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Abstract. We consider an idealized network, formed by N neurons individu-
ally described by the FitzHugh-Nagumo equations and connected by electrical

synapses. The limit for N → ∞ of the resulting discrete model is thoroughly

investigated, with the aim of identifying a model for a continuum of neurons
having an equivalent behaviour. Two strategies for passing to the limit are

analysed: i) a more conventional approach, based on a fixed nearest-neighbour

connection topology accompanied by a suitable scaling of the diffusion coeffi-
cients; ii) a new approach, in which the number of connections to any given neu-

ron varies with N according to a precise law, which simultaneously guarantees

the non-triviality of the limit and the locality of neuronal interactions. Both
approaches yield in the limit a pde-based model, in which the distribution of

action potential obeys a nonlinear reaction-convection-diffusion equation; con-
vection accounts for the possible lack of symmetry in the connection topology.

Several convergence issues are discussed, both theoretically and numerically.

1. Introduction. The computer simulation of the behaviour of complex networks
with a huge number of nodes, such as networks of neurons in some portion of the
brain, is a formidable challenge. The intrinsic difficulties of such a task may be
alleviated to some extent by identifying one or more multiscale structures within
the networks; this allows one to describe and simulate different scales by different
models, while posing the problem of the interaction among scales.

Within a multiscale framework, the co-existence of discrete and continuous mod-
els is a natural option, which may lead to significant savings. Higher-level nodes,
or interactions, may be affordably given an individual description (e.g., by a sys-
tem of coupled ordinary differential equations), whenever their number is small to
moderate. On the contrary, this approach would be computationally prohibitive for
the description of lower-level nodes or interactions, if their number is exceedingly
large. In this case, a possible alternative may consist in modelling the huge popu-
lation of individuals by a continuum, confined in some spatial region, and describe
its behaviour by a limited number of variables, e.g., submitted to satisfy partial
differential equations. One recognizes here a process underlying the mathematical
description of many physical phenomena, e.g., in Fluid Dynamics.
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The derivation of a continuum model may be accomplished by “passing to the
limit” in a discrete model, assuming that the number of individuals tends to infinity.
The present paper aims at investigating one such limit process. Specifically, the
discrete model we start from is inspired by the connections of electrical (rather
than chemical) nature within a neuronal network. In order to better motivate our
model, we provide now some biological background.

Despite in the past years almost all networks have been represented as constituted
by neurons that are interconnected by chemical synapses, electrical synapses are
largely present in the nervous system. In the sequel, we will use indifferently the
terms electrical synapses and gap junctions. However, for the sake of completeness,
gap junctions are the morphological equivalent of electrical synapses. In particular,
as specified in [9], gap junctions exist between near-neighbour neurons and they
allow low-resistance electrical transmissions. Indeed, at an electrical synapse a
current Igap is generated which is proportional to the difference between the action
potentials v of the post-synaptic and pre-synaptic neurons (see, e.g., [4] eq. (7.12));
explicitly, we have for some d > 0

Igap = d(vpost − vpre) . (1)

This establishes a diffusive coupling between neighbouring neurons. Therefore, the
resulting discrete model is of local nature.

Unfortunately, the analysis of electrical synapses in situ presents severe techni-
cal difficulties and therefore their specific roles are still largely unexplored. Nev-
ertheless, in the past ten years, the topic concerning gap junction networks has
been object of several investigations, sometimes leading to paradoxical results (see
e.g. [7, 10, 16]).

In order to build up the sample network we will consider, several ingredients are
taken into account. First of all, we model each single cell as an excitable element by
exploiting the FitzHugh-Nagumo model (see [5]). The excitable feature means that
neurons may not fire intrinsically without any synaptic inputs. Furthermore, each
cell belongs to the same functional class, avoiding the presence of heterogeneity.
This agrees with authors in [7] who stress that electrical synapses exist exclusively
between neurons of a specific class. In particular, despite many works underline the
presence of electrical synapses between inhibitory neurons (see e.g. [7]), the existence
of electrical connections between excitatory neurons is demonstrated in the early
postnatal stages (see [16]). Finally, as we will specify, we consider the presence
of both bidirectional (non-rectifying) and unidirectional (rectifying) synapses as
claimed in [10].

We now describe the content of this paper. After setting our mathematical model
of an idealized neuronal network with electrical-type coupling between neurons, we
carefully investigate the “passage to the limit” as the number of neurons tends to
infinity, while they remain confined in a fixed and bounded spatial region. We
identify two different manners of increasing the population of the network so that a
non-trivial continuum limit is obtained. The first one assumes a fixed topology of the
network (nearest-neighbour connections) but makes the proportionality coefficient
in (1) to depend upon the total number of neurons according to a specific law;
conversely, the second manner keeps this coefficient fixed but suitably increases the
number of connections per neuron. Both methods lead to equivalent continuum
models, in which the action potential is the solution of a reaction-diffusion partial
differential equation (or a reaction-convection-diffusion equation if connections are
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not symmetric, i.e., if rectifying synapses are allowed). Thus, the local nature of the
discrete model is inherited by the limit continuum model. Our arguments apply in
any spatial dimension, although we detail them in 1D and we sketch their extension
to 2D. Clear numerical evidence confirms all theoretical results. At last, an example
of random connections is also presented.

2. The FitzHugh-Nagumo model of a single neuron. The FitzHugh-Nagumo
model [5] was introduced as a dimensional reduction of the well-known Hodgkin-
Huxley model [8]. It extracts the Hodgkin-Huxley fast-slow phase plane and presents
it in a simplified form. The resulting model is more analytically and numerically
tractable and it maintains a certain biophysical meaning. The model is constituted
by two equations in two variables v and r. The first one is the fast variable called
excitatory : it represents the transmembrane voltage. The second variable is the
slow recovery variable: it describes the time dependence of several physical quan-
tities, such as the electrical conductance of the ion currents across the membrane.
The FitzHugh-Nagumo equations, using the notation in [11], are given by:

v̇ = −v(a− v)(1− v)− r =: f(v, r) ,

ṙ = bv − cr =: g(v, r) ,
(2)

where a, b, c ∈ R+ are parameters of the model. The model describes neurons as
excitable elements which have two key properties. Firstly, they are characterized
by their excitability behaviour: a sufficiently large stimulus provokes a very large
response, that is, a small perturbation to the quiescent state of a neuron can pro-
voke a large excursion of its potential. Secondly, they are characterized by their
refractoriness: the elements cannot be excited during the period which follows the
stimulus.

Throughout the paper, following [15], we will adopt the FitzHugh-Nagumo model
with a = 0.25, b = 0.001, c = 0.003, to describe the behaviour of each neuron in
our network.

3. Diffusive coupling within the network. We suppose that our network con-
tains N neurons, identified by integer labels i = 1, · · · , N ; labels may refer to the
physical position of the neurons, but other ways to index neurons could be used
in a more convenient way. Electrical-type connections in the neuronal network are
easily described by basic concepts from graph theory (see, e.g., [1]). Let us consider
a graph G = (V,E), where V = {1, · · · , N} ⊂ N is the set of vertices and E ⊂ V ×V
is the set of edges. The so-called adjacency matrix AG = (aij) is an N ×N matrix
whose entries are:

aij =

{
wij if (i, j) ∈ E(G)

0 else ,

where i, j = 1, · · · , N and the weights are strictly positive.
Exploiting the adjacency matrix, and assuming the gap-junction law (1) for the

interaction between adjacent neurons, we define the FitzHugh-Nagumo model with
diffusive coupling as follows:

v̇i = f(vi, ri) +
∑
j 6=i

aij(vj − vi) ,

ṙi = g(vi, ri).
(3)

Specifically, the summation describes the influence on the i−th neuron of all neurons
linked to it; it produces a diffusion effect within the network. The simplest example
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is given by the expression in (7), which models nearest-neighbour interactions in a
chain of neurons.

Introducing the diagonal degree matrix DG := diag(di) with di =
∑
j 6=i aij , and

the Laplacian matrix LG := DG − AG = (lij), the previous system can be written
as

v̇ = f(v, r)− LGv ,

ṙ = g(v, r) ,

where v = (vi), r = (ri) and f(v, r) = (f(vi, ri)), g(v, r) = (g(vi, ri)).
In the sequel, we assume that all weights wij are equal and precisely wij = d for

some d > 0, which we will call the diffusion coefficient. Let us introduce the set
Q(i) of all indices q such that neuron i + q is linked to neuron i, i.e., ai,i+q 6= 0.
Then, the model (3) can be written as

v̇i = f(vi, ri) + d
∑
q∈Q(i)

(vi+q − vi) ,

ṙi = g(vi, ri) .
(4)

In most cases, we shall consider Q(i) = Q independent of i, thus assuming a homo-
geneous network topology.

We are interested in describing the behaviour of the network as the number of
neurons increases, identifying conditions on the model which lead to non-trivial
asymptotic patterns in the limit N →∞. We assume that the network is contained
in a bounded region B (independent of N) of the Euclidean space Rm, for some
1 ≤ m ≤ 3; let us denote by xi ∈ B the physical position of the i−th neuron. Then,
we assume that the distance of any point x̂ ∈ B from the network tends to zero as
N →∞, and the distance of each neuron from its neighbours in the network has a
similar behaviour.

If interactions between neurons are local, we can give an expression of the diffusive
term in (4) which is based on the Taylor expansion of the differences ∆vi,q =
vi+q − vi. Precisely, let us assume that at each time there exists a sufficiently
smooth function v defined in B such that vi = v(xi) for i = 1, · · · , N . Then, setting
∆xi,q = xi+q − xi, we have

∆vi,q = ∇v(xi)∆xi,q +
1

2
∆xTi,qHv(xi)∆xi,q + h.o.t. , (5)

where ∇v denotes the gradient vector of v, whereas Hv denotes the Hessian matrix
of v. Substituting this expression into (4), we obtain a representation of the diffusive
term by which we can find the conditions on the coefficient d and/or the sets Q(i)
(depending on the network) yielding a non-trivial limit as N → ∞. We will detail
our analysis assuming a specific distribution of neurons in the one-dimensional case
first, and then we will consider the multi-dimensional extension.

4. One-dimensional dynamics. We consider neurons disposed over a closed ch-
ain, i.e., a ring. Each neuron occupies a specific physical position xi in the interval
B = [0, 1] given by

xi = (i− 1)∆x =
i− 1

N
with 1 ≤ i ≤ N , (6)

where N is the number of elements equally distributed along the chain and, con-
sequently, ∆x = 1/N is the distance between any two adjacent ones. Since the
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Figure 1. Propagation of an initial pulse along a closed ring of
N = 128 neurons

chain is closed, we assume periodic boundary conditions, i.e., we set v0 = vN and
vi+kN = vi for any k ∈ Z.

4.1. Nearest-neighbour interactions. Let us first consider two symmetric near-
est-neighbour interactions for each neuron. This translates in considering the set
of connections per neuron Q(i) = Q = {±1}. In this case, the diffusive coupling
assumes the following form:

−(LGv)i = d
∑
q=±1

(vi+q−vi) = d[(vi+1−vi)+(vi−1−vi)] = d(vi+1−2vi+vi−1) . (7)

An interesting dynamics produced by (4), which will represent a test case for the
subsequent discussion, is obtained by applying an initial stimulus to the central
neuron (i = N/2, assuming N even) of the line. Specifically, its action potential is
initially set to the value 2, whereas all the other variables are set to 0. Considering
the diffusion coefficient d = 0.05 (see [15]), the resulting dynamics is constituted by
two pulses that travel in opposite directions in the whole set of neurons (see e.g. [9]
for the analysis of travelling pulses). A sample dynamics is shown in Figure 1. We
observe for further reference that a similar dynamics is obtained starting from an
initial stimulus of the action potential given by a Gaussian function concentrated
around the central neuron. In all cases, at the end of dynamics, neurons return to
the quiescent state. In fact, neurons are modelled as excitable units and then, after
the excitation, they undergo a long refractory period. In this period they are blind
to any stimulus. This is the reason why two travelling pulses that collide depress
their signals.

We now focus on how the dynamics produced by our model depends upon N .
The first observation is that, if the diffusion parameter d is kept fixed, then the
diffusive effect tends to vanish as N → ∞. This can be seen in two ways. On
the one hand, if neurons get close to each other and the action potential varies in
a smooth manner, then the differences on the right-hand side of (7) tend to zero,
implying the vanishing of the diffusion term LGv in each node. On the other hand,
considering the test case introduced above, it is easily seen that the effect of, say,
doubling N is equivalent to have a chain of neurons with the same spacing but with
double length; this means that on the original chain, waves have half the length and
propagate with half the speed.

In order to obtain non-trivial diffusion effects in the limit, one possibility - that
we call Approach I - consists in letting the parameter d grow with N , i.e., d = dN .
The precise dependence can be found by exploiting the Taylor expansion (5), which
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in the present setting becomes

∆vi,q = q∆xv′(xi) +
1

2
q2∆x2v′′(xi) + h.o.t. , (8)

where the prime indicates differentiation with respect to the spatial variable x.
Therefore, the following expression holds for the diffusive term:

− (LGv)i = dN [(vi+1 − vi) + (vi−1 − vi)] = dN [∆x2v′′(xi) + h.o.t.] . (9)

We choose dN in such a way that dN∆x2 is independent on N , say

dN∆x2 = d∗ (10)

for a fixed constant d∗ > 0. Hence, we obtain

dN =
d∗

∆x2
= d∗N2 , (11)

i.e., dN is proportional to the square of the number of neurons. The fact that dN is
proportional to N2 is not surprising: the spectral gap of the Laplacian matrix has
the same behaviour as 1/(N2).

As N →∞, the discrete model

v̇i = f(vi, ri) + dN [(vi+1 − vi) + (vi−1 − vi)] ,
ṙi = g(vi, ri) ,

(12)

“converges” to a continuous model. To support this statement, we observe that the
quantity h.o.t. in (9) is given by

h.o.t. =
1

12
∆x4v(iv)(x̄i) ,

where x̄i ∈ (xi−1, xi+1) and v(iv) is assumed continuous in [0, 1]. Thus, we have

−(LGv)i =
d∗

∆x2
[(vi+1 − vi) + (vi−1 − vi)]

= d∗v′′(xi) +
d∗

12
∆x2v(iv)(x̄i) .

(13)

It follows that if we fix any point x̂ ∈ [0, 1] and, for each N , we consider a neuron
of index i = i(N) such that

xi(N) =
i(N)

N
→ x̂ as N →∞ ,

then,

lim
N→∞

dN
∑
q∈Q

(vi(N)+q − vi(N)) = d∗v′′(x̂) .

We conclude that a continuum of neurons is the results of the limit process of letting
N →∞, and

∂v

∂t
= f(v, r) + d∗

∂2v

∂x2
,

∂r

∂t
= g(v, r) ,

(14)

is the system of nonlinear partial differential equations of incomplete parabolic type
which describes the action potential and the recovery variable in the whole set of
neurons. Note that the first equation is similar to the so-called cable equation,
which describes the distribution of the potential along the axon of a single neuron
(see, e.g. [4, 13]). Reaction-diffusion models like (14) are studied e.g. in [6, 14].
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We observe that the discrete model (11)–(12) can be viewed as a numerical semi-
discretization (in space) of the PDE system (14), obtained by using a second-order
centered finite difference method on the equally-spaced (6). Thus, if the solution
of (14) is sufficiently smooth as in the case of an initial Gaussian stimulus, we
expect to have quadratic convergence in ∆x of the discrete solutions, at any fixed
time t > 0, as it can be deduced from the fact that the error term on the right-hand
side of (13) is proportional to ∆x2.

We now give an example. Following the choice of parameters presented in [15],
we set d = 0.05 and we consider the case N = 128 as a reference one, i.e., we impose
dN = d for N = 128, which yields

d∗ =
0.05

1282
= 3.0518 · 10−6 . (15)

A comparison of several discrete solutions is presented in Figure 2. The (b) plots
clearly document the convergence of the discrete dynamics towards a limit one.
Note that these dynamics are generated by applying an initial stimulus vi|t=0 = 2
to a number of neurons proportional to N around the center of the chain; in the
limit, the initial action potential takes the value 2 in an interval of positive length
symmetrically placed around the point x = 1/2, and vanishes elsewhere.

Remark 1. A more general situation considers d = dN in (7) also depending on i
and q, i.e., the diffusive coupling law is replaced by

− (LGv)i = di+1(vi+1 − vi) + di−1(vi−1 − vi) , (16)

where di±1 = N2d∗(xi±1) and d∗ is a smooth function. In the limit, the diffusion
term in (14) is replaced by ∂

∂x

(
d∗ ∂v∂x

)
. For simplicity, we confine ourselves to the

constant-coefficient case.

4.2. Extended range interactions. We now introduce a second approach to re-
produce the same limit dynamics emerged above, which avoids rescaling the diffu-
sion coefficient with the square of the number of neurons. This alternative way -
which we call Approach II - consists of increasing the number of connections per
neuron according to a specific law (and just slightly adjust the diffusion coefficient).

Since the core idea is to consider a number of connections per neuron that varies
as a function of N , let us define the following set:

Q = QN = {±1,±2, · · · ,±QN} , (17)

where QN is a positive integer to be determined. Thus, neurons linked to the i-th
one belong to the interval

I = [xi −QN∆x, xi +QN∆x] . (18)

Using again Taylor expansions, the sum in the diffusive coupling becomes

∑
q∈Q

(vi+q − vi) =

(
QN∑
q=1

q2

)
∆x2v′′(xi) + h.o.t. .

Introducing the function ϕ : R+ → R+ defined as

φ(x) =
x(x+ 1)(2x+ 1)

6
(19)



118 CLAUDIO CANUTO AND ANNA CATTANI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

t=0.5

Neurons

v
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

t=2

Neurons

v

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

t=6

Neurons

v

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

t=12

Neurons

v

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

t=0.5

Neurons

v

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

t=2

Neurons

v

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

t=6

Neurons

v

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

t=12

Neurons

v

(b)

Figure 2. Convergence of the discrete model (12)-(11) (Approach
I) as N →∞. Evolution of pulses (a) for N = 128 (red dots) and
N = 256 (black dots), (b) for N = 1024 (red dots) and N = 2048
(black dots)

and invoking the identity

n∑
q=1

q2 = φ(n) ∀n ≥ 1 ,

we obtain,

− (LGv)i = d
∑
q∈QN

(vi+q − vi) = d[φ(QN )∆x2v′′(xi) + h.o.t.] . (20)

We would like to choose QN in such a way that

d
φ(QN )

N2
= d∗ , (21)
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for a fixed constant d∗ > 0. This equation admits a unique solution, say QrN , which
however need not be an integer. Therefore, we choose QN as the nearest integer to
QrN .

Proposition 1. The number of neurons linked to any given one grows proportion-
ally to the power N2/3 of the total number of neurons. Indeed(1),

QN ∼ QrN ∼
(

3d∗

d
N2

)1/3

= cN
2
3 .

Proof. By definition, QrN satisfies

d
φ(QrN )

N2
= d∗ . (22)

The result follows recalling that φ(x) ∼ x3

3 for x→∞.

Let us underline that, although the number of neurons linked to any given one
grows with N , interactions remain local, i.e., these neurons belong to a neigh-
bourhood whose size decays with N . Indeed, considering the i−th neuron and
recalling (18), we have

|I| ' QN∆x ' N−1/3 . (23)

Thus, we expect that the limit model, as N → ∞, be again described by partial
differential equations.

As specified above, the slight shift from QrN to QN provokes the necessity of
slightly modifying the diffusion coefficient. Precisely, we define dN so that the
identity

dN
ϕ(QN )

N2
= d∗ (24)

is satisfied. An alternative possibility, which will be explored later on and which
leads to similar effects, would be to define d∗N so that

d
ϕ(QN )

N2
= d∗N . (25)

The coefficient dN is really a small perturbation of d, as the next proposition indi-
cates.

Proposition 2. Let dN be the diffusion coefficient defined in (24). Then, one has

|dN − d| . N−
2
3 .

Proof. From (22) and (24), we obtain the following equality:

dN
φ(QN )

N2
= d

φ(QrN )

N2
. (26)

Since QN is defined as the nearest integer to QrN ,

|QrN −QN | ≤
1

2
, (27)

(1) For any two non-negative sequences AN and BN , we will use the symbols

AN ∼ BN ⇐⇒ AN/BN → 1 for N →∞ ,

AN ' BN ⇐⇒ cBN ≤ AN ≤ c′BN with c, c′ > 0 ,

AN . BN ⇐⇒ AN ≤ cBN with c > 0.
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and then, QN = QrN +εN with a proper choice of εN , such that |εN | ≤ 1/2. Writing
φ(QrN ) = φ(QN ) + φ(QrN )− φ(QN ) and substituting in (26), we get

|dN − d| =
|φ(QrN )− φ(QN )|

φ(QN )
d . (28)

Using (27) and omitting computations, we conclude that |φ(QrN )− φ(QN )| . N4/3

while φ(QN ) ' N2. This gives the desired estimate.

In order to obtain the continuous model as a limit of the discrete model for
N → ∞, we observe that, if the fourth derivative of v is continuous in [0, 1], the
diffusion term (20) takes the form

−(LGv)i = dN
[
ϕ(QN )∆x2v′′(xi) + h.o.t.

]
= d∗v′′(xi) +

dN
12

∆x4
QN∑
q=1

q4v(iv)(x̄i,q) ,
(29)

where x̄i,q are suitable points in the interval (xi−q, xi+q). Since
∑QN

q=1 q
4 ∼ 1

5Q
5
N ,

using Property 1 and Proposition 2, we deduce that

dN∆x4
QN∑
q=1

q4 ' N 10
3 −4 = N−

2
3 → 0 as N →∞ . (30)

Therefore, proceeding as in Section 4.1, if we fix any point x̂ ∈ [0, 1] and we
consider a neuron of index i = i(N) such that xi(N) → x̂ as N → ∞, we conclude
that

−(LGv)i(N) → d∗v′′(x̂) as N →∞ .

This means that Approach II yields in the limit the same system (14) of partial
differential equations, that we got from Approach I.

We now illustrate the asymptotic behaviour of the quantities defined above, for
the same test case considered in the previous subsection. We choose again d = 0.05,
and we enforce that for N = N0 = 128 we have QN0

= QrN0
= 1, which corresponds

to the nearest-neighbour interaction previously considered; we also enforce dN0
= d,

and consequently we get

d∗ =
d

N2
0

,

which is precisely (15). Increasing N by powers of 2, i.e., setting N = N02p with
p ≥ 1, the algorithm presented above produces the values of QN and dN shown in
Table 1. The last column of this table, as well as Figure 3 (left), quantitatively sup-
port the asymptotic estimates proven in Propositions 1 and 2. Some representative
dynamics obtained with Approach II are documented in Figure 4; they should be
compared to those given in Figure 2. The evolutions of the action potentials pro-
duced by the discrete model with N = 1024, and by a very accurate solution of the
continuous model (14) are documented in Figure 5. While the shapes of the pulses
are already well captured, their speed of propagation is less accurately reproduced;
this should be related to the fourth-order error term on the right-hand side of (29),
whose decay is slower than in Approach I as indicated by (30) compared to (13).
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Table 1. Number of connections per neuron QN , diffusion coeffi-
cient dN and relative error as a function of N = N02p with N0 =
128.

p N = N02p QN dN |dN − d|/d
0 128 1 0.0500 0

1 256 2 0.0400 2.0·10−1

2 512 3 0.0571 1.4·10−1

3 1024 5 0.0582 1.6·10−1

4 2048 9 0.0490 1.0·10−1

5 4096 14 0.0504 8.7·10−3

6 8192 23 0.0473 5.3·10−2

7 16384 36 0.0505 1.1·10−2

8 32768 58 0.0491 1.8·10−2

9 65536 92 0.0496 6.3·10−3

10 131072 146 0.0500 4.9·10−4

11 262144 232 0.0500 1.2·10−3

12 524288 369 0.0500 2.3·10−3

13 1048576 586 0.0500 2.1·10−3

14 2097152 930 0.0500 4.3·10−4

15 4194304 1476 0.0500 7.4·10−4

16 8388608 2344 0.0500 1.6·10−4

17 16777216 3721 0.0500 3.0·10−5

18 33554432 5907 0.0500 2.3·10−5

19 67108864 9377 0.0500 2.9·10−7

20 134217728 14885 0.0500 7.1·10−5
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Figure 3. Plots of QN/N
2/3 (left) and (dN − d)/N−2/3 (right)

vs p, where N = N02p

4.3. Non-symmetric interactions. A more general configuration of the network
admits non-symmetric links for each neuron, which correspond to unidirectional
connections (the so-called rectifying synapses). A natural extension of the symmet-
ric case consists in choosing

Q = QN = QDN ∪QCN , (31)
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Figure 4. Convergence of the discrete model (4)-(17)-(21) (Ap-
proach II) as N → ∞. Evolution of pulses (a) for N = 128 (red
dots) and N = 256 (black dots), (b) for N = 1024 (red dots) and
N = 2048 (black dots)

where

QDN = {±1, · · · , ±QDN} , QCN = {QDN + 1, · · · , QCN} .

for some integers QDN ≥ 1 and QCN > QDN . (Choosing −QCN instead of QCN would be
an obvious alternative.) We will prove that a suitable choice of QCN depending on
N leads to modify the limit model (14), by adding a first order term to the action
potential equation.

With our definitions, the sum in the diffusive coupling becomes

∑
q∈QN

(vi+q − vi) =

QD
N∑

q=−QD
N

(vi+q − vi) +

QC
N∑

q=QD
N+1

(vi+q − vi) . (32)
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Figure 5. Comparison of the dynamics produced by Approach II
with N = 1024 (blue dots) and by the continuous model (14) (black
dots)

Exploiting the Taylor expansion (8), we obtain∑
q∈QN

(vi+q − vi) =

 QC
N∑

q=QD
N+1

q

∆xv′(xi) +

QD
N∑

q=1

q2 +
1

2

QC
N∑

q=QD
N+1

q2

∆x2v′′(xi) + h.o.t. .

(33)

Recalling the definition (19) of the function ϕ, and introducing the function ψ :
R+ → R+ defined as

ψ(x) =
x(x+ 1)

2
(34)

and such that
∑n
q=1 q = ψ(n), it is easily seen that the diffusive coupling takes the

form

−(LGv)i = d
[
(ψ(QCN )− ψ(QDN ))∆xv′(xi)

+
1

2
(ϕ(QDN ) + ϕ(QCN ))∆x2v′′(xi) + h.o.t

]
.

(35)

Ideally, we would like to find integers QDN and QCN > QDN satisfying the system
1

2
d(φ(QDN ) + φ(QCN ))

1

N2
= d∗

d(ψ(QCN )− ψ(QDN ))
1

N
= c∗ ,

(36)

for fixed constants d∗, c∗ > 0. At first, we discuss the existence of real solutions

QD,rN and QC,rN .

Proposition 3. Set AN = 2 d
d∗N

2 and BN = c∗

d N . If

ϕ(ψ−1(BN )) ≤ AN , (37)

there exists a unique solution (QD,rN , QC,rN ) ∈ R2
+ of the previous system.
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Proof. For simplicity, let us set x̂ = QD,rN and ŷ = QC,rN . They should satisfy ϕ(x̂) + ϕ(ŷ) = AN

ψ(ŷ)− ψ(x̂) = BN .
(38)

Recalling that both ϕ and ψ are strictly increasing bijections from [0,+∞) into
itself, the second equation yields

ŷ = ψ−1(ψ(x̂) +BN ) ,

which, substituted into the first equation, yields

ϕ(x̂) + ϕ(η(x̂)) = AN , (39)

with η(x̂) := ψ−1(ψ(x̂) + BN ). Now the function χ = ϕ + ϕ ◦ η is again strictly
increasing, and maps [0,+∞) into [χ(0),+∞) = [ϕ(ψ−1(BN )),+∞). Thus, con-
dition (37) is equivalent to the existence of a unique solution of (39), whence the
result.

We observe that, given any arbitrary d∗ and c∗, there always exists an integer
N∗ such that condition (37) is satisfied for all N ≥ N∗.

Definition 4.1. Under the assumption (37), we define QDN and QCN , resp., to be

the nearest integers to QD,rN and QC,rN , resp., which are the unique solutions of the
system 

1

2
d(φ(QD,rN ) + φ(QC,rN ))

1

N2
= d∗

d(ψ(QC,rN )− ψ(QD,rN ))
1

N
= c∗ .

(40)

Proposition 4. The following asymptotic behaviour of the integers QDN and QCN
holds:

QDN ' N
2
3 , QCN ' N

2
3 with QCN −QDN ' N

1
3 .

Proof. It is enough to estimate x̂ = QD,rN and ŷ = QC,rN . We recall that they
satisfy (38). With the ansatz ŷ ' Nα, we have ϕ(ŷ) ' N3α. On the other hand,
the inequality x̂ < ŷ and the monotonicity of ϕ yield ϕ(ŷ) ≤ ϕ(x̂) + ϕ(ŷ) ≤ 2ϕ(ŷ).
Since AN ' N2, we deduce that ϕ(ŷ) ' N2, whence α = 2/3. On the other hand,

ψ(ŷ) ' N
4
3 so that ψ(x̂) = ψ(ŷ) + BN ' N

4
3 + N ' N

4
3 , which implies x̂ ' N

2
3 .

Finally, by Lagrange’s theorem,

N ' BN = ψ(ŷ)− ψ(x̂) = ψ′(ẑ)(ŷ − x̂)

for some x̂ < ẑ < ŷ; since ψ′(ẑ) = ẑ+ 1/2 ' N 2
3 , we conclude that ŷ− x̂ ' N 1

3 .

Even for the present model, interactions are local. Indeed, all neurons linked to
the i−th one belong to the interval

I = [xi −QDN∆x, xi +QCN∆x] ,

whose length shrinks to 0 as N →∞ since QDN∆x, QCN∆x ' N− 1
3 .

In order to accommodate the effect of the slight shift from (QD,rN , QC,rN ) to
(QDN , Q

C
N ), we introduce perturbations (d∗N , c

∗
N ) of (d∗, c∗). They are defined in
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such a way that (QDN , Q
C
N ) is the solution of the system

1

2
d(φ(QDN ) + φ(QCN ))

1

N2
= d∗N

d(ψ(QCN )− ψ(QDN ))
1

N
= c∗N .

(41)

The size of the perturbation can be estimated as follows.

Proposition 5. The perturbed coefficients d∗N and c∗N introduced above satisfy

|d∗N − d∗| . N−
2
3 , |c∗N − c∗| . N−

1
3 .

Proof. Using (40) and (41), we get

d∗N − d∗ =
d

2N2

[
(ϕ(QDN )− ϕ(QD,rN )) + (ϕ(QCN )− ϕ(QC,rN ))

]
,

c∗N − c∗ =
d

N

[
(ψ(QDN )− ψ(QD,rN ))− (ψ(QCN )− ψ(QC,rN ))

]
.

As in the proof of Proposition 2, we have |ϕ(QDN ) − ϕ(QD,rN )| . N
4
3 , |ϕ(QCN ) −

ϕ(QC,rN )| . N
4
3 , and |ψ(QDN ) − ψ(QD,rN )| . N

2
3 , |ψ(QCN ) − ψ(QC,rN )| . N

2
3 , which

gives the result.

Finally, we study the limit behaviour of our model as N → ∞. To this end, we
make use of the following expression for the higher order terms in (35):

h.o.t. =
1

12

QD
N∑

q=1

q4∆x4v(iv)(x̄i,q) +
1

6

QC
N∑

q=QD
N+1

q3∆x3v′′′(¯̄xi,q) , (42)

which holds under the assumption that the fourth derivative of v is continuous in
[0, 1], for suitable points x̄i,q ∈ (xi−q, xi+q) and ¯̄xi,q ∈ (xi, xi+q). Then, we observe
that

QD
N∑

q=1

q4∆x4 ' (QDN )5∆x4 ' N 10
3 −4 = N−

2
3

and
QC

N∑
q=QD

N+1

q3∆x3 '
[
(QCN )4 − (QDN )4

]
∆x3 ' N 7

3−3 = N−
2
3 .

Thus, we obtain the following result.

Theorem 4.2. Fix any point x̂ ∈ [0, 1] and for each N , consider a neuron i = i(N)
such that xi(N) → x̂ as N → ∞. Assuming the continuity of the fourth derivative
of v in [0, 1], we have

− (LGv)i(N) → d∗v′′(x̂) + c∗v′(x̂) as N →∞ .

Therefore, the discrete model (4) with Q given by (31) and QDN , Q
C
N defined in

Definition 4.1 leads for N →∞ to the continuous model

∂v

∂t
= f(v, r) + d∗

∂2v

∂x2
+ c∗

∂v

∂x
,

∂r

∂t
= g(v, r) ,

(43)



126 CLAUDIO CANUTO AND ANNA CATTANI

which describes the behaviour of a continuum of neurons disposed along a closed
ring.

�

Remark 2. A few comments are in order.

i) Observe that having a larger number of neurons influencing a given neuron
from its right rather than from its left results in a convective term, whose
coefficient c∗ is positive; this corresponds to a negative speed of convective
propagation, i.e., waves moving from right to left, as documented by Fig. 6.
Obviously, choosing c∗ = 0 yields QCN = ∅, so one is back to the symmetric
case considered in Sect. 4.2.

ii) The same limit model can be obtained with a nearest-neighbour interaction
that extends the one considered in Sect. 4.1, i.e.,

− (LGv)i = dN [(vi+1 − vi) + (vi−1 − vi)] + cN (vi+2 − vi) , (44)

with dN = d∗N2 and cN = c∗N2 .
iii) A generalization to variable coefficients d∗ and c∗ similar to the one discussed

in Remark 1 is also possible, yielding the two last terms on the right-hand
side of (43) being replaced by the conservation form ∂

∂x

(
d∗ ∂v∂x

)
+ ∂

∂x (c∗v).

We now provide some quantitative insights for our model. Extending the test
case considered in the previous subsection, we choose d = 0.05 and we enforce that

for N = N0 = 128, we have QDN0
= QD,rN0

= 1 and QCN0
= QC,rN0

= 2, i.e., each neuron
is influenced by its first neighbour on the left and by the two first neighbours on
the right. Using (40), we obtain

d∗ =
3 · 0.05

1282
= 9.1553 · 10−6 ,

c∗ =
2 · 0.05

128
= 7.8125 · 10−4 .

Then, we increase N by powers of 2 and we monitor the evolution of the quantities
QDN and QCN , as well as the errors d∗N − d∗ and c∗N − c∗. The results, reported
in Table 2, indicate an excellent agreement with the theoretical predictions given
in Propositions 4–5. The evolutions of the action potentials produced by the dis-
crete model with N = 512 and N = 2048, and by a very accurate solution of the
continuous model (43) are documented in Figure 6.

5. Multi-dimensional dynamics. In this section, we extend the previous one-
dimensional treatment, and in particular the material of Section 4.3, to describe the
dynamics of a multi-dimensional agglomeration of neurons. We will focus on the
main aspects of the analysis, leaving to the reader those details that are straight-
forward extensions of the one-dimensional results.

We assume that neurons form a periodic lattice contained in B = [0, 1]m, m = 2
or m = 3. Precisely, given any integer n ≥ 2 and setting h = 1/n, each neuron
is associated to a multi-index l ∈ {0, · · · , n − 1}m, which identifies its physical
position x = hl ∈ B. Thus we have N = nm distinct neurons in B, which are
labelled by indices i ∈ {1, · · · , N} according to some rule; the i−th neurons has
position xi = hli, action potential vi and recovery variable ri. Periodicity means
that we replicate the situation at x = hl in any y = h(l + nk) with k ∈ Zm.

We adopt again the diffusion model (4), with Q given by (31). The definition of
QDN and QCN is as follows:
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Figure 6. Convergence of the discrete model (4)-(31)-(40) as
N → ∞. Evolution of a pulse for N = 128 (red dots), N = 256
(blue dots) and N = 8192 (black dots)

Table 2. Number of connections per neuron QD, QC , convection
coefficient c̃N and diffusion coefficient d̃N as a function of N are
shown.

p N = N = 2p QD
N QC

N N0d∗N |d∗N − dN |/dN N0c∗N |c∗N − cN |/cN
0 128 1 2 0.1500 0 0.1000 0

1 256 2 3 0.1188 2.1·10−1 0.0750 2.5·10−1

2 512 4 5 0.1328 1.1·10−1 0.0625 3.75·10−1

3 1024 7 9 0.1660 1.1·10−1 0.1063 6.25·10−2

4 2048 11 14 0.1485 9.8·10−3 0.1219 2.2·10−1

5 4096 19 22 0.1524 2.0·10−2 0.0984 1.6·10−2

6 8192 31 35 0.1546 3.0·10−2 0.1047 4.7·10−2

7 16384 50 55 0.1524 1.6·10−2 0.1035 3.5·10−2

8 32768 80 86 0.1486 9.2·10−3 0.0979 2.1·10−2

9 65536 129 136 0.1499 7.6·10−4 0.0909 9.1·10−2

10 131072 206 216 0.1506 4.2·10−3 0.1033 3.3·10−2

11 262144 329 341 0.1502 1.4·10−3 0.0983 1.7·10−2

12 524288 524 540 0.1501 6.7·10−4 0.1040 4.0·10−2

13 1048576 835 854 0.1499 6.6·10−4 0.0980 2.0·10−2

14 2097152 1329 1353 0.1499 4.7·10−4 0.0982 1.7·10−2

15 4194304 2114 2145 0.1500 1.5·10−4 0.1008 7.5·10−3

16 8388608 3361 3400 0.1499 5.4·10−5 0.1006 6.0·10−2

17 16777216 5342 5391 0.1499 9.3·10−5 0.1003 3.2·10−3

18 33554432 8489 8550 0.1500 3.0·10−5 0.0991 8.7·10−3

19 67108864 13485 13563 0.1500 1.8·10−5 0.1006 6.0·10−3

20 134217728 21420 21517 0.1500 5.5·10−7 0.0993 7.0·10−3

• given a radius RDN := hQDN with QDN > 0 (to be determined later on), we set

QDN := {q : ‖xi+q − xi‖ ≤ RDN} ; (45)
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Figure 7. The sets QDN and QCN represented in a two-dimensional lattice

• given a radius RCN := hQCN with QCN ≥ QDN (to be determined later on), and
a unit vector ν ∈ Rm, we set

QCN := {q : RDN < ‖xi+q − xi‖ ≤ RCN and (xi+q − xi) · ν ≥ 0} , (46)

i.e., QCN identifies neurons sitting on semi-balls of suitable radii centered at
xi; these semi-balls are obtained by cutting the corresponding balls by the
hyperplane containing xi and perpendicular to ν, and retaining the halves
oriented in the direction of ν (see Figure 7 for a pictorial representation of the
sets QDN and QCN in two dimensions).

The effect of QDN on the diffusion term −(LGv)i. Observe that q ∈ QDN iff
xi+q = hli+q = h(li + k) for some k ∈ KDN := {k ∈ Zm : ‖k‖ ≤ QDN}. Thus,
recalling (5), we have∑

q∈QD
N

(vi+q − vi) =
∑
k∈KD

N

h k ·∇v(xi) +
1

2
h2kTHv(xi)k + h.o.t. . (47)

Now, writing

kTHv(xi)k =

m∑
α=1

k2αD
2
ααv(xi) +

m∑
α,β=1
α6=β

kαkβD
2
αβv(xi) ,

we get

∑
k∈KD

N

kTHv(xi)k =

m∑
α=1

 ∑
k∈KD

N

k2α

D2
ααv(xi) +

m∑
α,β=1
α6=β

 ∑
k∈KD

N

kαkβ

D2
αβv(xi) .

Now, it is easily seen that by the form of KDN , the quantity

ϕ(QDN ) :=
∑
k∈KD

N

k2α, with α = 1, · · · ,m

is independent of α, whereas∑
k∈KD

N

k = 0,
∑
k∈KD

N

kαkβ = 0 if α 6= β , (48)
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since vectors in KDN can be arranged in couples that are symmetric with respect to
each coordinate hyperplane. Thus,∑

q∈QD
N

(vi+q − vi) =
1

2
h2ϕ(QDN )∆v(xi) + h.o.t. , (49)

where ∆v =
∑m
α=1D

2
ααv is the Laplacian of the function v. We observe for further

reference that for any Q > 0, denoting by B(0, Q) the ball of center 0 and radius Q
in Rm, one has for any given α = 1, · · · ,m

ϕ(Q) =
∑
‖k‖≤Q

k2α ∼
∫
B(0,Q)

y2α dy ' Q2+m as Q→∞ . (50)

The effect of QCN on the diffusion term −(LGv)i. Now, q ∈ QCN iff xi+q =
h(li + k) for some k ∈ KCN := {k ∈ Zm : QDN < ‖k‖ ≤ QCN and k · ν > 0}. At
this point, we assume that ν = e1, the first element of the canonical basis in Rm;
this choice is not at all restrictive, but simplifies the following arguments. Indeed,
referring to the analogue of (47) in which QDN , KDN resp., are replaced by QCN , KCN
resp., we have

∑
k∈KC

N

k ·∇v(xi) =

 ∑
k∈KC

N

k1

 ∂v

∂x1
(xi) =

(
ψ(QCN )− ψ(QDN )

) ∂v
∂x1

(xi) ,

with

ψ(Q) :=
∑
‖k‖≤Q
k1≥0

k1 ∼
∫
B(0,Q)∩{y1≥0}

y1 dy ' Q1+m as Q→∞ .

On the other hand,

∑
k∈KC

N

kTHv(xi)k =

m∑
α=1

 ∑
k∈KC

N

k2α

D2
ααv(xi) .

But now, ∑
k∈KC

N

k2α =
1

2

∑
QD

N<‖k‖≤QC
N

k2α =
1

2

(
ϕ(QCN )− ϕ(QDN )

)
.

We conclude that, going back to the case of an arbitrary ν,∑
q∈QC

N

(vi+q − vi) = d
[
h
(
ψ(QCN )− ψ(QDN )

)
ν · ∇v(xi)

+
1

4
h2
(
ϕ(QCN )− ϕ(QDN )

)
∆v(xi) + h.o.t.

]
.

(51)

The global effect of QCN . Summing up (49) and (51), we obtain

−(LGv)i = dh
(
ψ(QCN )− ψ(QDN )

)
ν ·∇v(xi)

+
d

4
h2
(
ϕ(QDN ) + ϕ(QCN )

)
∆v(xi) + h.o.t. .

(52)
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At this point, given two constants d∗ > 0 and c∗ ≥ 0, we would like to find QDN > 0
and QCN ≥ QDN such that  d

h2

4
(φ(QDN ) + φ(QCN )) = d∗

dh(ψ(QCN )− ψ(QDN )) = c∗ .

(53)

This system is similar to (36) and we can discuss its solvability as done in Section 4.3.
The conclusion is that for N large enough, the solution exists and satisfies

QDN ' QCN ' N
2

m(m+2) and QCN −QDN ' c∗N
2−m

m(m+2) ,

whereas the number of neurons that should be connected to a given neuron scales

like N
2

m+2 . We summarize our conclusions as follows.

Theorem 5.1. The discrete model (4), with Q given by (31)-(45)-(46) in which
QDN and QCN are the solution of (53), tends for N →∞ to the following continuous
model of reaction-convection-diffusion type

∂v

∂t
= f(v, r) + d∗∆v + ĉ∗ · ∇v ,

∂r

∂t
= g(v, r) ,

(54)

where the convective velocity is given by the vector ĉ∗ = c∗ν.

The well-posedness of this model, as well as its numerical discretization, can be
studied by adapting the arguments given in [3] and [12].

An example of a two-dimensional dynamics produced by the model described
above is given in Figure 8. We fix d = 0.05 as for the one-dimensional models; then,
we choose d∗ and c∗ in such a way that (53) is satisfied for n = 256 by QDN =

√
2

and QCN = 2. This gives

d∗ = 3.8147 · 10−6 and c∗ = 3.9063 · 10−4 .

The vector ν is chosen to be e1. Figure 8 shows the evolution of the action potential
in the periodic boxB = [0, 1]2 for n = 256, starting from an initial stimulus v|t=0 = 1
applied to the neurons lying in the circle of radius 1/32 around the center of the box.
The stimulus propagates in all directions, but since c∗ > 0 the speed of propagation
is faster in the direction of −ν.

Remark 3. Results such as (13), or (29)-(30), or (52)-(53), can be interpreted as
consistency checks, namely they show that each discrete model is consistent with the
corresponding continuous model. This means that a sufficiently smooth solution of
the continuous model also satisfies the discrete model, up to a consistency error that
tends to 0 with N . With these results at hand, one can invoke the Lax-Richtmyer
theorem (“Consistency plus stability implies convergence”), which guaratees that if
the discrete model is stable to perturbations in a suitable sense, then the solutions of
the discrete models for varying N converge to the solution of the continuous model.
In the present paper, we have not performed a (fairly straightforward, yet rather
technical) stability analysis of the discrete models since our main focus here is on
the limit process, however results of this kind can be found in the literature (see
e.g. the cited work [12] by Sanfelici, who considers a finite element discretization of
a FitzHigh-Nagumo reaction-diffusion model and proves its convergence in suitable
Sobolev norms).
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Figure 8. Two dimensional dynamics. Evolution of an initial
stimulus by the discrete model of Theorem 5.1 in a N = 256× 256
lattice of neurons

5.1. Pseudo-random connections. While the models considered so far are fully
deterministic, it is interesting to introduce some form of randomness and monitor its
effects. In the simplest form, this can be accomplished by perturbing the model con-
sidered above via a (pseudo-)random removal of a fixed percentage of links among
neurons. Connections to each neuron are turned-off with uniform distribution in
the given percentage, independently of the other neurons; thus, the set Q(i) in (4)
does depend upon i, in a (pseudo-)random manner.

As an example, we keep the same parameters d = 0.05, QDN =
√

2, QCN = 2 and
n = 256, as well as the same initial datum as above, and we choose to turn 30%
of connections off. In Figure 9, the resulting dynamics at the same time instants
as in Figure 8 is shown. The random effects on the patterns are apparent. The
reduction of active connections is reflected by a weaker propagation strength. The
excitation front travels leftward only, with a lower speed than in the deterministic
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Figure 9. Evolution as in Fig. 8, but with 30% of the connections
turned-off in a pseudo-random way

case. Furthermore, contours are irregular and, in some realizations not shown here,
even disconnected.

6. Conclusions. We have considered an idealized network, formed by N neurons
individually described by the FitzHugh-Nagumo equations and connected by elec-
trical synapses. The limit for N → ∞ of the resulting discrete model has been
thoroughly investigated, with the aim of identifying a model for a continuum of
neurons having an equivalent behaviour. Two strategies for passing to the limit
have been analyzed. A more conventional approach is based on a fixed nearest-
neighbour connection topology accompanied by a suitable scaling of the diffusion
coefficients. We have devised a new approach, in which the number of connections
to any given neuron varies with N according to a precise law, which simultaneously
guarantees the non-triviality of the limit and the locality of neuronal interactions.
Both approaches yield in the limit a pde-based model, in which the distribution of
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action potential obeys a nonlinear reaction-convection-diffusion equation; convec-
tion accounts for the possible lack of symmetry in the connection topology. Several
convergence issues are discussed, both theoretically and numerically.

Based on the present study, more realistic models describing both electrical and
chemical synapses have been considered in [2]. The discrete models here analyzed
have been coupled to models of chemical interactions within a population of exci-
tatory/inhibitory neurons, such as those given in [4], eq.(9.6). Again, the focus has
been on the limit process leading to coupled continuous models.
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discussions on various aspects of the present work.

REFERENCES

[1] R. B. Bapat, D. Kalita and S. Pati, On weighted directed graphs, Linear Algebra Appl., 436

(2012), 99–111.
[2] A. Cattani, “Multispecies” Models to Describe Large Neuronal Networks, Ph.D. Thesis Poly-

technic University of Turin, 2014.
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