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Abstract. We review our previous results on partial differential equation(PDE)

models of traffic flow. These models include the first order PDE models, a

nonlocal PDE traffic flow model with Arrhenius look-ahead dynamics, and the
second order PDE models, a discrete model which captures the essential fea-

tures of traffic jams and chaotic behavior. We study the well-posedness of such

PDE problems, finite time blow-up, front propagation, pattern formation and
asymptotic behavior of solutions including the stability of the traveling fronts.

Traveling wave solutions are wave front solutions propagating with a constant

speed and propagating against traffic.

1. Introduction. Traffic congestion has a significant impact on economic activity
throughout much of the world. An essential step towards active congestion control
is the creation of accurate, reliable traffic monitoring and control systems. These
systems usually run algorithms which rely on mathematical models of traffic used
to power estimation and control schemes. Tremendous efforts have been devoted
to model traffic congestion [1]-[12] [14]-[50]. There are many important approaches
to the modeling of traffic phenomena: microscopic models, mesoscopic models and
macroscopic models. Macroscopic models describe traffic phenomena through pa-
rameters which characterize collective traffic properties. Different mathematical
approaches correspond to the three different observations and modeling scales.

The first continuum model of traffic flow is the LWR theory developed indepen-
dently by Lighthill and Whitham [37] and Richards [43]. The LWR theory assumes
that there exists an equilibrium speed-concentration relationship v = ve(ρ). The
LWR model is a scalar nonlinear conservation law

ρt + (ρve(ρ))x = 0 (1.1)

where ve(ρ) is the equilibrium speed satisfying v′e(ρ) < 0, ve(0) = vf and ve(ρj) = 0,
where vf is the free flow speed and ρj is the jam concentration. q(ρ) = ρve(ρ)
is called a fundamental diagram in traffic flow. The LWR model can describe
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the formation of shock waves but fails in describing more complicated traffic flow
patterns.

Higher order models were developed in the literature [1] [10] [41] [46] [49] [50].
Payne [41] and Whitham [46] proposed the second order PW model{

ρt + (ρv)x = 0,

vt + vvx +
c20
ρ ρx = ve(ρ)−v

τ

(1.2)

where τ > 0 is the relaxation time, about 5 seconds, c0 is the traffic sound speed,
about 15m/s or 54km/h, and ve(ρ) is the desired speed. The second equation de-
scribes drivers’ acceleration behavior: a relaxation to the equilibrium speed and an
anticipation which expresses the effect of drivers reacting to conditions downstream.

The relaxation model (1.2) is stable if

λ1 = v − c0 < λ∗ < λ2 = v + c0 (1.3)

on the equilibrium curve v = ve(ρ), where λ∗ is the characteristic speed of the LWR
model (1.1), see Whitham [46]. Under the strict subcharacteristic condition (1.3), Li
and Liu [31] and Li and Wu [35] established the nonlinear stability of traveling wave
solutions for PW model (1.2) with general equilibrium flux. Traveling wave solutions
are wave front solutions propagating with a constant speed and propagating against
traffic. Li also obtained [25] the well-posedness and zero relaxation limit for an
anisotropic second order model of traffic flow [1] [8] [49], ARZ model, with general
fundamental diagrams {

ρt + (ρv)x = 0,

vt + vvx + ρv′e(ρ)vx = ve(ρ)−v
τ .

(1.4)

We also established the existence and stability of traveling wave solutions of a
quasi-linear hyperbolic system with both relaxation and diffusion in [30].

We derived [28] a class of dynamic traffic flow models from the PW model (1.2)
that captured the essential features of traffic jams in the unstable regions. There
is a qualitative agreement when the analytical results are compared with previous
empirical findings for freeway traffic and numerical simulations: [14] [15] [17] where
spontaneous appearance of a lot of interacting clusters of vehicles was observed in
the unstable regions with a nonconcave fundamental diagram.

We considered the following macroscopic traffic flow model with a nonlocal flux
in [21]

∂tρ+ ∂x(ρ(1− ρ)e−J◦ρ) = 0 (1.5)

where the function ρ(t, x) represents the density of traffic flow, the kernel J acts
only on the spatial variable x, see (2.2) (2.3).

The outline of the paper is the following. In Section 2, we state the results on
the nonlocal model (1.5). We also establish the blowup alternative which quantifies
the nature of blowup, and prove an interesting maximum principle which shows
that the L∞ norm of the solution cannot increase in time. We study the finite
time singularities or shock formation in solutions to (2.1). Finite time singularity
scenarios are analyzed by using method of characteristics. In Section 3, we survey
well-posedness results and stability of traveling fronts of the second order models.
A discrete model which captures the essential features of traffic jams is presented
in Section 4. In particular, the model can describe chaos which can be explained
as the appearance of a phantom traffic jam. We present results on a model with
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both relaxation and diffusion in Section 5. In Section 6, we give some concluding
remarks.

2. A nonlocal traffic flow model. In this section, we study the nonlocal model
(2.1) which was derived in [44] based on stochastic microscopic dynamics with Ar-
rhenius look-ahead dynamics{

∂tρ+ ∂x(ρ(1− ρ)e−J◦ρ) = 0, in (t, x) ∈ R+ × R,
ρ(0, x) = ρ0(x), x ∈ R

(2.1)

where the function ρ(t, x) represents the density of traffic flow, the kernel J acts
only on the spatial variable x

(J ◦ ρ)(t, x) =

∫ ∞
x

J(y − x)ρ(t, y)dy (2.2)

and

J(r) =

{
J0
γ , if 0 ≤ r ≤ γ

0, otherwise
(2.3)

is an anisotropic short range inter-vehicle interaction potential, γ > 0 is proportional
to the look-ahead distance and J0 > 0 is the interaction strength. We suppress the
dependence of J on γ and J0 for simplicity of notation. It takes into account
interactions of every vehicle with other vehicles ahead. Numerical simulations in
[18] indicated that, when γ > 0, there are shock formations in finite time in the
solutions to (2.1) which corresponds to congestion formation in traffic flow. Other
non-local models were derived in [4, 7, 12].

When the look-ahead distance γ → +∞, the global flux in (2.1) becomes a
non-global one ρ(1− ρ). The model (2.1) is then reduced to the classical Lightwill-
Whitham-Richards(LWR) model [37, 43]

∂tρ+ ∂x(ρ(1− ρ)) = 0, in (t, x) ∈ R+ × R. (2.4)

If, on the other hand, γ → 0, then the global flux in (2.1) is again reduced to a
non-global one ρ(1 − ρ)exp(−J0ρ) where exp(−J0ρ) is a slow down factor in the
limiting low visibility. This flux is concave if J0 < 3 and changes concavity when
J0 ≥ 3. It is well-known that the LWR model (2.4) can describe the formation of
shock waves in traffic flow.

It was shown in [21] by D. Li and the author that the finite time blow up must
occur at the level of the first order derivative of the solution and Lp, 1 ≤ p ≤ ∞
norms of the solution remain finite near the blowup time. This suggests that the
finite time blow up is a shock wave. Despite the nonlocal nature of the problem,
we identify scenarios of blowups for physical initial data. The list is certainly not
exhaustive, nevertheless it is consistent with the blowups observed in numerical
simulations in [18, 44]. Our results confirm the formation of shock waves in the
nonlocal model (2.1) which corresponds to congestion formations in traffic flow.

Theorem 2.1. (Local existence [21]) Let ρ0 ∈ Hm and m ≥ 2 be an integer.
Then there exists T = T (‖ρ0‖Hm) > 0 and a unique solution ρ to (2.1) such that
ρ ∈ C([0, T ), Hm) ∩ C1([0, T ), Hm−1).

In the theory of traffic flow, the function ρ(t, x) represents the density which is
normalized to the interval [0, 1], i.e., typically, we have 0 ≤ ρ ≤ 1. The following
lemma justifies this fact.
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Lemma 2.1 (A priori L∞ bound [21]) Let ρ0 ∈ Hm and m ≥ 2 be an integer.
Let ρ be the corresponding maximal-lifespan solution obtained in Theorem 2.1 with
lifespan [0, T ). Assume that 0 ≤ ρ0(x) ≤ M and 0 < M ≤ 1. Then for any
0 ≤ t < T , we have

0 ≤ ρ(t, x) ≤M, ∀x ∈ R.

Corollary 2.1 (Blowup alternative, physical initial data [21]) Let ρ0 ∈ Hm and
m ≥ 2 be an integer. Assume 0 ≤ ρ0(x) ≤ 1 for all x ∈ R. Let ρ be the corresponding
maximal-lifespan solution obtained in Theorem 2.1 with lifespan [0, T ). Then only
one of the following occurs

• T = +∞ and ρ is a global solution
• 0 < T <∞ and

lim
τ→T

∫ τ

0

‖∂xρ(t, ·)‖∞dt = +∞. (2.5)

In particular, we have

lim sup
t→T

‖∂xρ(t, ·)‖∞ = +∞. (2.6)

Theorem 2.2. (Existence of finite time blowups, scenario 1: collision with 0 or 1
[21])

Let ρ0 ∈ Hm(R) and m ≥ 2 be an integer. Assume that 0 ≤ ρ0(x) ≤ 1 for all
x ∈ R. If there exist two points −∞ < α1 < α2 < ∞, such that ρ0(α1) = 0 <
ρ0(α2) = 1, then ρ must blow up at some finite time 0 < T <∞, i.e.,

lim sup
t→T

‖∂xρ(t, ·)‖∞ = +∞. (2.7)

Moreover, for all p ∈ [1,+∞], the Lp norm of ρ remain finite as t→ T :

lim sup
t→T

‖ρ(t, ·)‖p <∞, ∀ 1 ≤ p ≤ ∞. (2.8)

3. The second order traffic flow models. We established in [25] global solu-
tions of ARZ model (1.4) with a nonconcave fundamental diagram. It was also
proved that the zero relaxation limit of the solutions exists and is the unique en-
tropy solution of the equilibrium equation. The nonconcave equilibrium flux is
suggested from the experiment data, see Kerner and Rehborn [15]. It is interesting
to note that a nonconcave fundamental diagram is a necessary condition to obtain
complicated traffic flow patterns including clusters, see Kerner and Konhäuser [15],
Jin and Zhang [14]. When the fundamental diagram changes its concavity, one of
the characteristic fields of the system is neither linearly degenerate nor genuinely
nonlinear. Furthermore, there is no dissipative mechanism in the relaxation sys-
tem. Characteristics travel no faster than traffic, thus the model is anisotropic.
Thus a different analysis is needed to establish the existence of an entropy solution.
The analysis was based on an equivalent Lagrangian formulation. One of Oleinik’s
arguments in [40] was used to show our results.

Consider the second order model{
vt − ux = 0,
ut + p(v)x = 1

τ (Vop(v)− u)
(3.1)

where v is specific volume, u is velocity, µ > 0, τ > 0, Vop(v) is the equilibrium
speed and specific volumn relation and p is the pressure.
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Let (U(x − st), V (x − st)) be the traveling wave solution, ψ(z, t) = u(z, t) −
U(z + x0) and φ(z, t) =

∫ z
−∞(v(y, t) − V (y + x0))dy which satisfies φ(±∞, t) = 0

for any t ≥ 0 due to the conservation law in (3.1). Let L be the linear operator
obtained by linearizing the system satisfied by (φ, ψ) around (0, 0). Under the strict
subcharacteristic condition (1.3), Li and Liu [31] and Li and Wu [35] established
the nonlinear stability of traveling wave solutions with a nonconcave equilibrium
flux.

Theorem 3.1. Let (V ′op(V ))2 < −p′(V ) − sp′′(V )V ′, then (U(x − st), V (x − st))
is linearly exponentially stable in some weighted spaces. To be precise, for each
fixed small constant α > 0, there exist constants δα > 0 and Mα > 0 such that L
generates a C0-semigroup denoted by Tα(t) on Xα satisfying

‖Tα(t)‖Xα→Xα ≤Mαe
−δαt, for all t ≥ 0

where the weighted space Xα is defined by

Xα = {(φ, ψ) | (φ(z)wα(z), ψ(z)wα(z)) ∈ H1(R)× L2(R)}, wα(z) = eαz + e−αz

with norm ‖(φ, ψ)‖Xα = ‖(φwα, ψwa)‖H1(R)×L2(R).

Li and Liu proved in [32]-[34] global in time regularity and finite time singularity
or shock formation of solutions simultaneously by showing the critical threshold phe-
nomena systems arising from traffic flow. Assume the sub-characteristic condition.
Let r± = (−p′(v))1/4(ux ∓

√
−p′(v)vx).

Theorem 3.2. Consider the relaxation system (3.1) subject to C1 bounded initial
data (v0, u0)(x). Under the above assumptions, there exist C1 < C2, depending only
on initial data (v0, u0), such that C1 ≤ v(t, x) ≤ C2,∀ x ∈ R, for t ≥ 0 as long as
the C1 solution exists. Furthermore:
i) If at least one point x ∈ R either

r+(0, x) < − 1

2τ

∫ v0(x)

v∗

(
1− u′e(s)√

−p′(s)

)
(−p′(s))1/4ds+ inf

v∈[C1,C2]
G+(v)

or

r−(0, x) < − 1

2τ

∫ v0(x)

v∗

(
1 +

u′e(s)√
−p′(s)

)
(−p′(s))1/4ds+ inf

v∈[C1,C2]
G−(v)

holds for some G±, then the solution must develop a finite time singularity or shock
where either r+ or r− goes to −∞.
ii) If the amplitude of initial data (u0, v0) is such that

inf
v∈[C1,C2]

(
λ
3/2
2 (v)

p′′(v)
(λ2(v)± u′e(v))

)
≥ 1

4

∫ C2

C1

(λ2(s)∓ u′e(s))λ
−1/2
2 (s)ds,

then the solution remains smooth for all time, provided for all x ∈ R it holds

r±(0, x) ≥ − 1

2τ

∫ v0(x)

v∗

(
1∓ u′e(s)√

−p′(s)

)
(−p′(s))1/4ds+ sup

v∈[C1,C2]

G±(v).
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4. A discrete model. We derived [28] a class of dynamic traffic flow models from
the PW model (1.2) that captured the essential features of traffic jams in the unstable
regions. Consider the fundamental diagram which is not concave

q(ρ) = ρve(ρ) = 5.0461ρ((1 + e
ρ−0.25
0.06 )−1 − 3.72 · 10−6). (4.1)

We look for the traveling wave solutions of the PW model (1.2), namely, solutions
of form (P, V )(x− ct) = (P, V )(ξ) where ξ = x− ct is the traveling wave variable.
c is the traveling wave speed. We emphasize that we are looking for solutions on a
ring road propagating with a negative speed

c < 0. (4.2)

This reflects the fact that the vehicle clustering travels against the traffic flow.
We showed in [28] that the dynamics of map are governed by the logistic map.

The dynamics of the logistic map undergoes one stable steady state, a period-2 cycle,
a period-4 cycle and further period-doublings to cycles of periods 8, 16, 32,..., 2n,
..., as the bifurcation parameter increases. The successive bifurcations come faster
and faster. Ultimately the bifurcation parameter converges to a limiting value as
n → +∞. What happens beyond the limiting parameter value? The answer is
complicated: for many values of the parameter, the solution never settles down to
any fixed point or a periodic orbit. Instead, the long-time behavior is aperiodic and
exhibits sensitive dependence on initial data P1 ∈ [δ, P+] for some 0 < δ < P−.
This is a discrete time version of chaos. The results can explain the appearance of
a phantom traffic jam, which is observed in real traffic flow.

5. A model with both relaxation and diffusion. It was found by asymptotic
analysis and numerical simulations that the fine interplay between the relaxation
and the diffusion may enhance physically interesting behavior such as soliton waves
and oscillatory solutions [13, 14, 15, 19, 20, 28]. However, the rigorous stability
theory for such systems has not been well studied. The delicate balance between
the relaxation and the diffusion that leads to the nonlinear stability of the traveling
wave fronts is identified to be that the diffusion coefficient is bounded by a constant
multiple of the relaxation time. Such a result provides an important first step toward
the understanding of the transition from stability to instability as the diffusion
coefficient and the relaxation time vary in the physical problems.

We established in [30] the existence and stability of traveling wave solutions of a
quasi-linear hyperbolic system with both relaxation and diffusion{

vt − ux = 0,
ut + p(v)x = 1

τ (Vop(v)− u) + µuxx
(5.1)

where v is specific volume, u is velocity, µ > 0, τ > 0, Vop is the equilibrium speed
and p is the pressure. The last term on the right hand side of the second equation in
(5.1) models viscosity with coefficient µ > 0, a presumed tendency to adjust one’s
speed to that of the surrounding traffic.

Theorem 5.1. Suppose the sub-characteristic condition, −
√
−p′(v) < V ′op(v) <√

−p′(v), holds and (v−, v+) is an admissible shock of equilibrium equation vt −
Vop(v)x = 0. Suppose further that 0 < µ ≤ mτ, for some m > 0. Then there exists
a traveling wave solution (V,U)(x− st), which is unique up to a shift and the speed
is sub-characteristic.

Mreover, there exists a constant ε0 > 0 such that if |v− − v+| + ||v0 − V ||2 +
||u0−U ||2 + ||(φ0, ψ0)||0 ≤ ε0 where (φ0, ψ0)(x) = (

∫ x
−∞(v0−V )(y)dy, (u0−U)(x))
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and
∫ +∞
−∞ (v0 − V )(x)dx = 0, then the Cauchy problem has a unique global solution

(v, u)(x, t) satisfying (v − V, u− U) ∈ C0(0,∞;H2) ∩ L2(0,∞;H2) and

sup
x∈R
|(v, u)(x, t)− (V,U)(x− st)| → 0 as t→ +∞.

6. Concluding remarks. We surveyed some results on mathematical modeling
of traffic flow. These models include the first order PDE models, a nonlocal PDE
traffic flow model with Arrhenius look-ahead dynamics, and the second order PDE
models, a discrete model describing chaotic behavior which can explain the ap-
pearance of a phantom traffic jam. We studied the well-posedness of such PDE
problems, finite time blow-up or shock formation, front propagation, pattern for-
mation and asymptotic behavior of solutions including the stability of the traveling
waves. Traveling wave solutions are wave front solutions propagating with a con-
stant speed and propagating against traffic. These problems are difficult to analyze
because the PDE models are nonlinear and some of them are nonlocal PDEs, and
the strengths of the waves are large. We will report more research progress along
these directions in our future work.
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