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Abstract. We extend the results on conservation laws with local flux con-

straint obtained in [2, 12] to general (non-concave) flux functions and non-
classical solutions arising in pedestrian flow modeling [15]. We first provide

a well-posedness result based on wave-front tracking approximations and the

Kružhkov doubling of variable technique for a general conservation law with
constrained flux. This provides a sound basis for dealing with non-classical

solutions accounting for panic states in the pedestrian flow model introduced

by Colombo and Rosini [15]. In particular, flux constraints are used here to
model the presence of doors and obstacles. We propose a “front-tracking” finite

volume scheme allowing to sharply capture classical and non-classical discon-

tinuities. Numerical simulations illustrating the Braess paradox are presented
as validation of the method.

1. Introduction. Several phenomena displayed by vehicular traffic can be modeled
using conservation laws in one space-dimension, see for example [22] for a survey
of available models. In particular, specific situations as the presence of toll gates,
construction sites, or even moving bottlenecks caused by slow moving large vehicles,
can be realistically modeled by imposing a local constraint on the flux, see [12, 13,
14, 19, 21]. In all these works, the flux function of the involved model is assumed
to be concave, which strongly simplifies the structure and the analysis of solutions.

Besides, Colombo and Rosini [15] introduced a model for pedestrian flow ac-
counting for panic appearance and consisting in a scalar conservation law in one
space-dimension displaying nonclassical shocks. Such a simplified model can be used
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for example to describe the motion of a crowd along a corridor or a bridge. More-
over, in [16] the authors show that the flux constraint represented by the presence of
a door may cause the onset of panic states from a normal situation. In this model,
the flux function is not concave (nor convex) and therefore it does not match the
available results about conservation laws with constrained flux. A rigorous analysis
of this pedestrian flow model thus needs the extension of the above cited results to
general fluxes. Moreover, the study of the non-convex case constitutes a non-trivial
generalization which is interesting from the analytical point of view.

In this paper, we are interested in the Cauchy problem for scalar conservation
laws with local unilateral constraint of the form

∂tρ+ ∂xf(ρ) = 0, t > 0, x ∈ R, (1)

ρ(0, x) = ρ0(x), x ∈ R, (2)

f(ρ(t, 0)) ≤ F (t), t > 0. (3)

Having in mind the pedestrian flow model described in [15], we fix R > 0 to be
the maximal density supported by the model and we assume that the flux function
f : [0, R]→ R is Lipschitz continuous with Lipschitz constant L

(F.1) f ∈W1,∞ ([0, R]; [0,+∞[) and piecewise C1

(so that left and right derivatives f ′(ρ±) are well defined for all ρ ∈ [0, R]), and
satisfies

(F.2) f(ρ) ≥ 0, f(0) = f(R) = 0,
(F.3) there exists a finite set of points {ρ1, . . . , ρN} ⊂ [0, R], N ≥ 1,

which are strict local minima or maxima of f , i.e.
f(ρ)− f(ρi) < 0 (or > 0)
for ρ in a neighborhood of ρi, i = 1, . . . , N , and
f ′(ρ±) 6= 0 for all ρ ∈ [0, R] \ {ρ1, . . . , ρN}.

We will also denote by fmax the maximum of f on [0, R]:

fmax = max
ρ∈[0,R]

f(ρ).

The paper is organized as follows. In Section 2 we define the constrained Rie-
mann solver and the entropy condition associated to (1)-(3). This allows to prove
a well posedness result based on wave-front tracking approximations and Kruzhkov
doubling of variable technique. (Details of the proof are collected in Section 5.)
Section 3 revises the finite volume scheme introduced in [2]. Finally, Section 4 deals
with the pedestrian flow model proposed in [15]: we define the constrained non-
classical Riemann solver and we propose a “front-tracking” finite volume scheme
allowing to sharply capture classical and non-classical discontinuities, and to ver-
ify the flux constraint. Numerical simulations illustrating the Braess paradox are
presented in Section 4.5.

2. Well posedness.

2.1. Definition of the constrained Riemann solver. Let R be the standard
Riemann solver for (1), (2), with

ρ(0, x) =

{
ρl if x < 0,
ρr if x > 0,

(4)
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whose first descriptions in the scalar case date back to Gel’fand [23] and Dafer-
mos [18]. More precisely, the map (t, x) 7→ R(ρl, ρr)(x/t) is the standard weak
entropy solution to (1),(4).

Let F (t) ≡ F ∈ [0, fmax] be constant, and ρF1 , . . . , ρ
F
M ∈ [0, R], 1 ≤ M ≤ N + 1,

be the roots of the equation
f(ρ) = F.

In connection with (4), we denote

ρ̂Fl =

{
min

{
ρF1 , . . . , ρ

F
M : ρFi ≥ ρl

}
if f(ρl) > F

max
{
ρF1 , . . . , ρ

F
M : ρFi ≤ ρl

}
if f(ρl) ≤ F

(5)

ρ̌Fr =

{
max

{
ρF1 , . . . , ρ

F
M : ρFi ≤ ρr

}
if f(ρr) > F

min
{
ρF1 , . . . , ρ

F
M : ρFi ≥ ρr

}
if f(ρr) ≤ F

(6)

whenever ρl > ρF1 , respectively ρr < ρFM . We note here that, as showed below, if
ρl ≤ ρF1 and ρr ≥ ρFM the solution of the constrained Riemann problem coincides
with the non-constrained one, and (5), (6) are of no use in the following definition.

Definition 2.1. The constrained Riemann solver RF : (ρl, ρr) 7→ RF (ρl, ρr)
for (1)-(3) is defined as follows.
If f (R(ρl, ρr)(0)) ≤ F , then RF (ρl, ρr) = R(ρl, ρr).

Otherwise, RF (ρl, ρr)(λ) =

{
R(ρl, ρ̂

F
l )(λ) if λ < 0 ,

R(ρ̌Fr , ρ
r)(λ) if λ > 0 .

We now check that Definition 2.1 defines a self-similar weak solution to (1), (4),
subject to the constant constraint F . First of all, we note that the stationary
discontinuity between ρ̂Fl and ρ̌Fr at x = 0 satisfies Rankine-Hugoniot condition,
since f(ρ̂Fl ) = F = f(ρ̌Fr ) by (5), (6).

Next, let us remind that the classical entropy Riemann solver satisfies

f (R(ρl, ρr))(0)) =


min

ρ∈[ρl,ρr]
f(ρ) if ρl ≤ ρr ,

max
ρ∈[ρr,ρl]

f(ρ) if ρr < ρl .
(7)

Let us analyze the left-hand side of the solution (i.e. for λ < 0, the analysis for
λ > 0 being similar). First of all, let us observe that if f (R(ρl, ρr)(0)) > F , then (7)
implies ρl > ρF1 . We have to distinguish several cases.

• If ρl ≤ ρF1 , we have by (7)

f (R(ρl, ρr)(0)) ≤ F, hence RF (ρl, ρr) = R(ρl, ρr).

• If f(ρl) > F , then by (5) ρ̂Fl > ρl and (7) implies

f
(
R(ρl, ρ̂

F
l )(0)

)
= min
ρ∈[ρl,ρ̂Fl ]

f(ρ) = f(ρ̂Fl ) = F,

hence R(ρl, ρ̂
F
l ) does not contain waves with positive speed.

• If f(ρl) ≤ F and ρl > ρF1 , then by (5) ρ̂Fl ≤ ρl and (7) implies

f
(
R(ρl, ρ̂

F
l )(0)

)
= max
ρ∈[ρ̂Fl ,ρl]

f(ρ) = f(ρ̂Fl ) = F,

hence again R(ρl, ρ̂
F
l ) does not contain waves with positive speed.

Remark 1. The stationary jump from ρ̂Fl to ρ̌Fr doesn’t satisfy the Liu’s entropy
condition [28]. In fact, two cases can occur if f (R(ρl, ρr))(0)) > F :

• If ρl < ρr, then by (7) we infer that f(ρl), f(ρr) > F and therefore ρ̌Fr ≤ ρl <
ρr ≤ ρ̂Fl by (5), (6).
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• If ρl > ρr, then (7) implies that there exists ρ∗ ∈ [ρr, ρl] such that f(ρ∗) > F .
Therefore, by (5), (6) we can conclude that ρ̌Fr ≤ ρ∗ ≤ ρ̂Fl .

In both cases, Liu’s entropy condition is not satisfied. We will refer to such discon-
tinuities as non-classical shocks.

2.2. Entropy conditions. Having in mind the analysis of the model for pedestrian
flow introduced in [15], and in order to reduce technicalities and the number of
cases to be considered, from now on we will restrict the study to flux functions that
fit the hypotheses in [16]. Nevertheless, we believe that the results hold true for
more general fluxes. We will require the following properties (see Fig. 2, right, in
Section 4.1):
(F.2) f(ρ) = 0 if and only if ρ ∈ {0, R};
(F.3.1) f has a local minimum at r ∈ [0, R]
(F.3.2) the restrictions f|[0,r] and f|[r,R] are strictly concave;
(F.3.3) f(rM ) = max {f(ρ) : ρ ∈ ]0, r[} > f(RM ) = max {f(ρ) : ρ ∈ ]r,R[}.

Further requirements will be added in Section 4.1.
The definitions of entropy weak solutions introduced in [2, 12] can be generalized

to the present case. Let us introduce the function

Φ(a, b) = sgn (a− b) (f(a)− f(b)) = f(a>b)− f(a⊥b),
where a>b = max{a, b} and a⊥b = min{a, b}.
Definition 2.2. A function ρ ∈ L∞(R+ × R; [0, R]) is a weak entropy solution of
(1)-(3) if
(i) it satisfies the following entropy inequalities: for every ϕ ∈ C1

c(R+×R;R+) and
all κ ∈ [0, R],∫ +∞

0

∫
R

(|ρ(t, x)− κ|∂t + Φ(ρ(t, x), κ)∂x) ϕ(t, x) dx dt

+

∫
R
|ρ0(x)− κ| ϕ(0, x) dx+ 2

∫ +∞

0

(f(κ)− f(κ)⊥F (t))ϕ(t, 0) dt ≥ 0, (8)

(ii) it verifies the constraint:

f(ρ(t, 0−)) = f(ρ(t, 0+)) ≤ F (t) for a.e. t > 0, (9)

where ρ(t, 0±) denote the operators of left and right strong traces at {x = 0}.
It is easy to check that the constrained Riemann solver introduced in Defini-

tion 2.1 gives a weak entropy solution of (1)-(3) in the sense of the above Defini-
tion 2.2.

Proposition 1. Let ρ(t, x) = RF (ρl, ρr)(x/t) be the weak solution to (1), (3) and
(4) constructed in Definition 2.1. Then ρ is a weak entropy solution in the sense
of Definition 2.2. Moreover, the entropy condition (8) and the constraint (9) single
out the maximal stationary discontinuities satisfying the constraint.

Proof. Let us consider an admissible nonclassical stationary shock at x = 0, i.e.
assume ρ(t, 0−) = ρ̂Fl and ρ(t, 0+) = ρ̌Fr . In particular, we know that f(ρ̂Fl ) =
f(ρ̌Fr ) = F and ρ̂Fl > ρ̌Fr . Take now a non-negative test function ξ ∈ C1

c((0,+∞))
and take ϕε = wεξ with ε > 0 in (8). Here wε is the cut-off function defined by

wε(x) =


1 if |x| < ε,

2− |x|/ε if ε ≤ |x| ≤ 2ε,

0 if |x| > 2ε.

(10)
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Then the entropy inequality (8) becomes

I(ε) + J(ε) ≥ 0,

I(ε) =

∫ +∞

0

∫
R

(|ρ− κ|∂tξ + Φ(ρ, κ)∂xξ) wε dx dt,

J(ε) =

∫ +∞

0

∫
R

Φ(ρ, κ)ξw′ε dx dtx+ 2

∫ +∞

0

(f(κ)− f(κ)⊥F ) ξ(t) dt.

Clearly, limε→0 I(ε) = 0. Moreover, using the definition of traces, we deduce

lim
ε→0

J(ε) =

∫ +∞

0

(
Φ(ρ(t, 0−), κ)− Φ(ρ(t, 0+), κ)

+ 2 (f(κ)− f(κ)⊥F )

)
ξ(t) dt,

which gives for all κ ∈ [0, 1] and a.e. t > 0 (dropping the time dependence)

Φ(ρ−, κ)− Φ(ρ+, κ) + 2 (f(κ)− f(κ)⊥F ) ≥ 0, (11)

where we have set ρ± = ρ(t, 0±). In our case, (11) writes

Φ(ρ̂Fl , κ)− Φ(ρ̌Fr , κ) + 2 (f(κ)− f(κ)⊥F ) ≥ 0. (12)

To check (12), let us consider the case ρ̌Fr ≤ κ ≤ ρ̂Fl , so that the left hand side of
(12) rewrites

f(ρ̂Fl )− f(κ)− f(κ) + f(ρ̌Fr ) + 2 (f(κ)− f(κ)⊥F )

= 2F − 2f(κ) + 2 (f(κ)− f(κ)⊥F )

= 2F − 2f(κ)⊥F ≥ 0.

The cases κ < ρ̌Fr and κ > ρ̂Fl can be checked in the same way.
Let us now check that other possible non-classical stationary discontinuities are

ruled out by (8):

• Assume first that ρ− > ρ+, f(ρ−) = f(ρ+) = f̃ < F , and there exists

κ̄ ∈ [ρ+, ρ−] such that f(κ̄) > f̃ . In this case, (11) becomes, for ρ+ ≤ κ ≤ ρ−,

f(ρ−)− f(κ)− f(κ) + f(ρ+) + 2 (f(κ)− f(κ)⊥F )

= 2f̃ − 2f(κ) + 2 (f(κ)− f(κ)⊥F )

= 2f̃ − 2f(κ)⊥F.
If we now choose κ = κ̄, we get

2f̃ − 2f(κ̄)⊥F = 2
(
f̃ − f(κ̄)⊥F

)
< 0,

hence the discontinuity is not admissible.
• We consider now the case where ρ− < ρ+, with f(ρ−) = f(ρ+) = f̃ ≤ F

and there exists κ̄ ∈ [ρ(t, 0−), ρ(t, 0+)] such that f(κ̄) < f̃ . In this case, for
ρ(t, 0−) ≤ κ ≤ ρ(t, 0+), (11) becomes

f(κ)− f(ρ−)− f(ρ+) + f(κ) + 2 (f(κ)− f(κ)⊥F )

= 2f(κ)− 2f̃ + 2 (f(κ)− f(κ)⊥F )

= 4f(κ)− 2f̃ − 2f(κ)⊥F.
Taking κ = κ̄ in the above expression we get

4f(κ̄)− 2f̃ − 2f(κ̄)⊥F = 2
(
f(κ̄)− f̃

)
< 0.
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Figure 1. Example of traces at x = 0 that are not ruled out by
condition [12, (3.2)]

To conclude the proof, it now suffices to write (8) with test function ξ(1 − wε)
(which gives a positive term since the solution is a classical entropy solution away
from x = 0), add it to I(ε) + J(ε) and pass to the limit as ε→ 0.

Remark 2. Condition (8) differs in the last integrand from the entropy condition
given in [12]. More precisely, the condition given here is finer, in the sense that (8)
implies the inequality [12, (3.2)]. In fact it is straightforward to check that

f(κ)− f(κ)⊥F (t) ≤
(

1− F (t)

fmax

)
f(κ), for all t > 0, κ ∈ [0, R].

Moreover, condition [12, (3.2)] does not work in the setting of non-concave fluxes,
since it is not sufficient to rule out some non-maximal non-classical stationary
shocks. In fact, let us consider for example the situation depicted in Fig. 1, where
ρ− > ρ+, f(ρ−) = f(ρ+) = f̃ , F = f̃ + ε, for some ε > 0 small, and fmax � f(k)
for all k ∈ [ρ+, ρ−]. Condition [12, (3.2)] would give

Φ(ρ−, κ)− Φ(ρ+, κ) + 2f(κ) (1− F/fmax) ≥ 0

instead of (11), and taking κ ∈ [ρ+, ρ−], the left-hand side of the above inequality
would read in this case

2f̃ − 2f(κ) + 2f(κ) (1− F/fmax) = 2
(
f̃ − f(κ)F/fmax

)
= f̃ (1− f(κ)/fmax)− εf(κ)/fmax,

which is positive for every κ ∈ [ρ+, ρ−], if ε is taken sufficiently small. This shows
that traces ρ−, ρ+ would have been admissible under condition [12, (3.2)], even if
they satisfy the constraint with strict inequality, which we do not allow for non-
classical shocks (this would prevent uniqueness of solutions).
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Condition (8) was first found by the authors when passing to the limit in the
discrete entropy inequality for finite volume approximations in the concave case (see
the proof of [2, Proposition 4.7]). In that case, the two formulations turned out to
be equivalent.

In order to formulate a second (equivalent) definition that does not need the
explicit condition (9) on traces as in [2], and based on assumptions (F.1) - (F.3.3),
we introduce the following sets:

• G1(F ) = {(cl, cr) ∈ [0, R]2; cl > cr, f(cl) = f(cr) = F,∃r ∈ [cr, cl]
s.t. f(r) > F},

• G2(F ) = {(c, c) ∈ [0, R]2; f(c) ≤ F},
• G3(F ) = {(cl, cr) ∈ [0, R]2; f(cl) = f(cr) ≤ F, (c∗ − cl)(f(c∗) − f(cl)) ≥

0 ∀c∗ ∈ [cl⊥cr, cl>cr]},
and denote

G(F ) = G1(F ) ∪ G2(F ) ∪ G3(F ).

Remark that the sets G2 and G3 contain the traces of classical entropy weak solutions
(continuous parts or entropy admissible shocks), while G1 contains the traces of
nonclassical discontinuities that can even result by superposition of classical and
nonclassical shocks at zero speed. Globally, the set G contains nothing but the
traces allowed by Definition 2.2, as stated by Lemma 2.4 below.

We also define the functions c : R→ [0, R]2 by

c(x) =

{
cl if x < 0,
cr if x > 0,

(13)

with (cl, cr) ∈ [0, R]2.

Definition 2.3. A function ρ ∈ L∞(R+ × R; [0, R]) is a weak entropy solution of
(1)-(3) if there exists M > 0 such that for every ϕ ∈ C1

c(R+ × R;R+) and all c
defined by (13),∫ +∞

0

∫
R

(|ρ(t, x)− c(x)|∂t + Φ(ρ(t, x), c(x))∂x) ϕ(t, x) dx dt

+

∫
R
|ρ0(x)− c(x)| ϕ(0, x) dx+M

∫ +∞

0

dist ((cl, cr),G(F (t))) ϕ(t, 0) dt ≥ 0.

(14)

The above definition follows the more general approach based on admissibility
germs presented in [3], and references therein. In particular, other definitions of
the reminder term in (14) are possible. Here, we kept the notion of “distance” in
accordance with [2].

Definitions 2.2 and 2.3 are equivalent. In fact we can prove the following

Proposition 2. A function ρ ∈ L∞(R+ × R; [0, R]) satisfies (8)-(9) if and only if
it satisfies (14).

The proof is detailed in [2, Proof of Proposition 2.6]. We only need to verify
that [2, Lemma 2.7] still holds. We report it below for completeness, the proof
being postponed to Section 5.

Lemma 2.4. [2, Lemma 2.7]
(i) If (bl, br) ∈ G(F ), then

∀(cl, cr) ∈ G(F ), Φ(bl, cl) ≥ Φ(br, cr). (15)
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(ii) The converse is true, under the following form:

if (15) holds and the Rankine-Hugoniot condition
f(bl) = f(br) is satisfied, then (bl, br) ∈ G(F ).

(16)

To conclude this section, we state a well-posedness result for (1)-(3).

Theorem 2.5. For any ρ0 ∈ L∞(R; [0, R]) and F ∈ L∞(R+; [0, fmax]), there exists
one and only one entropy solution ρ ∈ L∞(R+×R; [0, R]) to problem (1)-(3) (in the
sense of Definitions 2.2 and 2.3). Moreover, assume F 1, F 2 ∈ L∞(R+; [0, fmax]),
and ρ1

0, ρ
2
0 ∈ L∞(R, [0, R]) such that (ρ1

0−ρ2
0) ∈ L1(R). Assume that ρ1, ρ2 are

entropy solutions of (1)-(3), corresponding to the initial data ρ1
0, ρ

2
0 and to the con-

straints F 1, F 2, respectively. Then, for a.e. T > 0, we have∫
R
|ρ1 − ρ2|(T, x) dx ≤ 2

∫ T

0

|F 1 − F 2|(t) dt +

∫
R
|ρ1

0 − ρ2
0|(x) dx. (17)

The proof of this theorem is postponed to Section 5.2.

3. Finite volume numerical schemes for the constrained problem. We now
present a class of numerical schemes which easily account for the constraint (3).
The idea is exactly the same as the one proposed in [2]. First of all, let us present
some usual notations. We introduce a space step ∆x and a time step ∆t, both
assumed to be constant, and we set ν = ∆t/∆x. We define the mesh interfaces
xj+1/2 = j∆x for j ∈ Z and the intermediate times tn = n∆t for n ∈ N. At each
time tn, ρnj represents an approximation of the mean value of the solution to (1)-(2)
on the interval [xj−1/2, xj+1/2), j ∈ Z. Therefore, a piecewise constant approximate
solution x→ ρν(x, tn) is given by

ρν(x, tn) = ρnj for all x ∈ Cj = [xj−1/2, xj+1/2[ , j ∈ Z, n ∈ N.
When n = 0, we set

ρ0
j =

1

∆x

∫ xj+1/2

xj−1/2

ρ0(x)dx, for all j ∈ Z.

In the case of classical conservation laws (1), a well-known class of finite volume
approximation is defined by the so-called three-point monotone schemes:

ρn+1
j = ρnj −

∆t

∆x
(fnj+1/2 − f

n
j−1/2) (18)

where fnj+1/2 = g(ρnj , ρ
n
j+1) for any j ∈ Z and n ∈ N, and g satisfies the following

assumptions:

• Lipschitz continuity: g ∈W1,∞([0, R]2) with Lipschitz constant Lg.
• Consistency: ∀a ∈ [0, R], g(a, a) = f(a).
• Monotonicity: g is nondecreasing w.r.t. its first variable and nonincreasing

w.r.t. its second variable.

Under the CFL condition

ν ≤ 1

2Lg
, (19)

such a numerical scheme converges to the classical (Kružhkov [26]) entropy weak
solution of (1), (2), see for example [20]. In [2], the authors proposed to modify
such a scheme at the interface where the constraint (3) acts:

fn1/2 = min(g(ρn0 , ρ
n
1 ), F (tn)), (20)
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keeping elsewhere

fnj+1/2 = g(ρnj , ρ
n
j+1) ∀j 6= 0. (21)

The most important remark is that the local modification of the numerical flux
(20) does not affect the monotonicity of the scheme:

Under condition (19),

ρn+1
j is a nondecreasing function of ρnj−1, ρnj and ρnj+1.

(22)

Therefore, we can easily deduce the L∞ bound for the numerical scheme:

0 ≤ ρν ≤ R a.e. (23)

and, as a result of the Crandall-Tartar lemma [17], we have the discrete time con-
tinuity estimate (see [6]): ∑

j∈Z
|ρn+1
j − ρnj | ≤ |ρ0|BV(R). (24)

It is clear that it is very difficult to control the variation of the ρν in the space
direction due to the nontrivial treatment of the interface. However, one may follow
the successful strategy developed in [6]. Using the estimate (24), it is possible to
prove BV bounds far from the interface, let us say on [−B,−A] ∪ [A,B], with
0 < A < B. For almost any T > 0, these take the form

|ρν(T, .)|BV(A,B) ≤ |ρ0|BV(A,B) +
K

r
, (25)

where 0 < r < A and for ∆x sufficiently small (smaller than r). Though this bound
blows up when A → 0 (since r → 0), convergence as ∆x → 0 can be achieved
on [−B,−A] ∪ [A,B] for any fixed A by the Helly’s theorem. Therefore, taking a
decreasing sequence (Am)m and letting ∆x tend to 0 for each Am, one may use the
Cantor diagonal process to extract a subsequence to the numerical approximation
which converges almost everywhere to a function of L∞(R+ × R).

Now we have to identify this limit. To do so, we derive the discrete entropy
inequalities verified by the numerical scheme. Following [2], one may check that,
for any (kj)j∈Z ⊂ [0, R], j ∈ Z and n ∈ N,

|ρn+1
j − κj | − |ρnj − κj |+ ν(Fnj+1/2 − F

n
j−1/2)− νHn

i ≤ 0 (26)

where

Fnj+1/2 =


g(ρnj>κi, ρnj+1>κj+1)− g(ρnj⊥κi, ρnj+1⊥κj+1) if j 6= 0

min(g(ρnj>κi, ρnj+1>κj+1), F (tn))

−min(g(ρnj⊥κi, ρnj+1⊥κj+1), F (tn)) if j = 0

and

Hn
i =


|min(g(κ0, κ1), F (tn))− g(κ−1, κ0)| if j = 0,

|g(κ1, κ2)−min(g(κ0, κ1), F (tn))| if j = 1,

0 else.

Starting form inequalities (26), one may use the proof of the Lax-Wendroff theorem
to deduce that any limit ρ̄ ∈ L∞(R+ × R) of the numerical scheme satisfies for all
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(cl, cr) ∈ [0, R]2∫
R+

∫
R

(|ρ̄(t, x)− c(x)|∂t + Φ(ρ̄(t, x), c(x))∂x) ϕ(t, x) dx dt

+

∫
R
|ρ0(x)− c(x)| ϕ(0, x) dx

+ 12Lg

∫
R+

dist ((cl, cr),G1(F (t)) ∪ G2(F (t))) ϕ(t, 0) dt ≥ 0 (27)

where c is defined by (13). The proof can be found in [2], but let us comment the
last term. Actually, it attests to the fact that the scheme is able to preserve exactly
any initial data ρ0(x) = c(x) with c given by (13) and (cl, cr) ∈ G1(F ) ∪ G2(F ), as
soon as F is constant in t. For the case (cl, cr) ∈ G3(F ), which corresponds to a
stationary shock wave, most of numerical schemes cannot preserve such initial data
since they introduce numerical diffusion. The last step is now to prove that if ρ̄
satisfies (27), then it also satisfies (14). Once again, the answer can be found in [2],
Lemma 4.8.

Remark 3. In the case of a bell-shaped flux function f treated in [2], the authors
prove the convergence of the numerical scheme to the entropy solution of (1)-(3).
The proof relies on the use of constrained entropy-process solutions, which generalize
the concept of entropy solution to Young measures. Morevoer, if the numerical flux g
is the Godunov flux, it has been shown in [7] that error estimates can be obtained, on
the basis of modified BV estimates. Here, though the numerical scheme is exactly
the same, the extension of the analysis of convergence to constrained solutions
associated with flux functions which comply with properties (F.1)-(F.3.3) is not
straightforward. Therefore, we have used the strategy developed in [6], which allows
us to avoid the study of measure-valued solutions (this method has been also used
in a similar framework in [1]). The proof is much simpler and we have stated here
only the main guidelines. Note, however, that the derivation of error estimates with
these more complex flux functions is an open question, since the techniques of [7]
are very dependent on the bell shape of f .

4. Application to pedestrian flow modeling. The theory developed in the
previous sections cannot be applied directly to the one-dimensional pedestrian flow
model introduced by Colombo and Rosini [15], because of the presence of non-
classical solutions, which are the characteristic feature of the model. Therefore, the
definition of constraint-satisfying solutions has to be adapted to the non-classical
Riemann solver, whose description is recalled in Section 4.1.

Due to the presence of non-classical discontinuities, beside the stationary one
caused by the flux constraint, entropy conditions and uniqueness results are not
available in this framework. In fact, L1-stability does not hold even in the un-
constrained setting, see [16, Prop. 3.6] and [31, Prop. 3.3]. Nevertheless, the
well-posedness result proved in Section 2.2 still holds if no panic arises. Moreover,
the numerical techniques developed in Section 3 prove to be useful for the construc-
tion of a numerical scheme capable to deal with flux constraint even in the presence
of non-classical waves, as detailed in Sections 4.4 and 4.5.

4.1. A non-classical Riemann solver. The model of pedestrian traffic flow in-
troduced in [15, 16] is based on a flux function f like the one represented in Figure 2.
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Figure 2. Left, a flow satisfying hypotheses in [16]. Superimposed
are experimental measurements from [24]. Crowd density, ρ, is
on the horizontal axis and flow, ρ v, on the vertical one. Right,
notations used in the paper. (Figures taken from [13, 16].)

In particular, f has a local minimum at r, which is the maximal density in normal
(non-panic) situations, while bigger densities r < ρ ≤ R can be reached in case of
panic.

For simplicity, it is assumed that the restrictions f|[0,r] and f|[r,R] are strictly
concave. Hence there exists a unique point rM ∈ ]0, r[ such that

f(rM ) = max{f(ρ) : ρ ∈ [0, r]}

and a unique point RM ∈ ]r,R[ such that

f(RM ) = max{f(ρ) : ρ ∈ [r,R]}.

The evolution of the solutions to (1) is governed through the introduction of
non-entropic shocks, which violate the maximum principle and then allow the ap-
pearance of panic from non-panic regimes.

As it is usual when dealing with non-classical scalar conservation laws, see [27,
Chapter II], in [15] authors introduced the auxiliary functions ψ and ϕ, see Figure 3,
left.

Let ψ(r) = r and, for ρ 6= r, let ψ(ρ) be such that the straight line through
(ρ, f(ρ)) and (ψ(ρ), f ◦ ψ(ρ)) is tangent to the graph of f at (ψ(ρ), f ◦ ψ(ρ)). Let
rT ∈ ]0, r[ and RT ∈ ]r,R[ be such that ψ(rT ) = RT and ψ(RT ) = rT (see Fig. 2,
right). Besides, for ρ ∈ [0, rT [, the line through (ρ, f(ρ)) and (ψ(ρ), f ◦ ψ(ρ)) has a
further intersection with the graph of f , which we call (ϕ(ρ), f ◦ ϕ(ρ)). In [15], the
authors introduce two thresholds s and ∆s such that

s > 0 , ∆s > 0 , s < rM and r > s+ ∆s ≥ ϕ(s) > rT > r −∆s . (28)

Here we will also assume that

f(s) > f(r).

The nonclassical Riemann solver RNC is then defined as follows. Let

NS(ρl, ρr)(λ) =

{
ρl if λ < Λ(ρl, ρr),

ρr if λ > Λ(ρl, ρr),
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Figure 3. Left, the functions ψ and ϕ: their geometrical meaning.
Right, the Riemann Solver: in C, the solution consists of classical
waves only; in N , also non-classical shocks are present.

denote the non-entropic jump joining ρl to ρr and moving with the speed given by
the Rankine-Hugoniot equation

Λ(ρl, ρr) =
f(ρl)− f(ρr)

ρl − ρr
.

• If ρl, ρr ∈ [0, r] and ρl > s, ρr − ρl > ∆s, then

RNC(ρl, ρr)(λ) =

{
NS(ρl, ψ(ρl))(λ) if λ < f ′(ψ(ρl)),

R(ψ(ρl), ρr) if λ > f ′(ψ(ρl)).

• If ρl < r < ρr and the segment between (ρl, f(ρl)) and (ρr, f(ρr)) intersects
the curve f = f(ρ), then

RNC(ρl, ρr)(λ) =

{
NS(ρl, ψ(ρl))(λ) if λ < f ′(ψ(ρl)),

R(ψ(ρl), ρr) if λ > f ′(ψ(ρl)),

if ρr < ψ(ρl), and

RNC(ρl, ρr) = NS(ρl, ρr)

if ρr ≥ ψ(ρl).
• Otherwise, RNC(ρl, ρr) = R(ρl, ρr).

4.2. The constrained non-classical Riemann solver. As in Section 2.1, we
construct the constrained Riemann solver derived from RNC .

Definition 4.1. A Riemann solver RFNC : (ρl, ρr) 7→ RFNC(ρl, ρr) for (1)-(3) is
defined as follows.
If f (RNC(ρl, ρr)(0)) ≤ F , then RFNC(ρl, ρr) = RNC(ρl, ρr).
Otherwise, if s < ρl < r and ρ̂Fl > ρl + ∆s then

RFNC(ρl, ρr)(λ) =

{
RNC(ρl, R̂

F
M )(λ) if λ < 0 ,

RNC(ρ̌Fr , ρr)(λ) if λ > 0 .
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In all the other cases

RFNC(ρl, ρr)(λ) =

{
RNC(ρl, ρ̂

F
l )(λ) if λ < 0 ,

RNC(ρ̌Fr , ρr)(λ) if λ > 0 .

In order to check that the above definition is correct, observe first of all that if
f(ρl) ≤ F , then ρ̂Fl ≤ ρl and consequently RNC(ρl, ρ̂

F
l ) = R(ρl, ρ̂

F
l ), falling in the

setting of Definition 2.1. Similarly, if f(ρr) ≤ F , then ρ̌Fr ≥ ρr and consequently
RNC(ρ̌Fr , ρr) = R(ρ̌Fr , ρr)

Consider now the case f(ρl) > F . We have to distinguish three cases:

• If F ∈ ]f(RM ), f(rM )], then RNC(ρl, ρ̂
F
l ) = R(ρl, ρ̂

F
l ).

• If F ∈ [f(r), f(RM )], and moreover ρl > s, ρ̂Fl > ρl + ∆s, then RNC(ρl, ρ̂
F
l )

would contain positive waves, and would not satisfy the constraint (9). On

the contrary, RNC(ρl, R̂
F
M ) = NS(ρl, R̂

F
M ) consists of a shock with negative

speed. In all the other cases, we have RNC(ρl, ρ̂
F
l ) = R(ρl, ρ̂

F
l ).

• If F ∈ [0, f(r)[, RNC(ρl, ρ̂
F
l ) contains only waves with negative speeds.

We now check the right hand side of the Riemann solver, i.e. for λ > 0, and
f(ρr) > F . We distinguish two cases:

• If F ∈ [f(r), f(rM )], then RNC(ρ̌Fr , ρr) = R(ρ̌Fr , ρr).
• If F ∈ [0, f(r)[, then RNC(ρ̌Fr , ρr) contains only waves with positive speeds.

Note that non-classical shocks can appear both in RNC(ρl, ρ̂
F
l ) and RNC(ρ̌Fr , ρr)

as, for example, if F < f(r), ρl ∈ [0, rM ] with f(ρl) > F and ρr ∈ [r,RM ] (which
implies f(ρr) > F ).

4.3. A numerical scheme for classical and non-classical solutions. We pro-
pose here a numerical scheme for computing classical and nonclassical solutions of
(1)-(2), which follows the same “sharp-interface approach” as in [8, 9]. It is made of
two steps. The first step tracks the (classical or non-classical) discontinuities arising
in the Riemann problems set at the mesh interfaces. The second step consists of a
random sampling strategy in order to avoid dealing with moving meshes.

Let us first define the set N ∈ [0, R]2 made of the pairs (ρl, ρr) such that the
Riemann solutionRNC(ρl, ρr) is actually non-classical, that is to say contains a non-
classical shock. Similarly, we define the set C ∈ [0, R]2 made of the pairs (ρl, ρr)
such that the Riemann solution RNC(ρl, ρr) is made of classical waves. (See Fig. 3,
right.)

Let us now present the numerical scheme for classical and non-classical solutions.
We keep the notation of Section 3 and, being given the sequence (ρnj )j∈Z at time

tn, the point is now to propose a definition of (ρn+1
j )j∈Z by a recurrence relation.

Step 1: Tracking the discontinuities and averaging (tn → tn+1−) The idea of this
step is to first track the non-classical or classical discontinuities in the Riemann
problems set at each mesh interface, and then to average the solution on both sides
of these discontinuities.

As is customary in the classical Godunov method, one first solves theoretically
the Cauchy problem (1)-(2) with ρ0(x) = ρν(x, tn) for times t ∈ [0,∆t]. Under the
usual CFL restriction

∆t

∆x
max
ρ
{|f ′(ρ)|} ≤ 1

2
, (29)
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for all the ρ under consideration, the solution is known by gluing together the
solutions of the Riemann problems set at each interface. More precisely

ρ(x, t) = RNC(ρnj , ρ
n
j+1)

(
x− xj+1/2

t

)
∀(x, t) ∈ [xj , xj+1]× [0,∆t], (30)

where xj =
xj−1/2 + xj+1/2

2
.

In order to track the discontinuities, we then define the sequence

(σnj+1/2 = σ(ρnj , ρ
n
j+1))j∈Z

of characteristic speeds of propagation at interfaces (xj+1/2)j∈Z as follows :

• if (ρnj , ρ
n
j+1) belongs to N , then σnj+1/2 coincides with the speed of propagation

of the non-classical discontinuity in the Riemann solution RNC(ρnj , ρ
n
j+1);

• if (ρnj , ρ
n
j+1) belongs to C, then σnj+1/2 coincides with the speed of propagation

of the classical discontinuity in the Riemann solution RNC(ρnj , ρ
n
j+1), if any;

• otherwise, σnj+1/2 = 0.

Assuming that, for all j ∈ Z, the interface xj+1/2 moves at velocity σnj+1/2 between

times tn and tn+1 = tn+ ∆t, it is natural to define the new interface xnj+1/2 at time

tn+1 by

xnj+1/2 = xj+1/2 + σnj+1/2 ∆t, j ∈ Z. (31)

We also introduce the notation ∆x
n

j = xnj+1/2 − x
n
j−1/2, j ∈ Z.

At last, averaging the solution on Cnj = [xnj−1/2, x
n
j+1/2[ provides us with a piece-

wise constant approximate solution ρν(x, tn+1−) on a non uniform mesh defined
by

ρν(x, tn+1−) = ρn+1−
j for all x ∈ Cnj , j ∈ Z, n ∈ N,

with

ρn+1−
j =

1

∆x
n

j

∫ xnj+1/2

xn
j−1/2

ρ(x,∆t)dt, j ∈ Z.

It is worth noticing that the modified cells Cnj may be either smaller or larger
than the original ones Cj , depending on the signs of the velocities σnj+1/2, j ∈ Z.

This is illustrated on Figures 4 and 5 below.

Figure 4. A first example of modified cells tracking the discontinuities.
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Figure 5. A second example of modified cells tracking the discontinuities.

Actually, using notations introduced on Figures 4 and 5 and integrating (1) over
the element E = (abcd) with use of Green’s theorem, we classically obtain the
simpler formula

ρn+1−
j =

∆x

∆x
n

j

ρnj −
∆t

∆x
n

j

(f
n,−
j+1/2 − f

n,+

j−1/2) for all j ∈ Z. (32)

The numerical fluxes are defined by

f
n,±
j+1/2 = f

(
RNC(ρnj , ρ

n
j+1)(σn,±j+1/2)

)
− σnj+1/2RNC(ρnj , ρ

n
j+1)(σn,±j+1/2), (33)

for all j ∈ Z where we have used the usual notations σn,±j+1/2 to denote the left and

right traces of the Riemann solver at λ = σnj+1/2.

Remark. The conservation property

f
(
RNC(ρnj , ρ

n
j+1)(σn,−j+1/2)

)
− σnj+1/2RNC(ρnj , ρ

n
j+1)(σn,−j+1/2)

=

f
(
RNC(ρnj , ρ

n
j+1)(σn,+j+1/2)

)
− σnj+1/2RNC(ρnj , ρ

n
j+1)(σn,+j+1/2)

(34)

remains valid thanks to Rankine-Hugoniot conditions.

We finally introduce the notation f
±

(ρnj , ρ
n
j+1) = f

n,±
j+1/2 for the numerical fluxes,

with of course

f
±

(ρnj , ρ
n
j+1) = f

(
RNC(ρnj , ρ

n
j+1)(σn,±j+1/2)

)
− σnj+1/2RNC(ρnj , ρ

n
j+1)(σn,±j+1/2). (35)

Recall that σnj+1/2 = σ(ρnj , ρ
n
j+1) by definition.

To conclude this first step, let us emphasize that when the Riemann solution
between ρnj and ρnj+1 does not present discontinuities, then σnj+1/2 = 0 and the

numerical fluxes f
n,±
j+1/2 coincide with the usual numerical flux

f(ρnj , ρ
n
j+1) = f

(
RNC(ρnj , ρ

n
j+1)(0)

)
associated with the Godunov method. This numerical flux may of course be replaced
by any consistent numerical flux for the sake of simplicity. In the proposed numerical
simulation below, we replaced for instance this Godunov numerical flux by the
Rusanov numerical flux as soon as the solution joining ρnj to ρnj+1 does not display
discontinuities. This amounts to set

f(ρnj , ρ
n
j+1) =

1

2

(
f(ρnj ) + f(ρnj+1)− αj+1/2(ρnj+1 − ρnj )

)
, (36)

with
αj+1/2 = max

(
f ′(ρnj ), f ′(ρnj+1)

)
.
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Step 2 : Random sampling (tn+1− → tn+1) In order to avoid dealing with moving
meshes, we propose to define the new approximation ρn+1

j at time tn+1 on the

(uniform) cells Cj , j ∈ Z, using a random sampling strategy. More precisely, we

propose to pick up randomly a value between ρn+1−
j−1 , ρn+1−

j and ρn+1−
j+1 , according

to their rate of presence in the cell Cj . Given a well distributed random sequence
(an) in the interval ]0, 1[, this leads to set:

ρn+1
j =


ρn+1−
j−1 if an+1 ∈ (0, ∆t

∆x max(σnj−1/2, 0)),

ρn+1−
j if an+1 ∈ [ ∆t

∆x max(σnj−1/2, 0), 1 + ∆t
∆x min(σnj+1/2, 0)),

ρn+1−
j+1 if an+1 ∈ [1 + ∆t

∆x min(σnj+1/2, 0), 1),

(37)
for all j ∈ Z.

Following Colella [11], we consider in practice the low-discrepancy van der Corput
random sequence (an) defined by

an =

m∑
k=0

ik2−(k+1),

where n =
∑m
k=0 ik2k, ik = 0, 1, denotes the binary expansion of the integers

n = 1, 2, .... This concludes the description of the modified Godunov scheme.
To conclude this section, it is worth emphasizing that, due to the sampling

procedure, the proposed algorithm is not strictly conservative in the classical sense of
finite volumes methods. However, we observed that this drawback does not prevent
the approximate solutions to converge to the right one (see also for instance [8, 9]).
In particular, discontinuities propagate with the right speed and conservation errors
tend to zero with the mesh size. On the other hand, it is easily seen that if we focus
on initial data leading to a solution that consists of an isolated (classical or non-
classical) discontinuity, the proposed method coincides with the Glimm’s random
choice scheme and then converges to the exact solution.

4.4. A numerical scheme for constrained classical and non-classical solu-
tions. We propose to describe in this section how to deal with constrained solutions.
In practice and as motivated in the previous section, such constraints will appear
at the exit of a corridor and possibly at suitable obstacles like columns posed before
the exit of the corridor in order to lessen the crowd pressure. In this paragraph, we
denote by xjc+1/2 = (jc + 1/2)∆x the mesh interface associated with the position
where such a constraint takes place (that is typically the position of the exit or of
an obstacle).

In the framework of the numerical scheme proposed for non-constrained classical
and nonclassical solutions in the previous subsection, first of all we have to define

σnjc+1/2 and the corresponding numerical fluxes f
n,±
jc+1/2 = f

±
(ρnjc , ρ

n
jc+1). Since the

non-classical shock possibly arising because of the constraint is stationary, we set
σnjc+1/2 = 0 and we define the numerical flux at the interface xjc+1/2 as in Section

3 by the following constrained formula

f
n,±
jc+1/2 = f

±
(ρnjc , ρ

n
jc+1) = min

(
f(ρnjc , ρ

n
jc+1), F

)
,

where F represents the flux constraint and f(ρnjc , ρ
n
jc+1) is given by the Rusanov

formula (36).
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We face two possibilities. The first one corresponds to the non-constrained situa-

tion f
±

(ρnjc , ρ
n
jc+1) = f(ρnjc , ρ

n
jc+1) < F , where we use the classical Rusanov numer-

ical flux. The second one corresponds to the constrained situation f
±

(ρnjc , ρ
n
jc+1) =

F . In that case, the numerical flux is given by the constraint itself. From the the-
oretical point of view, a stationary discontinuity is expected to take place between
the left and right states given by

(ρ−jc+1/2, ρ
+
jc+1/2) =

{
(R̂FM , ρ̌

nF
jc+1) if s < ρnjc < r and ρ̂nFjc > ρnjc + ∆s,

(ρ̂nFjc , ρ̌
nF
jc+1) otherwise,

see Definitions 2.1 and 4.1 of the constrained classical and nonclassical Riemann
solvers.

In order to take into account this theoretical statement at the numerical level,

we propose to modify also the definition of the numerical fluxes f
n,±
jc−1/2 and f

n,±
jc+3/2

by setting

f
n,±
jc−1/2 = f

±
(ρnjc−1, ρ

−
jc+1/2)

and

f
n,±
jc+3/2 = f

±
(ρ+
jc+1/2, ρ

n
jc+2),

with f
±

(., .) defined above by (35).

4.5. Numerical experiment and Braess paradox. As an illustrative simula-
tion, we perform the so-called Braess paradox numerical experiment described be-
low. Following [13, 16], we consider a corridor modeled by the segment [0, L], with
an exit at x = D, with 0 < D < L. Then, the dynamics of the crowd exiting the
corridor is described by (1)-(3), with the Riemann solver described in Section 4.1.
In emergency situations, it is well known that the pressure of the people seeking to
exit may dramatically reduce the door efficiency. To prevent this, suitable obsta-
cles (such as columns) can be posed before the exit to reduce the crowd pressure.
Paradoxically, the insertion of obstacles may reduce the evacuation time, although
most individuals may have a slightly longer path to reach the exit. This remarkable
behavior mimics the Braess paradox [4] typical of networks and is captured by the
model considered here.

We assume that a group of people is uniformly distributed on the segment [a, b],
with 0 < a < b < D, and an obstacle is placed at x = d, with b < d < D, see
Figure 6.

Figure 6. A corridor with an obstacle before the exit.

The dynamic of the crowd is then described by{
∂tρ+ ∂xf(ρ) = 0 f (ρ(t, d−)) ≤ q (ρ(t, d−)) ,
ρ(0, x) = ρo(x) f (ρ(t,D−)) ≤ Q (ρ(t,D−)) .

(38)
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Since it is well known that exit capacity is reduced in panic situations, we assume
that

q(ρ) =

{
q̂ if ρ ∈ [0, r]
q̌ if ρ ∈ ]r,R]

with q̂ > q̌,

Q(ρ) =

{
Q̂ if ρ ∈ [0, r]
Q̌ if ρ ∈ ]r,R]

with Q̂ > Q̌.

(39)

Aiming at pedestrian flow management and exits design, the evacuation time T is
particularly relevant and can be computed integrating (38)–(39) numerically fol-
lowing the procedure described in Sections 4.3 and 4.4 below. If the initial datum
is particularly simple, i.e. constant on a given segment, an analytical study is also
possible, see Figure 7.

Figure 7. Wave-front tracking applied to (38)–(39). Left, the
structure of the solution without obstacle (q ≥ max(f(ρ))): the
evacuation time is tH . Right, in the presence of the obstacle, the
evacuation time is tR < tH . (Taken from [13, 16].)

The detailed construction of these solutions can be found in [16, Section 4.2].
Note that the darker regions in Figure 7, left, represent the regions where the crowd
density attains panic values, i.e. ρ ∈ ]r,R]. The presence of the obstacle avoids the
density to reach panic regimes, thus allowing for a faster evacuation of the room.
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The simulation parameters have been chosen as follows. We have considered the
flow function [16, Section 4.3]

f(ρ) = max

{
ρ(7− ρ)

6
,

3(ρ− 6)(2ρ− 21)

20(ρ− 12)

}
,

whose diagram is given in Figure 2 (left), leading to

r ≈ 6.842786, R = 10.5.

The nonclassical Riemann solver parameters are given by

s = 1.2, ∆s = 5.6.

The computational domain modeling the corridor corresponds to the interval [0, L]
with L = 3.6, and the the exit is located at x = D with D = 3.1. The position of
the obstacle (when present) is d = 2.45. The initial datum is chosen to be

ρ0(x) =

{
0 if x < a = 0.1 and x > b = 1.1

5.3 if a < x < b,

and is represented on Figure 8 below.

Figure 8. Braess paradox simulation : initial data

The constraint functions q and Q in (39) are considered with the following pa-
rameters :

q̂ = 1, Q̂ = 0.2, Q̌ = 0.1793.

Note that the constraint function q is not active when the obstacle is not present
while the parameter q̌ entering its definition does not play any role since no panic
will be observed at the obstacle position. Note also that, from a numerical point of
view, these flux constraints are imposed at both interfaces jc + 1/2 associated with
the obstacle and exit positions. The left traces d− and D− of the density in (38)
are then naturally considered to be ρjc .

We show here the results of two simulations, one without obstacle and one with
obstacle, where we used a 500-point mesh and a CFL condition equal to 0.5. We
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propose on Figure 9 four snapshots of each numerical solution. The numerical
results without obstacle are depicted on the left side and we clearly see on the
second picture that panic arises as expected since the density gets greater than r
near the exit position. The numerical exit time is t = 28.833. On the contrary,
no panic is created when the obstacle is present and the computed exit time now
equals t = 24.883.

5. Proofs.

5.1. Proof of Lemma 2.4. (i) We want to check that

∀(cl, cr), (bl, br) ∈ G(F ) Φ(cl, bl) ≥ Φ(cr, br). (40)

• If (cl, cr), (bl, br) ∈ G1(F ), then f(cl) = f(cr) = f(bl) = f(br) = F and
Φ(cl, bl) = 0 = Φ(cr, br).

• If (cl, cr) ∈ G1(F ), (bl, br) ∈ G2(F ) (then bl = br = b and f(b) ≤ F ). In
this case, either F ∈ [0, f(r)[ ∪ ]f(R∗M ), f(RM )] and G1(F ) =

{
(ρF2 , ρ

F
1 )
}

, or
F ∈ [f(r), f(R∗M )] and

G1(F ) =
{

(ρF4 , ρ
F
1 ), (ρF4 , ρ

F
2 ), (ρF4 , ρ

F
3 ), (ρF3 , ρ

F
1 ), (ρF2 , ρ

F
1 )
}
.

We have to check several cases. If b ≤ ρF1 , then

Φ(cl, b)− Φ(cr, b) = f(cl)− f(b)− f(cr) + f(b) = 0.

If b ≥ maxi{ρFi }, then again

Φ(cl, b)− Φ(cr, b) = f(b)− f(cl)− f(b) + f(cr) = 0.

If ρF2 < b < ρF3 , then we may have cr < b < cl and

Φ(cl, b)− Φ(cr, b) = f(cl)− f(b)− f(b) + f(cr) = 2F − 2f(b) ≥ 0.

• If (cl, cr) ∈ G1(F ), (bl, br) ∈ G3(F ), then we can face several situations. If
bl ≤ cr < cl ≤ br, then

Φ(cl, bl)− Φ(cr, br) = f(cl)− f(bl)− f(br) + f(cr) = 2F − 2f(bl,r) ≥ 0.

If bl, br ≤ cr < cl, then

Φ(cl, bl)− Φ(cr, br) = f(cl)− f(bl)− f(cr) + f(br) = 0.

If bl, br ≥ cl > cr, then

Φ(cl, bl)− Φ(cr, br) = f(bl)− f(cl)− f(br) + f(cr) = 0.

Finally, if cr ≤ br < bl ≤ cl, then

Φ(cl, bl)− Φ(cr, br) = f(cl)− f(bl)− f(br) + f(cr) = 2F − 2f(bl,r) ≥ 0.

• If (cl, cr), (bl, br) ∈ G2(F ) ∪ G3(F ), then the pairs (bl, br), (cl, cr) correspond
to the Kruzhkov stationary solutions

b̃(t, x) := bl1l{x<0} + br1l{x>0}, c̃(t, x) := cl1l{x<0} + cr1l{x>0}

of the conservation law (1); inequality Φ(cl, bl) − Φ(cr, br) ≥ 0 is well known
in this context (see [33]).
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Figure 9. Braess paradox simulations: density profiles at times
t1 = 0.598629, t2 = 3.597943, t3 = 5.998629, t4 = 23.9976, without
obstacle (left) and with obstacle (right). The exit location of the
exit door is D = 3.1 and the obstacle is located at d = 2.45. The
horizontal dashed line represents the value of the transition between
panic and non-panic densities r = 6.842786.
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The remaining cases are deduced by symmetry of Φ; this proves (40).

(ii) Let us reason by contradiction. If f(bl) = f(br) but (bl, br) /∈ G(F ), then
either f(bl,r) > F , or f(bl,r) < F and there exists b∗ ∈ [bl⊥br, bl>br] such that
(b∗ − bl)(f(b∗)− f(bl)) < 0. In the first case, we can take cr < bl,r < cl, then

Φ(cl, bl)− Φ(cr, br) = f(cl)− f(bl)− f(br) + f(cr) = 2F − 2f(bl,r) < 0.

In the second case, we distinguish two subcases. If br < bl, we can take br < cr ≤
cl < bl, and we get

Φ(cl, bl)− Φ(cr, br) = f(bl)− f(cl)− f(cr) + f(br) = 2f(bl,r)− 2F < 0.

If br > bl, we take cl = cr = b∗ ∈ ]bl, br[ and we get

Φ(b∗, bl)− Φ(b∗, br) = f(b∗)− f(bl)− f(br) + f(b∗) = 2f(b∗)− 2f(bl,r) < 0.

Thus in all the cases, we arrive to a contradiction with assumption (15).

5.2. Proof of Theorem 2.5. We first prove the well-posedness result in a BV
setting. Due to the constraint (3), one cannot hope to find a uniform bound of
the total variation of approximate solutions constructed by wave-front tracking (or
any other approximating technique). To overcome this difficulty, we introduce an
extension to the usual Temple functional [32]. We therefore define

Ψ(ρ) =

∫ ρ

0

|f ′(s)|ds. (41)

We assume that the initial datum ρ0 ∈ L∞(R; [0, R]) satisfies Ψ(ρ0) ∈ BV(R; [0, R])
and F ∈ BV(R+; [0, fmax]), and we follow the procedure in [12, § 4.2].

Fix a positive n ∈ N, n > 0, and introduce in [0, R] the mesh Mn by Mn =
f−1(2−nN)∪{ρ1, . . . , ρN}. Let PLCn be the set of piecewise linear and continuous
functions defined on [0, R] whose derivatives exist in ]0, R[\Mn. Let fn ∈ PLCn

coincide with f on Mn.
Similarly, introduce PCn, respectively PC+

n , as the set of piecewise constant
functions defined on R, respectively R+, with values inMn, respectively in f(Mn).
Let Fn ∈ PC+

n , coincide with F on f(Mn), in the sense that F (t) = Fn(t) whenever
F (t) ∈ f(Mn). We write

ρn =
∑
α

ρnα χ]xα−1,xα]
with ρnα ∈ Mn

Fn = Fn0 χ
[0,t1]

+
∑
β≥1

Fnβ χ
]tβ ,tβ+1]

with Fnβ ∈ f(Mn)
(42)

for some xα ∈ R, α ∈ Z (where we set x0 = 0), and tβ ∈ R+, β ∈ N, such that
TV(Fn) ≤ TV(F ). Both the approximations above are meant in the strong L1

topology, that is

lim
n→+∞

(
‖ρn − ρ‖L1(R;R) + ‖Fn − F‖L1(R+;R)

)
= 0 .

Let Dn = {ρ ∈ PCn : Ψ(ρ) ∈ BV(R;R)} and D̄n = Dn ×PC+
n . For any couple

(ρn, Fn) ∈ D̄n, written as in (42), define the Glimm type functional

Υ(ρn, Fn) =
∑
α

∣∣Ψ(ρnα+1)−Ψ(ρnα)
∣∣+ 5

∑
tβ≥0

∣∣Fnβ+1 − Fnβ
∣∣+ γ(ρn, Fn) , (43)
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where γ(ρn, Fn) is defined as follows. Let G1(F ) be decomposed in the subsets:

Ga1 (F ) = {(cl, cr) ∈ G1(F ) : cl > RM , cr < rM} ,
Gb1(F ) = {(cl, cr) ∈ G1(F ) : cl > RM , rM < cr < RM} ,
Gc1(F ) = {(cl, cr) ∈ G1(F ) : rM < cl < RM , cr < rM} .

Then, if Fn(0) < f(r),

γ(ρn, Fn) = 0 , if (ρn(0−), ρn(0+)) ∈ G1(Fn(0)) ;

if Fn(0) ≥ f(r),

γ(ρn, Fn) =

 γa = 4 (Fn(0)− f(r)) , if (ρn(0−), ρn(0+)) ∈ Ga1 (Fn(0)) ,
γb = 4 (f(rM )− f(r)) , if (ρn(0−), ρn(0+)) ∈ Gb1(Fn(0)) ,
γc = 4 (f(RM )− f(r)) , if (ρn(0−), ρn(0+)) ∈ Gc1(Fn(0)) ;

otherwise

γ(ρn, Fn) = γo = 4 (f(rM )− f(r) + f(RM )− Fn(0)) .

Observe that 0 ≤ γ(ρn, Fn) ≤ γo.
We then follow the nowadays classical wave-front tracking technique which dates

back to [18], see also [5, § 6] and [25], or [12] for the constrained case. We fix
a piecewise constant initial datum ρn0 such that TV(Ψ(ρn0 )) ≤ TV(Ψ(ρ0)) and
limn→+∞ ‖ρn0 − ρ0‖L1(R;R) = 0. At any interaction, the functional Υ either de-

creases by at least 2−n, or remains constant with the total number of waves in the
approximate solution that does not increase (see Appendix for details).

A standard application of Helly’s Theorem, see [5, Theorem 2.4], yields the exis-
tence of a subsequence of approximate solutions, still denoted by ρn, converging in
L1

loc(R+ ×R) to a solution ρ of (1)-(3) in the sense of Definitions 2.2. In fact, the
entropy inequality (8) is easily recovered by passing to the limit in the approximate
solutions. In order to verify the constraint (9), we consider the weak formulation
of (1) in the half-domain R+ × R+ (R+ × R− respectively), which gives us, for all
ϕ ∈ C1

c(R+ × R;R+),∫ ∞
0

∫ ∞
0

(ρn∂tϕ+ f(ρn)∂xϕ) dx dt =

∫ ∞
0

γw(f(ρn))(t, 0+)ϕ(t, 0) dt

=

∫ ∞
0

f(ρn(t, 0+)) ϕ(t, 0) dt

≤
∫ ∞

0

Fn(t) ϕ(t, 0) dt

where γw(f(ρn))(t) are the weak normal traces of the divergence-measure field
(ρ, f(ρ)) defined in [10], and we have applied the Gauss-Green formula and the
existence of strong traces guaranteed by [30]. Passing to the limit in the first and
last integral we get∫ ∞

0

F (t)ϕ(t, 0) dt ≥
∫ ∞

0

∫ ∞
0

(ρ ∂tϕ+ f(ρ)∂xϕ) dx dt

=

∫ ∞
0

f(ρ(t, 0+)) ϕ(t, 0) dt,

where the last inequality results from the fact that ρ is a weak entropy solution of
(1) on R+×R+, again by [10, 30], see also [2, Remark 2]. Since the above inequality
holds for all ϕ ∈ C1

c(R+ × R;R+), we conclude that ρ satisfy (9).
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To conclude the proof of Theorem 2.5, we have to verify that (17) still holds in the
case of non-concave fluxes, in the BV setting: assume F 1, F 2 ∈ BV(R+; [0, fmax]),
and the initial data ρ1

0, ρ
2
0 ∈ L∞(R, [0, R]) satisfy (ρ1

0−ρ2
0) ∈ L1(R) and Ψ(ρ1

0),Ψ(ρ2
0)

∈ BV(R; [0, R]). We consider the entropy formulation (8) with test functions ϕ ∈
C1

c(R+×R\{x = 0};R+). The method of doubling of variables of Kruzhkov, applied
in the domains {±x > 0}, yields the so-called Kato inequality for the comparison
of ρ1, ρ2: ∫

R+

∫
R

(
|ρ1 − ρ2|∂t + Φ(ρ1, ρ2)∂x

)
ϕ dx dt ≥ 0.

Now, fix R > 0 and replace ϕ in this inequality by a sequence of approximations
of the characteristic function of the set {t ∈ (0, T ), 0 < |x| < R + L(T − t)}, for
instance ϕε(t, x) = (1− wε(x))χε(t)ξε(t, x) where

χε(t) =


1 if 0 ≤ t < T,
T − t
ε

+ 1 if T ≤ t < T + ε,

0 if t ≥ T + ε,

wε is given by (10), and

ξε(t, x) =


1 if |x| ≤ R+ L(T − t),
R+ L(T − t)− |x|

ε
+ 1 if R+ L(T − t) ≤ |x| < R+ L(T − t) + ε,

0 if |x| ≥ R+ L(T − t) + ε.

This provides at the limit ε→ 0

−
∫ R

−R
|ρ1 − ρ2|(T, x) dx+

∫ R+LT

−R−LT
|ρ1

0 − ρ2
0|(x) dx

+

∫ T

0

(
Φ(ρ1(t, 0+), ρ2(t, 0+))− Φ(ρ1(t, 0−), ρ2(t, 0−))

)
dt ≥ 0. (44)

Thanks to Proposition 2, we know that (ρi(t, 0−), ρi(t, 0+)) ∈ G(F i). To conclude,
we need the following Lemma.

Lemma 5.1. For every F 1, F 2 ∈ [0, fmax] there holds

Φ(c1r, c
2
r)− Φ(c1l , c

2
l ) ≤ 2

∣∣F 1 − F 2
∣∣ (45)

for all (c1l , c
1
r) ∈ G(F 1) and (c2l , c

2
r) ∈ G(F 2).

Proof. Without loss of generality, we can assume that F 1 ≥ F 2. We make a case
study quite similar to the one of the proof of Lemma 2.4.

• If (cil, c
i
r) ∈ G2(F i) ∪ G3(F i), i = 1, 2, then both the standing waves

ρ̃i(t, x) := cil1l{x<0} + cir1l{x>0},

i = 1, 2, are Kruzhkov entropy solutions of the (unconstrained) conservation
law (1). Therefore we have the inequality

Φ(c1r, c
2
r)− Φ(c1l , c

2
l ) ≤ 0 (46)

which is well known since the work of Vol′pert [33].
• If (c1l , c

1
r) ∈ G1(F 1) and (c2l , c

2
r) ∈ G2(F 2) ∪ G3(F 2), then we can use (15) to

justify (46). Indeed, the definition of Gj and assumption F 1 ≥ F 2 lead to the
inclusions Gj(F 2) ⊂ Gj(F 1) for j = 2, 3.
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• If (c1l , c
1
r) ∈ G2(F 1) and (c2l , c

2
r) ∈ G1(F 2), then c1l = c1r =: c1, f(c1) ≤ F 1 and

c2r < c2l . We have to distinguish three cases:
– if c1 ≤ c2r,

Φ(c1, c2r)− Φ(c1, c2l ) = f(c2r)− f(c1)− f(c2l ) + f(c1) = 0 ;

– if c2r < c1 < c2l ,

Φ(c1, c2r)− Φ(c1, c2l ) = f(c1)− f(c2r)− f(c2l ) + f(c1) ≤ 2(F 1 − F 2) ;

– if c1 ≥ c2l ,
Φ(c1, c2r)− Φ(c1, c2l ) = f(c1)− f(c2r)− f(c1) + f(c2l ) = 0 .

• If (c1l , c
1
r) ∈ G3(F 1) and (c2l , c

2
r) ∈ G1(F 2), we have for sure c2r < c2l . We have

to detail several possibilities:
– if c1l,r ≤ c2r,

Φ(c1r, c
2
r)− Φ(c1l , c

2
l ) = f(c2r)− f(c1r)− f(c2l ) + f(c1l ) = 0 ;

– if c1l,r ≥ c2l ,

Φ(c1r, c
2
r)− Φ(c1l , c

2
l ) = f(c1r)− f(c2r)− f(c1l ) + f(c2l ) = 0 ;

– if c2r ≤ c1l,r ≤ c2l ,

Φ(c1r, c
2
r)− Φ(c1l , c

2
l ) = f(c1r)− f(c2r)− f(c2l ) + f(c1l ) ≤ 2(F 1 − F 2) ;

– if c2r ≤ c1l ≤ c2l ≤ c1r,
Φ(c1r, c

2
r)− Φ(c1l , c

2
l ) = f(c1r)− f(c2r)− f(c2l ) + f(c1l ) ≤ 2(F 1 − F 2) ;

– if c1l ≤ c2r ≤ c1r ≤ c2l (t, 0−),

Φ(c1r, c
2
r)− Φ(c1l , c

2
l ) = f(c1r)− f(c2r)− f(c2l ) + f(c1l ) ≤ 2(F 1 − F 2) .

• If (cil, c
i
r) ∈ G1(F i), i = 1, 2, then f(cil,r) = F i and

Φ(c1r, c
2
r)− Φ(c1l , c

2
l ) ≤

∣∣f(c1r)− f(c2r)
∣∣+
∣∣f(c1l )− f(c2l )

∣∣ = 2(F 1 − F 2).

Thus in all cases, we have

Φ(c1r, c
2
r)− Φ(c1l , c

2
l ) ≤ 2|F 1 − F 2|(t).

From (44) and (45) we have∫ R

−R
|ρ1 − ρ2|(T, x) dx ≤

∫ T

0

2|F 1 − F 2|(t) dt+

∫ R+LT

−R−LT
|ρ1

0 − ρ2
0|(x) dx;

letting R tend to +∞, we recover (17) for data of the BV setting.
Let us turn now on the L∞ setting. One may remark that the proof of (17)

is also valid for data ρ0 and F in L∞. In order to obtain the existence result in
the general L∞ case, we have to construct, from an initial datum ρ0 ∈ L∞(R)
and a constraint F ∈ L∞(R+), a sequence of initial data (ρn0 )n≥0 and a sequence
of constraints (Fn)n≥0 which satisfy the aforementioned BV assumptions, using
classical trunctation functions and mollifiers, such that

ρn0 → ρ0 in L1
loc(R) and a.e.; Fn → F in L1

loc(R+) and a.e. .

Following [2], if (ρn)n≥0 denotes the sequence of associated weak entropy solutions
(in the sense of Definition 2.2 or Definition 2.3), one could try to pass to the limit
in the last integral of (14) to obtain a solution ρ in L∞(R+×R). But in the present
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(non-concave) case the map F 7→ dist ((cl, cr),G(F )) is not continuous as a map in
L1

loc(R+) with values in R+. We use instead Definition 2.2: the convergence in (8)
is classical while the constraint (9) becomes when n→ +∞

γ−[f(ρ)](t) = γ+[f(ρ)](t) ≤ F (t)

where γ± are the left and right trace operators. The convergence of the traces of
the flux is possible using the compactness result for conservation laws in bounded
domains stated for instance in [29, Remark 7.33, Chapter 2].

Appendix.

Lemma 5.2. For any n ∈ N and (ρno , F
n) ∈ D̄n, let ρn be the approximate solution

to (1)-(3) obtained by wave-front tracking. At any waves interaction, the map t 7→
Υ(t) = Υ (ρn(t), Fn(·+ t))

either: decreases by at least 2−n,
or: remains constant and the number of waves does not increase.

Proof. The proof is obtained considering the different interactions separately, de-
pending on the position of the interaction point x̄ and on the flows of the interacting
states. We will consider interaction points x̄ ≤ 0, the case x̄ ≥ 0 being symmetric.
It is not restrictive to assume that at any interaction time either two waves interact
or a single wave hits x = 0.

Figure 10. Notations for the proof of Lemma 5.2.

(I1) x̄ 6= 0. As in the classical scalar case, either the two jumps have the same sign,
and the interaction results in a single discontinuity (and the number of waves
diminishes), or the jumps have opposite sign, and TV(Ψ(ρ)) decreases by at
least 2−n+1, seealso [5, § 6.1], see Figure 10, left.

(I2) A wave hits x̄ = 0 at time t = t̄ coming from the left. We have to distinguish
between several situations.
Assume first that ρm = ρr. If RF (ρl, ρr) = R(ρl, ρr), then the wave simply
crosses x = 0 and ∆Υ(t̄) = Υ(t̄+) − Υ(t̄−) = 0. Otherwise, f(ρl) > F and
ρ̂Fl > ρl. This implies

∆Υ(t̄) =
∣∣Ψ(ρl)−Ψ(ρ̂Fl )

∣∣+
∣∣Ψ(ρ̂Fl )−Ψ(ρ̌Fr )

∣∣
+
∣∣Ψ(ρ̌Fl )−Ψ(ρr)

∣∣+ γ − |Ψ(ρl)−Ψ(ρr)| − γo
= 2Ψ(ρ̂Fl )− 2Ψ(ρl) + γ − γo ≤ −21−n.

Above, γ = 0, γa, γb, γc depending on the situation.
Let us consider now the case in which the wave (ρm, ρr) is an entropic shock

or a rarefaction wave satisfying the constraint. If RF (ρl, ρr) = R(ρl, ρr), we



GENERAL CONSTRAINED CONSERVATION LAWS 459

are exactly in the case (I1).
If RF (ρl, ρr) 6= R(ρl, ρr), we have ρl > ρr and f(ρm) = f(ρr) ≤ F , hence
ρ̌Fr ≥ ρr. We can estimate

∆Υ(t̄) ≤
∣∣Ψ(ρl)−Ψ(ρ̂Fl )

∣∣+
∣∣Ψ(ρ̂Fl )−Ψ(ρ̌Fr )

∣∣
+
∣∣Ψ(ρ̌Fr )−Ψ(ρr)

∣∣+ γ − |Ψ(ρl)−Ψ(ρr)| − γo.

If ρl ≥ ρ̂Fl , we have ∆Υ(t̄) ≤ γ−γ0 ≤ −22−n. If ρl < ρ̂Fl (and hence f(ρl) > F ),
we obtain

∆Υ(t̄) ≤ 2Ψ(ρ̂Fl )− 2Ψ(ρl) + γ − γo ≤ −21−n.

Assume now that the wave (ρm, ρr) ∈ G1 is a non-classical shock resulting
from the application of RF . If the segment joining f(ρm) and f(ρr) does
not intersect the graph of f , then ρl < ρr, no new wave is created and easy
calculations show that

∆Υ(t̄) = |Ψ(ρl)−Ψ(ρr)|+ γo

− |Ψ(ρl)−Ψ(ρm)| − |Ψ(ρm)−Ψ(ρr)|
= 2Ψ(ρr)− 2Ψ(ρm) + γo = 0.

If (ρm, ρr) ∈ Ga1 and Fn(t̄) > f(r), then ρl ≥ r and we have

∆Υ(t̄) =
∣∣Ψ(ρl)−Ψ(ρ̂Fl )

∣∣+
∣∣Ψ(ρ̂Fl )−Ψ(ρr)

∣∣+ γc

− |Ψ(ρl)−Ψ(ρm)| − |Ψ(ρm)−Ψ(ρr)| − γa
= 2Ψ(ρl)− 2Ψ(ρm) + γc − γa
= 2(f(ρl)− Fn(t̄)) ≤ −21−n.

The case (ρm, ρr) ∈ Gb1 is similar. Finally, if (ρm, ρr) ∈ Gc1, we have to distin-
guish two cases, depending on the position of ρl. If ρl < ρr, the case can be
treated as above. If r < ρl < RM , then ρ̂Fl > ρl and (ρ̂Fl , ρr) ∈ Ga1 . Then the
number of waves remains constant and

∆Υ(t̄) =
∣∣Ψ(ρl)−Ψ(ρ̂Fl )

∣∣+
∣∣Ψ(ρ̂Fl )−Ψ(ρr)

∣∣+ γa

− |Ψ(ρl)−Ψ(ρm)| − |Ψ(ρm)−Ψ(ρr)| − γc
= 2Ψ(ρ̂Fl )− 2Ψ(ρl) + γa − γc ≤ 0.

(I3) A wave hits x̄ = 0 at time t = t̄ coming from the right. If ρl = ρm and
RF (ρl, ρr) 6= R(ρl, ρr), then it must be f(ρr) > F and ρ̌Fr < ρr (and f(ρl) ≤ F
and ρ̂Fl ≤ ρl). We have

∆Υ(t̄) =
∣∣Ψ(ρl)−Ψ(ρ̂Fl )

∣∣+
∣∣Ψ(ρ̂Fl )−Ψ(ρ̌Fr )

∣∣
+
∣∣Ψ(ρ̌Fl )−Ψ(ρr)

∣∣+ γ − |Ψ(ρl)−Ψ(ρr)| − γo
= 2Ψ(ρr)− 2Ψ(ρ̌Fr ) + γ − γo
≤ 2 (F − f(ρr)) ≤ −21−n.

Above, γ = 0, γa, γb, γc depending on the situation.
Let us now assume that (ρl, ρm) is an entropic shock or rarefaction wave,

and RF (ρl, ρr) 6= R(ρl, ρr). Then we have f(ρl) = f(ρm) ≤ F , and thus
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ρ̂Fl ≤ ρl. Moreover, ρr < ρl. Then

∆Υ(t̄) ≤
∣∣Ψ(ρl)−Ψ(ρ̂Fl )

∣∣+
∣∣Ψ(ρ̂Fl )−Ψ(ρ̌Fr )

∣∣
+
∣∣Ψ(ρ̌Fr )−Ψ(ρr)

∣∣+ γ − |Ψ(ρl)−Ψ(ρr)| − γo
= Ψ(ρr)−Ψ(ρ̌Fr ) +

∣∣Ψ(ρ̌Fr )−Ψ(ρr)
∣∣+ γ − γo.

If ρr ≤ ρ̌Fr , we have ∆Υ(t̄) ≤ γ − γ0 ≤ −22−n. If ρl > ρ̂Fl (and hence
f(ρr) > F ), we obtain

∆Υ(t̄) ≤ 2Ψ(ρr)− 2Ψ(ρ̌Fr ) + γ − γo ≤ 2 (F − f(ρr)) ≤ −21−n.

Assume now that the wave (ρl, ρm) ∈ G1 is a non-classical shock resulting
from the application of RF . If the segment joining f(ρl) and f(ρm) does
not intersect the graph of f , then ρl < ρr, no new wave is created and easy
calculations show that

∆Υ(t̄) = |Ψ(ρl)−Ψ(ρr)|+ γo

− |Ψ(ρl)−Ψ(ρm)| − |Ψ(ρm)−Ψ(ρr)|
= 2Ψ(ρm)− 2Ψ(ρl) + γo = 0.

If (ρl, ρm) ∈ Ga1 and Fn(t̄) > f(r), then the case ρl < ρr can be treated as the
previous case. Otherwise, if rM < ρr ≤ r, we have

∆Υ(t̄) =
∣∣Ψ(ρl)−Ψ(ρ̌Fr )

∣∣+
∣∣Ψ(ρ̌Fr )−Ψ(ρr)

∣∣+ γb

− |Ψ(ρl)−Ψ(ρm)| − |Ψ(ρm)−Ψ(ρr)| − γa
= 2Ψ(ρm)− 2Ψ(ρr) + γb − γa
= 2(f(ρr)− Fn) ≤ −21−n.

The case (ρl, ρm) ∈ Gc1 is similar. Finally, if (ρl, ρm) ∈ Gb1, we have to dis-
tinguish two cases, depending on the position of ρr. If ρr > ρm, the case
can be treated as above. If ρr < ρm ≤ r, then f(ρr) > F and ρ̌Fr < ρr and
(ρl, ρ̌

F
r ) ∈ Ga1 . Then the number of waves remains constant and

∆Υ(t̄) =
∣∣Ψ(ρl)−Ψ(ρ̌Fr )

∣∣+
∣∣Ψ(ρ̌Fr )−Ψ(ρr)

∣∣+ γa

− |Ψ(ρl)−Ψ(ρm)| − |Ψ(ρm)−Ψ(ρr)| − γb
= 2Ψ(ρr)− 2Ψ(ρ̌Fr ) + γa − γb
= 2 (F − f(ρr)) ≤ 0.

(I4) The constraint Fn jumps downward, see Fig. 10, right. We have to check
several cases.
If ρl = ρr = ρ and Fn(t̄+) < f(ρ) ≤ Fn(t̄−), two waves will exit the point
(t̄, 0) with ρ̌F < ρ < ρ̂F :

∆Υ(t̄) =
∣∣Ψ(ρ)−Ψ(ρ̂F )

∣∣+
∣∣Ψ(ρ̂F )−Ψ(ρ̌F )

∣∣
+
∣∣Ψ(ρ̌F )−Ψ(ρ)

∣∣+ γ − γo − 5 |Fn(t̄+)− Fn(t̄−)|
= 2Ψ(ρ̂F )− 2Ψ(ρ̌F ) + γ − γo − 5 |Fn(t̄+)− Fn(t̄−)|
= −5 |Fn(t̄+)− Fn(t̄−)| ≤ −5× 2−n.

Above, γ = 0, γb or γc, depending on the position of ρ.
If (ρl, ρr) is an entropic shock, and Fn(t̄+) < f(ρl) = f(ρr) ≤ Fn(t̄−), then

∆Υ(t̄) =
∣∣Ψ(ρl)−Ψ(ρ̂Fl )

∣∣+
∣∣Ψ(ρ̂Fl )−Ψ(ρ̌Fr )

∣∣+
∣∣Ψ(ρ̌Fr )−Ψ(ρr)

∣∣
+γ − |Ψ(ρl)−Ψ(ρr)| − γo − 5 |Fn(t̄+)− Fn(t̄−)| .
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Therefore, if ρr < r < ρl, then ρ̌Fr < ρr < ρl < ρ̂Fl and (ρ̂Fl , ρ̌
F
r ) ∈ Ga1 :

∆Υ(t̄) ≤ 2Ψ(ρ̂Fl )− 2Ψ(ρ̌Fr ) + 2Ψ(ρr)− 2Ψ(ρl)

+γa − γo − 5 (Fn(t̄−)− Fn(t̄+))

= −4 (f(ρl)− f(r)) + 4 (Fn(t̄+)− f(r))− (Fn(t̄−)− Fn(t̄+))

≤ −2−n;

otherwise, if ρl < ρr, then ρ̌Fr < ρl < ρr < ρ̂Fl :

∆Υ(t̄) ≤ 2Ψ(ρ̂Fl )− 2Ψ(ρ̌Fr ) + γ − γo − 5 (Fn(t̄−)− Fn(t̄+))

= − (Fn(t̄−)− Fn(t̄+)) ≤ −2−n.

Finally, if (ρl, ρr) is a non-classical shock, and Fn(t̄+) < f(ρl) = f(ρr) =
Fn(t̄−), then ρ̌Fr < ρr < ρl < ρ̂Fl and

∆Υ(t̄) ≤ 2Ψ(ρ̂Fl )− 2Ψ(ρ̌Fr ) + 2Ψ(ρr)− 2Ψ(ρl)

+ γ(t̄+)− γ(t̄−)− 5 (Fn(t̄−)− Fn(t̄+))

≤ − (Fn(t̄−)− Fn(t̄+)) ≤ −2−n.

(I5) The constraint Fn jumps upward. We need to check only the case in which
(ρl, ρr) is a non-classical shock, and Fn(t̄+) > f(ρl) = f(ρr) = Fn(t̄−).
If f (R(ρl, ρr)(0)) ≤ Fn(t̄+), then the solution becomes classical and the vari-
ation of the functional can be estimated as follows

∆Υ(t̄) = |Ψ(ρl)−Ψ(ρr)|+ γo(t̄+)

− |Ψ(ρl)−Ψ(ρr)| − γ(t̄−)− 5 (Fn(t̄−)− Fn(t̄+))

≤ − (Fn(t̄−)− Fn(t̄+)) ≤ −2−n.

Otherwise, if f (R(ρl, ρr)(0)) > Fn(t̄+), we still have a nonclassical shock and
ρr < ρ̌Fr < ρ̂Fl < ρl:

∆Υ(t̄) =
∣∣Ψ(ρ̂Fl )−Ψ(ρ̌Fr )

∣∣+ γ(t̄+)

− |Ψ(ρl)−Ψ(ρr)| − γ(t̄−)− 5 (Fn(t̄−)− Fn(t̄+))

≤ − (Fn(t̄−)− Fn(t̄+)) ≤ −2−n.

Indeed, observe that∣∣Ψ(ρ̂Fl )−Ψ(ρ̌Fr )
∣∣ ≤ |Ψ(ρl)−Ψ(ρr)|

and

γ(t̄+)− γ(t̄−)− 5 (Fn(t̄−)− Fn(t̄+)) ≤ − (Fn(t̄−)− Fn(t̄+)) .
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