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Abstract. Assume that a stochastic process can be approximated, when some

scale parameter gets large, by a fluid limit (also called “mean field limit”, or
“hydrodynamic limit”). A common practice, often called the “fixed point ap-
proximation” consists in approximating the stationary behaviour of the sto-
chastic process by the stationary points of the fluid limit. It is known that
this may be incorrect in general, as the stationary behaviour of the fluid limit
may not be described by its stationary points. We show however that, if the
stochastic process is reversible, the fixed point approximation is indeed valid.
More precisely, we assume that the stochastic process converges to the fluid
limit in distribution (hence in probability) at every fixed point in time. This
assumption is very weak and holds for a large family of processes, among which
many mean field and other interaction models. We show that the reversibility
of the stochastic process implies that any limit point of its stationary distribu-
tion is concentrated on stationary points of the fluid limit. If the fluid limit has
a unique stationary point, it is an approximation of the stationary distribution
of the stochastic process.

1. Introduction. This paper is motivated by the use of fluid limits in models of
interacting objects or particles, in contexts such as communication and computer
system modelling [6], biology [7] or game theory [3]. Typically, one has a stochastic
process Y N , indexed by a size parameter N ; under fairly general assumptions, one
can show that the stochastic process Y N converges to a deterministic fluid limit ϕ
[18]. We are interested in the stationary distribution of Y N , assumed to exist and
be unique, but which may be too complicated to be computed explicitly. The “fixed
point assumption” is then sometimes invoked [16, 5, 23, 15]: it consists in approxi-
mating the stationary distribution of Y N by a stationary point of the deterministic
fluid limit ϕ. In the frequent case where the fluid limit ϕ is described by an Ordi-
nary Differential Equation (ODE), say of the form ẏ = F (y), the stationary points
are obtained by solving F (y) = 0. If Y N is an empirical measure, convergence to a
deterministic limit implies propagation of chaos, i.e. the states of different objects
are asymptotically independent, and the distribution of any particular object at
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any time is obtained from the fluid limit. Under the fixed point assumption, the
stationary distribution of one object is approximated by a stationary point of the
fluid limit.

A critique of the fixed point approximation method is formulated in [2], which
observes that one may only say, in general, that the stationary distribution of Y N

converges to a stationary distribution of the fluid limit. For a deterministic fluid
limit, a stationary distribution is supported by the Birkhoff center of the fluid limit,
which may be larger than the set of stationary points. An example is given in [2]
where the fluid limit has a unique stationary point, but the stationary distribution
of Y N does not converge to the Dirac mass at this stationary point; in contrast, it
converges to a distribution supported by a limit cycle of the ODE. If the fluid limit
has a unique limit point, say y∗, to which all trajectories converge, then this unique
limit point is also the unique stationary point and the stationary distribution of Y N

does converge to the Dirac mass at y∗ (i.e. the fixed point approximation is then
valid). However, as illustrated in [2], this assumption may be difficult to verify, as it
often does not hold, and when it does, it may be difficult to establish. For example,
in [10] it is shown that the fixed point assumption does not hold for some parameter
settings of a wireless system analyzed in [5], due to limit cycles in the fluid limit.

In this paper we show that there is a class of systems for which such complications
may not arise, namely the class of reversible stochastic processes. Reversibility is
classically defined as a property of time reversibility in stationary regime [14]. There
is a large class of processes that are known to be reversible, for example product-
form queuing networks with reversible routing, or stochastic processes in [15], which
describes the occupancy of inter-city telecommunication links; in Section 5 we give
an example motivated by crowd dynamics. In such cases, we show that the fluid
limit must have stationary points, and any limit point of the stationary distribution
of Y N must be supported by the set of stationary points. Thus, for reversible
processes that have a fluid limit, the fixed point approximation is justified.

2. Assumptions and notation.

2.1. A collection of reversible random processes. Let E be a Polish space and
let d be a measure that metrizes E. Let P(E) be the set of probability measures
on E, endowed with the topology of weak convergence. Let Cb(E) be the set of
bounded continuous functions from E to R, and similarly Cb(E × E) is the set of
bounded continuous functions from E × E to R.

We are given a collection of probability spaces (ΩN ,FN ,PN ) indexed by N =
1, 2, 3, ... and for every N we have a process Y N defined on (ΩN ,FN ,PN ). Time is
continuous. Let DE [0,∞) be the set of cádlág functions [0,∞) → E; Y N is then a
stochastic process with sample paths in DE [0,∞).

We denote by Y N (t) the random value of Y N at time t ≥ 0. Let EN ⊂ E a set
on which Y N (0) is concentrated, so that PN(Y N (0) ∈ EN ) = 1.

We assume that, for every N , the process Y N is Feller, in the sense that for
every t ≥ 0 and h ∈ Cb(E), EN

[

h(Y N (t))
∣

∣ Y N (0) = y0
]

is a continuous function of
y0 ∈ E. Examples of such processes are continuous time Markov chains as in [17],
or linear interpolations of discrete time Markov chains as in [4], or the projections
of a Markov process as in [13].

Definition 2.1. A probability ΠN ∈ P(E) is invariant for Y N if ΠN (EN ) = 1 and
for every h ∈ Cb(E) and every t ≥ 0:
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∫

E

E
N

[

h
(

Y N (t)
)∣

∣Y N (0) = y
]

ΠN (dy) =

∫

E

h(y)ΠN (dy)

We are interested in reversible processes, i.e. processes that keep the same sta-
tionary law under time reversal. A weak form of such a property is defined as
follows

Definition 2.2. Assume ΠN is a probability on E such that ΠN (EN ) = 1, for
some N . We say that Y N is reversible under ΠN if for every time t ≥ 0 and any
h ∈ Cb(E × E):

∫

E
E
N

[

h
(

y, Y N (t)
)∣

∣Y N (0) = y
]

ΠN (dy)

=
∫

E
E
N

[

h
(

Y N (t), y
)
∣

∣Y N (0) = y
]

ΠN (dy)

Note that, necessarily, ΠN is an invariant probability for Y N . If Y N is an ergodic
Markov process with enumerable state space, then Definition 2.2 coincides with the
classical definition of reversibility by Kelly in [14]. Similarly, if Y N is a projection
of a reversible Markov process XN , as in [11], then Y N is reversible under the
projection of the stationary probability of XN ; note that in such a case, Y N is not
Markov.

2.2. A limiting, continuous semi-flow. Further, let ϕ be a deterministic pro-
cess, i.e. a measurable mapping

ϕ : [0,∞)× E → E
t, y0 7→ ϕt(y0)

We assume that ϕt is a semi-flow, i.e.

1. ϕ0(y) = y,
2. ϕs+t = ϕs ◦ ϕt for all s ≥ 0 and t ≥ 0,

and we say that ϕ is “space continuous” if for every t ≥ 0, ϕt(y) is continuous in y.

Definition 2.3. We say that y ∈ E is a stationary point of ϕ if ϕt(y) = y for all
t ≥ 0

In cases where E is a subset of Rd for some integer d, the semi-flow ϕ may be
an autonomous ODE, of the form ẏ = F (y); here the stationary points are the
solutions of F (y) = 0.

Definition 2.4. We say that the semi-flow ϕ is reversible under the probability
Π ∈ P(E) if for every time t ≥ 0 and any h ∈ Cb(E × E):

∫

E

h(y, ϕt(y))Π(dy) =

∫

E

h(ϕt(y), y)Π(dy) (1)

As we show in the next section, reversible semi-flows must concentrate on sta-
tionary points.
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2.3. Convergence hypothesis. We assume that, for every fixed t the processes
Y N converge in distribution to some space continuous deterministic process ϕ as
N → ∞ for every collection of converging initial conditions. More precisely:

Hypothesis 1. For every y0 in E, every sequence (yN0 )N=1,2,... such that yN0 ∈ EN

and limN→∞ yN0 = y0, and every t ≥ 0, the conditional law of Y N (t) given Y N (0) =
yN0 converges in distribution to the Dirac mass at ϕt(y0). That is

lim
N→∞

E
N

[

h(Y N (t))
∣

∣Y N (0) = yN0
]

= h ◦ ϕt(y0) (2)

for all h ∈ Cb(E) and any fixed t ≥ 0. In the above, ϕ is a space continuous
semi-flow.

Hypothesis 1 is commonly true in the context of fluid or mean field limits. The
stronger convergence results results in [19, 17, 25, 6] imply that Hypothesis 1 is
satisfied ; we give a detailed example illustrating this in Section 5. Similarly, [2] gives
very general conditions (called H1 to H5) that ensure convergence of a stochastic
process to its mean field limit; under these conditions, Hypothesis 1 is automatically
satisfied (the deterministic process ϕ is then an ODE). Note that the results in these
references are stronger than what we require in Hypothesis 1; for example in [17]
there is almost sure, uniform convergence for all t ∈ [0, T ], for any T ≥ 0; in [13]
the convergence is on the set of trajectories.

Under Hypothesis 1, ϕ is called the hydrodynamic limit or simply fluid limit of
Y N .

3. Reversible semi-flows concentrate on stationary points.

Theorem 3.1. Let ϕ be a space continuous semi-flow, reversible under Π. Let S
be the set of stationary points of ϕ. Then Π is concentrated on S, i.e. Π(S) = 1.

Proof. Denote with Sc the complement of the set of stationary points. Take some
fixed but arbitrary y0 ∈ Sc. By definition of S, there exists some τ > 0 such that

ϕ2τ (y0) 6= y0 (3)

Define ϕτ (y0) = y1, ϕτ (y1) = y2, so that y2 6= y0.
For y ∈ E and ε > 0 we denote with B(y, ε) the open ball = {x ∈ E, d(x, y) < ε}.

Let ε = d(y0, y2) > 0 and let B2 = B(y2, ε/2). Since the semi-flow is space con-
tinuous, there is some α1 > 0 such that B1 = B(y1, α1) and ϕτ (B1) ⊂ B2. Also
let B′

1 = B(y1, α1/2). By the same argument, there exists some α0 > 0 such that
α0 < ε/2, B0 = B(y0, α0) and ϕτ (B0) ⊂ B′

1. We have thus:

ϕτ (B0) ⊂ B′
1 ⊂ B1

ϕτ (B1) ⊂ B2

B0 ∩B2 = Ø

Let ξ be some continuous function [0,+∞) → [0, 1] such that ξ(u) = 1 whenever
0 ≤ u ≤ 1/2 and ξ(u) = 0 whenever u ≥ 1 (for example take a linear interpolation).
Now take

h(y, z)
def
= ξ

(

d(y0, y)

α0

)

ξ

(

d(y1, y)

α1

)

(4)

so that h ∈ Cb(E × E) and

h(y, z) = 0 whenever y 6∈ B0 or z 6∈ B1

h(y, z) = 1 whenever d(y0, y) < α0/2 and z ∈ B′
1
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It follows that h(ϕτ (z), z) = 0 for every z ∈ E and
∫

E

h(y, ϕτ (y))Π(dy) ≥ Π(B(y0, α0/2)) (5)

Apply Definition 2.4, it comes Π (B(y0, α0/2)) = 0; thus, for any non stationary
point y0 there is some α > 0 such that

Π (B(y0, α)) = 0 (6)

Thus y0 ∈ Sc is in an open set of mass 0 for Π. Let supp(Π) be the support of Π;
its complement (supp(Π))

c
is the union of all open sets of mass 0. It follows that

y0 ∈ (supp(Π))
c
.

This holds for any y0 ∈ Sc, i.e. Sc ⊂ (supp(Π))c or, in other words, supp(Π) ⊂ S.
Now, in a Polish space, Π(supp(Π)) = 1 thus Π(S) = 1 as well.

Note that it follows that a semi-flow that does not have any stationary point
cannot be reversible under any probability.

4. Stationary behaviour of fluid limits of reversible processes.

Theorem 4.1. Assume for every N the process Y N is reversible under some prob-
ability ΠN . Assume the convergence Hypothesis 1 holds and that Π ∈ P(E) is an
accumulation point for the weak topology 1 of the sequence ΠN . Then the fluid
limit is reversible under Π. In particular, it follows from Theorem 3.1 that Π is
concentrated on the set of stationary points S of the fluid limit ϕ.

Proof. All we need to show is that Π verifies Definition 2.4. Let Nk be a subse-
quence such that limk→∞ ΠNk = Π for the weak topology on P(E). By Skorohod’s
representation theorem for Polish spaces [12, Thm 1.8], there exists a common prob-
ability space (Ω,F ,P) on which some random variables Xk for k ∈ N and X are
defined such that







law of Xk = ΠNk

law of X = Π
Xk → X P− a.s.

Fix some t ≥ 0 and h ∈ Cb(E × E), and define, for k ∈ N and y ∈ E

ak(y)
def
= E

(

h
(

y, Y Nk(t)
)∣

∣Y Nk(0) = y
)

bk(y)
def
= E

(

h
(

Y Nk(t), y
)∣

∣Y Nk(0) = y
)

Since Y N is reversible under ΠNk :
∫

E

ak(y)ΠNk(dy) =

∫

E

bk(y)ΠNk(dy) (7)

Hypothesis 1 implies that limk→∞ ak(xk) = h(x, ϕt(x)) for every sequence xk

such that xk ∈ ENk and limk→∞ xk = x ∈ E. Now Xk ∈ ENk P− almost surely,
since the law of Xk is ΠNk and Y Nk is reversible under ΠNk . Further, Xk → X
P− almost surely; thus

lim
k→∞

ak(Xk) = h(X,ϕt(X)) P− almost surely (8)

Now ak(Xk) ≤ ‖h‖∞ and, thus, by dominated convergence:

lim
k→∞

E
(

ak(Xk)
)

= E (h(X,ϕt(X))) (9)

1i.e. there is a subsequence Nk such that limk→∞ ΠNk = Π for the weak topology on P(E)
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and similarly for bk. Thus
∫

E

h(y, ϕt(y))Π(dy) =

∫

E

h(ϕt(y), y)Π(dy) (10)

In particular, if the semi-flow has a unique stationary point, we have:

Corollary 1. Assume the processes Y N are reversible under some probabilities ΠN .
Assume Hypothesis 1 holds and:

1. the sequence (ΠN )N=1,2,... is tight;
2. the semi-flow ϕ has a unique stationary point y∗.

It follows that the sequence ΠN converges weakly to the Dirac mass at y∗.

Proof. By [12, Thm 2.2], the set
{

ΠN , N = 1, 2, ...
}

is relatively compact (for the
weak topology) in P(E) therefore its closure, say A, is compact. By [12, Thm 1.7],
P(E) with the weak topology is metrizable (with Prokhorov’s distance). By Theo-
rem 3.1, any accumulation point in P(E) of the sequence (ΠN )N=1,2,... has support
in the singleton {y∗} and is thus equal to the Dirac mass at y∗, δy∗ ; thus, the se-
quence (ΠN )N=1,2,... has a unique accumulation point, equal to δy∗ . In a metric com-
pact space such as A, a sequence such as ΠN that has a unique accumulation point
converges to that point (e.g. [9, Prop. B.50]). Therefore, limN→∞ d(ΠN , δy∗) = 0
where d is the Prokhorov’s distance on P(E). Therefore also limN→∞ ΠN = δy∗ for
the weak topology in P(E).

Recall that tightness means that for every ε > 0 there is some compact setK ⊂ E
such that ΠN (K) ≥ 1−ε for all N . If E is compact then (ΠN )N=1,2,... is necessarily
tight, therefore condition 1 in the corollary is automatically satisfied. For mean field
limits where E is the simplex in finite dimension, the corollary says that, if the pre-
limit process is reversible, then the existence of a unique stationary point implies
that the Dirac mass at this stationary point is the limit of the stationary probability
of the pre-limit process.

Compare Corollary 1 to known results for the non reversible case [1]: there we
need that the fluid limit ϕ has a unique limit point to which all trajectories converge.
In contrast, here, we need a much weaker assumption, namely, the existence and
uniqueness of a stationary point. It is possible for a semi-flow to have a unique
stationary point, without this stationary point being a limit of all trajectories (for
example because it is unstable, or because there are stable limit cycles as in [2]).
In the reversible case, we do not need to show stability of the unique stationary
point y∗.

5. Example: Crowd dynamics. In this section we give an example to illustrate
the application of Theorem 4.1 – a detailed study of this example beyond the ap-
plication of Theorem 4.1 is outside the scope of this paper. We consider the crowd
dynamics model of [24]. The model captures the emergence of crowds in a city. A
city is modelled as a fully connected bidirectional graph with I vertices, every vertex
representing a square, where bars are located. There is a fixed total population N .
People spend some time in a square and once in a while decide to leave a square
and move to some other square. The original model is in discrete time, and at every
time slot, the probability that a tagged person present in square i leaves square i
is assume to be equal to (1− c)Ni(t)−1 where Ni(t) is the population of square i at
time t. In this equation, c is the chat probability, and this model thus assumes that
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a person leaves a square when it has no one to chat with. The model also assumes
that departure events are independent. When a person leaves a square i, it moves
to some other square j according to Markov routing, i.e. the next square is chosen
independently of the past with probability Qi,j given by

Qi,j =
1

d(i)
(11)

where d(i) is the degree of node i, i.e. the person picks a neighboring square j
uniformly at random among all neighboring squares.

In [24], the authors study by simulation the emergence of concentration in one
square. They also show that for regular graphs (i.e. when all vertices have same
degree) there is a critical value c∗ such that for c > c∗ concentrations occur, whereas
for c < c∗ the stationary distribution of people is uniform. The analysis is based
on the study of stationary points for the empirical distribution. Note that, as
mentioned in the introduction, the analysis with stationary points may, in general,
miss the main part of the stationary distribution, and it is quite possible that
the stationary distribution is not concentrated on stationary points (for example if
there is a limit cycle [2]). A fluid flow approximation is proposed in [22], and similar
results are found.

To understand whether the stationary point analysis is justified, we study the
large N asymptotics for an appropriately rescaled version. To avoid unnecessary
complications, we replace the original model of [24], which is in discrete time, by
its continuous time counterpart. First consider the Markov process on state space

{1, ...I}
N

which represents the state of every person in town, the state of a person
being equal to a vertex. The intensity rate of the transition where person k at vertex

i leaves for neighbouring vertex j is µN (Ni)
d(i) where Ni is the number of persons at

vertex i and

µN (Ni)
def
= (1− c)Ni−1 (12)

The process of interest is then the counting process XN(t) = (N1(t), ..., NI(t)); it is

also a Markov process, on {1, ...I}
N
. The process XN is known in queuing theory

as a queuing network of infinite server stations with state dependent service rate
µN (Ni) and with Markov routing given by Eq.(11).

It follows from classical results on quasi-reversibility that XN has product-form
(see for example [20, Chapter 8]), i.e. it is ergodic (since the graph of squares is
fully connected and the population is finite) and its stationary probability is given,
for every (n1, ..., nI) ∈ N

I such that n1 + ...+ nI = N by

PN(n1, ..., nI) = ηN
I
∏

i=1

fN
i (ni) (13)

In this formula, ηN is a normalizing constant, fN
i (n)

def
=

θn
i

n!

∏n
m=1 µ

N (m), and the
vector θ = (θ1, ..., θI) is the stationary distribution of the random walk on the graph
of squares, i.e. a normalized solution of the equation θQ = θ where the matrix Q is
given by Eq.(11). Note that it follows from Eq.(11) that

θi =
d(i)

∑I
j=1 d(j)

(14)



536 JEAN-YVES LE BOUDEC

To apply Theorem 4.1, we need to show that XN is reversible. A product-form
queuing network is, in general, not reversible. However, it is so if the Markov routing
chain (i.e. the random walk on the graph) is reversible [21], which is the case here.

Theorem 5.1. For every N , the process XN is reversible.

Proof. Take θ given by Eq.(14). Then θiQi,j = θjQj,i for any pair (i, j), thus the
Markov chain with transition matrix Q given by Eq.(11) is reversible. By [21], it
follows that the product-form queuing network XN is reversible.

In [8], it is suggested to scale the chat probability as

c =
s

N
(15)

in order to account for the fact that, for large populations, meetings tend to be
limited by space or size of the friend’s group. We use this scaling law and consider
the re-scaled process Y N of occupancy measures, i.e. given by

Y N (t) =

(

N1(t)

N
, ...

NI(t)

N

)

=
1

N
XN(t) (16)

Obviously, for every N the process Y N is Markov and is reversible. Further, it
converges to an ODE, as we see next.

To establish the convergence of Y N , we compute its drift

V N (y)
def
= lim

dt→0

E
(

Y N (t+ dt)− y
∣

∣Y N (t) = y
)

dt
(17)

defined for every possible value y of Y N (t). When the occupancy measure is y,
there are Ni = Nyi people in square i, and the rate of departure from square i
is Niµ(Ni) = Nyiµ(Nyi); the delta to the occupancy measure due to one person

moving from square i to square j is
−ei+ej

N
, where ei is the row vector with a 1 in

position i and 0 elsewhere. Therefore

V N (y) =
∑

i,j

Nyiµ(Nyi)Qi,j

−ei + ej
N

Taking into account Eq.(15), it comes

V N (y) =
∑

i,j

yi

(

1−
s

N

)Nyi−1

Qi,j (−ei + ej) (18)

Let ∆I denote the simplex, i.e.

∆I =

{

y ∈ R
I , yi ≥ 0 for all i and

I
∑

i=1

yi = 1

}

When N → ∞, V N (y) converges for every y ∈ ∆I to

V (y)
def
=

∑

i,j

yie
−syiQi,j (−ei + ej) (19)

This suggests that the fluid limit of Y N , if it exists, would be the deterministic
process y(t), with sample paths in R

d, obtained as solution of the ODE dy
dt

= V (y).
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As we show next, this is indeed the case and follows from “Kurtz’s theorem” [25,
Theorem 10.2.1]. Before that, we rewrite the ODE more explicitly as

dyi
dt

= −yie
−syi +

∑

j

yje
−syjQj,i (20)

Theorem 5.2. Assume that the initial condition yN0 of the process Y N is de-
terministic and converges to some y0 ∈ ∆I . Let ϕ be the semi-flow defined by
the ODE (20), i.e. ϕt(y0) is the solution of the ODE (20) with initial condition
y(0) = y0 (this solution exists and is unique by the Cauchy Lipschitz theorem).
Then for each T > 0 and ε > 0:

lim
N→∞

P

(

sup
0≤t≤T

∥

∥Y N (t)− ϕt(y0)
∥

∥ > ε

)

= 0 (21)

(the notation ‖‖ stands for any norm on R
I).

It follows that Hypothesis 1 is verified.

Proof. We apply Theorem 10.2.1 in [25]. We need to find a sequence of numbers
δN → 0 such that the following three conditions hold:

lim
N→∞

sup
y∈∆N

I

∥

∥V N (y)− V (y)
∥

∥ = 0 (22)

sup
N

sup
y∈∆N

I

AN (y) < ∞ (23)

lim
N→∞

sup
y∈∆N

I

AN
δN

(y) = 0 (24)

In the above, ∆N
I is the set of feasible states of Y N , i.e. the set of y ∈ ∆I such that

Ny is integer, AN (y) is the expected norm of jump per time unit, and AN
δN

(y) is
the absolute expected norm of jump per time unit due to jumps travelling further
than δN .

We now show Eq.(22). First consider the case y ∈ ∆N
I such that yi > 0 (thus

we have 1/N ≤ yi ≤ 1). We apply the inequality
∣

∣

∣
e−x − e−x′

∣

∣

∣
≤ |x− x′|, valid for

x ≥ 0 and x′ ≥ 0, to x = −(Nyi − 1) log
(

1− s
N

)

, x′ = syi and obtain:
∣

∣

∣

∣

(

1−
s

N

)Nyi−1

− e−syi

∣

∣

∣

∣

≤
∣

∣

∣
(Nyi − 1) log

(

1−
s

N

)

+ syi

∣

∣

∣

The right handside is convex in yi thus its maximum for yi ∈ [1/N, 1] is obtained
at one end of the interval. Thus

∣

∣

∣

∣

(

1−
s

N

)Nyi−1

− e−syi

∣

∣

∣

∣

≤ aN (s)
def
= max

[ s

N
,
∣

∣

∣
(N − 1) log

(

1−
s

N

)

+ s
∣

∣

∣

]

Second, multiply by yi and note that yi ≤ 1, it follows that, whenever y ∈ ∆N
I and

yi > 0:
∣

∣

∣

∣

yi

(

1−
s

N

)Nyi−1

− yie
−syi

∣

∣

∣

∣

≤ aN (s)

and this is also obviously true if yi = 0. It follows that

sup
y∈∆N

I

∥

∥V N (y)− V (y)
∥

∥ ≤ aN (s)
∑

i,j

‖−ei + ej‖Qi,j

from where Eq.(22) follows since limN→∞ aN (s) = 0.
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We now show Eq.(23). We take the sup norm on R
d so that ‖−ei + ej‖ = 1 for

i 6= j; thus

AN (y)
def
=

∑

i,j

yi

(

1−
s

N

)Nyi−1

Qi,j ‖−ei + ej‖

=
∑

i,j

yi

(

1−
s

N

)Nyi−1

Qi,j ≤
∑

i,j

Qi,j = I

which shows Eq.(23).
We now show Eq.(24). We take δN = 1

N
. The jumps of Y N are of the form

−ei+ej
N

and thus
∥

∥

∥

−ei+ej
N

∥

∥

∥
≤ δN . Thus

AN (y)δN
def
=

∑

i,j

yi

(

1−
s

N

)Nyi−1

Qi,j ‖−ei + ej‖1{
∥

∥

∥

−ei+ej

N

∥

∥

∥
>δN}

= 0

which trivially shows Eq.(24). By Theorem 10.2.1 in [25], this establishes Eq.(21).
It follows (as a much weaker convergence) that for any fixed T , Y N (T ) converges

in probability to the deterministic ϕT (y0). Thus there is also convergence in law,
since convergence in probability to a deterministic variable implies convergence in
distribution, i.e. Eq.(2) in Hypothesis 1 is verified. It remains to see that ϕt is
space continuous: this follows from the fact that the right-handside of the ODE is
Lipschitz continuous and from the Cauchy Lipschitz theorem.

It follows from Theorem 4.1 that any limit point of the stationary probability
Eq.(13) is concentrated on the stationary points of the ODE (20). This justifies a
posteriori the method in [24], which looked only at stationary points.

For the case of a regular graph (this is the case studied analytically in [24]), the
stationary points can be obtained explicitly (Theorem 6.1 in [8]). In particular,
there is a critical value s∗ below which there is only one stationary point, equal to
the uniform distribution y∗ = (1

I
, ..., 1

I
) and above which there are other stationary

points. The critical value is given in [8] and is equal to

s∗ = min
K=1,...,I−1

min
α>1

((I −K)α+Kφ(α)) (25)

with φ(x)
def
= −W0(−xe−x), W0 being the Lambert-W function of index 0. For

example for I = 3, the critical value is s∗ ≈ 2.7456.
We can apply Corollary 1: since the state space E = ∆I is compact, it follows

that for s < s∗, the stationary distribution given by Eq.(13), re-scaled by 1/N , con-
verges as N → ∞ to the uniform distribution. This illustrates the interest of the
reversibility results in this paper; we do not need to show that all trajectories con-
verge to the single stationary point – its uniqueness and the reversibility argument
are sufficient.
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