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Abstract. We discuss a numerical discretization of Hamilton–Jacobi equa-

tions on networks. The latter arise for example as reformulation of the Lighthill–

Whitham–Richards traffic flow model. We present coupling conditions for the
Hamilton–Jacobi equations and derive a suitable numerical algorithm. Numer-

ical computations of travel times in a round-about are given.

1. Introduction. Traffic flow models, especially on road networks, have been in-
tensively studied in the mathematical [3, 6, 13, 16, 20] as well as in the engineering
community [1, 7, 9, 10, 14, 18, 19, 27, 28, 30] during the last years. We are in-
terested in first–order macroscopic models based on partial differential equations
for the traffic density [24, 26] with the prototype being the Lighthill–Whitham–
Richards (LWR) model. When considering a traffic network the crucial point is
the coupling at a traffic junction leading to coupling conditions. Well–posedness
results for those conditions have been obtained for example in [15]. When consid-
ering car trajectories the Hamilton–Jacobi (HJ) reformulation of the LWR model
can be used. The discussion of traffic model in HJ form has been introduced in
engineering literature as for example [8, 10, 30]. Therein [29] the solution is also
known as Moskowitz function. Recently, there has been an intense discussion on
analytical properties of this equation in the context of traffic flow networks. For
example, in [2] the HJ formulation has been used to deduce optimal starting times
for a congested road among other results. In [22] general coupling conditions for
systems of HJ equations have been studied analytically. A particular application of
the well–posedness result therein is the coupling condition for traffic flow using a
fixed ratio for incoming and outgoing traffic flows. For question of reconstruction
of parameters of traffic models the HJ approach has been succesfully discussed and
applied in [1, 28].

We are interested in a numerical scheme combining the existing coupling condi-
tions for LWR models [15, 21] stated in the density and flow variables with a suitable
numerical method for the HJ equation. The advantage of the numerical computa-
tion of the HJ model is to directly represent the trajectories of particular traffic
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members and to compute the duration of specific journeys through the network.
Further, we introduce a new coupling condition for merging junctions replacing the
common right of way parameter [5, 6] by a priority rule. For the numerical method
we extend the numerical algorithm of [23]. Other numerical approaches have been
discussed in [1, 10, 30].

2. Traffic flow network model. We give a brief review on the LWR traffic flow
model [26, 31] for road networks and consider the coupling conditions for several
specific junctions. {

∂tρ+ ∂xf(ρ) = 0,
ρ(x, 0) = ρ0(x).

(1)

Here, ρ : (x, t) 7→ ρ(x, t) ∈ [0, ρmax] ⊂ R+ denotes the density of cars, x ∈ [0, L] ⊂
R+ describes the location on the road, L is the length of the road (possibly being
∞) and t ∈ R+ is time. As in [15, 21] we assume that the flux function (also called
fundamental diagramm) f(ρ) is concave with a unique maximum at the designated
point ρ∗ ∈ [0, ρmax]. This allows to define the function τ : [0, ρmax] → [0, ρmax]
mapping the density to a distinct density value with equal flux:

f(ρ) = f(τ(ρ)), with τ(ρ) 6= ρ, if ρ 6= ρ∗.

We denote by f−1
l : f 7→ f−1

l (f) ∈ [0, ρ∗] and f−1
r : f 7→ f−1

l (f) ∈ [ρ∗, ρmax] the
inverse of the flow function, respectively.

Remark 1. Typical flow functions are for example

f(ρ) = v(ρ) · ρ, (2)

where

v(ρ) =
vmax

ρmax
(ρmax − ρ),

is the velocity which cars are assumed to have depending on the actual traffic
density, vmax is the maximal allowed velocity for the road and ρmax is the maximal
traffic density (bumper-to-bumper density) [3]. Another broadly used function with
constant velocity λ is the triangular flow function [1, 10, 28] (and in the context of
telecommunication networks [12]):

f(ρ) =

{
λ · ρ if ρ ∈ [0, ρ∗]
λ · (2 · ρ∗ − ρ) if ρ ∈ [ρ∗, ρmax].

(3)

A road network is a directed graph G(E, V ), where E denotes the set of edges
which represent the roads and V the set of vertices which represent the traffic
intersections or junctions. The length of each road i, leading from one junction to
the next, is given by Li ∈ R+. The roads are unidirectional. Lanes for different
directions can be described by separate edges. Incoming roads of each junction v are
denoted by δinv and outgoing by δoutv . The density at the junction for an incoming
edge i will be denoted by ρ̂i(t) = ρi(Li−, t) and the density for an outgoing edge j
is ρ̄j(t) = ρj(0+, t). As coupling condition the conservation of mass is imposed:∑

i∈δinv

f(ρ̂i(t)) =
∑
j∈δoutv

f(ρ̄j(t)), ∀t > 0. (4)

For simplicity we use the following notation for the flow at junctions: γ̂i := f(ρ̂i)
for incoming edges and γ̄j := f(ρ̄j) for outgoing edges. At dispersing junctions
(junctions with more than one outgoing road), we assume to have given (possibly
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time-dependent) distribution parameters 0 ≤ αij ≤ 1 indicating the percentage of
the cars coming from road i going to road j. Obviously,

∑
i∈δoutv

αij(t) = 1. The

condition (4) does not guarantee a unique traffic densities at the junction.
As in [3, 4, 15, 21] the following construction is used to obtain unique traffic

densities ρ̂i, ρ̄j at the junction given the respective traffic flows γ̂i and γ̄j . For sake
of clarity, we skip the time variable in the following notation. The densities at the
junction are ρ̂i and ρ̄j , respectively. The admissible sets for those densities depend
on the initial densities at the junction (ρi(Li) and ρi(0), respectively) and are then
for incoming roads

ρ̂i ∈
{
{ρi(Li)}∪]τ(ρi(Li)), ρ

max
i ] if 0 ≤ ρi(Li) ≤ ρ∗i

[ρ∗i , ρ
max
i ] else

, (5)

and for outgoing roads

ρ̄j ∈
{

[0, ρ∗j ] if 0 ≤ ρj(0) ≤ ρ∗j
{ρj(0)} ∪ [0, τ(ρj(0))[ else

. (6)

Given γ̂i (or γ̄j) the uniquely defined densities ρ̂i (or ρ̄j) within the admissible sets
are

ρ̂i =

{
ρi(Li) if f−1

il (γ̂i) = ρi(Li)
f−1
ir (γ̂i) else

, (7)

and

ρ̄j =

{
ρj(0) if f−1

jr (γ̄j) = ρj(0)

f−1
jl (γ̄j) else

, (8)

respectively. We refer to Figure 1 for an example.

ρi(Li)≤ρ∗i :

ρi

f(ρi)

ρ∗i ρmaxiρi(L)

ρi(Li)>ρ
∗
i :

ρi

f(ρi)

ρ∗i ρmaxiρi(L)

ρj(0)≤ρ∗j :

ρj

f(ρj)

ρ∗j ρmaxjρj(0)

ρj(0)>ρ∗j :

ρj

f(ρj)

ρ∗j ρmaxjρj(0)

Figure 1. Admissible sets for the coupling density for incoming
road i and outgoing road j (depicted by the thick black line) for
given initial densities ρi(Li) and ρj(0).

The admissible sets for the densities at the junction yield upper bounds for the
possible flux

γmaxi :=

{
fi(ρi(Li)) if 0 ≤ ρi(Li) ≤ ρ∗i
fi(ρ

∗
i ) else.

, (9)

and

γmaxj :=

{
fj(ρ

∗
j ) if 0 ≤ ρj(0) ≤ ρ∗j

fj(ρ(0)) else
. (10)

In the following paragraphs, we explicitly state coupling conditions in order to
obtain unique traffic flows γ̂i and γ̄j . Those, by the above discussion, then lead to
unique traffic densities which in turn can be used as boundary conditions for (1).
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Coupling conditions for traffic fluxes have been proposed by [3, 15]. Here, we focus
on priority rules and round-abouts.

Two connected roads. In a bottleneck situation, the capacity of the traffic load may
decrease at a certain point. This can be viewed as a network model with two
connected roads as depicted in Figure 2 such that maxρ fj(ρ) < maxρ fi(ρ) :

Figure 2. Bottleneck situation

The flows at the junction γ̂i := γ1 and γ̄j := γ2 are obtained as solution to[
max γ1

such that γ2 = γ1, 0 ≤ γ1 ≤ γmax1 , and 0 ≤ γ2 ≤ γmax2
, (11)

where γmax1 and γmax2 are given by (9) and (10), respectively. The unique solution
is

γ̂i = γ̄j = min{γmax1 , γmax2 }. (12)

Figure 3. Schematic view of a dispersing junction with δinv = {1}
and δoutv = {2, 3}.

Dispersing junction. We assume the distribution rate αij for i = 1, j ∈ {2, 3} at
the junction to be previously known. As in [9] we assume, that all the flow at the
junction is restricted as soon as one of the outgoing roads is not able to absorb the
designated flow. This corresponds to a first-in-first-out rule of cars and is a realistic
assumption, since a car waiting at the junction blockes all the traffic behind until
it continues. A mathematical model respecting this property stated in terms of the
flows γ̂i and γ̄j at the vertex is:[

max γ1

such that γ2 = α1,2γ1, γ3 = α1,3γ1, 0 ≤ γk ≤ γmaxk , k ∈ {1, 2, 3} . (13)

This linear programming problem is solved explicitly:

γ̄2 = min{α1,2γ
max
1 , γmax2 ,

α1,2

α1,3
γmax3 }, γ̄3 = min{α1,3γ

max
1 ,

α1,3

α1,2
γmax2 , γmax3 },

γ̂1 = γ̄2 + γ̄3, (14)

where γmax1 is given by (9) and γmax2 and γmax3 are given by (10). The resulting
boundary densities at the junction are again given by (7) and (8).
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(a) Merging junction (b) Priority road

Figure 4. Merging junction with δinv = {1, 2} and δoutv = {3}.
The priority road is i = 1.

Merging junction. In contrast to the previous discussion problem (13) may have
multiple solutions in the case of a merging junction depicted in Figure 4(a). There-
fore, additional conditions have to be imposed as constraints to (13). In [3, 5, 9, 20]
propose a right of way parameter q ∈]0, 1[ prescribing the proportion of flow coming
from road 1 and 2. Here, we formulate a priority rule, where the traffic of the main
road always is prioritized over the traffic of a side road. As soon as road 3 reached a
state of dense traffic, cars from road 1 are preferred. As a mathematical formulation
we propose to replace (13) by (15) where the prioritization of the flow coming from
road 1 is obtained by using a weighting parameter ω > 1 in the objective function:[

max ω · γ1 + γ2

such that γ3 = γ1 + γ2, 0 ≤ γk ≤ γmaxk , ∀k ∈ {1, 2, 3} . (15)

Lemma 2.1. There exists a unique solution of (15) given by

γ̄3 = min{γmax1 + γmax2 , γmax3 }, (16a)

γ̂1 = min{γmax1 , γmax3 }, (16b)

γ̂2 = γ̄3 − γ̂1, (16c)

where γmax1 and γmax2 are given by equation (9) and γmax3 is given by equation (10).

The proof of Lemma 2.1 can be found in Appendix A.

(a) (b) (c)

Figure 5. Model of a round–about (a) as combination of dispers-
ing and merging junctions. The round-about is composed of four
junctions (b) which in the present framework are modelled by (c).

Round–about. We consider a round–about depicted in Figure 5(a). For simplicity
we assume it is composed of four junctions with two incoming and two outgoing
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roads each. Additionally, the central ring of the round–about has priority over the
connecting roads, e.g., road 1 is prioritized over road 2 in Figure 5(c). Furthermore,
we assume road 2, no car is going to road 3, but all go to road 4. Hence, the
distribution parameters for the dispersing junction are α2,3 = 0 and α2,4 = 1.
Finally, the traffic distribution from road 1 to road 3 and 4 is also prescribed by
α1,3 and α1,4, respectively. Therefore, the coupling condition for one part of the
round-about is max ω · γ1 + γ2

such that
γ3 = α1,3γ1 + α2,3γ2, γ4 = α1,4γ1 + α2,4γ2, 0 ≤ γ̂k ≤ γmaxk , ∀k = 1, . . . 4.

(17)

Lemma 2.2. Let α2,3 6= 0 and α2,4 = 1. If α1,3α1,4 6= 0, then, problem (17) has a
unique solution. the solution is given by

γ̂1 = min{γmax1 ,
1

α13
γmax3 ,

1

α14
γmax4 }, (18a)

γ̂2 = min{γmax2 , γmax4 − α1,4γ̂1}, (18b)

γ̄3 = α13γ̂1, (18c)

γ̄4 = α14γ̂1 + γ̂2. (18d)

The proof of Lemma 2.2 can be found in Appendix B. Note, that in [3, 4, 6] the
considered distribution parameters α have to be strictly larger than zero and strictly
smaller than 1. The proof of Lemma 2.2 especially considers the case, where α2,3 = 0
and α2,4 = 1.

3. Numerical scheme for the Hamilton-Jacobi reformulation. As in [8, 10,
28, 29], the traffic network model can be reformulated as HJ equation. In this
section, we briefly recall the relation between LWR and HJ, and derive a numerical
scheme [23]. A HJ equation with Hamiltonian f is given by

Mt(x, t) + f(Mx(x, t)) = 0. (19)

If we consider roads on which vehicles cannot overtake, it is possible to number
them according to the order, they pass a certain point of the road. In [4, 27, 29, 30]
a continuous function is considered, where the space-time trajectory of each car is
given by its the curves of cumulative counts. In detail, if we start counting with
the foremost car at time t = t0 we get

N(x, t0) =

∫ L

x

ρ(x′, t0)dx′,

and for a general point in time t, the car number at (x, t) is given by

N(x, t) =

∫ L

x

ρ(x′, t)dx′ +N(L, t) = N(0, t)−
∫ x

0

ρ(x′, t)dx′. (20)

where the value of the left boundary is given by

N(0, t) =

∫ t

t0

f(ρ(x, t′))dt′.

Consequently, the curve given by

{(x, t) : N(x, t) = n}



HAMILTON–JACOBI ON NETWORKS 691

describes the trajectory of the nth car. Obviously, M(x, t) = −N(x, t). From (20)
we obtain Mx(x, t) = ρ(x, t), ∀(x, t) ∈ [0, L] × [t0,+∞). From (19) the continuity
equation used in the LWR-model (1) holds. Differentiation of (19) with respect to
x yields:

0 = Mtx + f(Mx)x = Mxt + f(Mx)x.

Consequently, if we find an M that satisfies (19), ρ := Mx also satisfies (1). On
traffic problems we have ρ ≥ 0, hence M is monotonically increasing in x.

Extension to the network case. For the network model of HJ equation we provide
the additional index e indicating the current road. We have e ∈ {1, ..., |E|}. Then,
the complete model reads

∀e ∈ E


∂tMe + f(∂xMe) = 0
∂xMe(x, 0) = ρ0(x) initial condition
∂xMe(0, t)(=: ∂xM̄e(t)) = ρ̄e(t) left boundary condition

∂xMe(Le, t)(=: ∂xM̂e(t)) = ρ̂e(t) right boundary condition

. (21)

The values of ρ̄e and ρ̂e are obtained by the coupling conditions. They therefore
depend on the adjacent edges of the node. Within the coupling conditions the car
density ρe(x, t) for x = 0 and x = L has to be evaluated. Therefore, in the numerical
algorithm we first reconstruct at every time step tn the density ρ(·, tn). Using the
coupling conditions we then compute the ρ̄e(tn+1) and ρ̂(tn+1) to finally obtain the
boundary conditions for Me.

3.1. Numerical scheme for a single road. Consider a single road first. We
introduce a spatial grid i ∈ {0, . . . , nx}, xi = ∆x · i, nx = d L∆xe, and a temporal
grid t ∈ {0, . . . , nt}, where the gridsize ∆t is set according to the CFL-condition for
piecewise differentiable functions:

∆t ≤ ∆x

maxρ |f ′(ρ)|
. (22)

The superindex denotes the time step and the subindex the spatial point. We set
ρti := ρ(∆x · i, t ·∆t) and M t

j = M((j − 1
2 )∆x, t ·∆t) where j = {0, nx + 1}. Note

that the grid points for the discretization of M(x, t) are shifted by ∆x
2 c compared

to the grid for ρ(x, t). For the discretization of HJ we use the central first order
scheme [23]. The time evolution of M at the inner grid points 0 < j < nx + 1 is
computed as follows:

M t+1
j =M t

j −
∆t

2

[
f
(M t

j+1 −M t
j

∆x

)
+ f

(M t
j −M t

j−1

∆x

)]

+
∆t

2∆x
atj(M

t
j+1 − 2M t

j +M t
j−1), (23)

and due to the CFL condition

anj ≥ max
x∈[(j−1)∆x,(j+1)∆x]

|f ′(Mx)|.

The coupling is done in terms of densities (at least at the boundary of the do-
main). Therefore we need to reconstruct the derivative of M at the junction. This
is done by finite differences and we define the density ρti by

ρti :=
M t
j+1 −M t

j

∆x
, (24)
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where (j − 1
2 )∆x = i∆x. We have to add an additional index e for all e ∈ E to M

and ρ, respectively, when considering the network formulation. However, for the
sake of readability, we will drop this index whenever the context is clear.

3.2. Discretization of the boundary condition. Due to dispersion effects of
the discretization scheme [25], the densities at the junction might not always be
captured correctly. Therefore we need to introduce suitable ghost-cells added on
both ends of each road. The wave fronts travel along the roads until they reach the
next junction, providing the coupling condition with information about the actual
density on the road. We let the waves run through these artificial cells, but take
the value at the road boundary to compute the coupling condition (Figure 6). This
finally leads to the correct density information at the junction, see below for more
details.

This method only works, when the number of ghost-cells is large enough to absorb
the dispersion of the wave front. In the sequel we will show, that two ghost-cells
on each side of the road are sufficient. A correlation between spatial and temporal
grid and a particular choice of parameter anj is required to ensure this result.

Lemma 3.1. If the parameter anj of the HJ-Scheme (23) is

anj := max
ρ
|f ′(ρ)| ∀j, n, (25)

and the grid size ∆t is set to the maximal possible value satisfying the CFL-condition
(22), then the HJ scheme (23) is equivalent to the Lax-Friedrich scheme:

ρt+1
i =

1

2
(ρti+1 + ρti−1)− ∆t

2∆x
(f(ρti+1)− f(ρti−1)). (26)

Proof. Scheme (23) and equation (24) allow for the following calculation:

ρt+1
i − ρti

∆t

(24)
=
(M t+1

j+1 −M t
j+1

∆t ·∆x

)
−
(M t+1

j −M t
j

∆t ·∆x

)
(23)
= − 1

2∆x

[
f
(M t

j+2 −M t
j+1

∆x

)
− f

(M t
j −M t

j−1

∆x

)]

+
a

2∆x

(M t
j+2 −M t

j+1

∆x
− 2 ·

M t
j+1 −M t

j

∆x
+
M t
j −M t

j−1

∆x

)
(24)
= − 1

2∆x

[
f(ρti+1)− f(ρti−1)

]
+

a

2∆x

[
ρti+1 − 2ρti + ρti−1

]
(25)&(22)⇐⇒ ρt+1

i =
1

2

(
ρti+1 + ρti−1

)
− ∆t

2∆x
·
[
f(ρti+1)− f(ρti−1)

]
,

which is precisely the Lax-Friedrich scheme (26).

Lemma 3.2. Assume that f is given by equation (3) and assume the density at
time t is of Heaviside type. i.e., ∃x̂ ∈ [0, L] such that

ρ(x, t) =

{
l, x ≤ x̂
r, x > x̂.

Then, for the Lax-Friedrich scheme and

∆t :=
∆x

maxρ∈[0,ρmax] |f ′(ρ)|
=

∆x

λ
, (27)

the dispersion over time of the wave front will not exceed two grid cells.
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Proof. The Lax-Friedrich scheme yields

ρt+1
i =

1

2
(ρti+1 + ρti−1)− ∆t

2∆x
(f(ρti+1)− f(ρti−1))

(27)
=

1

2
(ρti+1 + ρti−1)− 1

2λ
(f(ρti+1)− f(ρti−1)). (28)

The spatial grid is given such that the discontinuity of the initial condition is lo-
cated between grid point i and gridpoint i + 1. Hence, the density values at the
discontinuity at timestep t are given by:

ρt = (l, . . . , l
i−1

, l
i
, r
i+1
, r
i+2
, . . . , r).

The scheme preserves the density values inside the constant regions, because (28)
yields

if ρtj−1 = ρtj+1 ⇒ ρt+1
j = ρtj−1

for an arbitrary space grid point j. Hence, it is sufficient to consider the density
evolution next to the discontinuity. For this purpose we distinguish several cases:
Case 1. l ∈ [0, ρ∗] ∧ r ∈ [0, ρ∗] :

Applying (28) to ρt, we get

ρt+1 = (l, . . . , l
i−1

, l
i
, l
i+1
, r
i+2
, . . . , r),

Hence, we get a sharp forward traveling front without any dispersion.
Case 2. l ∈ [ρ∗, ρmax] ∧ r ∈ [ρ∗, ρmax] :

Applying (28) to ρt, we get

ρt+1 = (l, . . . , l
i−1

, r
i
, r
i+1
, r
i+2
, . . . , r),

Hence, we get a sharp backwards traveling front without any dispersion.
Case 3. l ∈ [0, ρ∗] ∧ r ∈ [ρ∗, ρmax] : This case is slightly more involved. We show
the claim in two steps:

i) Computing the next time step via Lax-Friedrich leads to

ρt+1 = (l, . . . , l
i−1

,m
i
, m
i+1
, r
i+2
, . . . , r),

with m = l + r − ρ∗ ∈ [l, r].
ii) Given the densities

ρt̄ = (l, . . . , l
i−1

,m
i
, m
i+1
, r
i+2
, . . . , r),

with an abitrary m ∈ [l, r].
a) If m ∈ [0, ρ∗], the density for the next time step evolves to

ρt̄+1 = (l, . . . , l
i
, m̂
i+1
, m̂
i+2
, r
i+3
, . . . , r),

with m̂ = m+ r − ρ∗. Due to the assumption made for Case 3, we have

m̂ = m+ r − ρ∗ ≥ m ≥ l

Furthermore, we have

m̂ = m︸︷︷︸
a) ≤ρ∗

−ρ∗ + r ≤ r.

Consequently, we get m̂ ∈ [l, r].
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b) If m ∈ [ρ∗, ρmax], the density values for the following time step are

ρt̄+1 = (l, . . . , l
i−2

, m̊
i−1

, m̊
i
, r
i+1
, . . . , r),

with m̊ = l +m− ρ∗. We have

m̊ = l + m︸︷︷︸
b)≥ρ∗

−ρ∗ ≥ l

and

m̊ = l︸︷︷︸
(Case 3)≤ρ∗

+m− ρ∗ ≤ m ≤ r

⇒ m̊ ∈ [l, r].

Hence, ρt̄+1 again fulfills the assumptions imposed to ρt̄, with the shape shifted
by one space step either to the left or to the right. Therefore, by applying the
Lax-Friedrich scheme iteratively over time, the dispersion will never become
greater than two cells.

Case 4. l ∈ [ρ∗, ρmax] ∧ r ∈ [0, ρ∗] :

i) Computing timestep t+ 1 via Lax-Friedrich yields:

ρt+1 = (l, . . . , l
i−1

, ρ∗
i
, ρ∗
i+1
, r
i+2
, . . . , r).

ii) Applying again (28) the densities for timestep t+ 2 are given by:

ρt+2 = (l, . . . , ρ∗
i−1

, ρ∗
i
, r
i+1
, r
i+2
, . . . , r).

Hence, the resulting wave front is moving backwards carrying along two middle
density values ρ∗.

3.3. Details of the numerical algorithm in the network case. The complete
numerical scheme for solving HJ equations on road networks is described in Algo-
rithm 1. Some steps are particularly illustrated in Figure 6.

A crucial point in the computation are the coupling conditions as depicted in
Figure 6(c). As denoted in line 16 of Algorithm 1, equations (9) to (18) are used.
The detailed procedure is the following: Consider a junction v with at most two
incoming roads (∈ δinv ) and at most two outgoing roads (∈ δoutv ). The leftmost
gridpoints of the incoming roads and the rightmost gridpoints of the outgoing roads
in terms of the density ρ have been computed for timestep t + 1, see Figure 6(b).
Hence, the values for ρt+1

e,nx ∀e ∈ δ
in
v and ρt+1

e,0 ∀e ∈ δoutv are given corresponding to

ρe(L) and ρe(0) in the continuous case. Now, we use equations (9) and (10) to
obtain the maximal possible flow γmaxe for all roads e connected to the junction.
Depending on the junction type we compute the coupling flows γ̂e ∀e ∈ δinv and
γ̄e ∀e ∈ δoutv using equations (12), (14), (16) or (18), respectively. The density
boundary values ρ̂e ∀e ∈ δinv and ρ̄e ∀e ∈ δoutv are uniquely given by (7) and (8).
An illustration of this procedure is given in Figure 7. Some further remarks on the
algorithm 1 in order:
line 2. Note that the Godunov scheme [17] does not need any ghostcells to compute
the coupling condition. The presented scheme introduces numerical diffusion such
that the ghost cells need to be sufficiently large. Its size has been discussed in the
previous Lemma. The length of the ghost cells is chosen equal to the size of the
interior cells. In order to have the same speed of propagation those cells do not
enter the computation of the length of the road.
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t

t+ 1

Mnx+1 M̃r1 M̃rng M̂ M̄ M̃lng M̃l1 M1

incoming road right ghostcells left ghostcells outgoing roadjunction

(a) Computation of the next time step for the inner cells in terms of M , see Alg. 1, line 12.

t

t+ 1

Mnx+1 M̃r1 M̃rng M̂ M̄ M̃lng M̃l1 M1

ρnx ρ1

incoming road right ghostcells left ghostcells outgoing roadjunction

(b) Computation of density value at last grid point before the ghost-cells, see Alg. 1, line 14.

t

t+ 1

Mnx+1 M̃r1 M̃rng M̂ M̄ M̃lng M̃l1 M1

ρnx

ρ̂ ρ̄

ρ1

incoming road right ghostcells left ghostcells outgoing roadjunction

(c) Computation of the coupling density values ρ̂i and ρ̄j Alg. 1, line 16.

t

t+ 1

Mnx+1 M̃r1 M̃rng M̂ M̄ M̃lng M̃l1 M1

ρnx

ρ̂ ρ̄

ρ1

incoming road right ghostcells left ghostcells outgoing roadjunction

(d) Computation of coupling values in terms of M , namely M̂i and M̄j , see Alg. 1, line 19.

Figure 6. The numerical algorithm exemplarily for one incoming
and one outgoing road including the two ghost cells. For the sake
of readability, we have skipped the road index.

line 3. Choose the size of the timegrid such that the CFL-condition holds.
line 8. M is initialized from right to left on each road.

4. Computational results for round-abouts. We apply the merging and dis-
persing junction model to a small network consisting of eight roads, see Figure 8.
The network describes a small traffic round–about examined in [3]. We use the
same setting as in [3], where the flow is given by f(ρ) = ρ(1− ρ) and initial as well
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∀ incoming roads e ∈ δinv :

ρt+1
e,nx

(9)
γmaxe

(12), (14), (16) or (18)
γ̂t+1
e

(7)
ρ̂t+1
e

∀ outgoing roads e ∈ δoutv :

ρt+1
e,0

(10)
γmaxe γ̄t+1

e

(8)
ρ̄t+1
e

Figure 7. Equations involved in the numerical computation of
the coupling conditions depending on the type of junction. It is as-
sumed that from the values of M t

e,j the values of the corresponding

densities ρte,i are already recovered using (24).

as boundary data a given as follows:

boundary density of incoming roads: ρ1(x, 0) = 0.25, ρ3(x, 0) = 0.4

initial density of incoming roads: ρ1(0, t) = 0.25, ρ3(0, t) = 0.4

initial density of outgoing roads: ρ2(0, t) = ρ4(0, t) = 0.5

initial density of inner circle: ρi(0, t) = 0.5, ∀i = 5, 6, 7, 8

In [3] this test case is compared for different right-of-way parameters q ∈]0, 1[,
determining the proportion of cars coming from each road at merging junctions.
The priority rule used in this paper corresponds to the case q = 0.

Figure 8 shows the traffic density exemplarily for four roads at four different
points in time. Since the boundary condition is constant, the density evolution
reaches an equilibrium and does not change for t > 5. The traffic at the inner circle
has priority, therefore, the round–about does not get blocked. This is qualitatively
the same behaviour as in [3], when a small parameter q is used. Since our model
uses strict priorities, the equilibrium state is reached faster compared with [3]. We
have used the proposed method for simulations and reconstructed the density values
as in (24). The thin lines show the result obtained by using the Godunov scheme,
which we use as a benchmark. For road 4 at time t = 2 it can clearly be seen,
that by Godunov a sharper resolution of the shock wave is obtained. However, the
actual density levels are equivalent for both schemes.

Next, we consider a larger round–about composed of four junctions with two
incoming and two outgoing roads as in Figure 9(a).

According to the enumeration, roads 1 to 4 are leading towards the inner circle
which is composed of roads 5 to 8. Roads 9-12 point out of the round–about.
Usually, drivers cannot drive as fast inside the inner circle as on the other roads. For
this reason, we describe these roads by different triangular fundamental diagrams.
As before, the traffic density belongs to the interval between 0 (no traffic) and 1
(maximal dense traffic). Since we assume that the usual speed of the cars is faster at
the outer roads than inside the circle, the corresponding flow function has a steeper
slope outside the inner circle. We prescribe the left boundary data for the incoming
roads 1 to 4. We assume, that road 1 and 3 are slightly more busy than roads 2
and 4. For simplicity we use the same boundary data for each road pair. Figure 10
gives a detailed overview of the boundary data at an average working day from 5am
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Algorithm 1: HJ-scheme for networks

/* Input: Road network with length and flow function for each

road, initial and boundary conditions in terms of ρ, time

horizon T, grid size ∆x, number of ghostcells ng */

/* Output: Simulation of the traffic in terms of density */

1 begin
/* Compute number of gridpoints */

2 number of spacesteps: nxe = d Le∆xe+ 1− ng, ∀e ∈ E;

3 timegridsize: ∆t = ∆x
maxe∈E{maxρ |f ′e(ρ)|}

;

4 number of timesteps: nt = d T∆te+ 1;

/* Transfer initial values from ρ to M. */

5 forall the e ∈ E do

6 M̂0
e = 0; /* right boundary value */

7 M0
e,rng

= M̂0
e −∆xρ̂0

e; /* rightmost ghost-cell */

8 M0
e,j = Me,j+1 −∆xρ0

e,i ∀ gridpoints j (including ghost-cells);

9 M̄0
e = M0

e,0 −∆xρ̄0
e; /* left boundary value */

10 for t = 0, . . . , nt − 1 do
/* Compute next time iteration for each road e */

11 forall the e ∈ E do
12 Compute M t+1

e,j by (23) ∀ gridpoints j (including ghost-cells)

/* see Figure 6(a) */

/* Transfer M to ρ */

13 forall the e ∈ E do

14 ρt+1
e,i =

Mt+1
e,j+1−M

t+1
e,j

∆x , ∀ gridpoints j /* see Figure 6(b) */

/* Compute coupling at junctions */

15 forall the v ∈ V do
16 Compute coupling for timestep t according to junction type using

density values next to ghost-cells. /* see Figure 6(c) and 7

*/

/* Get boundary value in terms of M */

17 forall the e ∈ E do

18 left: M̄ t+1
e = M̃lng − ρ̄t+1

e ∆x;

19 right: M̂ t+1
e = M̃rng + ρ̂t+1

e ∆x /* see Figure 6(d) */

to 1pm. This is a test setting attempting to tackle the qualitative traffic behaviour
taking the morning rush hour into account.

Figure 11 shows the traffic density along the inner circle for exemplary points in
time. Since the traffic at the inner roads always has the priority at junctions and
outgoing roads are not blocked in our setting, no jams appear inside the round–
about. However, we observe, that at peak time the traffic density all along the inner
circle is at value ρ∗ = 0.5, which means that the traffic moves to maximal possible
flow. Also at peak time, traffic jams occur at roads leading to the inner circle.
Particularly from 7am to shortly after 11am, the traffic entering the roundabout is
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Figure 8. Small round–about. Comparison of the Godunov
scheme for LWR and the presented numerical methods. Results
are given for the fundamental diagram f(ρ) = ρ(1− ρ).

quite dense. However, since the incoming traffic reduces drastically around 11am
(see boundary condition depicted at Figure 10(a)) the jam is resolved again a while
after the incoming traffic reduces.

It is easy to derive the trajectories of cars from the HJ, since we only have to
compute the contour lines of function Me(x, t). In Figure 13, the trajectories of
3 cars moving along the roads 1-5-6-11 are depicted. When entering the traffic
network before 6:59am the cars move freely and leave the system already about 1
minute. In contrast to that, another driver, who enters the system only 4 minutes
later, already encounters dense traffic on the road and needs more than 4 minutes
to move to the end of road 11. Figure 14 shows the duration of the route 1-5-6-11
depending on the starting time of the journey. While it takes only 1 minute to
traverse the route during light traffic times, cars need up to 4.7 minutes between
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(a) Round–about
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Road 1-4 and 9-12
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0.5 1

0.5

λ=1

road 5-8

(b) Fundamental diagram for

outer and inner roads of the
roundabout

Figure 9. Model of a round–about with different fundamental
diagrams on different roads.
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(a) Boundary density of road 1 and 3
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(b) Boundary density of road 2 and 4

Figure 10. Incoming traffic over time.

7 and 9 am. Hence, it takes more than 4 times longer to traverse the given route
during the rush-hour.
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            road 5 −>             road 6 −>             road 7 −>             road 8 −>
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Density evolution in inner traffic circle
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6:00:50 AM (begin early traffic)

7:00:50 AM (begin rush hour)

7:01 AM − 10:10 AM (peak time)

10:10:03 AM (begin of traffic reduction)

11:40 AM − T (midday traffic)

Figure 11. Evolution of the traffic density in the inner circle.

Figure 12. Traffic evolution at the junction.



HAMILTON–JACOBI ON NETWORKS 701

Figure 13. Single car tracking for three cars on the above route
starting at different times.
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Figure 14. Travel time (in minutes) for the route depicted in
Figure 13, depending on the starting time of the journey.
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http://www.ams.org/mathscinet-getitem?mr=MR2784693&return=pdf
http://dx.doi.org/10.1137/090778754
http://dx.doi.org/10.1137/090778754
http://www.ams.org/mathscinet-getitem?mr=MR2861667&return=pdf
http://dx.doi.org/10.1137/110825145
http://www.ams.org/mathscinet-getitem?mr=MR2219277&return=pdf
http://dx.doi.org/10.3934/nhm.2006.1.57
http://dx.doi.org/10.3934/nhm.2006.1.57
http://www.ams.org/mathscinet-getitem?mr=MR2421115&return=pdf
http://dx.doi.org/10.1137/070697768
http://www.ams.org/mathscinet-getitem?mr=MR2151724&return=pdf
http://dx.doi.org/10.3934/dcdsb.2005.5.599
http://www.ams.org/mathscinet-getitem?mr=MR2178224&return=pdf
http://dx.doi.org/10.1137/S0036141004402683
http://dx.doi.org/10.1016/j.trb.2011.10.011
http://dx.doi.org/10.1016/j.trb.2011.10.011
http://dx.doi.org/10.1016/j.trb.2004.04.003
http://dx.doi.org/10.1016/j.trb.2004.04.003
http://dx.doi.org/10.1016/0191-2615(94)00022-R
http://www.ams.org/mathscinet-getitem?mr=MR2276255&return=pdf
http://dx.doi.org/10.3934/nhm.2006.1.601
http://dx.doi.org/10.3934/nhm.2006.1.601
http://www.ams.org/mathscinet-getitem?mr=MR0201189&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2390976&return=pdf
http://dx.doi.org/10.1137/060674132
http://dx.doi.org/10.1137/060674132
http://www.ams.org/mathscinet-getitem?mr=MR2794897&return=pdf
http://dx.doi.org/10.1155/2011/563171
http://dx.doi.org/10.1155/2011/563171
http://www.ams.org/mathscinet-getitem?mr=MR2328174&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2165018&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0119433&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2291820&return=pdf
http://dx.doi.org/10.3934/nhm.2007.2.227
http://dx.doi.org/10.3934/nhm.2007.2.227
http://www.ams.org/mathscinet-getitem?mr=MR2046125&return=pdf
http://dx.doi.org/10.1137/S106482750241459X
http://www.ams.org/mathscinet-getitem?mr=MR2237163&return=pdf
http://dx.doi.org/10.1137/05062617X
http://dx.doi.org/10.1137/05062617X
http://www.ams.org/mathscinet-getitem?mr=MR1338371&return=pdf
http://dx.doi.org/10.1137/S0036141093243289
http://dx.doi.org/10.1137/S0036141093243289
http://www.ams.org/mathscinet-getitem?mr=MR3023064&return=pdf
http://dx.doi.org/10.1051/cocv/2012002
http://dx.doi.org/10.1051/cocv/2012002
http://www.ams.org/mathscinet-getitem?mr=MR1763829&return=pdf
http://dx.doi.org/10.1006/jcph.2000.6485
http://dx.doi.org/10.1006/jcph.2000.6485
http://dx.doi.org/10.1007/0-306-48220-7_8
http://dx.doi.org/10.1007/0-306-48220-7_8
http://www.ams.org/mathscinet-getitem?mr=MR1153252&return=pdf
http://dx.doi.org/10.1007/978-3-0348-8629-1


HAMILTON–JACOBI ON NETWORKS 703

[26] M. J. Lighthill and G. B. Whitham, On kinematic waves II. A theory of traffic flow on long
crowded roads, Proc. Royal Society London. Ser. A., 229 (1955), 317–345.

[27] Y. Makigami, G. F. Newell and R. Rothery, Three-dimensional representation of traffic flow ,

Transportation Science, 5 (1971), 302–313.
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Appendix A. Proof of Lemma 2.1.

Proof. Problem (15) is a linear optimization problem. Techniqually, it can be solved
by SIMPLEX algorithm [11]. it is also possible to directly get the optimal solution
by the considering different cases. We distinguish between three cases depending
on the size of γmax3 . The feasible region of each case is depicted in Figure 15 and
the optimal solution is indicated by the black dot.
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Figure 15. Feasible region for flows at junction.

i) γmax3 ≤ γmax1 : In this case the optimal solution of (15) is given by

γ̂1 = γmax3 , γ̂2 = 0, γ̄3 = γmax3 .

ii) γmax1 < γmax3 ≤ γmax1 + γmax2 : In this case the optimal solution of (15) is
given by

γ̂1 = γmax1 , γ̂2 = γmax3 − γmax1 , γ̄3 = γmax3 .

iii) γmax3 > γmax1 + γmax2 : In this case the optimal solution of (15) is given by

γ̂1 = γmax1 , γ̂2 = γmax2 , γ̄3 = γmax1 + γmax2 .

This yields directly (16a) - (16c). Hence, (15) is uniquely solvable.
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Appendix B. Proof of Lemma 2.2.

Proof. With the given distribution parameters α2,3 = 0 and α2,4 = 1, the optimiza-
tion problem reduces to 

max ω · γ1 + γ2

such that
γ3 = α13γ1

γ4 = α14γ1 + γ2,
0 ≤ γ̂k ≤ γmaxk , ∀k = 1, . . . 4,

(29)

We can simplify the problem and obtain the equivalent formulation

maxωγ1 +γ2

such that
γ1 ≤ b

α14γ1 +γ2 ≤ γmax4

γ2 ≤ γmax2

γ1, γ2 ≥ 0

(30)

where b is a known parameter given by

b := min{γ
max
3

α1,3
, γmax1 }, α1, 3 6= 0. (31)

We introduce slack variables si ≥ 0, i = 1, . . . , 3 and rewrite (30). This yields

z −ωγ1 −γ2 = 0
γ1 +s1 = b

α14γ1 +γ2 +s2 = γmax4

γ2 +s3 = γmax2 ,

(32)

where z represents the objective function value. We apply the SIMPLEX algorithm
to solve the problem and want to have γ1 to enter the basis. We have to find the

minimum of b and
γmax4

α14
. Hence, we distinguish two cases.

Case i)
γmax4

α14
≤ b. In this case the transformation yields

z +( ω
α14
− 1)γ2 + ω

α14
s2 = ω

α14
γmax4

− 1
α14

γ2 +s1 − 1
α14

s2 = b− γmax4

α14

γ1 + 1
α14

γ2 + 1
α14

s2 =
γmax4

α14

γ2 +s3 = γmax2

(33)

Since ω > 1 and α14 ≤ 1, we know that ω
α14
− 1 > 0. Hence, all coefficients in the

first row are postive. Thus, the basic solution of (33) is optimal, with s2 = γ2 = 0
and γ1 = 1

α14
γmax4 , which corresponds to (18).

Case ii) b ≤ γmax4

α14
. In this case the first SIMPLEX transformation leads to

z −γ2 +ωs1 = ωb
γ1 +s1 = b

γ2 −α14s1 +s2 = γmax4 − α14b
γ2 +s3 = γmax2

(34)

γ2 has a negative coefficient in the first row. Hence, the basic solution is not optimal.
We have to transform the system a second time such that γ2 enters the basis as
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well. In order to pivot the row with minimal ratio between right hand side and
coefficient of the entering variable, again two different cases have to be considered.

Case iia) γmax4 − α14b ≤ γmax2 . The second SIMPLEX transformation yields

z +(ω − α14)s1 +s2 = (ω − α14)b+ γmax4

γ1 +s1 = b
γ2 −α14s1 +s2 = γmax4 − α14b

α14s1 −s2 +s3 = γmax2 − γmax4 + α14b

(35)

Because ω > 1 and α14 ≤ 1, all coefficients in the first row are positive. Hence, the
basic solution with s1 = s2 = 0, γ1 = b and γ2 = γmax4 −α14b is optimal and fulfills
(18).

Case iib) γmax2 ≤ γmax4 − α14b. In this case the next transformation of the
system (34) looks like

z +ωs1 +s3 = ωb+ γmax2

γ1 +s1 = b
−α14s1 +s2 −s3 = γmax4 − γmax2 − α14b

γ2 +s3 = γmax2

(36)

All coefficients of the first row of (36) are positive. Hence, the basic solution is
given by s1 = s3 = 0, γ1 = b and γ2 = γmax2 .

These cases cover all possibilities and proof the claim.
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