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Abstract. The probability hypothesis density (PHD) methodology is widely
used by the research community for the purposes of multiple object tracking.

This problem consists in the recursive state estimation of several targets by

using the information coming from an observation process. The purpose of this
paper is to investigate the potential of the PHD filters for real-time traffic state

estimation. This investigation is based on a Cell Transmission Model (CTM)

coupled with the PHD filter. It brings a novel tool to the state estimation
problem and allows to estimate the densities in traffic networks in the presence

of measurement origin uncertainty, detection uncertainty and noises. In this

work, we compare the PHD filter performance with a particle filter (PF), both
taking into account the measurement origin uncertainty and show that they can

provide high accuracy in a traffic setting and real-time computational costs.
The PHD filtering framework opens new research avenues and has the abilities

to solve challenging problems of vehicular networks.

1. Introduction. Sensor data fusion and advanced estimation methods can pro-
vide information about special events and hence improve the traffic conditions in
Intelligent Transportation Systems (ITS). Sussman [38] emphasizes the fact that
the full benefits of these systems cannot be realized without the ability to pre-
dict the short-term traffic conditions. Hence, the short-term prediction of traffic
states plays a key role in various ITS applications such as Advanced Traffic Man-
agement Systems. In this context, the prediction of traffic flow variables such as
traffic volume, travel speed or travel time for a short time horizon (typically 5 up
to 30 minutes) is of paramount importance. However, the increasing complexity,
non-linearity and presence of various uncertainties (both in the measured data and
models) are important factors affecting the traffic state prediction. Consequently,
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prediction methods based on deterministic assumptions are incapable to meet the
accuracy needed in ITS applications.

To overcome these limitations, many non-deterministic estimation methods have
been investigated [1]. Multiple objects generate multiple measurements which orig-
inate either from the targets or from the environment (which is the so-called clutter
noise). In this scope, our research is focused on developing a stochastic traffic
modeling framework that enables estimation (filtering and prediction) of some traf-
fic states such as traffic flow with high accuracy. The purpose of this work is to
investigate the potential of the Probability Hypothesis Density (PHD) filters for
real-time traffic state estimation. The dynamic evolution is based on a Cell Trans-
mission Model (CTM) coupled with the PHD filter as an estimation engine. The
CTM is well known in traffic modeling, however the use of the PHD filter in traffic
engineering is new and it offers the possibility to estimate traffic network densities.

For the problem of multiple-object tracking, the PHD filter has been intensively
studied and used in the literature [24]. This problem consists in the recursive state
estimation of several targets based on the information coming from an observation
process. However, the PHD filter has not been applied yet to traffic estimation
problems (such as to the travel time for example) except for one paper [2] in which
the PHD filter performance is studied jointly with a constant velocity model for
estimation of trajectories of individual cars. Our work, in contrast to [2], develops a
PHD filter for traffic networks, combines the CTM with the PHD filter and validates
its performance over simulated data based on real data, collected in France.

Our paper is the first work which shows that the PHD methodology has a poten-
tial to solve problems for vehicular traffic systems. The novelty of this work is that
it formulates the traffic problem within the PHD framework, gives a solution in the
presence of clutter and presents comparative results with a particle filter taking into
account the clutter in the measurements. The PHD method is very appealing be-
cause it avoids the need of data association and deals with the measurement origin
uncertainty in an efficient way.

The paper is organized as follows. Section 2 formulates the objectives of this
work, introduces the traffic modeling framework and the main considered filtering
methodologies, i.e. the particle and PHD filters. Section 3 describes the macroscopic
traffic model considered. Section 4 describes in details the PHD filtering method.
An overview of the PHD method is given and the proposed PHD algorithm for traffic
state estimation is described. Section 5 describes briefly the PF in the presence of
measurement origin uncertainty. This PF is compared with the PHD filter. Section
6 presents the real-world test site and set up of the PHD filter. The analysis of
the results and a comparison with the particle filter is then described. The last
section 7 discusses extensions of this work and further research about the PHD
filter for traffic state estimation under changeable weather conditions and also with
data with high level of clutter noise. Appendix A presents the derivation of the PF
likelihood in the presence of measurement origin uncertainty.

2. Objectives.

2.1. Real-time traffic state estimation. In Advanced Traffic Management Sys-
tems (ATMS), traffic state estimation is commonly used for network monitoring and
control applications. Real-time traffic state estimation relies on the online traffic
state vector estimates along a part of the road, based on past measurements on the
system.
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In signal processing, Kalman filters (KFs) [21], including Extended Kalman Fil-
ters [43] and Unscented Kalman Filters [20] have been widely used. Regarding traffic
control applications, the high non-linearity of the dynamic systems has given raise
to a wealth of alternative methods among which Sequential Monte Carlo methods,
known also as Particle Filters [10, 1] have become very popular. Extended Kalman
Filters (EKFs) in combination with a stochastic traffic model have been applied in
Wang et al. [43] in order to carry out the traffic state estimation. The proper choice
of traffic parameter values is crucial in such applications, as highlighted in [43]. In
order to address the proper choice of traffic parameters, in [44] the real-time traffic
flow parameters and states are jointly estimated with an EKF. Another sequential
filter which has recently received a lot of attention is the Ensemble Kalman Filter
(EnKF) [46, 47]. The method was originally proposed as a stochastic (Monte Carlo)
alternative to the deterministic EKF.

Particle filters (PFs) have also shown their potential to solve the challenging
traffic state estimation problems [27, 28]. In [3], [6], and [33] is demonstrated
that particle filters can deal with the diverse meteorological traffic conditions. The
promising results have demonstrated the accuracy of Sequential Monte Carlo meth-
ods, which do not require any linearization. Moreover, the constant increase of the
computational power has boosted their relevance to traffic state estimation. For
instance, numerically efficient, parallel implementations of particle filters are pro-
posed in [29]. However, new methodologies need to be explored, such as the one
investigated in this paper i.e. the PHD filter and its highly attractive properties.

2.2. The Probability Hypothesis Density filter. The PHD filter provides an
elegant way to recursively estimate the number and the states of multiple targets
given a set of observations. It works by propagating in time the first moment (called
intensity function or PHD function) associated with the multi-target posterior [23].
Multi-target tracking is a common problem with many applications. The literature
in this area is limited and the state-of-art and methodology are summarized well
in [24, 42]. Nevertheless, only one article is concerned with traffic modeling issues
[2].

In [19] and [30] the authors highlight the fact that the PHD filter outperforms
the standard approaches such as the KF or the Particle Filter (PF), especially in the
way the measurement origin uncertainty is dealt with. The PHD filter is typically
implemented either via the sequential Monte Carlo (SMC) method [39, 45] or by
using finite Gaussian mixtures (GM) [40, 41]. The GM method is attractive because
it provides a closed-form algebraic solution to the PHD filtering equation, with the
state estimate (and its covariance) easily accomplished. However, the GM method is
based on somewhat restrictive assumptions that single-object transitional densities
and likelihood functions are Gaussian, and that the probability of survival and the
probability of detection are constant [24],[40]. The SMC method does not impose
such restrictions and therefore provides a more general framework for the PHD
filtering [35, 48].

The SMC approximation carries over to the PHD filter relatively easily. Particles
represent random samples drawn from a posterior PHD. Particles are supposed to
be more densely located where targets are most likely to be present. As with single-
target SMC filtering, the basic idea is to propagate particles from time step to
time step so that this assumption remains valid as shown on figure 1. One of the
first implementations is introduced in [39]. Then some improvements have been
proposed in [32] and [34].
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Figure 1. The concept of PHD filtering, [24]

3. Macroscopic traffic model. The traffic model used is the Daganzo’s sending-
receiving cell version of the Lighthill-Whitham-Richards (LWR) model [7], which
is based on hydrodynamic analogy describing the behavior of the traffic flow. This
model is classically written in a discrete version (as shown on Figure 2) at a section
level. The motorway section is divided into n cells of length ∆Li. The cell densities,
ρi for cell i, and flows, qi for flow between cell i and i + 1, are updated every ∆N

time interval. From the space discretization, a classical Godunov scheme is applied
whose solution approximates the entropy solution [22].

Figure 2. Space discretization

The straightforward Godunov scheme consists of the two following equations:{
ρi(k + ∆N ) = ρi(k) + ∆N

∆Li

(
qi−1(k)− qi(k)

)
,

qi(k) = min
(
Γi(k),Σi+1(k)

)
.

(1)

The first equation is the conservation equation. The second equation is the flow
equation which consists of the demand-supply competitions, i.e. the resulting flow
in cell i at discrete time k will be the minimum between cell i+1 supply Σi+1(k) and
the cell i demand Γi(k). Note that the Stochastic Cell Transmission Model (SCTM)
developed by Sumalee et al., [36], extends the CTM to consider both supply and
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demand uncertainty. The numerical time step is taken as a sub-multiple of the
observation time step fulfilling numerical conditions.

The state vector (of length 2n + 1) to be estimated consists of the flows and
densities in the n cells of the section:

xk =
(
ρ1(k), . . . , ρn(k), q0(k), . . . , qn(k)

)T
, (2)

where T denotes the transpose operator.
The inputs uk of the system are the demand upstream and the supply down-

stream of the considered section. The state equation is then written as follows:

xk+1 = f(xk, uk), (3)

where f is a complex and highly nonlinear function with no straightforward ana-
lytical form.

For the traffic systems, the state equation (3) is commonly completed by a linear
observation equation, which maps measurements, yk, and the state vector of the
system:

yk = Cxk, (4)

where C is a real matrix consisting of rows whose elements are all zero except for
the element corresponding to the position of the sensor delivering a measurement.
Note that this observation equation is not restricted to any constraint of linearity
and could be chosen nonlinear.

As there are uncertainties in both the measurements and the model, the complete
traffic dynamical model is given by{

xk = f(xk−1, uk−1) + wk,
yk = Cxk + vk,

(5)

where wk and vk are zero mean Gaussian noises with respective variance matrices
Qk and Rk.

4. PHD filtering.

4.1. General formulation. This section introduces the general formulation of the
PHD filter for multiple targets. In this context target states and measurements are
considered as random sets (random in values and also in number of values). From
time step to time step, some of the targets may disappear. The surviving targets
evolve to their new states and new targets may appear. Due to imperfections in the
detector, some of the surviving and newborn objects may not be detected, whereas
the observation set Yk may include false alarm detections.

Suppose that at time k there are nt target states x̃1,k, . . . , x̃nt,k each taking value
in a state space χ ⊆ Rn (n = dim x) and mk observations Yk = {y1,k, . . . , ymk,k}.
Within the PHD framework one can recursively estimate the state vector xk =
{x̃1,k, . . . , x̃nt,k} of states of all nt targets given Y (k), the set of measurements up
to time k. In the remaining part of the paper, we use x to denote the multi-target
vector state, in order to simplify the notation and without loss of generality since the
context gives enough information about which vector is used. The underlying idea

of the PHD filter is to propagate a suitable density function D(x)
abbr.
= D(x|Y (k))

in the target state χ.
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The PHD is a density function but not a probability density function, such that,
for any region S ⊆ χ, the expected number of targets in S is given by

n(S) =

∫
S

D(s)dx, (6)

for a suitable density function D(x).
Let’s D(·) be the PHD function and Dk|k be the PHD function at time k based

on the set Y (k) of measurements till time instant k. The objective of the PHD filter
is the time propagation

Dk−1|k−1(x)→ Dk|k−1(x)→ Dk|k(x). (7)

Before presenting the predictor and corrector equations, we introduce some as-
sumptions and notations. The PHD filter presumes some multi-target motion
model. More precisely, target motions are statistically independent. Targets can
disappear from the scene and new targets can appear independently of existing
targets. These possibilities are described as follows.

• Motion of individual targets: fk+1|k(x|x′) is the single target Markov transi-
tion density.

• Probability of surviving : pS,k+1|k(x′) noted pS(x′) is the probability that a
target with state x′ at time step k will survive in time step k + 1.
• Appearance of completely new targets: bk+1|k(X) is the probability that new

targets with state set X will enter the scene at time step k + 1.

Note that in the general framework, new targets can be spawned by existing
targets. In this case, we defined the spawning of new target by existing targets
as bk+1|k(x|x′). However, in our context, this assumption could not be included
compared to the general PHD recursion [24] since it does not have any realistic
sense.

The PHD filter also presumes the standard multi-target measurement model.
More precisely, no target generates more than one measurement and each mea-
surement is generated by no more than a single target, clutter measurements are
conditionally independent of the target state, missed detections, and a multi-object
Poisson false alarm process. These assumptions can be summarized as follows:

• Single-target measurement generation: Lk(y|x) is the sensor likelihood func-
tion for observation y at time step k and state x.
• Probability of detection: pd,k+1|k(x′) noted pD(x′) is the probability that an

observation will be collected at time step k + 1 from a target with state x, if
the sensor has state x′ at that time step.
• False alarm density : At time step k+1, the sensor collects an average number
λ = λk+1(x) of Poisson-distributed false alarms, the spatial distribution of
which is governed by the probability density c(y).

With these notations, we now describe the basic steps of the PHD filter, each in
turn: initialization, prediction and correction.

1. PHD Filter initialization
With no prior information about the initial target positions, a uniform PHD
D0|0(x) is chosen.
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2. PHD Filter predictor
At time step k, starting from Dk|k, the predictive PHD Dk+1|k can be calcu-
lated [23] in the following way:

Dk+1|k(x) = bk+1|k(x)︸ ︷︷ ︸
birth targets

+

∫
Fk+1|k(x|x′)Dk|k(x′)dx′, (8)

where the PHD “pseudo-Markov transition density” is

Fk+1|k(x|x′) = pS(x′)fk+1|k(x|x′)︸ ︷︷ ︸
persisting targets

+ bk+1|k(x|x′)︸ ︷︷ ︸
spawned target

, (9)

with the spawned target equal to zero in our study case. The predicted number
of targets is therefore

Nk+1|k =

∫
Dk+1|k(x)dx. (10)

Then we have, under the non-restrictive assumption of no spawning,

Dk+1|k(x) = bk+1|k(x) +

∫
pS(x′)fk+1|k(x|x′)Dk|k(x′)dx′. (11)

3. PHD Filter corrector
From the previous step, one has the predicted PHD Dk+1|k(x), given by (11).
At time step k + 1, one collects a new observation set Yk+1 = {y1, . . . , ym}
and can calculate the data updated PHD Dk+1|k+1(x). The PHD corrector
step is [23]:

Dk+1|k+1(x) = Lk+1(y|x)Dk+1|k(x), (12)

where the “PHD pseudo-likelihood” function is defined by

Lk+1(y|x) = 1− pD(x) + pD(x)
∑
y∈Y

Lk(y|x)

λc(y) +
∫
pD(x′)Lk(y|x′)Dk+1(x′)dx′

(13)

Then we have,

Dk+1|k+1(x) = [1− pD(x)]Dk+1|k(x) +
∑
y∈Y

pD(x)Lk(y|x)Dk+1|k(x)

λc(y) +
∫
pD(x′)Lk(y|x′)Dk+1(x′)dx′

.

(14)

4.2. SMC-PHD algorithm for traffic state estimation. Due to the highly
nonlinear traffic model, we choose the SMC implementation for the approximate
propagation of the traffic PHD. At each time step k the PHD Dk|k is approximate

by a set of particles and associated weights, {(xi, wi)}
Np

i=1. The integral over this
intensity is the estimated expected number of targets and it is not necessarily equal
to one. The SMC-PHD algorithm is composed of three main steps: (i) a prediction
step with the newborn generation and propagation via the traffic model; (ii) a
correction step in which particle weights are updated through the likelihood function
and the new measurements set; and (iii) a resampling step from the existing one
with an update of the weights. More precisely, at time step k, the algorithm is as
follow:

1. Step 1: Prediction

Let {xi, wi}
Np

i=1 be the resample particle from the previous step k − 1, repre-
senting the intensity over the state space. Following [32], newborn particles
are driven by the measurements from the previous time step Yk−1, in order
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to avoid a large number of additional particles since the state space is high
dimensional. Hence, the newborn particles set is drawn from the distribution
N (yk−1, Q), i.e. centered around the previous step measurement yk−1 with
the measurement covariance Q. The corresponding weights are equal to 1/Nb,
with Nb the number of born particles.

Then, we sample particles xi at time step k from those of time step k −
1 according to the traffic model, weights being unchanged, and we define

{x̃i, wi}
Np+Nb

i=1 as the predicted particle set containing the newborn and per-
sisting particles.

2. Step 2: Correction
For the new particle set and new mk measurements, we compute the likeli-
hood Lk(yk|x̃) according to (13). Then the respective covariance matrices are
calculated for each estimated state ŷ by

C̃(j) =

Np∑
i=1

wi

[
(Cx̃i − ŷj) (Cx̃i − ŷj)T

]
, j = 1 . . .mk. (15)

This matrix C̃ characterizes the particle distribution of the state ŷ. Finally, we
update the target intensity, given the new measurements through a correction

of the individual weights. For every particle of set {x̃i, wi}
Np+Nb

i=1 :

ŵi =

mk∑
j=1

wipD(x̃i)Lk(yj,k|x̃i)
C̃(j)

. (16)

3. Step 3: Resampling

From the particle set {x̃i, wi}
Np+Nb

i=1 , randomly select a particle set of length
Np and rescale the weights to get the new particle set for the next step. Note
that, any standard resampling technique for particle filtering can be used.

The next section describes the PF framework and the PF likelihood expression
when taking into account the clutter noise for traffic estimation.

5. A particle filter taking into account the clutter noise for traffic esti-
mation. In the case of multiple targets, multiple measurements are generated and
there is measurement origin uncertainty. Some of these measurements are not from
the targets, but instead from clutter. In order to compare the developed PHD filter
with a PF under the same conditions, the PF takes into account the clutter in the
measurements too. This is done by calculating the likelihood of the PF as sug-
gested in [13, 14]. It is assumed that the number of measurements and the number
of clutter points have a Poisson distribution.

The PF is a Monte Carlo approach which gives a numerical solution for the
prediction

p(xk|y1:k−1) =

∫
Rnx

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (17)

and respectively for the measurement update equation

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
, (18)

within the general Bayesian framework. In the context of the considered traffic
problem, p(xk|y1:k−1) is the prior state probability density function (pdf), y1:k−1

denotes the measurements from time 1 to time k, p(xk|xk−1) is the state transition
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pdf, p(xk|y1:k) is the posterior state pdf at time step k, p(yk|xk) is the likelihood
function and p(yk|y1:k−1) is a normalization factor.

The PF approximates the posterior state pdf p(xk|y1:k) by means of a collection of

Np particles and their respective weights {x(i)
k , w

(i)
k }

Np

i=1. After the arrival of the new
measurements the weights are updated according to the likelihood function p(yk|xk).
The cloud of particles evolves with time and depending on the observations, so that
the particles represent with sufficient accuracy the pdf of the state.

At each time step a set of sensor measurements is recorded. These measurements
could come from either targets or clutter. The basic idea is to figure out how to
assigns each measurement to the right target or identify it as a false alarm.

In the context of PF multiple-target tracking the data association problem can
be resolved as proposed in [13] and [14]. Similarly to [13] we have derived the
expression for the PF likelihood for the traffic estimation problem

p(Yk|x(i)
k ) ∝

mk∏
j=1

(
λCpC(yjk) + λT pT (yjk|x(i)

k )
)
, (19)

where λT is the mean value of the number of measurements originated from the tar-
gets, λC is the mean value of the number of measurements corresponding to clutter,

with Yk being the set yjk, j = 1, . . . ,mk of measurements at time k, pT (yjk|x(i)
k )

and pC(yjk) are respectively the target and clutter measurement likelihood defined
by a single Gaussian for target measurements and by a uniform distribution for the
clutter [14]. Note that the pC is independent of the target. Appendix A presents
the derivation of the PF likelihood for the considered traffic estimation problem.
The next section presents results showing the performance of the two algorithms.

6. Performance evaluation.

6.1. Site and collected data. The test site is the urban freeway in Eastern part
of Lyon’s ring road (point A to D on figure 3), which consists of three lanes between
km point A and km point B (5.6km long), [4, 33]. Traffic data were provided by the
urban motorways’ operator CORALY and collected in 2007 from 8 loop sensors.
The length of each cell is, respectively: 1080, 480, 1200, 840 750, 780 and 480
meters.

A rainy day’s upstream demand and downstream supply and balances of ramp
movements was used. The profiles of these external actions on the motorway system
come from the real data of highway flow measurements in March 2007, on one week-
day (Tuesday). The motorway section under consideration is the most frequently
congested part. The upstream flow comprises the flow from North-West Lyon and
the on-ramp from the Geneva freeway (point B). Therefore, the upstream demand
presents high values on classical peak hours in the morning and at the end of the
afternoon.

According to the section configuration, the space discretization of our traffic
model has been carried out in such a way that the discretized cells are the segments
between two consecutive sensors (Figure 3). Hence, we have 7 cells and 8 sensors.
In this urban motorway section, three on and off-ramps are located on cells 3, 5
and 6. Therefore, in the traffic model, source terms have to be considered in these
cells. The balances on versus off-ramp movements are shown in figure 4 as well as
upstream demand.
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Figure 3. Test site section (B → C) divided into 7 cells and its
detector configuration

Figure 4. Upstream demand and the ramp balances (the differ-
ence between the in and out vehicle flow on the ramp)
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6.2. Hypotheses, model and filter parameters. From previous works, e.g. [33],
it is known that for this test site under rainy conditions (which is the case of the
selected day), the fundamental diagram of the LWR model is well represented with
the following parameters:

1. Critical density: ρc=100 [veh/km];
2. Maximum density: ρM=300 [veh/km];
3. Maximum flow: qM=138 [veh/min].

The respective variance matrices of the estimation algorithms are chosen as fol-
lows. For the flow measurement uncertainty the standard deviation is σR=1.5
[veh/min] (consistent with the empirical analysis conducted on the raw data col-
lected on this network). Hence, the measurement noise variance matrix is defined
as a diagonal matrix: Rt = diag(σ2

R). Regarding the uncertainty of the state equa-
tion, we assume that the model is as robust as the measurements, meaning that the
standard deviation of the state vector flow part is the same as measurements one
(σQ=1.5 [veh/min]). The density magnitudes are much smaller than those giving
the flow; therefore the standard deviation of the density part of the state vector is
chosen to be:

σk = σQ ×
ρc
qM

= 0.0011 [veh/m]. (20)

Thus, the n first diagonal elements of the Q matrix are equal to σ2
k whereas the

(n+ 1) last ones are equal to σ2
Q.

We choose the following parameters in the filters’ implementation:

1. Probability of detection: Pd=0.98;
2. Number of particles: Np=100;
3. Number of newborns: Nb=250;
4. Mean of clutter intensity (false alarm): λT=1.

The PHD value D0|0 is initialized with uniformly distributed particles which
corresponds to lack of prior knowledge. Moreover, as the newborn object particles
need to cover the entire state-space with reasonable density for the PHD filter,
the birth density is driven by measurements following a uniform distribution as
suggested in [32].

6.3. Performance evaluation. The developed PHD filter for real-time traffic
state estimation is evaluated by a comparison with the PF with likelihood func-
tion taking into account the clutter noise as derived in the Appendix A, similarly
to [13, 14]. The two filters are implemented under the same conditions (filter and
model parameters). Finally, we compare the flow estimates obtained from both
filters and for each sensor location.

Simulations have been conducted with a laptop having 4 GB RAM and an Intel
i3-2330M 4.20GHz processor. The CPU times of the two algorithms implemented in
Matlab are measured for the whole considered period. Both approaches give similar
results, around 20 seconds for the whole time interval, which could be considered
as a proof of their applicability in real time.

The chosen traffic model relies on the following assumptions: it is supposed that
measurements at some boundary cells are available, i.e. it is assumed that the up-
stream demand and downstream supply are known with a certain probability of
detection and with false alarms, as well as the ramp balances of in and out flows.
Then the state vector of traffic densities and flows is estimated by the two algo-
rithms. For comparison purposes, estimated versus actual traffic flows are depicted
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for both estimation methods (see Figure 5). The Root Mean Square Error (RMSE)

RMSEi =
1

NsNt

Ns∑
j=1

Nt∑
k=1

(
ŷi,j(k)− yj(k)

)2
(21)

is used as a measure of the performance. The subscript i = PF or PHD, Ns is
the number of sensors, Nt is the number of time steps and ŷi,j(k) the traffic flow
estimates for respective filter i, sensor j at time k.

Since with real data, the noises are unknown, the process has been conducted
one simulated data with a determined level of noises. The difference ŷ−y shows the
error in percentage and then we can see the performance for all filters with respect
to the ground truth data. The model used to simulate data is the same as the one
used in the filters in which the level of noises of the simulated data is defined by
the diagonal of Q.

Figure 5. Actual versus estimated flows for cell 6 (left) and zoom
(right). Dot-lines represent real measured flows and blue and red
solid line are respectively PF and PHD estimates

As one can see, with only boundary conditions given to the filters, the accuracy
of the state estimates provided by the PHD filter and PF is quite similar, and close
to the actual measurements with a noticeable PF better accuracy. The respective
RMSEs are: RMSEPF=1.63 [veh/min] and RMSEPHD=2.23 [veh/min].

However, the PHD estimates appear smoother than those given by the PF, which
can be an interesting feature if one looks at the confidence interval of estimates.
Hence, in our case, the PHD filter performed as well as the PF and the trend of
the differences between RMSEPF and RMSEPHD is the same as it can be seen
from Figure 5. Table 1 summarizes the results at each sensor location. One can see
that the accuracy of the state estimates of the PHD and PF are comparable. It is
important to note the overestimation of the PHD compared with the PF, mainly
due to the smoother characteristics.

We conducted 100 independent simulations and calculated for each both the
RMSE and CPU time. Figure 6 shows the RMSE and CPU time boxplots of the
set of measurements. The figure on the left hand side, presents the RMSE boxplot
for both methodologies and on the right hand side, the corresponding CPU time is
given.
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cell 1 cell 2 cell 3 cell 4
sensor sensor sensor sensor

RMSEPF 1.32 1.76 1.84 1.85
RMSEPHD 1.18 2.14 2.45 2.78

cell 5 cell 6 cell 7 cell 8
sensor sensor sensor sensor

RMSEPF 1.82 1.86 1.72 0.86
RMSEPHD 2.78 2.57 2.71 1.22

Table 1. RMSE, [veh/min] of the flow estimates with simulated data

The RMSE boxplot explicitly demonstrates a general lower value for PF estima-
tion compared to the PHD filter. This last one is also more spread. Nevertheless,
both mean values are small, which represents a close estimation of the ground truth.
Regarding at CPU time boxplot, one can see a tight distribution and most of all
real-time applications appear relevant since for the applied methods the mean values
are almost equal to 20 seconds for the whole period of the study.

Figure 6. Boxplot of RMSE (left) and CPU Time (right)

7. Conclusions and perspectives. This paper develops a Probabilistic Hypoth-
esis Density filter for traffic state estimation. The PHD filter is implemented based
on a Sequential Monte Carlo algorithm. Its performance is evaluated over simu-
lated data based on a real-world study case. The results obtained are compared
with the PF, known for its ability in solving traffic state estimation problems as
well as prediction.

The results show the potential of the PHD filter and its applicability to traffic
state estimation. The results demonstrate that the PHD filter equal performance
of the particle filter on this real study case. Secondly, it opens new avenues for the
PHD filter research in traffic control. The PHD filter can be especially powerful
in dealing with clutter and multiple traffic flows. Specifically, this work can be
extended with more complex models to adversary weather conditions (which means
more clutter in the data), including switching state space models as those developed
in [4] or [37] in order to adapt the traffic state estimation according to weather or
traffic conditions. Multiple data sources can also be considered since the PHD filter
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is relevant in multi-target multi-source tracking. One can consider urban traffic
and the estimation of other information such as travel time under various noise
uncertainties.

The Cardinalized PHD filter framework [26] is an extension of the PHD filter
and we aim at developing CPHD filters for the vehicular traffic problems. The
Cardinalized PHD filter propagates not only the first moment but also the second
order moment and estimates the number of targets. The Box Particle filter [15, 16,
17, 34] is another promising approach that can deal with various uncertainties and
can be applied to vehicular traffic estimation, also in combination with the PHD
filter. Both approaches can be useful in the attempt of defining some metrics of the
travel time, for example metrics such as reliability or consistency.

In conclusion, this first work on PHD filtering for traffic estimation shows its rel-
evancy. Based on the analogy with PF, the use of PHD filter for prediction appears
suitable. However, some special features have to be investigated as the likelihood
function, the calibration of some parameters while the assimilation process: clutter
law and parameters like rate, resampling improvement, detection profile and so on.
Nevertheless, this filter has a great interest and definitively need more consideration
since it can be potentially useful for many traffic applications.

Our work opens doors to next investigations for traffic prediction which will be
with cardinality PHD filters (including for joint state and parameter estimation)
and other PHD techniques. This work can be extended to solve traffic filtering and
prediction problems with different weather conditions.
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Appendix A. Likelihood derivation of the Particle Filter. We shall start
from expression (11) of the article of Gilhom and Salmond (GS) [14], adapting the
notations to our ones. With no loss of generality we shall omit here the time in-
dex k, the set of measurements at time k being denoted as Y = {y1, y2, . . . , ym}.
The likelihood function is then written, separating explicitly the product part re-
lated to φ(j) 6= 0(target measurements) from the one related to φ(j) = 0(clutter
measurements):

p(Y |x) ∝
∑
φ

(λT /λC)nT (φ)
m∏

j,φ(j)6=0

pT (yj |x)

m∏
j,φ(j)=0

pC(yj). (22)

The definition of φ (partitions of the set {1, 2, ....,m}), nT (φ) (number of target
measurements) compatible with partition φ, nC(φ) = m−nT (φ) (number of clutter
measurements) are the same as in [14].

In the previous expression, the first product involves nT factors and the second
nC . The previous expression (22) is multiplied by λmC , leading to:

p(Y |x) ∝
∑
φ

m∏
j,φ(j)6=0

aj

m∏
j,φ(j)=0

bj (23)

with:

aj = λT pT (yj |x)

bj = λCpC(yj). (24)

We can use here the same procedures as the Appendix of the GS paper. We define
all possible assignments φ as Φ0,Φ1 . . . ,Φm, where Φi is the set of all mappings
that assign i measurements to the target, i.e. those with nT (φ) = i. Relation (23)
can be rewritten in the form:

p(Y |x) ∝
m∑
i=0

∑
φ∈Φi

m∏
j,φ(j)6=0

aj

m∏
j,φ(j)=0

bj

 . (25)

In the bracket of the previous expression (25), the first product involves i factors
and the second m − i factors. The sum on Φi, which scans all the mappings with
i objects chosen among m ones, involves then m!/(i!(m − i)!) terms. The total
number of terms in expression (25) is then 2m.

Let us consider now the product:

A =

m∏
j=1

(aj + bj) =

m∏
j=1

Aj (26)

The development of the previous product, can be ordered in the following way: first,
for an integer i (0 ≤ i ≤ m), we add all the possibilities of products of i factors ajs
chosen among the m Ajs and m− i factors bjs taken from the remaining m− i Ajs.
This gives exactly the sum on Φi of relation (25). Second, summing for i from 0 to
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m gives the likelihood expression of equation (25). The product giving A is then
exactly the likelihood expression (25). We get then:

p(Y |x) ∝
m∏
j=1

(λCpC(yj) + λT pT (yj |x)) (27)

where we have used the definition (24) of the ajs and bjs.
A meaningful physical interpretation of the previous expression can be easily

given. The previous likelihood is the product of effective elementary likelihoods,
each of them being a weighted mixture of clutter and target original ones. It is
clearly seen how clutters can blur the result by the relative magnitude of the clutter
term compared with the target one, for which it can be noted the contribution of
the clutter creation rate versus the target creation rate.
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