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Abstract. A few applications of the viability theory to the solution to the

Hamilton-Jacobi-Moskowitz problems are presented. In the considered prob-

lem the Hamiltonian (fundamental diagram) depends on time, position and/or
some regulation parameters. We study such a problem in its equivalent varia-

tional formulation. In this case, the corresponding lagrangian depends on the

state of the characteristic dynamical system. As the Lax-Hopf formulae that
give the solution in a semi-explicit form for an homogeneous lagrangian do not

hold, a capture basin algorithm is proposed to compute the Moskowitz function

as a viability solution of the Hamilton-Jacobi-Moskowitz problem with general
conditions (including initial, boundary and internal conditions). We present

two examples of applications to traffic regulation problems.

1. Introduction. In this paper we focus on macroscopic modeling of traffic flow,
related with the theory of incompressible flow. For a straight road with a single
lane the traffic is described described by the following three quantities:

• k(t, x), the density, measured in vehicles per unit of length;
• q(t, x), the flux, measured in vehicles per unit of time;
• v(t, x) , the mean speed.

These quantities are defined in such a way that they are related by the expression:

q(t, x) = v(t, x)k(t, x) (1)

Assuming that there is neither entry not exit on the considered portion of the
road, the conservation principle leads to the following relation (when the quantities
q(t, x) and (k(t, x) are differentiable functions)

∂k

∂t
− ∂q

∂x
= 0

The start point of this work is the well known Lighthill-Whitham-Richards
(LWR) ([18], [21]) based on the assumption that there exists a relationship between
two of three macroscopic characteristics of the traffic that is an intrinsic property
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of the road. This relationship is called “fundamental diagram”. In his original def-
inition from [18], the fundamental diagram represents an equilibrium relationship
between the density and the flow

q(t, x) = h(k(t, x), x, t).

Lighthill and Whitham in [18] referred to Greenshields earlier work [17] in which,

one of the first “empirical” fundamental diagrams was sketched. In his paper Green-
shields proposed a linear relation between the density and the mean speed based
on empirically obtained data:

v = ν

(
1− k

ω

)
where ν is called the maximum or free flow speed and ω is the critical (or jam)

density. This relation was in particular justified by the assumption that that drivers
will tend to slow down in crowded traffic, because this naturally gives them more
time to react to changes. Using the relation (1) one can deduce a relation between
the density k and the flow q, called Greenshields fundamental diagram.

In general, it is assumed that the fundamental diagram does not depend on time
t or space x:

q = h(k)

This assumption simplifies many theoretical and numerical considerations. It can

by justified in practice if we study the traffic situation for a short time period and
that if the considered road section has no structural change that can lead to a
different fundamental diagram. However, in some cases the fundamental diagram
can depend on the time and space. It also depends on a number of parameters
considered as being intrinsic (maximum speed, maximum capacity) and that could
be useful to control the traffic flow in order to reduce the congestion.

In this paper an LWR model with a non homogeneous fundamental diagram is
studied. Originally, the LWR model is formulated as a conservation low with some
initial and boundary conditions. It is well known that such problems are difficult
to solve analytically and numerically because of presence of shocks. To avoid these
difficulties we state the problem in an integrated form, as a Hamilton-Jacobi type
equation (see [9], [10], [11], [2]). We use the viability theory framework to define and
compute the solution of such problems. The viability solution of a general class of
first order hyperbolic problems, such as Hamilton-Jacobi equations, is defined in [3].
This concept allows to give sense to a solution of the problem with a very general
conditions including boundary, initial and lagrangian (or internal) conditions. For
the traffic problems with homogeneous fundamental diagram, the viability theory
was applied in [9, 10, 11, 2]. In particular, there exists a semi explicit form of the
solution given by a Lax-Hopf formula. This fact was used in [9], [10], [11] to develop
fast numerical computations for traffic analysis. This technique was also extended
to some special cases of non homogeneous fundamental diagrams in [6].

The present work extends the definition of the viability solutions for the problems
with non homogeneous fundamental diagram. This solution can be characterized
as a value function of some variational problem under very general assumptions.
Unfortunately, the Lax-Hopf representations do not hold for the problems with non
homogeneous hamiltonians. One can still use the viability capture basin algorithm
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to compute numerical approximations of the solutions. Some examples are given at
the end of this article.

2. The Hamilton-Jacobi-Moskowitz PDE.

2.1. Problem statement. Consider a straight road with a single lane. It is repre-
sented by an interval [0, xmax] ( an infinite interval ]−∞,+∞[ can also be studied).
Assume that the vehicles cannot pass each other. If there are multiple lanes, we
consider that the effects of changes of lanes are neglected.

Assume that the fundamental diagram depends on time and space and, eventu-
ally, some regulation parameters a = (a1, . . . , ar) ∈ A ⊂ Rr:

q = h(k, t, x, a)

The state of the traffic at each time t > 0 and each position x ∈ [0, xmax] is
described by a function V = V (t, x, a) defined below:

Definition 2.1. [Traffic Function] A differentiable traffic function V : (t, x, a) 7→
V (t, x, a) is a function such that its first derivatives with respect to time and to
position are respectively regarded as a flow and a density:

q(t, x, a) =
∂V (t, x, a)

∂t
k(t, x, a) = −∂V (t, x, a)

∂x

When the traffic function is not differentiable, one can still define generalized
gradients (pt, px) ∈ ∂t,xV (t, x, a) representing pairs of flows and densities at (t, x).
This function is also called “Moskowitz function” or “cumulated number function”
in the literature [2]. The traffic function has different physical interpretations:

(i) V (t, x, a)− V (t, γ, a) := −
∫ γ

x

∂V (t, ξ, a)

∂x
dξ

is the incremental congestion on the interval [x, γ] at time t
representing the “cumulated vehicle count” after position x”

(ii) V (t, x, a)− V (d, x, a) :=

∫ t

d

∂V (τ, x, a)

∂t
dτ

is the incremental congestion on the interval [d, t] at position x

(iii) V (t, x, a)− V (d, ξ(d), a) :=

∫ t

d

dV (τ, ξ(τ), a)

dt
dτ

is the incremental congestion on the interval [d, t]
along an evolution ξ(·) arriving at x at time t: ξ(t) = x

(2)

Using the first interpretation one can identify the trajectories of individual vehi-
cles as the ones over which the Moskowitz function is constant.

Definition 2.2. [The Fundamental Diagram]
The fundamental diagram of transportation engineering is the graph Graph(h)

of a density-flow function h : (k, t, x, a) 7→ h(k, t, x, a) associating with each density
k > 0 a flow q, for each value of (t, x, a) ∈ R+ × [0, xmax]×A.

The evolution of the traffic function is governed through the Moskowitz partial
differential equation

∂V (t, x, a)

∂t
= h

(
−∂V (t, x, a)

∂x
, t, x, a

)
(3)

This equation is a PDE of Hamilton-Jacobi type. The fundamental diagram h
can by considered as a Hamiltonian. Then the solution of such partial differential
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equation can be considered as the value function of a variational problem. Such
a variational formulation for the traffic problems was first proposed and studied
by Daganzo in [12] under some assumptions about the fundamental diagram. In
particular, in the Moskowitz framework, the function h is assumed to be a concave
function with respect to the density variable k, vanishing at 0-density and at the
given capacity density ω > 0:{

(i) h(0, t, x, a) = 0 and
(ii) h(ω, t, x, a) = 0

(4)

2.2. Traffic conditions. Let c : (t, x, a) 7→ c(t, x, a) ∈ R+ ∪ {+∞} be a given
function, decreasing with position, x, and increasing with time t. The subset C(t, a)
is the domain of the traffic profile x 7→ c(t, x, a) (which is thus finite for all x ∈
C(t, a)). The traffic conditions can be expressed as the following requirement for
the traffic function

∀ x ∈ C(t, a), V (t, x, a) ≤ c(t, x, a) (5)

We associate with this conditions the traffic domain map t C(t, a), which is the
set-valued map defined by

C(t, a) := {x such that c(t, x, a) < +∞} (6)

These general traffic conditions cover the following classical and less classical
examples:

1. Maximum congestion threshold (t, x, a) 7→ γ](t, x, a) setting an upper bound
on the congestion of traffic by requiring that

V (t, x, a) ≤ γ](t, x, a)

2. Dirichlet boundary conditions defined on the boundary of the domain. In this
case, we set c(0, x, a) := γ0(x, a) and c(t, x, a) = +∞ whenever t > 0. Hence
C(0, a) = Dom(γ0,a) and C(t, a) = ∅;

3. Eulerian conditions measuring at each time the cumulative number of vehicles
at fixed locations;

4. Lagrangian “mobile” conditions measuring few vehicle evolutions t 7→ γi(t)
during some time intervals ]τ i, τ i] (by tracking probe vehicles).In the case of

a finite number of Lagrangian conditions, C(t, a) =
⋃

i s.t. τ i≤t≤τ i

{γi(t)} and

the traffic condition c(t, γi(t), a) is defined on the graphs (t, γi(t))t≥0 of the
evolution of each vehicle i.

Definition 2.3. [The Hamilton-Jacobi-Moskowitz Problem] The complete
model takes into account the two above requirements on the congestion function V : (i) ∀ t > 0,∀ x /∈ C(t, a), a ∈ B, h

(
−∂V (t, x, a)

∂x
, t, x, a

)
=

∂V (t, x, a)

∂t
(ii) ∀ t > 0,∀ x ∈ C(t, a), a ∈ B, V (t, x) ≤ c(t, x, a)

(7)

In what follows we give an alternative definition of the traffic function, using
some concepts of set-valued analysis and viability theory. We will establish the links
between this viability solution for the traffic evolution problem and the “classical”
PDE formulation. We will show that the viability solution is also a solution of the
corresponding variational formulation.
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3. Viability solution of the Hamilton-Jacobi-Moskowitz problem. In this
section we introduce the viability characterization of the Barron-Jensen/Frankoska
([5], [15]) solution of the the Hamilton-Jacobi-Moskowitz Problem (7). In this pur-
pose we first recall some basic definitions from the viability theory (see [4],[1] for
more details).

3.1. Some concepts from the viability theory. Consider a set-valued map
F : Rn  Rn that associates to each x ∈ Rn an nonempty set F (x) 6= ∅ and a
differential inclusion associated with it:

x′(t) ∈ F (x(t)), t > 0. (8)

Assume that

(HF1): F is Lipschitz continuous
(HF2): F has non empty, convex, closed images

Let x ∈ Rn. We denote by

SF (x) =
{
y(·), absolutely continuous,∣∣∣ y(0) = x and y′(t) ∈ F (y(t)), a.e. for t > 0

}
(9)

the set of all trajectories starting at x and governed by (8).
Let C ⊂ Rn be a compact set that represents a target and K ⊂ Rn be a closed

subset representing the state constraints.

Definition 3.1. A trajectory y(·) ∈ SF (x) starting at x ∈ Rn is viable in K until
a time T > 0 if

∀s ∈ [0, T [, y(s) ∈ K.
Let denote by

V(x,K, T ) =
{
y(·) ∈ SF (x)

∣∣∣ ∀s ∈ [0, T [, y(s) ∈ K
}

the set of all viable trajectories starting at x ∈ Rn.

Definition 3.2. The capture basin for the differential inclusion (8) is the set of
initial states from which the set C is reachable :

CaptF (C,K) :=
{
x ∈ Rn

∣∣∣ ∃T > 0, ∃y(·) ∈ V(x,K, T ), y(T ) ∈ C
}

(10)

3.2. Definition of the viability solution of the Hamilton-Jacobi-Moskowitz
problem. Let associate with the Hamilton-Jacobi-Moskowitz Problem (7) a new
function l using the the Lagrange-Fenchel transform of h.

Definition 3.3. [The Celerity Diagram] The celerity diagram is the function
l : (u, t, x, a) 7→ l(u, t, x, a) defined by

∀ (u), l(u, t, x, a) := sup
(k)

[h(k, t, x, a)− 〈k, u〉] (11)

Its graph Graph(l) is called the fundamental celerity diagram.

Remark that the function l is the Lagrange-Fenchel transform of h with respect
to the density variable k. The variable u ∈ R is “dual” to the density variable k.
We will call it “celerity variable”.

We give now a new definition for the traffic function V (t, x, a) introduced in (2.1)
using the concepts of the viability theory. We define it as the viability solution to
the Moskowitz problem.
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Definition 3.4. [ Viability Solution to the Moskowitz Problem]
Consider the following characteristic dynamical system

(i) τ ′(t) = −1
(ii) ξ′(t) = −u
(iv) η′(t) = −l(u, τ, x, α)
(iii) α′(t) = 0

(12)

controlled by celerity u(·). Let us consider the epigraph Ep(c) of the traffic condition
c. The viability solution (associated with the traffic condition c) V to the Moskowitz
problem (7) is defined by the following formula

V (t, x, a) := inf
(y,t,x,a)∈Capt(12)(R+×R×R×R,Ep(c))

y (13)

This definition means that the epigraph of the traffic function V (t, x, a) is the
capture bassin of the auxiliary dynamical system (12) with the epigraph of the traffic
condition function c as target. The following theorem establishes the link between
this new definition of the traffic function V and the PDE in the the Moskowitz
problem (7).

3.3. The link with the partial differential equation.

Theorem 3.5. [Barron-Jensen/Frankowska Viscosity Solution] . For any
semicontinuous1 traffic condition c the viability solution defined by (13) is the unique
function V satisfying the following conditions

V (t, x, a) ≤ c(t, x, a)

Hamilton-Jacobi-Moskowitz PDE (7) in the sense that
(i) if V (t, x, a) < c(t, x, a), then

∀ (pt, px) ∈ ∂t,xV (t, x, a), pt + h(t, x,−px, a) = 0
(ii) if V (t, x) ≤ c(t, x), then

∀ (pt, px) ∈ ∂t,xV (t, x, a), pt + h(t, x,−px, a) ≤ 0

(14)

which is the very definition of a Barron-Jensen/Frankowska viscosity solution for
lower semicontinuous functions.

3.4. Variational formulation of the problem. The variational formulation of
the problem was first studied by Daganzo in [12, 13]. For the viability solution that
we consider in this paper the variational principle is the more natural formulation.
Let T > 0 and d ∈ [0, T ] be a given departure time. Denote by

B(d, T ;x, a) = {ξ(·), absolutely continuous on [d, T ], ξ(d) ∈ C(d, a), ξ(T ) = x }
the set of all absolutely continuous evolutions starting at the time d and arriving
at the time T in x.

Let ξ(·) ∈ B(d, T ;x, a) be such an evolution. We associate with each departure
time d ∈ [0, T ] the minimal travel traffic value over the traffic evolutions ξ(·) ∈
B(d, T ;x, a) defined on the travel interval [d, T ], defined by

1 A function φ : R → R is said to be upper (resp. lower) semicontinuous at a point x0 ∈ Rif
and only if

f(x0) ≥ lim sup
x→x0

f(x)

(
resp. f(x0) ≤ lim inf

x→x0
f(x)

)
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J(d, T ;x, a) := inf
ξ(·)∈B(d,T ;x,a)

(∫ T

d

l(ξ′(τ), τ, x, a)dτ + c(d, ξ(d), a)

)
The celerity function l plays the role of a Lagrangian in the variational formulation:

Theorem 3.6. [Congestion Variational Principle] The viability solution V (t,
x, a) to the traffic problem (7), minimizes the travel traffic value with respect to
departure time d and evolutions ξ(·) ∈ B(d, t;x, a):{

V (t, x, a) = infd∈[0,t] J(d, t;x, a)

= infd∈[0,t] infξ(·)∈B(d,t;x,a)

(∫ t
d

l(ξ′(τ), τ, x, a)dτ + c(d, ξ(d), a)
)

(15)

Alternatively, one can formulate this variational principle in terms of the celerity
u(·) instead of traffic evolutions ξ ∈ B(d, T ;x, a): V (t, x, a) =

inf
u(·)∈L1(0,t;Dom(l)), t?∈[0,t]

(∫ t?

0

l(u(τ), τ, x, a)dτ + c

(
t− t?, x−

∫ t?

0

u(τ)dτ

))
(16)

This theorem is the direct consequence of the general result in Chapter 13 of [3].

4. Numerical solution. To compute the solution numerically, we use the capture
basin algorithm for epigraphs. The new implementation that we present here uses
the equivalence between a capture basin and a backward reachable set. Consider a
differential inclusion (8). Let K ⊂ Rn and X ⊂ K be closed sets. We call reachable
set from X under the dynamics F the set of all states in K that can be reached by
an evolution starting in the set X:

ReachF (X,K) :=
{
z ∈ Rn

∣∣∣ ∃τ > 0, ∃x ∈ X, ∃y(·) ∈ V(x,K, τ), s.t. y(τ) = z
}

(17)
Remark that in the above definition the time horizon is infinite as for the definition
of the capture bassin given in (10). This is because the time is considered as a state
variable (τ) in the auxiliary dynamical system (12). It can be easily shown that

CaptF (K,C) = Reach−F (C,K) (18)

To compute an approximation of the reachable set for the differential inclusion

x′ ∈ −F (x)

we define a discrete-time dynamical system{
xn+1 ∈ Gρ(xn), xn ∈ K
x0 ∈ K

(19)

where Gρ is a set valued application associated with a chosen discretization scheme.
The most popular (see [22]) is the explicit Euler scheme defined as follows:

GEρ (x) = x− ρF (x) (20)

The reachable set for the backward dynamics is computed using the following
recursive procedure

R0 = C;
Rk+1 = Rk ∪Gρ(Rk \Rk−1), k = 1, . . .

(21)
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The algorithm stops when Rk+1 = Rk. This approach allows us to reduce a com-
putational effort. Indeed, at each iteration, we compute only the image by Gρ of
the set Rk \Rk−1 which contains only the points added to the reachable set on pre-
vious step. The convergence of this algorithm can be shown under the hypothesis
(HF1)-(HF2) and some additional assumptions about the choice of the integration
step ρ. One can find in the work of P. Saint-Pierre [22] the proof of the convergence
for a general viability algorithm.

5. Numerical examples. In this section we present some numerical examples.

5.1. Fundamental diagrams. We have used three types of fundamental diagrams
in our test. First we present these diagrams in the simplest case when they do not
depend on the time t and the position x. Recall that the fundamental diagram h
as function of the density k is supposed to be a concave positive function. In what
follows we need some additional notations that will be commun for all examples:

• We denote ω the maximal (jam) density, such that the fundamental diagram
h as function of the density satisfies the following property

h(0) = h(ω) = 0 (22)

• We denote β ∈ [0, ω] the critical density, and δ > 0 the maximum flow, such
that

δ = h(β) = max
k∈[0,ω]

h(k) (23)

• We denote ν > 0 the free flow speed, such that

h′(0) = ν (24)

5.1.1. Triangular diagram.

h(k) =

 νk if 0 ≤ k ≤ ω

2
ν(ω − k) if

ω

2
< k ≤ ω

 (25)

The critical density in this case is

β =
ω

2
, δ = h(β) =

νω

2

and the diagram verifies the following :

h(0) = h(ω) = 0; h′(0) = ν, h′(ω) = −ν. (26)

Its Legendre-Fenchel transform is

l(u) =
ω

2
(ν − u), u ∈ [−ν, ν] (27)

5.1.2. Greenshields’ diagram. This diagram was proposed by Greenshilds in 1934
([17]), based on a simple speed-density linear relationship.

h(k) =
ν

ω
k(ω − k), k ∈ [0, ω] (28)

The critical density in this case is

β =
ω

2
, δ = h(β) =

νω

4

and the diagram verifies the following :

h(0) = h(ω) = 0; h′(0) = ν, h′(ω) = −ν. (29)



VIABILITY APPROACH FOR MOSKOWITZ PROBLEM 715

(a) h(p) (b) l(u)

Figure 1. Triangular fundamental diagram

Its Legendre-Fenchel transform is

l(u) =
ω

4ν
(ν − u)2, u ∈ [−ν, ν] (30)

(a) h(p) (b) l(u)

Figure 2. Greenshield’s fundamental diagram

5.1.3. Edie’s two regime diagram. This diagram was proposed by Edie in 1961
([14]). It is a combination of the Greenberg [16] logarithmic model for high densities
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and of the Underwood [23] exponential model for low densities.

h(k) =

 νke
−k · e

ω if 0 ≤ k ≤ ω

e
ν
ek ln

(ω
k

)
if

ω

e
< k ≤ ω

 (31)

The critical density in this case is

β =
ω

e
, δ = h(β) =

νω

e2

and the diagram verifies the following :

h(0) = h(ω) = 0; h′(0) = ν, h′(ω) = −ν
e
. (32)

Its Legendre-Fenchel transform cannot be expressed analytically. The figure 3 shows
(at right) its numerical approximation.

(a) h(p) (b) l(u)

Figure 3. Edie’s two regime fundamental diagram

5.1.4. Newell’s diagram. This diagram was derived by Newell in 1961 ([19]) from a
first-order car-following model.

h(k) = νk
(

1− e−ω
w
ν ( 1

k−
1
ω )
)
, k ∈ [0, ω] (33)

The diagram verifies the following :

h(0) = h(ω) = 0; h′(0) = ν, h′(ω) = −w. (34)

Its Legendre-Fenchel transform cannot be expressed analytically. The figure 4
shows (at right) its numerical approximation.
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(a) h(p) (b) l(u)

Figure 4. Newel’s fundamental diagram

5.2. Investigation of the variable speed limit as a regulation parameter.
In all considered diagrams the free-flow speed, ν is a fixed parameter. Some other
macroscopic characteristics of the traffic flow depend on it. In particular, the speed
of the backward propagation of the information in the case of a bottleneck. It was
shown in many works (see for example [8],[20],[7] ) that the variation of the speed
limit is an important factor of homogenization of the traffic. We show here how
the viability theory allows us to integrate the speed variation into the macroscopic
traffic model and to investigate its effect.

5.2.1. A slow vehicle impact with variable speed limits. Consider a road section [0, 6]
with a constant initial concentration C0 = 1.5. Assume that a slow vehicle enters
the road at the initial time t0 = 0 and at the position x0 = 3.5 ant that it moves
with a constant velocity v0 = 1.0 until the time t1 = 2.5 when it leaves the road.
Assume also that the concentration at the position x = 0 remains contant, equal to
C0 = 1.5 all the time. Consider the triangular fundamental diagram (25) with

• the free flow speed ν = 3.0 units of length/per units of time;
• the maximal (or jam) density ω = 4.0.

The resulting traffic function is the solution of the problem (7) with the following
target function c:

c(t, x) = min(c0(t, x), cd(t, x), cl(t, x)) (35)

where

• the function c0(t, x) corresponds to the initial condition

c0(t, x) =

{
C0(6.0− x), if t = 0
+∞, otherwise

(36)

• the function cd(t, x) corresponds to the boundary condition

cd(t, x) =

{
6C0 + t · h(C0), if x = 0
+∞, otherwise

(37)
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• the function cl(t, x) corresponds to the langrangian condition

cl(t, x) =

{
C0(6.0− x0), if t ∈ [0, 2.5], x = x0 + t
+∞, otherwise

(38)

The figure 5 shows, at the left, the traffic function computed by the viability
algorithm and at the right the isolines ( that one can consider as a trajectories).

(a) Traffic function (b) Isolines

Figure 5. Solution of the Moskowitz problem with triangular fun-
damental diagram

Assume that the free-flow speed is a parameter that can vary in the range ν ∈
[νmin, νmax] = [1.5, 3.0]. Consider a model where the variable speed limitations
are applied locally in space and time. The fundamental diagram is then for v ∈
[νmin, νmax]

h1(k, t, x, ν) =

{
h(k, ν) if (t, x) ∈ [0, 4.5]× [0, 4]
h(k, νmax), otherwise

where h(k, ν) is the triangular function defined by (25) with a given free flow speed
ν. The figure 6 illustrates the dependence of the fundamental diagram on the free-
flow speed parameter ν.

The corresponding problem is now
(i) h1

(
−∂V (t, x, ν)

∂x
, t, x, ν

)
=

∂V (t, x, ν)

∂t
,

(t, x) ∈]0, 6[2, ν ∈ [νmin, νmax]
(ii) V (t, x, ν) ≤ c(t, x), (t, x) ∈ [0, 6]2, ν ∈ [νmin, νmax]

(39)

with the same target function c(t, x). The figure (7) shows an example of the traffic
function when the speed limit is fixed to ν = 1.6.

The comparison of iso-lines (see figure 8) of the traffic function shows clearly the
homogenization effect of the speed limit reduction. One can remark even that the
travel times are reduced for the congestion zone in the case of the smaller speed
limit.
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(a) h(k, ν) (b) l(u, ν)

Figure 6. Triangular fundamental diagram with different free-
flow speed values

(a) Traffic function (b) Isolines

Figure 7. The traffic function with the free-flow speed locally
limites to ν = 1.6

5.2.2. A local capacity reduction impact with variable speed limits. Consider a road
section [0, 6] with a constant initial concentration C0 = 1.5. Assume that an acci-
dent causes a local reduction of the capacity of the road on the interval [2.5, 2.3] :
only one on the two lanes is free. Then the maximum capacity on this interval is
0.5ω = 2.0. Consider the Greenshields’ fundamental diagram (28) with

• the free flow speed ν = 3.0 units of length/per units of time;
• the maximal (or jam) density ω = 4.0.
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Figure 8. Triangular diagram: comparison of the isolines for two
different values of the free-flow speed

The fundamental diagram depends on the position x and we define the function

h2(k, x) =

{
h(k, 0.5ω) if x ∈ [2.5, 3.5]
h(k, ω), otherwise

(40)

where h(k, ω) is the Greenshields’ function defined in (28) for a given value of the
jam density ω.

(a) h(k) (b) l(u)

Figure 9. Greenshields fundamental diagram with different free-
flow speed and maximal capacity values
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Any information is available about the boundary condition. Then we will consider
here a Cauchy problem: (i) h2

(
−∂V (t, x)

∂x
, x

)
=

∂V (t, x)

∂t
, (t, x) ∈]0, 6[2

(ii) V (t, x) ≤ c(t, x), (t, x) ∈ [0, 6]2

with the following target function c:

c(t, x) = c0(t, x) (41)

where the function c0(t, x) corresponds to the initial condition

c0(t, x) =

{
C0(6.0− x), if t = 0
+∞, otherwise

(42)

The figure 10 shows, at the left, the traffic function computed by the viability
algorithm and at the right the isolines ( that one can consider as trajectories).

(a) Traffic function (b) Isolines

Figure 10. Solution of the Moskowitz problem

Assume that the free-flow speed is a parameter that can vary in the range ν ∈
[νmin, νmax] = [1.5, 3.0]. Consider a model where the variable speed limitations are
applied locally in space to limit the propagation of the bottleneck caused by the
accident. The fundamental diagram is then for v ∈ [νmin, νmax]

h3(k, x, ν) =

 h(k, νmax, 0.5ω) if x ∈ [2.5, 3.5]
h(k, ν, ω) if x ∈ [0, 2.5[
h(k, νmax, ω), otherwise

where h(k, ν, ω) is the Greenshields’ function defined by (28) for some given values
of ν and ω. The figure 9 illustrates the dependence of the fundamental diagram on
the free-flow speed parameter.
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The corresponding problem is now (i) h3

(
−∂V (t, x, ν)

∂x
, x, ν

)
=

∂V (t, x, ν)

∂t
, (t, x) ∈]0, 6[2, ν ∈ [νmin, νmax]

(ii) V (t, x, ν) ≤ c(t, x), (t, x) ∈ [0, 6]2, ν ∈ [νmin, νmax]
(43)

with the same target function c(t, x). The figure 11 shows an example of the traffic
function when the speed limit is fixed to ν = 1.6.

(a) Traffic function (b) Isolines

Figure 11. The traffic function with the free-flow speed locally
limites to ν = 1.6

The comparison of iso-lines (see figure 12)of the traffic function shows clearly the
homogenization effect of the speed limit reduction. One can remark even that the
travel times are reduced for the congestion zone in the case of the smaller speed
limit.

5.2.3. Locally congested initial traffic conditions. Consider a road section [0, 6] and
assume that the initial concentration is a piecewise constant with a congested in-
terval [3.0,5.0] on which the concentration is C1 = 3.0. Assume that otherwise on
the road the initial concentration is C0 = 0.9. Consider the Edie’s fundamental
diagram (31) with

• the free flow speed ν = 3.0 units of length/per units of time;
• the maximal (or jam) density ω = 4.0.

Any information is available about the boundary condition. Then we will consider
here the Moskowitz problem (7): with the following target function c:

c(t, x) = c0(t, x) (44)

where the function c0(t, x) corresponds to the initial condition

c0(t, x) =

{
γ0(x), if t = 0
+∞, otherwise

(45)
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Figure 12. Greenshields diagram: comparison of the isolines for
two different values of the free-flow speed

Figure 13. Edie’s fundamental diagram with different free-flow
speed and maximal capacity values

with

γ0(x) =

 12.3− 0.9x, if x ∈ [0, 3[
3.2 ∗ (6− x), if x ∈ [3, 5[
3.2− 0.9(x− 5.0), if x ∈ [5, 6] +∞, otherwise

The figure 14 shows, at the left, the traffic function computed by the viability
algorithm and at the right the isolines ( that one can consider as trajectories).
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(a) Traffic function (b) Isolines

Figure 14. Solution of the Moskowitz problem

Assume that the free-flow speed is a parameter that can vary in the range ν ∈
[νmin, νmax] = [1.5, 3.0]. Consider a model where the variable speed limitations are
applied locally in space to limit the retro propagation of the initial congested zone.
The fundamental diagram is then for v ∈ [νmin, νmax]

h4(k, x, ν) =

{
h(k, ν, ω) if x ∈ [0, 3.0[
h(k, νmax, ω), otherwise

where h(k, ν, ω) is the Edie’s function defined by (31) for some given values of ν
and ω. The figure 13 illustrates the dependence of the fundamental diagram on the
free-flow speed parameter.

The corresponding problem is now (i) h4

(
−∂V (t, x, ν)

∂x
, x, ν

)
=

∂V (t, x, ν)

∂t
, (t, x) ∈]0, 6[2, ν ∈ [νmin, νmax]

(ii) V (t, x, ν) ≤ c(t, x), (t, x) ∈ [0, 6]2, ν ∈ [νmin, νmax]
(46)

with the same target function c(t, x). The figure 15 shows an example of the traffic
function when the speed limit is fixed to ν = 1.6.

The comparison of iso-lines (see figure 16) of the traffic function highlights the
homogenization effect of the speed limit reduction. One can remark even that the
travel times are reduced for the congestion zone in the case of the smaller speed
limit.
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(a) Traffic function (b) Isolines

Figure 15. The traffic function with the free-flow speed locally
limites to ν = 1.6

Figure 16. Edie’s diagram: comparison of the isolines for two
different values of the free-flow speed
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[4] J.-P. Aubin and A. Cellina, “Differential Inclusions,” Set-valued maps and viability theory.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical

Sciences], 264, Springer-Verlag, Berlin, 1984.

[5] E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations
with convex Hamiltonians, Comm. Partial Differential Equations, 15 (1990), 1713–1742.

[6] A. M. Bayen and C. G. Claudel, Solutions to switched Hamilton-Jacobi equations and conser-
vation laws using hybrid components, Hybrid systems: Computation and control, 101C115,

Lecture Notes in Computer Science, 4981, Springer, Berlin, 2008.

[7] C. Canudas de Wit, Best-effort highway traffic congestion control via variable speed limits,
In “Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE

Conference Proceedings,” (2001), 5959–5964.

[8] R. C. Carlson, I. Papamichail, M. Papageorgiou and A. Messmer, Optimal motorway traffic
flow control involving variable speed limits and ramp metering, Transportation Science, 44

(2010), 238–253.

[9] C. G. Claudel and A. M. Bayen, Convex formulations of data assimilation problems for a
class of Hamilton-Jacobi equations, SIAM Journal on Control and Optimization, 49 (2011),

383–402.

[10] C. G. Claudel and A. M. Bayen, Lax-Hopf based incorporation of internal boundary conditions
into Hamilton-Jacobi equation. Part I: Theory, IEEE Transactions on Automatic Control,

55 (2010), 1142–1157.
[11] C. G. Claudel and A. M. Bayen, Lax-Hopf based incorporation of internal boundary conditions

into Hamilton-Jacobi equation. Part II: Computational methods, IEEE Transactions on

Automatic Control, 55 (2010), 1158–1174.
[12] C. Daganzo, A variational formulation of kinematic waves: Basic theory and complex bound-

ary conditions, Transporation Research B, 39 (2005), 187–196.

[13] C. Daganzo, On the variational theory of traffic flow: Well-posedness, duality and applica-
tions, Networks and Heterogeneous Media, 1 (2006), 601–619.

[14] L. C. Edie, Car following and steady state theory for non-congested traffic, Operations

Research, 9 (1961), 66–76.
[15] H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations,

SIAM J. Control Optim., 31 (1993), 257–272.

[16] H. Greenberg, An analysis of traffic flow , Operations Research, 7 (1959), 79–85.
[17] B. D. Greenshields, A study of traffic capacity, HRB Proc., 14 (1934), 448–481.

[18] M. J. Lighthill and G. B. Whitham, On kinematic waves: II. A theory of traffic flow on long

crowded roads, Proc. Royal Society, Ser. A, 229 (1955), 317–345.
[19] G. Newell, Nonlinear effects in the dynamics of car following, Operations Research, 9

(1961), 209–229.
[20] M. Papageorgiou, E. Kosmatopoulos and I. Papamichail, Effects of variable speed limits on

motorway traffic flow , Transportation Research Record: Journal of the Transportation Re-
search Board, 2047 (2008), 37–48.

[21] P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42–51.

[22] P. Saint-Pierre, Approximation of the viability kernel , Applied Mathematics and Optimisa-

tion, 29 (1994), 187–209.
[23] R. T. Underwood, Speed, volume and density relationships, quality and theory of traffic flow,

in “Yale Bureau of Highway Traffic,” 1961, 141–88.

Received April 2012; revised July 2013.

E-mail address: anna.desilles@ensta-paristech.fr

http://www.ams.org/mathscinet-getitem?mr=MR0755330&return=pdf
http://dx.doi.org/10.1007/978-3-642-69512-4
http://www.ams.org/mathscinet-getitem?mr=MR1080619&return=pdf
http://dx.doi.org/10.1080/03605309908820745
http://dx.doi.org/10.1080/03605309908820745
http://www.ams.org/mathscinet-getitem?mr=MR2728873&return=pdf
http://dx.doi.org/10.1007/978-3-540-78929-1_8
http://dx.doi.org/10.1007/978-3-540-78929-1_8
http://dx.doi.org/10.1287/trsc.1090.0314
http://dx.doi.org/10.1287/trsc.1090.0314
http://www.ams.org/mathscinet-getitem?mr=MR2784693&return=pdf
http://dx.doi.org/10.1137/090778754
http://dx.doi.org/10.1137/090778754
http://www.ams.org/mathscinet-getitem?mr=MR2642079&return=pdf
http://dx.doi.org/10.1109/TAC.2010.2041976
http://dx.doi.org/10.1109/TAC.2010.2041976
http://www.ams.org/mathscinet-getitem?mr=MR2642080&return=pdf
http://dx.doi.org/10.1109/TAC.2010.2045439
http://dx.doi.org/10.1109/TAC.2010.2045439
http://dx.doi.org/10.1016/j.trb.2004.04.003
http://dx.doi.org/10.1016/j.trb.2004.04.003
http://www.ams.org/mathscinet-getitem?mr=MR2276255&return=pdf
http://dx.doi.org/10.3934/nhm.2006.1.601
http://dx.doi.org/10.3934/nhm.2006.1.601
http://www.ams.org/mathscinet-getitem?mr=MR0129012&return=pdf
http://dx.doi.org/10.1287/opre.9.1.66
http://www.ams.org/mathscinet-getitem?mr=MR1200233&return=pdf
http://dx.doi.org/10.1137/0331016
http://www.ams.org/mathscinet-getitem?mr=MR0101166&return=pdf
http://dx.doi.org/10.1287/opre.7.1.79
http://www.ams.org/mathscinet-getitem?mr=MR0072606&return=pdf
http://dx.doi.org/10.1098/rspa.1955.0089
http://dx.doi.org/10.1098/rspa.1955.0089
http://www.ams.org/mathscinet-getitem?mr=MR0129014&return=pdf
http://dx.doi.org/10.1287/opre.9.2.209
http://dx.doi.org/10.3141/2047-05
http://dx.doi.org/10.3141/2047-05
http://www.ams.org/mathscinet-getitem?mr=MR0075522&return=pdf
http://dx.doi.org/10.1287/opre.4.1.42
http://www.ams.org/mathscinet-getitem?mr=MR1254059&return=pdf
http://dx.doi.org/10.1007/BF01204182
mailto:anna.desilles@ensta-paristech.fr

	1. Introduction
	2. The Hamilton-Jacobi-Moskowitz PDE
	2.1. Problem statement
	2.2. Traffic conditions

	3. Viability solution of the Hamilton-Jacobi-Moskowitz problem
	3.1. Some concepts from the viability theory
	3.2. Definition of the viability solution of the Hamilton-Jacobi-Moskowitz problem
	3.3. The link with the partial differential equation
	3.4. Variational formulation of the problem

	4. Numerical solution
	5. Numerical examples
	5.1. Fundamental diagrams
	5.2. Investigation of the variable speed limit as a regulation parameter

	Acknowledgments
	REFERENCES

