε, the lower bound of the denominator of Mε.

The proof of Theorem 2.6 is an immediate consequence of Theorem 4.4. The
validity of Theorem 2.6 for the ε−regularized system, where the local mean velocity
increment is Mε, is immediate as well.

Theorem 4.5. Let M(·, ·, µ) be as in (18) and assume that M(·, ·, µ) ∈ C1(X ×
B1) for µ ∈ M. If µ0(dx, dv) = f0(x, v)dxdv, then µt(dx, dv) = ft(x, v)dxdv and
ft is the weak solution of (19). Furthermore, if f0 ∈ Ck(X × B1), k ≥ 1, and
M(·, ·, µ) ∈ Ck(X ×B1) for µ ∈M, then ft ∈ Ck(X ×B1).

Proof. We start showing that for any given weakly continuous curve t→ µt ∈M, if
ν0(dx, dv) = q0(x, v)dxdv, i.e. absolutely continuous with respect to the Lebesgue
measure, then νt(dx, dv) = qt(x, v)dxdv, where

∂

∂t
qt(x, v) +∇xqt(x, v) · v +∇v · [M(x, v, µt)qt(x, v)] = 0 , (110)

and, if q0 ∈ Ck(X × B1) and M(·, v, µ) ∈ Ck(X × B1) for any µ ∈ M, then
qt ∈ Ck(X × B1). Note that (110) corresponds to a linearization of (19) since
M(x, v, µt) does not depend on q· once µt is given. In Theorem 4.4 we proved
that the fixed point equation µt = µ0 ◦ T0,t[µ·] holds. Therefore, by this result and
the validity of (110), one immediately obtains that µt has density and the thesis
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of the theorem is proven. We are then left with the proof of (110). Let us set
w = (x, v) ∈ X ×B1. For any test function g we obtain

νt(g) = ν0 ◦ T0,t[µ·](g) = ν0(g ◦ Tt,0[µ·]) (111)

=

∫
X×B1

ν0(dw)(g ◦ Tt,0[µ·])(w) =

∫
X×B1

q0(w) (g ◦ Tt,0[µ·]) (w)dw

=

∫
X×B1

q0(w) ◦ (Tt,0[µ·])
−1J (w, µt)g(w)dw

where J (w, µt) = Det
[
∂·(Tt,0)[µ·])

−1(w)
]

is the Jacobian of the flow (Tt,0[µ·])
−1

computed in w. Since the divergence of the vector field (v(s),M(x, v, µs)) is given
by

d∑
i=1

[
∂vi

∂xi
+
M i(x, v, µs)

∂vi

]
= −d , (112)

by Liouville Theorem (see [1] or [2]) for any weakly continuous curve t→ µt ∈ M,
we have

Det [∂·(Tt,0)[µ·])] (w) = e−dt , ∀w ∈ X ×B1 , (113)

hence,

J (w, µt) = edt , ∀w ∈ X ×B1 . (114)

Then, from (111) and (114), we obtain

νt(g) =

∫
X×B1

edt
(
q0 ◦ (Tt,0[µ·])

−1) (w)g(w)dw =

∫
X×B1

qt(w)g(w)dw , (115)

where we denote by

qt(w) := edt
(
q0 ◦ (Tt,0[µ·])

−1) (w) . (116)

Notice that qt(w) is weakly continuous in time, since µ· is weakly continuous. Fur-
thermore, if, for k ≥ 1,M(·, ·, µ) ∈ Ck(X ×B1), µ ∈M and q0 ∈ Ck(X ×B1), then
qt ∈ Ck(X × B1). Writing e−dt(qt ◦ Tt,0[µ·])(w) = q0(w) and differentiating with
respect to t we get

∂

∂t

(
e−dtqt ◦ (Tt,0[µ·])(w)

)
= −de−dt(qt ◦ Tt,0[µ·])(w)+ (117)

+e−dt
∂

∂t
(qt ◦ Tt,0[µ·])(w) + e−dt∇x(qt ◦ Tt,0[µ·])(w) · v ◦ Tt,0[µ·]+

+e−dt∇v ((qt ◦ Tt,0[µ·])(w)) · (M(·, ·, µt) ◦ Tt,0[µ·])(w) = 0 .

Multiplying both members of the previous identity for edt and applying to (Tt,0
[µ·])

−1w we obtain

− dqt(x, v) +
∂

∂t
qt(x, v) +∇xqt(x, v) · v +∇vqt(x, v) ·M(x, v, µt) = 0 . (118)

Notice that this last equation is linear in q· since µ· is given. Therefore, the equation
for ft is

∂

∂t
ft(x, v)− dft(x, v) +∇xft(x, v) · v +M(x, v, ft) · ∇vft(x, v) = 0 (119)

which corresponds to (19).
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Remark 6. Theorem 4.5 holds also for the ε−regularized system. In such a case
the local mean velocity increment is Mε, see (20), and the phase space of the system
can be either Rd×B1 or TD×B1. The difference from the computations in Theorem
4.5 is that

∇ ·Mε(x, v, µs) = −d (U ? µs)(x)

(U ? µs)(x) + ε
:= −dhεs(x) ≡ −dhε(µs)(x) . (120)

For any weakly continuous curve t → µt ∈ M and any w ∈ X × B1, by Liouville
Theorem, we have

Det [∂·(Tt,0[µ·])] (w) = e−d
∫ t
0
ds(hεs◦Ts,0[µ·])(w) , (121)

therefore

J (w, µt) = Det
[
∂·[(Tt,0[µ·])

−1]
]

= ed
∫ t
0
ds(hεs◦Ts,t[µ·])(w) . (122)

Then, from (111) and (122), we obtain

νt(g) =

∫
X×B1

ed
∫ t
0
ds(hεs◦Ts,t[µ·])(w)

(
q0 ◦ (Tt,0[µ·])

−1) (w)g(w)dw (123)

=

∫
X×B1

qt(w)g(w)dw ,

where

qt(w) := ed
∫ t
0
ds(hεs◦Ts,t[µ·])(w)

(
q0 ◦ (Tt,0[µ·])

−1) (w) . (124)

Notice that qt(w) is weakly continuous in time, since µ· is weakly continuous.
Furthermore, if Mε(·, ·, µ) ∈ Ck(X × B1), µ ∈ M and q0 ∈ Ck(X × B1), then
qt ∈ Ck(X ×B1). Writing

e−d
∫ t
0
ds(hεs◦Ts,0[µ·])(w)(qt ◦ Tt,0[µ·])(w) = q0(w) (125)

and differentiating with respect to t we get

∂

∂t

(
e−d

∫ t
0
ds(hεs◦Ts,0[µ·])(w)(qt ◦ (Tt,0[µ·])(w)

)
=

− d(hεt ◦ Tt,0[µ·])(w)e−d
∫ t
0
ds(hεs◦Ts,0[µ·])(w)(qt ◦ Tt,0[µ·])(w)

+ e−d
∫ t
0
ds(hεs◦(Ts,0[µ·])(w) ∂

∂t
(qt ◦ Tt,0[µ·])(w)

+ e−d
∫ t
0
ds(hεs◦Ts,0[µ·])(w)∇xqt(w) ◦ Tt,0[µ·] · v ◦ Tt,0[µ·]

+ e−d
∫ t
0
ds(hεs(◦Ts,0[µ·])(w)∇v ((qt ◦ Tt,0[µ·])(w)) · (Mε(·, ·, µt) ◦ Tt,0[µ·])(w) = 0 .

Multiplying by ed
∫ t
0
ds(hεs◦(Ts,0[µ·])(w) and applying to (Tt,0[µ·])

−1w we obtain

−dh(µt)(x)qt(x, v)+
∂

∂t
qt(x, v)+∇xqt(x, v) ·v+∇vqt(x, v) ·Mε(x, v, µt) = 0, (126)

which is linear in q· since µ· is given. Therefore the equation for ft is

∂

∂t
ft(x, v)−dhε(ft)(x)ft(x, v)+∇xft(x, v) ·v+Mε(x, v, ft) ·∇vft(x, v) = 0 , (127)

which corresponds to (19) with M replaced by Mε, taking into account the definition
of hε in (120).
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4.1. Qualitative behaviour of the solution of (94).

Lemma 4.6. Let M as in (18) and t→ µt ∈M be the solution of (94) with initial
datum µ0. We have

µt(x) = µ0(x) +

∫ t

0

µs(v)ds , (128)∫
X×B1

|v|2 µt(dx, dv) ≤
∫
X×B1

|v|2 µ0(dx, dv) . (129)

Proof. By (94) we have

d

dt

∫
X×B1

xiµt(dx, dv) = µt(v
i) , i = 1, .., d , (130)

which implies (128). To obtain (129), again from equation (94) we get

d

dt

∫
X×B1

|v|2 µt(dx, dv) =
d

dt
µt(|v|2) = µt(v · ∇x |v|2) + µt(M(·, ·, µt) · ∇v |v|2)

= 2

d∑
i=1

µt(M
i(·, ·, µt)vi) ≤ 0 . (131)

Namely, for i = 1, .., d, when M i(·, ·, µt) 6= 0, we obtain

µt(M
i(·, ·, µt)vi) =

∫
X×B1

µt(dx, dv)M i(x, v, µt)vi (132)

=

∫
X×B1

µt(dx, dv)

∫X×B1
U(x− y)

(
viui −

(
vi
)2)

µt(dy, du)∫
X×B1

U(x− y)µt(dy, du)


=

∫
(X×B1)2

µt(dx, dv)µt(dy, du)
U(x− y)viui∫

X×B1
U(x− y)µt(dy, du)

+

−
∫
X×B1

µt(dx, dv)
(
vi
)2 ≤ 0 ,

by Schwartz inequality.

The Jensen inequality and (129) imply the boundedness of the mean velocity
µt(v).

Let ft be the solution at time t of the equation (19). We denote by H(ft) the
Boltzmann-Vlasov entropy

H(ft) := −
∫
X×B1

ft(x, v) ln(ft(x, v))dxdv . (133)

In the next lemma we show that the Boltzmann-Vlasov entropyH(ft) is a decreasing
function of time. Notice that equation (19) is not time reversible, i.e. invariant
under simultaneous reflection t→ −t and v → −v.

Lemma 4.7. Let f· be the solution of (19) with M chosen as in (18), then

d

dt
H(ft) = −d . (134)

Let f ε· be the solution of (19) with M replaced by Mε chosen as in (20), then

d

dt
H(f εt ) = −d

∫
X×B1

hεt(x)f εt (x, v)dxdv , (135)
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where, as in (120), hεt =
(U?fεt )

(U?fεt )+ε
.

Proof. We start showing (134). The proof of (135) is similar and we will only outline
the differences.

d

dt
H(ft) = −

∫
X×B1

∂ft
∂t

(x, v) [(ln ft(x, v)) + 1] dxdv (136)

=

∫
X×B1

(ln ft(x, v)) [v · ∇xft(x, v) +∇v ·M(x, v, t)ft(x, v)] dxdv .

Integrating by part the last term in (136) we get

d

dt
H(ft) = −

∫
X×B1

∇x (ln ft(x, v)) · vft(x, v)dxdv (137)

−
∫
X×B1

∇v (ln ft(x, v)) · [M(x, v, ft)ft(x, v)] dxdv

= −
∫
X×B1

∇xft(x, v) · vdxdv −
∫
X×B1

∇vft(x, v) · [M(x, v, ft)] dxdv .

The first integral gives zero contribution since
∫
X×B1

ft(x, v)dxdv = 1 for all t > 0,

i.e. ft ∈ L1(X × B1). For the second term notice that ∇v · [M(x, v, ft)] = −d,
therefore∫

X×B1

∇vft(x, v) · [M(x, v, ft)] dxdv = −
∫
X×B1

ft(x, v)∇v · [M(x, v, ft)] dxdv

= d

∫
X×B1

ft(x, v)dxdv = d . (138)

We then obtain (134). To get (135) we proceed in the same way. We need only to
modify (138) as∫

X×B1

∇vf εt (x, v) · [Mε(x, v, f
ε
t )] dxdv = −

∫
X×B1

f εt (x, v)∇v · [Mε(x, v, f
ε
t )] dxdv

= d

∫
X×B1

hεt(x)f εt (x, v)dxdv . (139)

By the above lemma,

lim
t→∞

H(ft) = −∞ . (140)

From this we can deduce that even starting at time t = 0 from a measure which is
absolutely continuous with respect to Lebesgue measure in X×B1, having therefore
finite Boltzmann-Vlasov entropy, at infinity the asymptotic measure is singular with
respect to the Lebesgue one. The same conclusions can be also drawn for the
ε−regularized system.

5. Appendix.

5.1. Proof of Lemma 3.6. Denote by bi,j(·), for i = 1, . . . , N and j = 1, . . . , N the
elements of the matrix B(·) = {bi,j(·)⊗ Id}i,j=1,..,N defined in (51). By definition

of B(q(t))

bi,j(q(t)) := ai,j(q(t))− ai,j(q0), (141)
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where {ai,j(·)} are defined in (33). Writing ai,j(q(t)) as

ai,j(q(t)) = ai,j(q
0) +

∫ 1

0

ds
d

ds
ai,j((1− s)q0 + sq(t)), (142)

we have

bi,j(q(t)) =

∫ 1

0

ds
d

ds
ai,j((1− s)q0

N + sqN (t)) . (143)

Therefore, setting

xi,j(s, t) := (1− s)(q0i − q0j ) + s (qi(t)− qj(t)) , i, j = 1, .., N , (144)

we have

d

ds
ai,j((1− s)q0 + sq(t)) =

d

ds

(
U((1− s)(q0i − q0j ) + s(qi(t)− qj(t)))∑N
k=1 U((1− s)(q0i − q0k) + s(qi(t)− qk(t)))

)
(145)

=
d

ds

(
U(xi,j(s, t))∑N
k=1 U(xi,k(s, t))

)

=
∇U(xi,j(s, t)) ·

[
−(q0i − q0j ) + qi(t)− qj(t)

]∑N
k=1 U(xi,k(s, t))

−
U(xi,j(s, t))

∑N
k=1∇U(xi,k(s, t)) ·

[
−(q0i − q0k) + qi(t)− qk(t)

](∑N
k=1 U(xi,k(s, t))

)2 .

Hence,

N∑
j=1

|bi,j(q(t))| ≤ 2

∑N
j=1 |∇U(xi,j(s, t))|

∣∣−(q0i − q0j ) + qi(t)− qj(t)
∣∣∑N

k=1 U(xi,k(s, t))
(146)

≤ 2
N

U (0) + (N − 1)η(q(t),q0)
sup
x∈Rd

|∇U(x)|

max
i,j∈{1,..,N}

∣∣−(q0i − q0j ) + qi(t)− qj(t)
∣∣ ,

where

η(q(t),q0) = inf
s∈[0,1]

inf
i,k∈{1,...,N}

U((1− s)(q0i − q0k) + s (qi(t)− qk(t))) ≥ 0. (147)

Since

‖B(q(t))‖ ≤
∥∥∥B̃ (q (t))

∥∥∥
∞

= max
i=1,..,N

N∑
j=1

|bi,j(q(t))| (148)

we get the thesis.

5.2. Proof of Theorem 4.4. We adapt to our model [26, Theorem 5.1] and divide
the proof in two steps.

Step 1. We start proving (109). Assume that νt and µt solve (167). We have, by
the triangular inequality, that

dbL(νt, µt) = dbL(ν0 ◦ T0,t[ν·], µ0 ◦ T0,t[µ·]) (149)

≤ dbL(µ0 ◦ T0,t[ν·], µ0 ◦ T0,t[µ·]) + dbL(µ0 ◦ T0,t[ν·], ν0 ◦ T0,t[ν·]) .
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Denote by w := (x, v), V (µ·)s(w) := (v(s), A(x(s), µs) − v(s)) the vector field on
the right hand side of (105). The second term can be bounded as

dbL(µ0 ◦ T0,t[ν·], ν0 ◦ T0,t[ν·]) = eLt sup
f∈D

∣∣∣∣∫
TD×B1

[dµ0 − dν0]
(
e−Ltf ◦ Tt,0[ν·]

)∣∣∣∣
(150)

≤ eLtdbL(µ0, ν0)

where L is the Lipschitz constant of V (µ·)s(·). Notice that the Lipschitz bound of
V (µ·)s(·) can be easily derived from the Lipschitz bound of A(·, µ·). We get (150) if
we can show, since f ∈ D, that e−Ltf ◦Tt,0[ν·] is Lipschitz continuous with constant
one and therefore it belongs to D. Let w(t) = (x(t), v(t)) be the solution of (105)
with initial condition w0 = (x0, v0) and let w̃(t) be the solution of (105) with initial
condition w̃0 = (x̃0, ṽ0), then we need to show that

|f(w(t))− f(w̃(t))| ≤ C(t)|w0 − w̃0| , (151)

with C(t) ≤ eLt. Writing

w(t) = w0 +

∫ t

0

V (µ·)s(w(s)) (152)

and

w̃(t) = w̃0 +

∫ t

0

V (µ·)s(w̃(s)) , (153)

since f ∈ D, we have

|f(w(t))− f(w̃(t))| ≤ |w(t)− w̃(t)| . (154)

Furthermore,

|w(t)− w̃(t)| ≤ |w0 − w̃0|+
∫ t

0

|V (µ·)s(w(s))− V (µ·)s(w̃(s))|ds (155)

≤ |w0 − w̃0|+ L

∫ t

0

|w(s)− w̃(s)|ds .

By the Gronwall’s inequality

|w(t)− w̃(t)| ≤ eLt|w0 − w̃0| (156)

proving e−Ltf ◦ Tt,0[ν·] ∈ D and so (150). We are then left with the estimate the
other term in (149) which, since f ∈ D,

dbL(µ0 ◦ T0,t[ν·], µ0 ◦ T0,t[µ·]) = sup
f∈D

∣∣∣∣∫
TD×B1

dµ0 {f ◦ Tt,0[ν·]− f ◦ Tt,0[µ·]}
∣∣∣∣
(157)

≤
∫
TD×B1

µ0 (dw) |Tt,0[ν·]w − Tt,0[µ·]w| =: λ(t)
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where Tt,0[ν·] and Tt,0[µ·] are both solutions of the equation (105) with the same
initial conditions but with different vector fields. We have

λ(t) =

∫
TD×B1

µ0(dw) |{Tt,0[ν·]w − Tt,0[µ·]w|} (158)

=

∫
TD×B1

µ0(dw)

∣∣∣∣∫ t

0

dsV (ν·)s(Ts,0[ν·]w)−
∫ t

0

dsV (µ·)s(Ts,0[µ·]w)

∣∣∣∣
≤
∫
TD×B1

µ0(dw)

∣∣∣∣∫ t

0

ds {V (ν·)s(Ts,0[ν·]w)− V (ν·)s(Ts,0[µ·]w)}
∣∣∣∣

+

∫
TD×B1

µ0(dw)

∣∣∣∣∫ t

0

ds {V (µ·)s(Ts,0[µ·]w)− V (ν·)s(Ts,0[µ·]w)}
∣∣∣∣ .

The first term of (158) can be estimated by the Lipschitz property of the vector
field ∫

TD×B1

µ0(dw)

∣∣∣∣∫ t

0

ds {V (ν·)s(Ts,0[ν·]w)− V (ν·)s(Ts,0[µ·]w)}
∣∣∣∣ (159)

≤ L
∫
TD×B1

µ0(dw)

∫ t

0

ds |Ts,0[ν·]w − Ts,0[µ·]w]|

= L

∫ t

0

ds

∫
TD×B1

µ0(dw) |Ts,0[ν·]w − Ts,0[µ·]w]| = L

∫ t

0

λ(s)ds .

For the second term of (158) we have∫
TD×B1

µ0(dw)

∣∣∣∣∫ t

0

ds {V (µ·)s(Ts,0[µ·]w)− V (ν·)s(Ts,0[µ·]w)}
∣∣∣∣ (160)

≤
∫
TD×B1

µ0(dw)

∫ t

0

ds |V (µ·)s (Ts,0[µ·]w)− V (ν·)s (Ts,0[µ·]w)|

=

∫ t

0

ds

∫
TD×B1

µ0(dw) |V (µ·)s(Ts,0[µ·]w)− V (ν·)s(Ts,0[µ·]w)|

=

∫ t

0

ds

∫
TD×B1

µs(dw) |V (µ·)s(w)− V (ν·)s(w)| .

But,

|V (µ·)s(w)− V (ν·)s(w)| ≤ |A(x, µs)−A(x, νs)| (161)

≤

∣∣∣∣∣
∫
TD×B1

U(x− y)uµs(dy, du)−
∫
TD×B1

U(x− y)uνs(dy, du)∫
TD×B1

U(x− y)µs(dy, du)

∣∣∣∣∣
+

∣∣∣∣∣
∫
TD×B1

U(x− y)µs(dy, du)−
∫
TD×B1

U(x− y)νs(dy, du)∫
TD×B1

U(x− y)µs(dy, du)

∣∣∣∣∣
Since for any measure ν ∈ M,

∫
TD×B1

U(x − y)νs(dy, du) ≥ infx∈TD U(x) = a, we

have ∣∣∣∣∣
∫
TD×B1

U(x− y)µs(dy, du)−
∫
TD×B1

U(x− y)νs(dy, du)∫
TD×B1

U(x− y)µs(dy, du)

∣∣∣∣∣ (162)

≤
supx∈TD |∇U(x)|+ supx∈TD U(x)

a
dbL(µs, νs)
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and ∣∣∣∣∣
∫
TD×B1

U(x− y)uµs(dy, du)−
∫
TD×B1

U(x− y)uνs(dy, du)∫
TD×B1

U(x− y)µs(dy, du)

∣∣∣∣∣ (163)

≤
d∑
i=1

∣∣∣∣∣
∫
TD×B1

U(x− y)uiµs(dy, du)−
∫
TD×B1

U(x− y)uiνs(dy, du)∫
TD×B1

U(x− y)µs(dy, du)

∣∣∣∣∣
≤ d

supx∈TD |∇U(x)|+ supx∈TD U(x)

a
dbL(µs, νs) .

Therefore,

|V (µ·)s(w)− V (ν·)s(w)| ≤ 2d
supx∈TD |∇U(x)|+ supx∈TD U(x)

a
dbL(µs, νs)

=
c0
a
dbL(µs, νs) ,

where we have set c0 := 2d(supx∈TD |∇U(x)| + supx∈TD U(x)). It is essential that
a > 0. This is the case for interactions considered in the Lemmata 4.1 and 4.2 once
the system is confined on the torus TD4. Thus, by (158), (159), (160) and (161) we
have that

λ(t) ≤ L
∫ t

0

λ(s)ds+
c0
a

∫ t

0

dbL(µs, νs)ds . (164)

Hence, since by (158) λ (0) = 0 we obtain

λ(t) ≤ c0
a

∫ t

0

eL(t−s)dbL(µs, νs)ds . (165)

Taking in account (149), (150), (157) and (165) we get

dbL(νt, µt) ≤ eLtdbL(µ0, ν0) +
c0
a

∫ t

0

eL(t−s)dbL(µs, νs)ds . (166)

Applying the Gronwall’s lemma we get bound (109).

Step 2. To prove the existence of a solution for the fixed point equation

µt = µ0 ◦ T0,t[µ·] , (167)

we use the Banach fixed point theorem. Let µ be the initial condition. To every
curve [0, T ] 3 t 7→ µt ∈M, µ0 = µ, we relate the solution curve

[0, T ] 3 t 7−→ µ ◦ T0,t[µ·] ∈M (168)

Let us denote this map F : CM → CM, where CM is the space of weakly continuous
function [0, T ]→M with µ0 = µ· We equip CM with the metric

dα(µ(·), ν(·)) = sup
t∈[0,T ]

[
e−αtdbL(νt, µt)

]
, (169)

for some α > 0 which will be suitably chosen. Since (M, dbL) is a complete metric
space, so is (CM, dα). Now from Step 1 we have

dbL(νt, µt) = dbL(F(µ(·))(t),F(ν(·))(t)) ≤ c0
a

∫ t

0

eL(t−s)dbL(µs, νs)ds (170)

4In the case where U is with compact support and M is replaced by Mε we have that

inf
x∈X

(U ? ν)(x) + ε ≥ ε.

In this case X can be either Rd or TD.
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and therefore

dα(F(µ(·))(t),F(ν(·))(t)) ≤ c0
a(α− L)

dα(µ(·), ν(·)) (171)

for α > L. By a suitable choice of α this proves that F is a contraction.
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