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Abstract. This paper deals with the existence of traveling fronts for the
reaction-diffusion equation:

∂u

∂t
−∆u = h(u, y) t ∈ R, x = (x1, y) ∈ RN .

We first consider the case h(u, y) = f(u) − αg(y)u where f is of KPP or

bistable type and lim|y|→+∞ g(y) = +∞. This equation comes from a model
in population dynamics in which there is spatial spreading as well as pheno-

typic mutation of a quantitative phenotypic trait that has a locally preferred

value. The goal is to understand spreading and invasions in this heterogeneous
context. We prove the existence of threshold value α0 and of a nonzero asymp-

totic profile (a stationary limiting solution) V (y) if and only if α < α0. When
this condition is met, we prove the existence of a traveling front. This allows

us to completely identify the behavior of the solution of the parabolic problem

in the KPP case.
We also study here the case where h(y, u) = f(u) for |y| ≤ L1 and h(y, u) ≈

−αu for |y| > L2 ≥ L1. This equation provides a general framework for a

model of cortical spreading depressions in the brain. We prove the existence of
traveling front if L1 is large enough and the non-existence if L2 is too small.

1. Introduction. This paper deals with the existence of bounded traveling fronts
for the reaction-diffusion equation

∂u

∂t
−∆u = h(y, u) t ∈ R, x = (x1, y) ∈ RN . (1)

The function h will be of three different forms in this paper. The first two concern
non-linear terms h(y, u) = f(u) − αg(y)u where f : R → R is C1, and is either
of positive type, or of bistable type and g : RN−1 → R+ is C0, g(0) = 0 and

g
|y|→+∞−−−−−→ +∞. The existence of traveling front depends on the value of α > 0. The

third case we consider here is when h(y, u) = f(u) for |y| ≤ L1 and h(y, u) ≤ −mu
for |y| ≥ L2 where 0 < L1 ≤ L2 <∞ are given parameters and f is of bistable form
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and h(y, u) + mu → 0 for |y| → +∞. We study the existence of traveling fronts
depending on the value of L1 and L2.

The problems we study in this paper bear some similarities with the question
of traveling fronts in cylinders of [14]. However there are important differences
that have to do with the fact that the cross section in [14] was bounded and only
the Neumann condition was considered there. Whereas here, the problem is posed
in the whole space and the solution vanish at infinity in directions orthogonal to
the direction of propagation. We follow the same general scheme as in [14] and in
particular make use of the sliding method. But some new ideas are also required. In
particular, first, we treat directly the KPP case without the approximation of the
KPP non-linearity by a combustion non-linearity as in [14]. Then in the approach
of Berestycki - Nirenberg [14] to traveling fronts in cylinders for the bistable case,
a useful result of H. Matano [33] was involved in the proof. Here, we rely on
stability ideas but also use energy minimization properties to bound the speed of
the solution in the finite domain approximation. In particular, we do not use the
precise exponential behavior that was used in [14]. Actually the developments of
this method that we present in this paper can be used to somewhat simplify parts of
[14]. They can also be applied to traveling fronts in cylinder with Robin or Dirichlet
boundary conditions. 1

Equation (1) in the first case comes from a model in population dynamics [22] that
we briefly describe now. Let u(t, x, v) represent the density of individuals at time t
and position x that possess some given quantitative phenotypic trait represented by
a continuous variable v ∈ R. For example, the latter could be the size of wings or the
height of an individual. We assume that individuals follow a brownian motion (i.e.
they diffuse) in space with a constant diffusion coefficient ν, reproduce identically
and disappear with a growth rate k(x, v) that depends on the position x and on the
trait v. Furthermore, they also reproduce with mutation that is represented by a
kernel K(x, v, w) and disappear due to competition with a constant L > 0. Thus,
one is led to the following equation for u:

∂tu(t, x, v)− ν∆xu(t, x, v) = k(x, v)u(t, x, v)
+
∫
w
K(x, v, w)u(t, x, w) dw − u(t, x, v)

∫
w
Lu(t, x, w) dw.

(2)

We assume moreover that there exists a most adapted trait φ = φ(x) that may
depends on the location x. The farther the trait of an individual is from the most
adapted trait, the larger the probability of dying and not reproducing. Thus the
growth rate can be written for example as k(x, v) = a − b |v − φ(x)|2 with a and
b > 0.

Non-local reaction-diffusion equations of this type raise some new difficulties
from a mathematical standpoint as shown in [13]. There, behaviors that are quite
different from those in local equations are brought to light. After this paper was
completed, we learned that in [1] the existence of traveling front was also derived
for equation

∂tu(t, x, v)− ν∆x,vu(t, x, v) = k(x, v)u(t, x, v)− u(t, x, v)

∫
w

L(v, w)u(t, x, w) dw.

This work follows in part the methods of [13]. As in [13], the nonzero limiting
stationary state is not prescribed. In a forthcoming numerical study [6], we study

1The construction of traveling fronts for Neumann and Dirichlet conditions in cylinders given
by [48] appears to be incomplete. Indeed, the continuity of the function φ on page 515 is not

established so that using Dini’s Theorem to derive Lemma 3.2 there is not justified.
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the full equation (2) and we discuss the monotonicity of fronts depending on the
value of a and b.

In this paper, we introduce a simplified version of this model that emphasizes
propagation guided by the environment. First, we assume that mutations are due
to a diffusion process represented by a Brownian motion in the space of trait v.
Furthermore, we assume that φ is linear. Then a rotation in the variables (x1, y)
allows one to reduce the problem to the case where the most adapted trait is y = 0.
Therefore we assume φ(x) = 0 and (2) can be rewritten as

∂tu(t, x, v)−ν∆x,vu(t, x, v) = (a−b|v|2)u(t, x, v)−u(t, x, v)

∫
w

Lu(t, x, w) dw. (3)

Lastly we assume that competition is only between individuals sharing the same
trait which leads us to equation

∂tu− ν∆x,vu = (a− Lu)u− b|v|2u. (4)

Equation (1) is a generalization of this equation. In [22], the authors observe nu-
merically a generalized transition front spreading along the graph of φ for equation
(2) (see [9, 10, 11, 34] or [44] for the definition of generalized transition fronts).
Here we want to prove theoretically (i) that there exists such a front for equation
(1) at least for some values of the parameter α > 0 and (ii) that extinction occurs if
α is too large. The latter condition can be interpreted as saying that the “area” of
adapted traits is too thin compared to the diffusion. To remain consistent with the
biological motivation, we only consider here non-negative and bounded solutions of
(1).

Other types of models related to this one have been proposed in the literature.
For example, the model developed by Kirkpatrick and Barton in 1997 [31] also
studies the evolution of a population and of its mean trait. The main difference
is that they have a system in u and v where u represents the population and v
the mean trait is described by a specific equation. This model has been further
explored00 [25, 30]. It is worth noting that these models use the same type of non-
linearity for the adaptation to the environment and model the mutation with the
Laplace operator as well rather than integral operators.

This type of reaction-diffusion process in heterogeneous media also arises in many
contexts in medicine. An important class of such models was treated in [17, 39].
They deal with the propagation of a cortical spreading depression (CSD) in the
human brain. These CSD’s are transient depolarizations of the brain that slowly
propagate in the cortex of several animal species after a stroke, a head injury, or
seizures [45]. They also are suspected of being responsible for the aura in mi-
graines with aura. CSD’s are the subject of intensive research in biology since
experiments blocking them during strokes in rodents have produced very promising
results [21, 36]. These observations however have not been confirmed in humans and
the existence of CSD’s in the human brain is still a matter of debate [35, 26, 2, 46].
Since very few experiments and measurements on human brain are available be it
for obvious ethical or technical reasons, mathematical models of a CSD is helpful
in understanding their existence and conditions for their propagation. In such a
problem, the morphology of the brain and thus the geometry of the domain where
CSD’s propagate, is believed to play an important role.

The brain is composed of gray matter where neuron’s soma are and of the white
matter where only axons are to be found. The rodent brain (on which many of the
biological experiments are done) is rather smooth and composed almost entirely of
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gray matter. On the opposite, the human brain is very tortuous. The gray matter
is a thin layer at the periphery of the brain with much thickness variations and
convolutions, the rest of the brain being composed of white matter. According to
mathematical models of CSDs [19, 45, 43, 47], the depolarization amplitude follows
a reaction-diffusion process of bistable type in the gray matter of the brain while
it diffuses and is absorbed in the white matter of the brain. The modeling of CSD
hence leads one to the study of equations of the following type:

∂u

∂t
−∆u = f(u)1|y|<L − αu1|y|≥L t ∈ R, x = (x1, y) ∈ RN . (5)

Here, f is of bistable type and |y| = L corresponds to the transition from gray
matter to white matter. This equation is of type (1) and we also study it here in
sections 7 and 8 where we extend earlier works on the subject. In [17], this equation
was studied to prove that the thinness of the human gray matter (L small) may
prevent the creation or the propagation of CSDs on large distances. It was proved
by studying the energy in a traveling referential of the solution of (5) with a specific
initial condition. The special case of (5) for N = 2 was described more completely
in [20]. In [39], a numerical study shows that the convolutions of the brain have also
a strong influence on the propagation of CSD. In [18], the effect of rapid variations
of thickness of the gray matter was studied.

Lastly, let us note that the same kind of equation arises in the modeling of tumor
cords but with a slightly more complicate KPP non-linearity. We plan to investigate
this model in our forthcoming work [7].

As already mentioned, the study of propagation of fronts and spreading proper-
ties in heterogeneous media is of intense current interest. For instance, the existence
of fronts propagating in non-homogeneous geometries with obstacles has been es-
tablished in Berestycki, Hamel and Matano [8]. Definitions of generalized waves
have been given by Berestycki and Hamel in [10] and [11] where they are called
generalized transition waves. Somewhat different approaches to generalizing the
notions of traveling fronts have been proposed by H. Matano [34] and W. Shen [44].
The existence of fronts for non-homogeneous equations are established in [37] and
[50].

Let us first introduce some notations before stating the main results.

Notation. We note x = (x1, y) ∈ RN where x1 ∈ R and y ∈ RN−1. Hence x is the
space variable in RN , x1 is its first coordinate and y is the vector of RN−1 composed
of all the other coordinates of x. As usual BR = B(0, R) denotes a ball of radius R
centered at 0, but here it will always mean the ball in RN−1.

First we are interested in solutions of
∂u

∂t
−∆u = f(u)− αg(y)u, x = (x1, y) ∈ RN , t ∈ R

u ≥ 0, u bounded,
(6)

with α > 0. We will assume that f : R → R is C1 and satisfies either one of the
following conditions:

f(0) = f(1) = 0, f > 0 on (0, 1) and f ′(0) > 0,

or
there exists θ ∈]0, 1[ such that f(0) = f(θ) = f(1) = 0,

f < 0 on (0, θ) and f > 0 on (θ, 1) with f ′(0) < 0, f ′(1) < 0,

and
∫ 1

0
f(s)ds > 0.



TRAVELING FRONTS GUIDED BY THE ENVIRONMENT 83

The first case will be referred to as the positive case and the second one will be
called bistable case. Furthermore, if f is in the positive case and if

s 7→ f(s)

s
is decreasing on (0, 1]

we will say that f is of Fisher-KPP type. Since we are only interested in solutions
of (6) in [0, 1], we will further assume that f(s) ≤ 0 for s ≥ 1. Moreover we assume

g : RN−1 → R+ is continuous, g(0) = 0, g > 0 on RN−1 \ {0} (7)

(except in section 3.2 where g can vanish) and

lim
|y|→+∞

g(y) = +∞. (8)

Taking g(y) = |y|2 and f(s) = as(1− s) yields the particular case of equation (4).
This paper is concerned with the long term behavior of (6) and with the existence

of curved traveling fronts, i.e. solutions u(t, x) = U(x1−ct, y) with c ∈ R a constant
and U : RN → R such that the limits lims→±∞ U(s, .) exist uniformly and are not
equal. Regarding these fronts, our main results are the following.

Theorem 1.1. If f is of Fisher-KPP type, there exists α0 > 0 such that:

• For α ≥ α0, there exists no traveling front solution of (6),
• For α < α0 there exists a threshold c∗ > 0 such that there exists a traveling

front of speed c of equation (6) if and only if c ≥ c∗.

This existence theorem gives us information on the behavior of the solution of
the parabolic problem. In this paper we prove the following theorem:

Theorem 1.2. If f is of Fisher-KPP type, for u0 ∈ L∞, there exists a unique
solution u(t, x) of{

∂tu−∆u = f(u)− αg(y)u on (0,+∞)× RN ,
u(0, x) = u0(x) on RN .

• If α ≥ α0, it verifies u(t, x)
t→+∞−−−−→ 0 uniformly with respect to x ∈ RN .

• If α < α0 and u0 ∈ C0(RN ) is compactly supported with u0 < V where
V = V (y) is the unique positive asymptotic profile (stationary solution), then

for any c > c∗ lim
t→+∞

sup
|x1|≥ct

u(t, x) = 0,

for any c with 0 ≤ c < c∗ lim
t→+∞

sup
|x1|<ct

|u(t, x)− V (y)| = 0.

This means that there is a threshold value α0 such that for α ≥ α0, there
is extinction. On the contrary, when α ≤ α0, there is spreading and the state
V (y) invades the whole space. The asymptotic speed of spreading is then c∗. The
property of asymptotic spreading is in the same spirit of the theorem of asymptotic
speed of spreading in cylinders established by Mallordy and Roquejoffre in [32].

Theorem 1.2 has interesting consequences for the dynamics of the phenotypic
diversity in a population. Several studies have tried to understand population mi-
grations through phenotypic diversity [24, 27, 28, 29, 41, 49]. Our invasion result
states that for large times, one expect to see the state V (y) at any location (and not
the migration process) and it holds whatever the initial distribution of the popula-
tion is. Note furthermore that the profile V (y) is unique. Hence whatever the initial
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structure of the population is, the phenotypic diversity at large times is completely
determined by the profile of the function g.

In the slightly more general case of a positive non-linearity, we will prove the
following existence theorem.

Theorem 1.3. If f is of positive type, there exists α0 > 0 such that for α < α0

there exists a traveling front of equation (6).

Regarding the case of bistable f we have the following result:

Theorem 1.4. If f is of bistable type, there exist α∗ ≥ α∗ > 0 such that

• For α ≥ α∗, there exists no traveling front solution of (6),
• For α < α∗, under condition 43 of Section 7, there exists a traveling front u

of speed c > 0 solution of (6).

Lastly, the model for CSD’s leads one to equations of the type

∂tu−∆u = h(y, u) x = (x1, y) ∈ RN . (9)

where h(y, u) verifies

h(y, u) = f(u) for |y| ≤ L1

h(y, u) ≤ −mu for |y| ≥ L2

h(y, u) +mu
|y|→+∞−−−−−→ 0 uniformly for u ∈ R+

where 0 < L1 ≤ L2 <∞ and m > 0 are given parameters and f is of bistable form.
In this paper we prove the following Theorem.

Theorem 1.5. There exist critical radii 0 < L∗ ≤ L∗ < ∞ with the following
properties:

• For L2 < L∗, there is no traveling front solution of (9).
• For L1 > L∗ (independently of L2), assuming that there is a unique stable

asymptotic profile of (53), there exists a traveling front of speed c > 0 solution
of (9).

The assumption on the uniqueness of the asymptotic profile is proved to be true
for the case N − 1 = 2, L1 = L2 and h(y, s) = −ms for |y| ≥ L2. This is done in
[20] by phase plane method. For want of a uniqueness result for the profile equation
in more general cases,

This theorem completes the study in [17] on the existence of CSD in the human
brain. Indeed in [17] the transition from gray to white matter was instantaneous
when biologically there is a smooth transition from gray to white matter. This
Theorem confirms the intuition that CSD’s can be found in part of the human
brain where the gray matter is sufficiently thick but they can not propagate over
large distances due to a thin gray matter in many parts of the human brain.

The paper is organized as follows. In section 2 we state some preliminary results
that will be used in the sequel. Section 3 is dedicated to the study of the existence
and uniqueness of non-zero asymptotic profiles for a traveling front solution of (6).
In section 5 we study the large time behavior. There we prove extinction if α ≥ α0

and convergence towards the front of minimal speed if α < α0. Section 6 extends
existence of traveling front results to the case of a positive non-linearity. Then,
section 7 is devoted to the study of the asymptotic profiles in the bistable case and
section 8 to the existence of traveling front for α < α∗ in the bistable case. Lastly,
in section 9 we describe the precise problem arising in the modeling of CSD’s and
state our main result in this framework.
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2. Preliminary results. In our proofs, we will need several times the exponen-
tial decay of the asymptotic profile which can be easily proved from the following
theorem established in [16].

Theorem 2.1. Let v ∈ H2
loc(RN ) be a positive function. Assume that there exists

γ > 0 and C > 0 such that

∀x ∈ RN , v(x) ≤ Ce
√
γ|x| and lim inf

|x|→∞

∆v(x)

v(x)
> γ.

Then, lim
|x|→∞

v(x)e
√
γ|x| = 0.

This result is established in [16], lemma 2.2. In the context of equation (1), we
thus have the following corollary.

Corollary 1. Let u be a non-negative and bounded solution of

∆v + f(v)− αgv = 0 on RN−1.

Then, for any γ > 0 there exists C > 0 such that

0 ≤ v(y) ≤ Ce−γ|y| and |∇v(y)| ≤ Ce−γ|y|.

Proof. The estimate on v comes directly from Theorem 2.1 and the estimate on
|∇v| derives from standard global Lp estimates.

3. The case of a Fisher-KPP non-linearity. Asymptotic profiles. In this
section, we are interested in the asymptotic profiles of a traveling front solution of
(6) as x1 → ±∞. Hence, we are looking for solutions of the following equation{

∆V + f(V )− αg(y)V = 0, y ∈ RN−1,

V ≥ 0, V bounded.
(10)

We assume that f : R→ R is C1,

f(0) = f(1) = 0, f > 0 on (0, 1) (11)

and

s ∈ (0, 1] 7→ f(s)

s
is decreasing. (12)

Since the constant function 0 is always a solution, the problem is to know when
there exist non-zero solutions. As we will see here, the existence of such a positive
asymptotic profile is characterized by the sign of the principal eigenvalue of the
linearized operator around 0. We now make this notion precise.

3.1. Principal eigenvalue of the linearized operator. To start with, let us
define the natural weighted space

H = {v ∈ H1(RN−1) ,
√
gu ∈ L2(RN−1)}

and its associated norm. For v ∈ H, we set ‖v‖H = (‖v‖2H1 + ‖√gv‖2L2)
1
2 . The

linearized operator about 0 is Lϕ = −∆ϕ +
(
αg(y) − f ′(0)

)
ϕ for ϕ ∈ H. We are

interested in the eigenvalues of L. Even though the problem is set on all of RN−1,
the term in αg(y) yields compactness of the injection H ↪→ L2(RN−1). Hence the
existence of a principal eigenvalue is obtained as usual.
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Theorem 3.1. Let us define

Rα(ϕ) =

∫
|∇ϕ|2 +

(
αg − f ′(0)

)
ϕ2∫

ϕ2
.

The operator L has a smallest eigenvalue

λα = inf
ϕ∈H\{0}

Rα(ϕ). (13)

Moreover there exists a unique positive eigenfunction associated with λα of L2-norm
equal to 1, called ϕα in the following. The eigenspace associated with λα is spanned
by ϕα.

The proof is classical due to the compactness of H ↪→ L2(RN−1). We refer for
example to [23].

Remark 1. If g(y) = |y|2, the problem can be rescaled and we obtain the harmonic
oscillator for which principal eigenvalue and eigenfunction are well known [42]. In

that case, λα = (N − 1)
√
α− f ′(0) and ϕα =

(√
α
π

) 1
N−1

e−
√
α
2 |y|

2

.

Since the existence of a positive solution of (10) will depend on the sign of the
principal eigenvalue, the following proposition describes the behavior of λα as a
function of α.

Proposition 1. The function α 7→ λα is continuous, increasing and concave for
α ∈ (0,+∞). Moreover limα→0 λα = −f ′(0) and for α large enough λα > 0.

Proof. Let us fix α > 0 and η > 0. Equation (13) shows that

λα+η ≤
∫
|∇ϕα|2 +

(
(α+ η)g − f ′(0)

)
ϕ2
α = λα + η

∫
g(y)ϕ2

α.

Similarly, we obtain λα ≤ λα+η − η
∫
gϕ2

α+η. From this we derive:

0 < η

∫
gϕ2

α+η ≤ λα+η − λα ≤ η
∫
gϕ2

α.

This and similar computation for λα − λα−η yields that α 7→ λα is increasing and
locally Lipschitz on (0,+∞).

Concavity is classical. It suffices to observe that for each fixed ϕ,

α 7→ Rα(ϕ) =

∫
|∇ϕ|2 + (αg − f ′(0))ϕ2∫

ϕ2

is an affine function of α and that λα = infϕ∈H\{0}Rα(ϕ).

In order to prove that λα
α→0−−−→ −f ′(0), for any ε > 0 choose a function ψε of

compact support with ‖ψε‖L2 = 1 and
∫
|∇ψε|2 < ε. Let suppψε ⊂ BRε . From

(13) we get
−f ′(0) ≤ λα ≤ ε+ αmax

BRε
g − f ′(0)

So for any α <
ε

maxBRε g
,

−f ′(0) ≤ λα ≤ −f ′(0) + 2ε.

Now we claim that λα > 0 for large enough α. Argue by contradiction and
assume that λα ≤ 0 for all α ∈ (0,+∞). Since

0 ≥ λα =

∫
|∇ϕα|2 + α

∫
gϕ2

α − f ′(0),
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we get ∫
gϕ2

α ≤
1

α
f ′(0)

and ϕα → 0 in L2(RN−1 \BR) for all R > 0. Furthermore, ϕα is bounded in H and
up to extraction we can assume that ϕα converges strongly in L2(RN−1), thus ϕα
converges to 0 in L2 but this is impossible since

∫
ϕα

2 = 1 for all α > 0.

Corollary 2. There exists α0 > 0 such that λα < 0 for α < α0, λα0
= 0 and

λα > 0 for α > α0.

3.2. If g vanishes on Br0 . The main part of the proof still holds if g vanishes on
Br0 but the result is slightly modified.

In this section, we assume that there exists r0 > 0 such that (7) is substituted
by the following assumption

g : RN−1 → R+ ∈ C0, g ≡ 0 on Br0 and g > 0 on RN−1 \Br0 . (14)

We define λ∆ the principal eigenvalue of the Laplacian on Br0 with Dirichlet bound-
ary conditions, i.e. {

−∆φ0 = λ∆φ0 on Br0 ,

φ0 = 0 on ∂Br0 .

In this case, the principal eigenvalue of the linearized operator about 0 is well
defined and Proposition 1 becomes

Proposition 2. The function α 7→ λα is continuous, increasing and concave for
α ∈ (0,+∞), and limα→0 λα = −f ′(0). Now there are two cases:
i) If f ′(0) < λ∆, then for α large enough λα > 0.
ii) If f ′(0) ≥ λ∆, then λα ≤ 0 for all α > 0.

Proof. The proof of the first part of the proposition is exactly the same as in Propo-
sition 1. We just have to prove i) and ii).

i) We assume that f ′(0) < λ∆ and argue by contradiction assuming that λα ≤ 0
for all α ∈ (0,+∞). As in the proof of proposition 1, we have∫

gϕ2
α ≤

1

α
f ′(0)

and this yields ϕα → 0 in L2(RN−1 \BR) for α→ +∞ but now for all R > r0 only.
As before ϕα is bounded in H and up to extraction, we have λα → λ ≤ 0, weak

convergence in H and strong convergence in L2 of ϕα to φ. The limit φ verifies∫
φ2 = 1, φ ≡ 0 for |y| > r0 and

−∆φ− f ′(0)φ = λφ

Thus φ ∈ H1
0 (Br0) must coincide with φ0 in Br0 and λ + f ′(0) = λ∆ leading to

f ′(0) ≥ λ∆ since λ ≤ 0. This is a contradiction.
ii) By taking ϕ = φ0 in the Rayleigh quotient (13), where φ0 is the principal

eigenvalue of the above problem in Br0 with Dirichlet boundary conditions, we see
that λα ≤ λ∆ − f ′(0) ≤ 0 for all α > 0.

In the following, we will not state the results specifically for this case (14) and
will rather assume (7). However, the proofs and results developed here carry over
to this case with the obvious modifications.
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3.3. Existence of non-zero asymptotic profile.

Theorem 3.2. For α ≥ α0, there is no solution of (10), where α0 is defined in
corollary 2. For α < α0, there exists a unique positive solution of (10).

Proof. Let us fix α ≥ α0. Then λα ≥ 0. Assume by contradiction that there exists
a solution V of (10). Then the strong maximum principle shows that V > 0.

Since ϕα is an eigenfunction of the linearized operator L and V is solution of
(10), we have∫

(∆V + f(V )− αgV )ϕα = 0

=

∫
(∆ϕα + (f ′(0)− αg)ϕα + λαϕα)V

Now from corollary 1, V and ∇V are rapidly decreasing for |y| → ∞ and so we

can apply Stokes formula
∫

∆V ϕα =
∫
V ∆ϕα. It yields

∫
(f(V ) − f ′(0)V )ϕα =

λα

∫
ϕαV but f(V ) − f ′(0)V < 0 since f is of Fisher-KPP type and λα ≥ 0 thus

a contradiction is obtained.

We now turn to the case α < α0. For α < α0, the eigenvalue λα is negative.
Setting V = εϕα with ε > 0, we get

∆V + f(V )− αgV = −λαεϕα + f(εϕα)− f ′(0)εϕα ≥ 0

if ε > 0 is chosen small enough. Hence V is a sub-solution of (10). The constant
function 1 is a super-solution and V ≤ 1 if ε is small enough. Therefore by the sub-
and super-solution method, there exists a solution V such that 0 < V ≤ V ≤ 1.

Now consider V and W two non-zero solutions of (10). We argue by contradiction
and assume that V 6≡W . Then for example Ω = {y ∈ RN−1, V (y) < W (y)} is not
empty. Introduce a cutoff function β ∈ C∞(R) with β = 0 on (−∞, 1/2], β = 1 on
[1,+∞) and 0 < β′ < 4 on (1/2, 1) and for all ε > 0, let us set βε(s) = β

(
s
ε

)
. Using

equation (10), we have∫
(−V∆W + ∆VW )βε(W − V ) =

∫
(V f(W )− f(V )W )βε(W − V )

ε→0−−−→
∫

Ω

(V f(W )− f(V )W )

by Lebesgue’s dominated convergence theorem. Owing to corollary 1, V , ∇V , W
and ∇W have exponential decay and thus Stokes formula can be applied and we
obtain∫

(−V∆W + ∆VW )βε(W − V ) =

∫
β′ε(W − V )∇(W − V ). (V∇W −W∇V )

=

∫
β′ε(W − V )V |∇(W − V )|2︸ ︷︷ ︸

=I1

−
∫
β′ε(W − V )(W − V )∇(W − V ).∇V︸ ︷︷ ︸

=I2

.

In the term I2 the integrand satisfies

|β′ε(W − V )(W − V )∇(W − V ).∇W | ≤ 4|∇(W − V )|.|∇W |
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Therefore by Lebesgue’s Theorem of dominated convergence, we infer that I2 → 0.
Next the term I1 satisfies I1 ≥ 0. Consequently, we may write:

0 ≥
∫

Ω

(
V f(W )−Wf(V )

)
=

∫
Ω

(
f(W )

W
− f(V )

V

)
VW

which is a contradiction in view of (12) as W > V in Ω. Hence V = W and the
non-zero solution is unique.

The last point concerns the stability of the asymptotic profiles for α < α0. Let
us start by studying the energy of V . For w ∈ H, we define the energy

Jα(w) =

∫
RN−1

|∇w(y)|2 +
α

2
g(y)w2(y)− F (w(y)) dy (15)

where F (u) =
∫ u

0
f(t)dt.

Theorem 3.3. For α < α0, the unique positive solution of (10) V is stable in the
energy sense, i.e. V is the global minimum of Jα and, furthermore Jα(V ) < 0 =
Jα(0).

Proof. Owing to the maximum principle, solutions of (10) are between 0 and 1.
Hence we can modify f on ]−∞, 0[ such that it becomes odd and as a consequence,
F can be considered as even. Since λα the principal eigenvalue of the linearized
operator about the zero solution is negative for α < α0, 0 cannot be the global
minimum of Jα. Now Jα admits a global minimum that will be called Ṽ for the
argument. One can prove that |Ṽ | is also a global minimum of Jα and hence |Ṽ | is a

positive solution of (10). By uniqueness, |Ṽ | = V and thus V is a global minimum
of Jα. Since 0 is not a global minimum, necessarily Jα(V ) < 0 = Jα(0).

We now conclude with the linearized stability of V .

Theorem 3.4. For α < α0, consider the linearized operator about V and denote
λ1[V ] the principal eigenvalue of this operator. Then λ1[V ] > 0.

Proof. Denote by ψ a positive eigenfunction associated with λ1[V ] and assume by
contradiction that λ1[V ] ≤ 0. If λ1[V ] < 0, it is easy to see that for ε > 0 small
enough V + εψ < 1 is a sub-solution of (10). From there, it would follow that there
exists a solution of (10) between V + εψ and 1 but this contradicts the uniqueness
of V .

Now if λ1[V ] = 0,letting ψ be as above, we get

−∆ψ + αg(y)ψ − f ′(V )ψ = 0. (16)

From the equation and since V is unique for every given 0 < α < α0, it is clear that
V is differentiable with respect to α and that w := ∂V

∂α satisfies:

−∆w + αg(y)w − f ′(V )w = −g(y)V. (17)

We know that w ≤ 0 and from (17) which shows that w 6≡ 0, we actually see from the
maximum principle that w < 0 in RN−1. It is also easily seen that w has exponential
decay at infinity. From (16) and (17), it then follows that

∫
RN−1 gV w = 0 which is

a contradiction. Hence λ1[V ] > 0.
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4. Traveling fronts for a Fisher-KPP non-linearity. This section is devoted
to the definition of a speed c∗ for which a traveling front of equation (6) exists for
α ∈ (0, α0). The threshold of existence of the non-zero asymptotic profile is called
α0 as in the previous section. For 0 < α < α0, V denotes the unique non-zero
asymptotic profile. As shown in the previous section, the energy of the non-zero
profile Jα(V ) is negative.

A curved traveling front of speed c is a function u(x1− ct, y) solution of equation
(6) and connecting the non-zero asymptotic state V to 0. Thus we are looking for
a solution of

−∆u− c∂1u+ αg(y)u = f(u), x = (x1, y) ∈ RN

u(x1, .)
x1→−∞−−−−−→ V, u(x1, .)

x1→+∞−−−−−→ 0 uniformly in y ∈ RN−1,

u ≥ 0, u bounded

(18)

where c ∈ R is also an unknown of the problem.
The construction of c∗ in Theorem 1.1 uses the sliding method following ideas of

[14]. Note however that there are important differences with [14]. In that paper,
the Fisher-KPP case is derived by first solving the “combustion non-linearity” and
then approach the Fisher-KPP non-linearity as a limiting case of truncated func-
tions. Contrary to [14] here, we derive directly the existence of a solution of the
Fisher-KPP case. Actually the method we present here can be applied to some-
what simplify the proof of [14] in the Fisher-KPP case for cylinder with Neumann
conditions.

4.1. Problem on a domain bounded in x1. Let us fix a > 1 and c ∈ R for this
subsection and consider the following problem:

−∆u− c∂1u+ αg(y)u = f(u), x = (x1, y) ∈ (−a, a)× RN−1

u(−a, ·) = V, u(a, ·) = 0,

u ≥ 0, u bounded.

(19)

The aim of this subsection is to prove the following theorem:

Theorem 4.1. There exists a unique solution of (19), denoted uca in the following.
This solution decreases in the x1-direction, i.e. ∂1u

c
a < 0. Thus 0 < uca < V

on (−a, a) × RN−1. Moreover c 7→ uca is decreasing and continuous from R to
L∞([−a, a]× RN−1).

To prove this theorem, we require the following two propositions.

Proposition 3. Let u be a solution of (19). Then u(x1, y) ≤ V (y) for (x1, y) ∈
[−a, a]× RN−1.

Proof. Let M ≥ 1 be such that u ≤ M and consider ψR defined on BR the largest
solution of {

−∆yψR + αg(y)ψR = f(ψR) for y ∈ BR,
ψR = M for y ∈ ∂BR, 0 ≤ ψR ≤M.

(20)

Here we think of f as having been extended by 0 outside [0, 1]. Since f(s) ≤ 0 for
all s ≥ 1, we observe that:

• by the strong maximum principle, 0 < ψR < M on BR.
• since V ≤ 1 ≤M and V is a sub-solution of (20), through monotone iterations

we have V ≤ ψR.
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• if R′ > R, ψR′ is once again a sub-solution of (20) on BR and thus ψR′ ≤ ψR
on BR.

• therefore ψR tends to a function when R → +∞ and through local elliptic
estimates, this function is a non-zero solution (≥ V ) of the asymptotic problem

(10). By uniqueness, we obtain ψR
R→+∞−−−−−→ V

Now we consider the problem{
−∆w − c∂1w + αg(y)w = f(w) for x ∈ (−a, a)×BR,
w = M for x ∈ (−a, a)× ∂BR, w = ψR for x1 = ±a, y ∈ BR.

(21)

The solution u of (19) is a sub-solution of (21) and the constant function M is a
super-solution. Using monotone iterations starting from the super-solution M , we
build the same sequence as previously (for problem (20)) since by induction the
solutions do not depend on x1 ∈ (−a, a). Hence the sequence converges toward ψR
and we have u ≤ ψR ≤M . Now letting R→ +∞ yields u ≤ V .

Proposition 4. Let R be such that g(y) > K
α for y 6∈ BR where K is the Lipschitz

norm of f on [0, 1]. We set Ω = I × (RN−1 \ BR) where I is an open bounded
interval of R.

Suppose u and v ∈ C2(Ω) ∩ C0(Ω) are solutions of

−∆w − c∂1w + αg(y)w = f(w) on Ω (22)

and u ≤ v on ∂Ω. Then u ≤ v on Ω.

Proof. By contradiction, suppose this is not true. Due to corollary 1 and proposition
3, u(x1, y) and v(x1, y) converge uniformly to 0 for |y| → +∞. Consequently, there
exist (x0, y0) ∈ Ω such that

0 > min
Ω

(v − u) = (v − u)(x0, y0).

Since (x0, y0) ∈ Ω, we have ∂1(v − u)(x0, y0) = 0 and ∆(v − u)(x0, y0) ≥ 0, and
subtracting the equation (22) with u from the one with v, we obtain

αg(|y0|)(v − u)(x0, y0) ≥ f(v(x0, y0))− f(u(x0, y0)) ≥ −K|(v − u)(x0, y0)|

which is impossible since αg(|y0|) > K and (v − u)(x0, y0) < 0.

Let us now turn to the proof of Theorem 4.1 using sliding method.

First u(x, y) = V (y) is a super-solution, 0 is a sub-solution and 0 ≤ u, so by
monotone iterations, there exists a solution u of (19).

Lemma 4.2. Assume u and v are two solutions of (19). Then

v(x1 + h, y) ≤ u(x1, y) for all h ∈ [0, 2a) and all (x1, y) ∈ [−a, a− h]× RN−1.

Proof of the lemma. By proposition 3, we have 0 ≤ u ≤ V (resp. 0 ≤ v ≤ V ) and
using the strong maximum principle, we obtain 0 < u < V (resp. 0 < v < V ) on
(−a, a)× RN−1.

For h ∈ [0, 2a), let Ih = (−a, a− h) and for (x1, y) ∈ Ih × RN−1, set vh(x1, y) =
v(x1 + h, y).

Let us fix R > 0 such that g(y) > K
α for y 6∈ BR. By compactness and continuity

of u and v, there exists ε > 0 such that vh ≤ u on Ih × BR for any h such that
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2a− ε ≤ h < 2a. Proposition 4 shows that vh ≤ u on Ih×RN−1 for any h ≥ 2a− ε.
This enables us to define

h∗ = inf{h ≥ 0, vh ≤ u on Ih × RN−1}.
Let us prove that h∗ = 0 and argue by contradiction that h∗ > 0. By continuity,

vh∗ ≤ u on Ih∗ × RN−1.
Suppose that min

Ih∗×BR
u − vh∗ > 0. This would imply that for h∗ − h > 0 small,

min
Ih×BR

u − vh > 0 and by Proposition 4, vh ≤ u on Ih × RN−1 in contradiction

with the definition of h∗. Therefore min
Ih∗×BR

u− vh∗ = 0. This implies the existence

of (x∗1, y
∗) ∈ Ih∗ × BR such that vh∗(x

∗
1, y
∗) = u(x∗1, y

∗) (note that u − vh∗ > 0
for x1 = −a or a − h∗). Writing in the usual way that u − vh∗ is solution of a
linear elliptic equation in Ih∗ × RN−1 and u − vh∗ ≥ 0 with u − vh∗ vanishing at
the point (x∗1, y

∗), the strong maximum principle implies that u− vh∗ ≡ 0 which is
impossible.

Applying the preceding lemma with h = 0 yields the uniqueness of the solution of
(19). Taking u = v = uca, one sees that uca is monotone decreasing. Thus ∂1u

c
a ≤ 0

and deriving equation (19) and applying once more the maximum principle gives
∂1u

c
a < 0.

It remains to study the behavior of uca with respect to c. The continuity is
deduced from the uniqueness of the solution and a priori estimates in the standard
way. Now let c1 < c2 and denote by u1 (resp. by u2) the solution of (19) with
c = c1 (resp. c = c2). Since ∂1u1 < 0,

∆u1 + c2∂1u1 + f(u1)− αg(y)u1 = (c2 − c1)∂1u1 < 0

and u1 > 0 is a super-solution of equation (19) with c = c2. By uniqueness of the
solution, necessarily u2 ≤ u1. Once more the strong maximum principle implies
u2 < u1.

4.2. Convergence to a solution on RN . Now that the equation is solved on a
domain bounded in the x1-direction, the idea is to increase a up to infinity so that
the domain tends to RN . However if c is chosen arbitrarily, the function uca may
converge toward the constant 0 or to V when a tends to infinity. Hence we adopt a
normalization method as in [14]. The following theorem will define the value of the
speed c depending on a to avoid those situations. We recall that since α < α0, λα
the principal eigenvalue of the linearized operator about the solution 0 is negative.

Theorem 4.3. Let us fix ε > 0. Let δ > 0 be such
that δ < −λα ≤ f ′(0). Let η > 0 be such that
∀s ∈ [0, η] f(s) ≥ (f ′(0)− δ)s. We fix θ ∈ (0, η2 ).
Then there exists A(ε) > 0 such that for all a ≥
A(ε), there exists a unique speed ca ∈ (0, 2

√
−λα+ε)

with ucaa (0, 0) = θ.

t = (f ′(0)− δ)s

t = f (s)

s

t

t = f ′(0)s

0 1θ η

Proof. By continuity and monotonicity, it suffices to prove:

i) u0
a(0, 0) > θ,

ii) uca(0, 0) < θ for c = 2
√
−λα + ε and a large enough.

i) Assume c = 0. Let ϕα be the positive eigenfunction of the linearized operator L
associated with the first eigenvalue λα < 0 and with the normalization ‖ϕα‖∞ = 1.
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Let us introduce v(x1, y) = h(x1)ϕα(y) for (x1, y) ∈ [−a, a] × RN where h(x1) =
η a−x1

2a . Then 0 < v ≤ η on [−a, a]× RN , which yields

−∆v + αg(y)v − f(v) ≤ −∆v + αg(y)v − (f ′(0)− δ)v
= (λα + δ)v ≤ 0.

Moreover by construction of V (cf section 3), v(−a, y) = ηϕα(y) < V (y) if η is small
enough. Then v(a, y) = 0 and v ≤ 1. Hence, v is a sub-solution of (19) for c = 0.
Thus v ≤ u0

a and therefore, u0
a(0, 0) ≥ v(0, 0) = η

2 > θ.

ii) Let us construct an explicit super-solution for c = 2
√
−λα+ε. We recall from

section 3.1 that λβ < λα for β < α and that limβ→α λβ = λα. Thus there exists

β ∈ (0, α) such that 2
√
−λβ ≤ 2

√
−λα + ε. As before, let ψβ denote the positive

eigenfunction of the linearized operator L associated with the first eigenvalue λβ < 0
with the normalization ψβ(0) = 1. Choose R such that for all r ≥ R, (α− β)g(r) +

λβ > 0 and αg(r) > f ′(0), and choose k > 0 such that kψβ ≥ V on BR. The
constant k only depends on β hence on ε.

Lemma 4.4. Then kψβ ≥ V on RN−1.

Proof of the lemma. We follow a similar proof to that of lemma 4:
If the lemma does not stand, since kψβ − V tends to 0 at ∞, there exists y0 ∈

RN−1 \ BR such that (kψβ − V )(y0) = minRN−1(kψβ − V ) < 0. At this point,
∆(kψβ − V ) ≥ 0 but

−∆(kψβ − V ) + αg(y0)(kψβ − V )− f ′(0)(kψβ − V ) =(
(α− β)g(|y0|) + λβ

)
kψβ + f ′(0)V − f(V ) ≥

(
(α− β)g(|y0|) + λβ

)
kψβ .

By the choice of R, we get ∆(kψβ − V )(y0) < 0 which yields a contradiction.

Let us now build the super-solution when c = 2
√
−λα + ε. We set w(x1, y) =

z(x1)kψβ(y) where z is the solution of{
z′′ + cz′ − λβz = 0 on (−a, a),

z(−a) = 1, z(a) = 0.

Then w verifies{
−∆w − c∂1w + αg(y)w = (α− β)g(y)w + f ′(0)w ≥ f(w)

w(−a, .) = kψβ ≥ V, w(a, .) = 0.

so it is indeed a super-solution of (19). Moreover

z(x) =
eρ+(x−a) − eρ−(x−a)

e−ρ+2a − e−ρ−2a
≥ 0

where ρ− < ρ+ < 0 are the roots of ρ2 + cρ− λβ = 0, i.e. ρ± =
−c±
√
c2+4λβ
2 (note

that c2 + 4λβ ≥ 0). Hence

0 < uca(0, 0) < w(0, 0) =
e−ρ+a − e−ρ−a

e−ρ+2a − e−ρ−2a
kψβ(0)

=
1

e−ρ+a + e−ρ−a
kψβ(0) ≤ e− c2ak ≤ e−a

√
−λαk

Thus if a is large enough to have e−a
√
−λα < θ

k , then for c = 2
√
−λα + ε, we get

uca(0, 0) < θ.
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With the bounds on the speed ca it is now possible to pass to the limit as a tends
to infinity.

Proposition 5. There exists a sequence (aj)j∈N such that aj → +∞, caj → c∗ ∈
[0, 2
√
−λα] and u

caj
aj → u in C2

loc(RN ). The limit u is solution of{
−∆u− c∗∂1u+ αg(y)u = f(u) on RN

0 ≤ u ≤ V, u(0, 0) = θ, ∂1u ≤ 0.
(23)

Then u is necessarily a traveling front solution of (18) with c = c∗.

Proof. First for j ∈ N, fix εj = 1
j+1 and aj ≥ A(εj) with aj → +∞. Since caj ∈

(0, 2
√
−λα + εj ] is bounded, u

caj
aj is uniformly bounded in C2,γ for any γ ∈ (0, 1).

Hence up to an extraction of a subsequence, there exist c∗ ∈ [0, 2
√
−λα] and u ∈ C2

loc

such that ca → c∗ and ucaa → u. Clearly the function u is a solution of (23). Owing
to the normalization u(0, 0) = θ, u is not a constant, moreover by the maximum
principle 0 < u < V and ∂xu < 0. Since u is decreasing in x, u± = lim

x→±∞
u(x, ·) are

solutions of (10) and u−(0) > θ > 0 and 0 ≤ u+(0) < θ. This implies that u− = V
and u+ ≡ 0. Thus u is indeed a traveling front solution of (18).

4.3. Existence of traveling front for c ≥ 2
√
−λα. In this section we still assume

0 < α < α0 and we will prove the following theorem.

Theorem 4.5. There exists a traveling front of speed c of equation (18) if and only
if c ≥ 2

√
−λα.

We start with the Proposition

Proposition 6. For c < 2
√
−λα there exists no traveling front solution of (18).

Thus c∗ = 2
√
−λα (where c∗ is the traveling speed constructed in the previous

section).

Proof. We argue by contradiction and assume that there exists a traveling front
u of speed c < 2

√
−λα of (18). We are going to construct a small positive sub-

solution with compact support. To this end, we can find δ ∈ (0, f ′(0)) such that
c2 + 4(λα + 2δ) < 0 and η > 0 such that for all s ∈ [0, η], f(s) ≥ (f ′(0)− δ)s.

Since the linearized operator L = −∆+αg(y)−f ′(0) is self adjoint, the principal
eigenvalue λα is the limit of the Dirichlet principal eigenvalue in BR when R→∞
(see [15] for more details):{

−∆ψR + αg(y)ψR − f ′(0)ψR = λRαψ
R, y ∈ BR,

ψR > 0 on BR, ψR = 0 on ∂BR.
(24)

Precisely λRα > λα and λRα
R→∞−−−−→ λα. In the following, ψR denotes the positive

eigenfunction with ‖ψR‖∞ = 1 and let us fix R sufficiently large so that λα < λRα <
λα + δ.

Let σ̃ = σ+ i π2L , L > 0, be an imaginary root of X2 + cX − λRα − δ = 0 which is

possible since c2 + 4(λRα + δ) < c2 + 4(λα + 2δ) < 0. Finally let us fix ε > 0 small
enough such that εeσx1 < η and εeσx1ψR(y) < u(x1, y) for x ∈ [−L,L] and y ∈ BR.
We set

w(x1, y) =

{
εeσx1 cos( π

2Lx1)ψR(y) if − L < x1 < L, y ∈ BR,
0 otherwise.

(25)
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Then w verifies

−∆w − c∂1w + αg(y)w = (f ′(0)− δ)w ≤ f(w)

since 0 ≤ w ≤ η. Moreover w ≤ u and w > 0 on (−L,L) × BR. Thus w is a
generalized sub-solution with compact support [12].

Let us now derive a contradiction with the existence of a traveling front u. Trans-

late u to the left by defining uτ (x1, y) = u(x1+τ, y) for τ > 0. Since u(x1, .)
x1→+∞−−−−−→

0, there exists τ∗ ≥ 0 such that uτ∗ ≥ w but uτ∗(x
∗
1, y
∗) = w(x∗1, y

∗). Since uτ∗ > 0,
x∗1 ∈ (−L,L) and y∗ ∈ BR (an interior point of the support of w). Now since w is
a sub-solution, the strong maximum principle yields uτ∗ ≡ w on [−L,L]×BR, but
this is impossible on the boundary.

We have already proved that for c < 2
√
−λα, there exists no traveling front of

speed c solution of (18) and that for c = c∗ = 2
√
−λα there exists a traveling front

of speed c. Let us prove that for any c > c∗ there exists at least a traveling front
to conclude with Theorem 4.5. The proof goes as usual. We consider the following
problem{

−∆u− c∂1u+ αg(y)u = f(u), x = (x1, y) ∈ (−a, a)× RN−1

u(−a, ·) = u∗(−a+ r, ·), u(a, ·) = u∗(a+ r, ·)
(26)

where u∗ is the traveling front of speed c∗. The function u∗(·+r, ·) is a strict super-
solution of (26) (since c > c∗) when 0 is a strict sub-solution and 0 < u∗(· + r, ·).
Hence as in theorem 4.1, it can be proved that there exists a unique solution vra of
(26) and moreover ∂xw

r
a < 0 and

∀(x1, y) ∈ [−a, a]× RN−1 V (y) > u∗(−a+ r, y) ≥ vra(x1, y) ≥ u∗(a+ r, y) > 0.

By uniqueness, wra depends continuously on r ∈ R, so wra
r→+∞−−−−−→ 0 and wra

r→−∞−−−−−→
V uniformly on [−a, a] × RN−1. Let us denote ua = vra where r is chosen in order
that vra(0, 0) = θ (see previous section for definition of θ). Once again taking any
sequence an → +∞, up to an extraction uan → u in C2

loc and u is a traveling front
of speed c solution of (18).

5. The case of a Fisher-KPP non-linearity. Asymptotic speed of spread-
ing. This section is concerned with the asymptotic behavior of the solutions of the
parabolic problem {

∂tu−∆u = f(u)− αg(y)u on R× RN

u(0, x) = u0(x) on RN
(27)

where f is Fisher-KPP and u0 is an initial condition at least bounded.

5.1. Extinction for α ≥ α0. Let us fix α ≥ α0. We recall that there is no positive
asymptotic profile of (10).

Theorem 5.1. For u0 ∈ L∞, there exists a unique solution u(t, x) of (27) and it

verifies u(t, x)
t→+∞−−−−→ 0 uniformly for x ∈ RN .

This section is devoted to the proof of this theorem.
Let us fix S = max(1, ‖u0‖∞). Then the constant functions 0 and S are respec-

tively sub- and super-solutions of (27). Thus there exists u(t, x) a solution of (27)
such that 0 ≤ u ≤ S. By the parabolic maximum principle, this solution is unique.
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Let us define w the solution of (27) with the initial condition w(0, x) = S. Since
the problem and the initial condition do not depend on x1, neither does w thus we
will write w(t, y). By the maximum principle, 0 ≤ u ≤ w ≤ S and since S is a

super-solution, ∂tw ≤ 0. Thus w(t, y)
t→+∞−−−−→W (y) and

0 ≤ lim sup
t→+∞

u ≤W ≤ S.

Now by parabolic local estimates, W is necessarily solution of

−∆yW = f(W )− αg(y)W

and thus is a nonnegative asymptotic profile. Since α ≥ α0, W ≡ 0. So u(t, x)
tends to 0 for t→ +∞ uniformly in RN .

5.2. Spreading for α < α0. In this section we assume α < α0. So there exists
a critical speed c∗ of existence of traveling front for (18). We assume that u0 ∈
C0

0(RN ), i.e. u0 is continuous and compactly supported, and that u0 < V where V
is the positive asymptotic profile solution of (10). We will prove the spreading of
the solution of (27) but we first need the following theorem.

Theorem 5.2. The unique solution of{
−∆z − c∂1z + αg(y)z = f(z) (x1, y) ∈ RN ,
0 < z(x1, y) ≤ V (y) (x1, y) ∈ RN .

(28)

with c < c∗ is z(x, y) ≡ V (y).

Proof. Let us consider the generalized sub-solution with compact support w(x1, y)
defined in (25). This is possible since c < c∗. Up to a decrease of ε > 0, we can
assume that w ≤ z on RN . Now by applying the sliding method to wτ where
wτ (x1, y) = w(x1 + τ, y) and z, one can prove that wτ ≤ z for all τ ∈ R. We can
thus define

∀y ∈ RN−1 z(y) = inf
x1∈R

z(x1, y) ≥ 0

and state that z 6≡ 0. Now z is a super-solution of (10) since z = infh∈R z(· + h, ·)
and an infimum of solutions is a super-solution.

Finally as in section 3, we can build a positive sub-solution of (10) smaller than
z and thus by monotone iteration we have a solution of (10) between these sub-
and super-solution. By uniqueness of the positive solution, we obtain V ≤ z. And
due to condition in (28), we have z ≡ V .

Let us now turn to the precise study of the spreading of the solution of (27)

Theorem 5.3. For u0 ∈ C0
0(RN ) with u0 < V , there exists a unique solution u of

(27) and

for any c > c∗ lim
t→+∞

sup
|x1|≥ct

u(t, x) = 0, (29)

for any c with 0 ≤ c < c∗ lim
t→+∞

sup
|x1|<ct

|u(t, x)− V (y)| = 0. (30)

Proof. Fix c > c∗. Let U denote a traveling front of speed c∗. Since U(x1, ·)→ V for
x1 → −∞ locally uniformly, there exists L ∈ R such that U(x1 − L, y) > u0(x1, y)
for all (x1, y) ∈ RN . Now considering v(t, x) = U(x1 −L− c∗t, y) and applying the



TRAVELING FRONTS GUIDED BY THE ENVIRONMENT 97

comparison principle, we have u(t, x) ≤ v(t, x) for all t ≥ 0 and x ∈ RN . Thus since
U is decreasing in x1

sup
|x1|>ct

u(t, x) ≤ sup
|x1|>ct

U(x1 − L− c∗t, y) = sup
y∈RN−1

U((c− c∗)t− L, y).

Since c > c∗ and U(x1, y)
x1→+∞−−−−−→ 0 uniformly in y ∈ RN−1. We see that

supx1≥ct u(t, x) → 0 as t → +∞. Since u(t,−x1, y) satisfies the same equation
(27), this shows that supx1≤−ct u(t, x)→ 0 as well as t→ +∞. Thus (29) is proved.

Assume now c < c∗. Let us first prove the following weaken version of (30):

Lemma 5.4. For any c ∈ R with |c| ≤ c∗,
∀(x1, y) ∈ RN lim

t→+∞
|u(t, x1 − ct, y)− V (y)| = 0. (31)

Proof of lemma 5.4. Let us assume that c ≥ 0, the proof being similar for c ≤ 0.
Let v(t, x1, y) = u(t, x1 − ct, y). Then v satisfies the equation

∂tv −∆v − c∂1v + αg(y)v = f(v) (32)

with the initial datum v(0, x1, y) = u0(x, y) ≥ 0 and 6≡ 0. Hence by the parabolic
maximum principle, for all (x1, y) ∈ RN v(1, x1, y) > 0. Now since c < c∗, in
(25), we constructed w(x1, y) ≥ 0 a stationary non-zero sub-solution of (32) with
compact support and w could be chosen arbitrary small. Hence we can assume
w ≤ v(1, ·, ·). So if w̃ is the solution of{

∂tw̃ −∆w̃ − c∂1w̃ + αg(y)w̃ = f(w̃) t > 0, (x1, y) ∈ RN

w̃(0, x1, y) = w(x1, y) (x1, y) ∈ RN

then by comparison principle, ∀t ≥ 1 ∀(x1, y) ∈ RN v(t, x1, y) ≥ w̃(t−1, x1, y). Now
since w is a sub-solution, w̃ is increasing with respect to t and 0 ≤ w̃(t, x1, y) ≤
V (y). Therefore, by standard elliptic estimates, w̃(t, x1, y)

t→+∞−−−−→ z(x, y) and z is
a solution of (28). By theorem 5.2, we have z ≡ V and this complete the proof
of the lemma since by the comparison principle w̃(t− 1, x1, y) ≤ v(t, x1, y) ≤ V (y)
thus

lim
t→+∞

v(t, x1, y) = V (y)

which yields (31).

Let us now prove (30), that is the uniform convergence to V in the expanding slab
{x1 ≤ ct}. We will only prove it for 0 ≤ x1 ≤ ct. Indeed using as before u(t,−x1, y),
the general result follows from the convergence in the set {0 ≤ x1 ≤ ct}.

Let c with 0 < c < c∗ be fixed and let ε > 0 be given (arbitrarily small). For R >
0 sufficiently large, we know that the principal eigenvalue λRα of the problem (24)
above is such that λRα < 0. Denote by ψR > 0 the corresponding eigenfunction of
(24). Under these conditions we know that there exists a unique solution V R(y) > 0
of the profile equation in BR with Dirichlet condition:{

−∆V R + αg(y)V R = f(V R) in BR

V R = 0 on ∂BR, V R > 0 in BR.
(33)

(Compare e.g. [5]). Moreover, it is straightforward to show that V R is increasing
with R and that limR→+∞ V R(y) = V (y).

Let us choose R > 0 sufficiently large so that for all y 6∈ BR V (y) < ε and for
all y ∈ BR 0 < V (y) − V R(y) < ε. The proof of the uniform convergence to V for
c < c∗ will rest on the following Proposition.
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Proposition 7. Let c be such that 0 < c < c∗. Then, with R chosen as above, there
exists a solution vc(x1, y) defined for x1 ∈ R−, y ∈ BR of equation

−∆v − c∂1v + αg(y)v = f(v) x1 ≤ 0, y ∈ BR (34)

satisfying the following properties:
vc > 0 and ∂1vc < 0 in R−∗ ×BR,
vc(0, y) = 0 for y ∈ BR,
vc(x1, y) = 0 for y ∈ ∂BR, x1 ≤ 0,

vc(−∞, y) = V R(y) for y ∈ BR.

Postponing the proof of this proposition, let us complete the proof of Theorem
5.3. Extending vc by 0 for x1 ≥ 0 turns vc into a (generalized) sub-solution of
equation (34) in the cylinder R×BR (see [12]). Therefore vc(x1 − c(t− t0), y) is a
sub-solution of the equation (27) in this cylinder for all t0 ≥ 0 and all c ∈ (0, c∗).

By Lemma 5.4 (applied here in the case c = 0), we can fix t0 > 0 sufficiently
large such that for t ≥ t0 we have

u(t, 0, y) ≥ V (y)− δ

2
for all y ∈ BR

where δ = min
BR

(V − V R) > 0. Therefore,

u(t, 0, y) > V R(y) for all t ≥ t0 and all y ∈ BR.
We fix c̃ ∈ (c, c∗) and we consider v(t, x1, y) = vc̃(x1− c̃(t− t0), y). In the region

D = (0,+∞) × BR, u is a solution and v a sub-solution of equation (27) and for
any time t ≥ t0

u(t, x1, y) ≥ v(t, x1, y) for (x1, y) ∈ ∂D.
Moreover, u(t0, x1, y) ≥ v(t0, x1, y) = 0 in D. The comparison principle then yields

u(t, x1, y) ≥ v(t, x1, y) in D.

Therefore

lim sup
t→+∞

sup
0≤x1≤ct
y∈BR

(
V (y)− u(t, x)

)
≤ lim sup

t→+∞
sup

0≤x1≤ct
y∈BR

(
V (y)− vc̃(x1 − c̃(t− t0), y)

)
≤ lim sup

t→+∞
sup
y∈BR

(
vc̃((c− c̃)t+ c̃t0, y)

)
≤ sup

y∈BR

(
V (y)− V R(y)

)
< ε.

Outside of BR we already know that 0 < u < V < ε for any t ≥ 0, x1 ∈ R and
|y| ≥ R. Therefore

lim sup
t→+∞

sup
0≤x1≤ct

(
V (y)− u(t, x)

)
≤ ε

Since this is true for all ε > 0 (and for −ct ≤ x1 ≤ 0), we have thereby established
(30).

It now remains to prove Proposition 7 which we carry now. As in (25), we
construct a sub-solution of the equation (34) with compact support, namely:

w(x1, y) =

{
εeσx1 cos( π

2Lx1 + π
2 )ψR(y) if − 2L < x1 < 0, y ∈ BR,

0 otherwise.

In comparison with (25), there is a translation in x1 such that the support of w
now lies in R− ×BR.
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For any b < 0, let zb be the solution of
−∆zb − c∂1zb + αg(y)zb = f(zb) in (b, 0)×BR,
zb(b, y) = V R(y), zb(0, y) = 0 for y ∈ BR
zb(x1, y) = 0 for x1 ∈ (b, 0), |y| = R.

Since V R is a super-solution and 0 a sub-solution, there exists a solution of this
problem. By the sliding method of [4], we know that this solution is unique and
satisfies ∂1zb < 0 in (b, 0)×BR.

Next, for b < −L, wince w is a sub-solution, we also know that

∀b ≤ −L ∀(x1, y) ∈ (b, 0)×B zb(x1, y) > w(x1, y).

This allows us to pass to the limit when b→ −∞. Clearly zb(x1, y)
b→−∞−−−−→ vc(x1, y).

By the lower bound, vc(x1, y) > w(x1, y) which shows that vc(x1, y) > 0 in R∗−×BR.
Since ∂1vc ≤ 0 and vc 6≡ 0, we also know that ∂1vc < 0 in R∗− × BR. Now since
limx1→−∞ vc(x1, y) must be a positive solution of (33). Hence by uniqueness we
get vc(−∞, y) = V R(y). This completes the proof of Proposition 7 and therefore of
Theorem 5.3

6. The case of a positive non-linearity. In this section, we prove Theorem 1.3
about the existence of traveling fronts in the positive case. We use the notations of
the preceding sections, in particular λα still denotes the principal eigenvalue of the
linearized operator around 0 and ϕα an associated eigenfunction. We are interested
in a traveling front solution of (6) when f is only assume to be of the positive type,
that is f : R→ R is C1 with

f(0) = f(1) = 0, f > 0 on (0, 1) and f ′(0) > 0. (35)

6.1. Asymptotic profiles. The linearized operator around 0 is exactly the same
as in the Fisher-KPP case thus there exists α0 > 0 such that λα < 0 for α < α0 and
λα ≥ 0 for α ≥ α0. In the same way as before, we can prove the existence result:

Proposition 8. For α < α0, there exists V (y) a maximal positive asymptotic profile
solution of (10).

However, in this more general case, we have no information on the uniqueness
of the positive asymptotic profile nor on the non-existence of profiles for α ≥ α0.
Actually, this will depend on the non-linearity f .

Proof. As in Theorem 3.2, εϕα is a subsolution for ε > 0 small enough and 1 is
a supersolution. Using monotone iterations, we can construct a maximal positive
asymptotic profile.

Since the positive asymptotic profile may not be unique, we will need the follow-
ing lemma before turning to the construction of traveling fronts.

Lemma 6.1. For any α < α0, there exists θα > 0 such that any positive asymptotic
profile W (y) solution of (10) satisfies

W (0) ≥ 2θα. (36)

Proof. By contradiction, assume that there exist Wn > 0 solution of (10) with

Wn(0)
n→∞−−−−→ 0. Then ψn = Wn

‖Wn‖∞ is a solution of

−∆ψn + αg(y)ψn =
‖Wn‖∞ψn
‖Wn‖∞

.
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Since ψn is bounded, up to extraction of a subsequence, we can let n tend to ∞ to
obtain ψn → ψ∞ ≥ 0 with ‖ψ∞‖∞ = 1 and

−∆ψ∞ + αg(y)ψ∞ = f ′(0)ψ∞.

In the previous limit, we made use of the compactness argument derived from the
fact that ψn(y) → 0 as |y| → ∞ uniformly in n as is obtained from Theorem
2.1. Thus, ψ∞ is a principal eigenfunction associated with the eigenvalue 0 which
contradicts the fact that λα < 0.

6.2. Existence of traveling fronts. In this section, we will use the same method
as in section 4 to construct a traveling front solution of (10). However due to
the possible non-uniqueness of the positive asymptotic profile, the result will be
somewhat weaker in that the limiting profile is not prescribed. More precisely, we
will prove the existence of c ∈ R and u solutions of

−∆u− c∂1u+ αg(y)u = f(u), x = (x1, y) ∈ RN

u(x1, .)
x1→+∞−−−−−→ 0 uniformly in y ∈ RN−1,

u > 0, u bounded and ∂1u < 0.

(37)

The construction of the solution follows the same line as before. We start by
solving the problem on a domain bounded in x1, precisely we study solution of (19)
where V is the maximal positive asymptotic profile. Since V is maximal, Theorem
4.1 still holds true. The only difficulty is to translate Theorem 4.3 to the case of a
positive non-linearity. Having this aim in mind, we introduce two notations:

m = sup
(0,1]

f(s)

s
and µα = λα + f ′(0)−m ≤ λα < 0.

In the Fisher-KPP case, we observe that m = f ′(0) and thus µα = λα. We will
prove the following result.

Theorem 6.2. Let ε > 0 be fixed such that εϕα < V (see previous section). Let
δ > 0 be such that δ < −λα < f ′(0) and let η > 0 be such that η < ε and
∀s ∈ [0, η] f(s) ≥ (f ′(0) − δ)s. We fix θ ∈ (0, η2 ) such that θ < θα (see Lemma
6.1 for definition of θα). Then there exists Aε > 0 such that for all a ≥ Aε there
exists a unique speed ca ∈ (0, 2

√
−µα+ε) such that ucaa the solution of (19) satisfies

ucaa (0, 0) = θ.

Proof. The only difference with the proof of Theorem 4.3 is in the upper bound of
ca (section ii) in the proof of Theorem 4.3). It goes as before but we need to replace
λα by µα.

So let us construct an explicit super-solution of (19) for c = 2
√
−µα + ε. As

before, we can fix β < α such that 2
√
µβ ≤ 2

√
µα + ε and we consider ψβ the

positive eigenfunction of the linearized operator around 0 with the normalization
‖ψβ‖∞ = 1. We fix R > 0 such that for all r ≥ R

(α− β)g(r) + µβ > 0 and αg(r) > m.

Let us then fix k > 0 such that kψβ ≥ V on B̄R. Then kψβ ≥ V on RN−1. Indeed
we argue by contradiction and assume that minRN−1(kψβ−V ) = (kψβ−V )(y0) < 0
but at this point y0 ∈ RN−1 \ B̄R, we have

−∆(kψβ − V )(y0) + (αg(y0)−m)(kψ − V )(y0) =

µβkψβ(y0) + (α− β)g(y0)kψβ(y0) +mV (y0)− f(V (y0)) > 0
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and this yields a contradiction.
Then we prove as in Theorem 4.3 that w(x1, y) = z(x1)kψβ(y) is a super-solution

if z is a solution of {
z′′ + cz′ − µβz = 0 on (−a, a),

z(−a) = 1, z(a) = 0

and as before we obtain that

0 < uca(0, 0) < e−
c
2ak ≤ e−a

√
−µαk

and the upper bound of ca for large a is thus proved.

Then the convergence of ucaa to a solution of (37) when a tends to +∞ is exactly
the same except that the non-uniqueness of the positive asymptotic profile prevents
us from determining the precise limit of u(x1, .) for x1 → −∞.

We leave it as an open problem to know whether there always is a traveling front
connecting the maximum profile V (y) to the 0 solution.

7. The case of a bistable non-linearity. Asymptotic profiles. In this section
we consider again equation (1) but in the bistable framework. That is, we assume
that f is a C1 function that satisfies the following assumptions for some θ ∈ (0, 1):

f(0) = f(θ) = f(1) = 0, f(s) < 0 for s ∈ (0, θ) and f(s) > 0 in (θ, 1), (38)

f ′(0) > 0, f ′(1) > 0. (39)

We also assume that ∫ 1

0

f(s)ds > 0. (40)

We are concerned here with the existence of traveling front solutions of (1), that is,
(c, u) solution of (18). First we require some preliminary results on the equation
(10) in the bistable case.

7.1. Existence of asymptotic profiles in the bistable case. Consider equation{
∆u+ f(u)− αg(y)u = 0, y ∈ RN−1,

u ≥ 0, u bounded,
(41)

under the same assumption (7) and (8) as above for the function g.
The existence of solutions depends on α and is obtained in the following theorem.

Theorem 7.1. Let f and g satisfy the above assumptions. There exists a threshold
value α∗ ∈ (0,∞), such that:

i): For any α ∈ (α∗,+∞), (41) does not have any positive (non-zero) solution.
ii): For any α ∈ (0, α∗], (41) admits a maximal positive solution V (y).
iii): For any α ∈ (0, α∗), (41) admits a second positive solution W (y) with

0 < W (y) < V (y).

The rest of this section is devoted to the proof of this Theorem.
This Theorem follows from the observation that for α > 0 any positive solution

u(y) of (41) satisfies u(y)→ 0 as |y| → ∞. This is obtained from Corollary 1.
Next, by the maximum principle, any solution of (41) satisfies 0 ≤ u ≤ 1 (we

think of f(s) as having been extended by 0 outside [0, 1]).
Now u ≡ 1 is a super-solution of problem (41). Any solution of (41) for α

is a sub-solution of (41) for any parameter β ≤ α. Therefore, if there exists a
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positive bounded solution of (41) for α, there also exists a positive solution for any
0 < β ≤ α.

Next, we claim that for small enough α > 0, (41) admits a positive solution.
Indeed, consider the functional defined on H:

J(w) = Jα(w) =

∫
RN−1

(
1

2
|∇w|2 +

α

2
g(y)w2 − F (w)

)
dy

where F (z) =
∫ z

0
f(s)ds. Recall that f is extended by 0 outside [0, 1], thus F is

bounded. Since g(r)→∞ as r →∞, it is straightforward to show that there exists
a minimizer v of J(w): J(v) = min{J(w), w ∈ H}. Furthermore, we know that
v ≥ 0 and v is a solution of (41) (see Theorem 3.3 for details).

Let us show that for α > 0 small enough J(v) < 0. To this end, let ζR be defined
by

ζR(y) =


1 if |y| ≤ R
R+ 1− |y| if R ≤ |y| ≤ R+ 1

0 if |y| ≥ R+ 1

Then ζR ∈ H and

J0(ζR) =

∫
RN−1

|∇ζR|2

2
− F (ζR) ≤ −F (1)|BR|+ C|BR+1 \BR|

where |A| denotes the volume of A and C is a constant. Since −F (1) < 0 by (40),
we see that by choosing R large enough, J0(ζR) < 0. Then for such an R fixed,
we see that Jα(ζR) < 0 provided α > 0 is small enough. This guarantees that
Jα(v) < 0.

It follows that v 6≡ 0. By the maximum principle, we then have 0 < v < 1. This
shows that for small α > 0, (41) admits a positive solution.

Next, we show that if α is large enough (41) does not admit any positive solution.
This can be seen by multiplying the equation by u and integrating to yield:∫

|∇u|2 + α

∫
g(y)u2 =

∫
f(u)u ≤ m

∫
u2 (42)

where m = sup
s>0

f(s)

s
> 0. We conclude with the following lemma:

Lemma 7.2. Under the assumption (8) g(r)
r→∞−−−→ ∞, for any ε > 0, there exists

a constant K(ε) > 0 such that for all u ∈ H one has:∫
RN−1

u2 ≤ ε
∫
RN−1

|∇u|2 +K(ε)

∫
RN−1

g(y)u2.

Indeed choosing in the lemma ε = 1
2m , we get from (42)

1

2

∫
|∇u|2 +

(
α−mK(

1

2m
)

)∫
g(y)u2 ≤ 0

This shows that for α ≥ mK( 1
2m ), the only solution of (41) is u ≡ 0.

Proof of Lemma 7.2. Let δ = δ(ε) > 0 be chosen such that the principal eigenvalue
of −∆ in H1

0 (B2δ) is larger than 4
ε . Let χ be a smooth cutoff function such that

χ(r) = 1 if 0 ≤ r ≤ δ, χ(r) = 0 if r ≥ 2δ and 0 ≤ χ ≤ 1. Consider u1 = χu and
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u2 = (1−χ)u so that u = u1 +u2. Using (a+ b)2 ≤ 2
(
a2 + b2

)
, since u1 ∈ H1

0 (B2δ)
by Poincaré’s inequality, we have∫

RN−1

u1
2 =

∫
B2δ

u1
2 ≤ ε

4

∫
B2δ

|∇u1|2 ≤
ε

2

(∫
B2δ

|∇u|2χ2 +

∫
B2δ\Bδ

u2|∇χ|2
)
.

So that ∫
RN−1

u1
2 ≤ ε

2

∫
B2δ

|∇u|2 + εk1(ε)

∫
|y|≥δ

u2

where k1(ε) ≥ |∇χ|2.

Next

∫
RN−1

u2
2 ≤

∫
|y|≥δ

u2. Therefore∫
RN−1

u2 ≤ 2

(∫
u1

2 +

∫
u2

2

)
≤ ε

∫
|∇u|2 +K(ε)

∫
g(y)u2

where K(ε) = 2 εk1(ε)+1
g(δ) . The lemma is thus proved.

The next step is to prove that the set of α > 0 such that (41) has a solution is
a closed set. Let αj → α∗ be a sequence such that (41) admits a solution uj such
that 0 < uj < 1 for all j. Note that by the maximum principle, θ < maxuj < 1.
The sequence (uj) is bounded by 1 and by standard elliptic estimates is locally
compact. Therefore, one can extract a subsequence uj such that uj → u∗ uniformly
on compact sets in the C2-norm. Therefore u∗ is a solution of (41) for the value
α = α∗. We know that u∗ ≥ 0, but since maxuj > θ, we see that maxu∗ ≥ θ.
Indeed by section 2, uj(y) → 0 as |y| → ∞ uniformly with respect to j. Therefore
u∗ > 0 and (41) also has a positive solution for α∗. This shows that the set of α
such that (41) has a positive solution is an interval (0, α∗] with 0 < α∗ <∞.

Considering the evolution equation{
∂tz −∆z + αg(y)z = f(z), t > 0, y ∈ RN−1,

z(0, y) = 1,

we see that t 7→ z(t, y) ≥ 0 is decreasing and therefore has a limit. This limit
is necessarily the maximal positive solution V = Vα for the α for which (41) has
a positive solution, that is α ∈ (0, α∗], or is 0 in the opposite case, that is when
α > α∗.

The existence of a second solution when 0 < α < α∗ is inspired from a work
of P. Rabinowitz [40]. In a slightly different formulation, the existence of pairs of
solutions is established in [40] by a topological degree argument for bistable type
nonlinearities and another type of parameter dependance. The use of the topological
degree involves compact operators and the results of [40] are set in the framework
of bounded domains. A similar construction can be carried here owing to the
condition (8) g(r) → +∞ as r → +∞. Indeed, under this condition, the injection
H ↪→ L2(RN−1) is compact.This allows one to construct a compact operator and
to carry the argument of [40] to the present framework.

Since we will not use the second solution, we will leave out the details of the
proof of the existence of a second solution.

7.2. Stable asymptotic profiles. As we have seen, a solution of (41) is obtained
by the minimization of J = Jα defined above. The proof of the existence of the
previous solution for α > 0 small yields the following result.
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Proposition 9. There exists 0 < α∗ ≤ α∗ such that for all α ∈ (0, α∗) there exists
a minimum vα > 0 of Jα and such that

Jα(vα) = min
H1(RN−1)

Jα < 0.

In the following, we require the notion of stable solution.

Definition 7.3. Let v be a solution of (41). Eigenvalues of the linearized problem
about v are defined as the eigenvalues λ of

−∆ϕ+ αg(y)ϕ− f ′(v)ϕ = λϕ in RN−1.

The principle eigenvalue is uniquely determined by the existence of a corresponding
eigenfunction ϕ with ϕ > 0. We say that v is (weakly) stable if the principal
eigenvalue λ = λ1[v] of the linearized problem satisfies λ1[v] ≥ 0.

It is well known that the maximal solution V (y) given by Theorem 7.1 when
0 < α ≤ α∗ is weakly stable. Likewise, the minimum solution of the energy of the
Proposition 9 above, when 0 < α < α∗, is a weakly stable solution.

In the following we consider the case 0 < α < α∗ and we make the following
assumption.

There exists a unique positive stable solution of (10). (43)

This condition implies that the minimizer solution vα: Jα(vα) = min{Jα(v), v ∈ H}
coincides with the maximum solution V .

We leave it as an open problem to give sufficient conditions for the uniqueness
of the stable solution. Uniqueness results have been given for analogous problems
but with α = 0, which would rather correspond to the minimal solution in our
framework [38]. Likewise it would be interesting to give sufficient conditions that
ensure that α∗ = α∗. Condition (43) has several implications that we can state.

Proposition 10. For α ∈ (0, α∗], under condition (43), there does not exist a pair
of distinct ordered functions (v1, v2) with 0 < v1 ≤ v2 < V , v1 is a sub-solution
and v2 is a non-maximal solution. That is, if 0 < v1 ≤ v2 < V are respectively
sub-solution and solution of (41), then v1 ≡ v2.

Proof. The proof follows the observation in [14]. However, it requires new elements
in view of the unbounded domain. If v1 < v2, let ϕ2 be a principal eigenfunction of
the linearized problem corresponding to λ1[v2]. Since 0 and V are the only stable
solutions, λ1[v2] < 0. We claim that for ε > 0 sufficiently small, v = v1 − εϕ2 is a
super-solution of (41). Indeed

−∆v + αg(y)v − f(v) = f(v2)− f(v)− f ′(v2)εϕ2 − λ1[v2]εϕ2

=

(
f(v2)− f(v2 − εϕ2)

εϕ2
− f ′(v2)− λ1[v2]

)
εϕ2.

The right hand side is positive if ε > 0 is sufficiently small.
Next, given R > 0, we can choose ε > 0 small enough so that v1 < v2 − εϕ2 in

BR. We choose R so that v1(y) ≤ δ for all |y| ≥ R and f is decreasing on [0, δ].
We claim that then v1 ≤ v2 − εϕ2 in RN−1 \ BR. Argue by contradiction. In this
were not the case, then, since v1, v2 and ϕ2 converge to 0 at infinity, there exists y,
|y| > R such that

min
RN−1

{v2 − εϕ2 − v1} = v2(y)− εϕ2(y)− v1(y) < 0
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This implies that 0 < v(y) < v1(y) ≤ δ. Denote L the operator L = −∆ + αg(y).
Since 0 ≤ L(v − v1) − (f(v) − f(v1)) and f(v(y)) − f(v1(y)) > 0, at the point y
we get L(v − v1)(y) > 0. Therefore, we have reached a contradiction. This shows
that v1 ≤ v2 − εϕ2. Now we have a super-solution v above a sub-solution v1. This
implies that there exists a stable solution v such that v1 ≤ v ≤ v2 − εϕ2 < V . This
however is in contradiction with condition (43).

From this property, we derive the following useful consequence.

Proposition 11. Let α ∈ (0, α∗) and let W be the maximal solution of equation
(41) with the value α∗ of the parameter. Then, any other solution v of (41) with
parameter α that is not the maximal solution cannot be above W .

This immediately follows from the previous proposition as W is a sub-solution
of the equation for the value α < α∗ and W < V .

A consequence of this proposition is

Proposition 12. For α ∈ (0, α∗] and under condition (43), the maximal solution
V is isolated in L∞ topology. Therefore, there exists θ1 > θ such that if v is a
solution of (41) with v(0) ≥ θ1 then v ≡ V .

As we have done before,we can prove that if v is a solution such that v ≥ W in
BR, then v ≥ W < V in RN−1. Then any solution v 6≡ V is such that there exists
y ∈ BR such that v(y) ≤W (y) and therefore ‖v − V ‖L∞ ≥ minBR V −W = δ > 0.

Now, if there exist a sequence vn of solutions of (41) such that vn(0) → V (0)
then by elliptic estimates vn → W a positive solution of (41) and W (0) = V (0) so
W ≡ V by the maximum principle which contradicts the fact that V is isolated.

8. Traveling fronts for a bistable non-linearity. In this section we assume
that f if of bistable type and satisfies (38)-(40). In addition, we assume that
0 < α < α∗ and that condition (43) is fulfilled. Therefore, there exists a unique
non-zero stable solution V (y) = Vα(y) of the profile equation (41). Therefore V > 0,
Jα(V ) = min{J(w), w ∈ H}, λ1[V ] ≥ 0 and V is isolated in the L∞ topology.
Furthermore V is the maximal solution. Any other non-zero solution w satisfies
0 < w < V in RN−1 and λ1[w] < 0 where λ1[w] is the principal eigenvalue of the
linearized problem defined in definition 7.3.

In this section, we prove the existence of a traveling front solution of (1) repre-
senting an invasion of 0 by the state V at positive speed. Such a solution is given
as a pair (c, u) of {

−∆u− c∂1u+ αg(y)u = f(u) in RN

u(−∞, y) = V (y), u(+∞, y) = 0
(44)

with c < 0 and u : RN → (0, 1).
We follow the construction of a solution given above. Namely, let a ≥ 1 and in

the slab Σa = (−a, a)× RN−1, consider the problem{
−∆u− c∂1u+ αg(y)u = f(u) in Σa,

u(−a, y) = V (y), u(+a, y) = 0.
(45)

We recall that for any c ∈ R, for a fixed, there exists a unique solution u = uc

of (45). Furthermore, 0 < u < V and ∂1u < 0 in Σa.The mapping c 7→ uc is
decreasing.
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Up to here, the procedure is the same as before. From this point on however, we
need to modify the above argument since we used the fact that f was positive.

Our first task is to prove the following

Proposition 13. There exists a unique (ca, ua) such that ua is a solution of (45)
for speed ca and ua satisfies the normalization condition

max
y∈RN−1

ua(0, y) = θ. (46)

Let us first prove the existence of ca. The uniqueness is clear.
The parameter ca is bounded independently of a ≥ 1. Moreover,

lim inf
a→+∞

ca ≥ 0.

Proof. The bound from above is obtained simply by comparison with the one di-
mensional problem. Indeed, consider the ODE problem for z = z(x1):{

−z′′ − γz′ = f(z) in (−a, a)

z(−a) = 1, z(+a) = 0, z(0) = θ
(47)

It is known that there exists a unique value γa for which (47) has a (unique) solution
z. Furthermore, lima→+∞ γa = γ∗ where γ∗ is the unique speed of traveling fronts
for the 1D equation {

−z′′ − γ∗z′ = f(z) in (−a, a)

z(−∞) = 1, z(+∞) = 0

Comparing (47) with (45), we see that for each c = γa, the solution z of (47) is a
super-solution of (45), thus z > uγ

a

and for all y ∈ RN−1, uγ
a

(0, y) < z(0) = θ.
Since c 7→ uc is decreasing, we see that

max
y∈RN−1

uc(0, y) < θ for all c ≥ γa.

Assume now that maxy∈RN−1 uc(0, y) < θ for all c ∈ R. Passing to the limit for
c→ −∞, uc converges toward a positive solution v of (41) with max v < θ. By the
maximum principle, it is impossible thus there exists a unique ca ∈ (−∞, γa) such
that (46) is fulfilled.

Since γa → γ∗ <∞ as a→ +∞ and a 7→ γa is a continuous function, this shows
that sup

a≥1
ca <∞.

Since a 7→ ca is continuous, in order to complete the proof of the Proposition,
it suffices to show that lim infa→∞ ca ≥ 0. For this, we argue by contradiction and
assume that for a sequence aj → +∞ there holds caj < 0. For the sake of simplicity,
we write a instead of aj . Since c 7→ uc is decreasing, from this we infer that along
this subsequence, the solution v = va of{

−∆v + αg(y)v = f(v) in Σa

v(−a, y) = V (y), v(+a, y) = 0

satisfies maxy∈RN−1 v(0, y) ≤ θ.
Due to Proposition 12, there exist θ1 > θ such that if an asymptotic profile v

solution of (41) verifies v(0) ≥ θ1 then v ≡ V .
There is a point b = bj , −a < b < 0 such that va(b, 0) = θ1. We now translate

the solution to center it on x1 = b. That is, we let ṽa(x1, y) = va(x1 + b, y) defined
for x1 ∈ (−a− b, a− b) and y ∈ RN−1. The interval (−a− b, a− b) either converges
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(along a subsequence) to (−∞,+∞) or to some (−d,+∞) with 0 ≤ d <∞. In both
cases, by standard elliptic estimates, one can strike out a subsequence of ṽa, denoted
again ṽa, such that ṽa converges locally to some function w where w satisfies:{

−∆w + αg(y)w = f(w) in (−d,+∞)× RN−1

∂1w ≤ 0, w(0, 0) = θ1.
(48)

In case the interval is converging to (−d,+∞), in addition we know that w(−d, y) =
V (y). If the interval converges to R, then limx→−∞ w(x1, y) exists and is some
function W (y) which is then a solution of the profile equation (41). But since
w(0, 0) = θ1, we know that W (0) ≥ θ1. By the definition of θ1, this implies that
W ≡ V . Therefore, denoting d =∞ in case (−a− b, a− b)→ R, in both cases, we
get

∀y ∈ RN−1 w(−d, y) = V (y)

where now 0 ≤ d ≤ +∞. We also know that w(+∞, y) = ψ(y) exists with 0 ≤ ψ <
V .

Multiply (48) by ∂1w and integrate over (−d,+∞)× RN−1 to get∫
{x1=−d}

1

2
(∂1w)2 + J(ψ)− J(V ) = 0

where ∂1w = 0 if d =∞. In all cases, we get

J(V ) ≥ J(ψ)

Since V minimize Jα, we obtain V ≡ ψ and w(x1, y) = V (y) for all x1 ∈ (−d,+∞)
but this contradicts the renormalization w(0, 0) = θ1.

We have thus reached a contradiction. This shows that for large a, ca ≥ 0, which
completes the proof of the Proposition.

Let us now turn to the proof of the existence of traveling front solutions of
(44). Since ca and ua are bounded, by standard elliptic estimates, we can strike
out a sequence a = aj → ∞ (we continue to denote subsequences by a) such that
ca → c ≥ 0 and ua → u. We know that (c, u) satisfies the equation

−∆u+ c∂1u+ αg(y)u = f(u) in RN

with ∂1u ≤ 0 and maxRN−1 u(0, ·) = θ. It remains to identify the limits as x1 →
±∞. These limx1→±∞ u(x1, y) = u±(y) exist and are solutions of the asymptotic
profile equation (41). Now since 0 ≤ u+(y) = limx1→+∞ u(x1, y) ≤ θ and all
positive solutions w of (41) satisfy maxw > θ, we have u+ ≡ 0.

We claim that u−(y) = limx1→−∞ u(x1, y) coincides with V (y). Clearly, 0 <
u− ≤ V . Argue by contradiction that u− 6≡ V , implying u− < V . By assumption,
u− is an unstable solution of (41) in the sense that λ1[u−] < 0. Let us construct a
super-solution of the stationary equation, that is a w with

−∆w + αg(y)w ≥ f(w)

such that w is a compact perturbation of u− and as close as we wish to u−.
Consider the linearized equation about u−:

−∆ψ − f ′(u−(y))ψ + αg(y)ψ = λ1[u−]ψ

with λ1[u−] < 0. We know that λ1[u−] is the limit of the Dirichlet principal
eigenvalue in a ball when the radius goes to infinity (This follows from the Rayleigh
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quotient minimization). Therefore, R > 0 can be chosen sufficiently large so that
the principal eigenvalue µ and associated eigenfunction ψ of{

−∆ψ + αg(y)ψ − f ′(u−)ψ = µψ in BR

ψ = 0 on ∂BR, ψ > 0 in BR

satisfy µ < 0.
Consider the function ζ(x1, y) = cos(ωx1)ψ(y) defined for x1 ∈ (−L,L) with

L = π
2ω and |y| < R. We note D = (−L,L) × BR. This function is positive and

satisfies: {
−∆ζ + αg(y)ζ − f ′(u−)ζ = (µ+ ω2)ζ in D

ζ = 0 on ∂D

Choose L large enough so that µ + ω2 < 0. Then let w(x1, y) = u−(y) − εζ(x1, y)
with ε > 0 and (x1, y) ∈ D. This function satisfies

−∆w + αg(y)w − f(w) =

(
−(µ+ ω2) +

f(u−)− f(u− − εζ)

εζ
− f ′(u−)

)
εζ.

Since µ+ ω2 < 0, we can choose ε sufficiently small so that

−∆w + αg(y)w − f(w) ≥ 0 in D and w > 0.

Furthermore, because εζ = 0 on ∂D and εζ > 0 in D, that is w < u− in D, if we
extend w by choosing w(x1, y) = u−(y) for all (x1, y) 6∈ D, we have constructed a
(generalized) super-solution of the problem (see e.g. [12]).

Let us now derive a contradiction. We consider two cases.
Case (i). Suppose c > 0. Then U(t, x1, y) = u(x1 − ct, y) is a solution of the
evolution equation

∂tU −∆U + αg(y)U = f(U) t ∈ R, (x1, y) ∈ RN .

Now U
t→−∞−−−−→ 0 locally uniformly in (x1, y). Furthermore, for all times U(t, x1, y) ≤

u−(y). Since w is a compact perturbation of u− for a time t0 sufficiently negative,
we get

∀(x1, y) ∈ RN U(t0, x1, y) ≤ w(x1, t).

Now when U(t, x1, y)
t→+∞−−−−→ u−(y) locally uniformly and we get a contradiction

since U(t, x1, y) ≤ w(x1, y) < u−(y) for all (x1, y) ∈ D.
Case (ii). The case that remains to be studied is c = 0 (since we already have
c ≥ 0). Then u(x1, y) is a stationary solution of the same equation that w is a super-
solution of. Since u(−∞, y) = u−(y) and u(+∞, y) = 0, and since w = u− outside a
compact set, after a translation, we can assume that uh = u(x1+h, y) ≤ w(x1, y)(for
large enough h). Define

h∗ = inf{h ∈ R, u(x1 + h, y) ≤ w(x1, y) in RN}.
Clearly, h∗ > −∞ (for w < u− at some points). Then w(x1, y) ≥ u(x1+h∗, y) = uh∗

and min(w − uh∗) = 0 is necessarily achieved at a point of D. Since w(x1, y) =
u−(y) > u(x1 + h, y) for all h if (x1, y) 6∈ D, we see that the maximum is achieved
at an interior point of D. Writing w−uh∗ ≥ 0 as a super-solution of a linear elliptic
equation in D, we derive a contradiction with the strong maximum principle.

Therefore in all cases, the solution u satisfies the limiting condition:

u(−∞, y) = V (y), u(+∞, y) = 0.

Therefore (c, u) is a solution of the traveling front equation (44).
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9. The model of cortical spreading depression. We consider here more gen-
eral versions of the model (5) described in the Introduction. The problems studied
in this paper have the following general form

∂tu−∆u = h(y, u) x = (x1, y) ∈ RN . (49)

In the modeling context N = 2 and 3 are the cases of interest. As indicated in
the Introduction, this equation also describes cortical spreading depressions (CSD).
There the wave propagates in a medium composed of two different components, the
gray and white matters of the brain, with a narrow transition area separating them.

Thus we consider in this section functions h(y, u) of the following type:

h(y, u) = f(u) for |y| ≤ L1 (50)

h(y, u) ≤ −mu for |y| ≥ L2 (51)

h(y, u) +mu
|y|→+∞−−−−−→ 0 uniformly for u ∈ R+ (52)

where 0 < L1 ≤ L2 <∞ and K ≥ m > 0 are given parameters and f is of bistable
form. That is we assume that f verifies conditions (38)-(40)of section 7. Note that
in particular, we assume ∫ 1

0

f(s)ds > 0.

We also assume that y 7→ h(y, s) is continuous and that s 7→ h(y, s) is Lipschitz
continuous for all s ∈ [0, 1] (and |y| 6= L1 in case L1 = L2). Lastly we assume that

∀s ∈ [0, 1] ∀y ∈ RN−1 h(y, s) ≤ max{f(s),−ms}.

9.1. The asymptotic profile equation. We start as usual with the profile equa-
tion {

−∆V = h(y, V ) y ∈ RN−1,

V ≥ 0, V bounded.
(53)

We recall that λ1[V ] is the principal eigenvalue of the linearized equation about V .
This eigenvalue can be defined as

λ1[V ] = inf
ϕ∈H1(RN−1)

∫
|∇ϕ|2 − ∂2h(y, V )ϕ2∫

ϕ2
.

Associated with (53) is the energy functional:

J(w) =

∫
RN−1

(
1

2
|∇w|2 −H(y, w)

)
dy

where H(y, z) =
∫ z

0
h(y, s)ds. Note that owing to condition (51), J(w) is well

defined for all w ∈ H1(RN−1).

Theorem 9.1. There exist critical radii 0 < L∗ ≤ L∗ < ∞ with the following
properties:

i): For L2 < L∗, there is no solution other than 0 to the asymptotic profile
equation (53).

ii): For L1 > L∗ (independently of L2), there exists a maximum solution V of
(53) and this solution is stable in the sense that λ1[V ] ≥ 0.

iii): For all L1 > L∗, the minimum of the energy functional is achieved at some
non-zero function VJ(y), i.e.

J(VJ) = min
w∈H1(RN−1)

J(w) < 0.
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Proof. i) Since the equation implies that −∆u+mu ≤ 0 for all |y| ≥ L2 in RN−1,
and u > 0 is bounded, by Theorem 2.1 we know that u and |∇u| have exponential
decay as |y| → +∞. Then we get

min(1,m)‖u‖H1(RN−1) ≤
∫
RN−1

|∇u|2 +mu2 ≤
∫
BL2

(
f(u) +mu

)
u ≤ K

∫
BL2

u2.

We know, by Sobolev embedding and Hölder inequality, that∫
BL2

u2 ≤ η(L2)‖u‖H1(RN−1)

where η(L2)→ 0 as L2 → 0. Therefore for L2 small enough, these inequalities yield
u ≡ 0.

ii) Next, since 1 is a super-solution of the equation in RN−1, there exists a
maximum solution of equation (53) that we denote V . By what we have just seen,
V ≡ 0 for L2 sufficiently small. Let us now show that V > 0 for L1 sufficiently
large.

Let us consider the energy restricted to the ball of radius R ≤ L1

JR(w) =

∫
BR

(
1

2
|∇w|2 − F (w)

)
dy

where F (z) =
∫ 1

0
f(s)ds. We know (see the proof of Theorem 7.1) that for R

sufficiently large there exists a minimum wR of

JR(wR) = inf
w∈H1

0 (BR)
JR(w) < 0.

Then wR > 0 in BR and wR is solution of −∆wR = f(wR) in BR and wR = 0 on
∂BR. Extending wR by 0 outside the ball BR, we get a global (generalized) sub-
solution. The solution V is such that V ≥ wR (since V is the maximum solution).
This implies that V 6≡ 0 and therefore V > 0 in RN−1 for L1 ≥ R.

iii) Now for L1 ≥ R, clearly

inf
w∈H1(RN−1)

J(w) ≤ JR(wR) < 0.

Let us now show that the infimum is achieved.
Let (wn) be a minimizing sequence: J(wn)→ inf J < 0 for n→ +∞. Note that

J is bounded from below. Writing

J(wn) ≥ 1

2

∫
RN−1\BL2

|∇wn|2 +mwn
2 +

∫
BL2

1

2
|∇wn|2 −H(y, wn)

≥ 1

2

∫
RN−1\BL2

|∇wn|2 +mwn
2 +

∫
BL2

1

2
|∇wn|2 − C + εwn

2

= −C|BL2
|+ ε̃‖wn‖H1(RN−1)

we can strike out a subsequence still denoted (wn) such that wn → w weakly in
H1(RN−1). Now using (52), for every ε > 0, there exists R = R(ε) > 0 such that∣∣F (y, s) + m

2 s
2
∣∣ < εs2 for all |y| ≥ R and all s ∈ R+ (there is no loss in generality

in assuming wn ≥ 0 as wn
+ is also a minimizing sequence). Therefore

J(wn) =
1

2

∫
RN−1

|∇wn|2 +
m

2

∫
|y|≥R

wn
2 + r(ε)−

∫
|y|≤R

H(wn, y)

where |r(ε)| ≤ Cε for some constant C > 0.
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By compact injection of H1(RN−1) ↪→ L2(BR), we can assumme that wn → w
strongly in L2(BL2). Then by standard arguments relying on Lebesgue’s dominated
convergence Theorem, we see that∫

BR

H(y, wn)→
∫
BR

H(y, w).

Owing to Sobolev embedding and H older inequality, it is straightforward to check
that the quantity

1

2

∫
RN−1

|∇wn|2 +
m

2

∫
|y|≥R

wn
2

defines the square of a norm equivalent to the usual H1(RN−1) norm. Hence using
the lower semi-continuity of the norm, we get

lim
n→∞

J(wn) = inf J ≥ 1

2

∫
RN−1

|∇w|2 +
m

2

∫
|y|≥R

w2 + r(ε)−
∫
BR

H(y, w).

Now using again (52), we get:

J(w) =

∫
RN−1

|∇w|2 −
∫
RN−1

H(y, w) ≤ inf
H1(RN−1)

J + 2|r(ε)|.

Since ε > 0 is arbitrarily small we get J(w) = inf
H1(RN−1)

J.

Remark 2. By using the method of [3], one can show that for L1 large enough
there exists a second solution in RN−1.

We will now make use of the condition that the stable solution of (53) is unique.
In the paper of Chapuisat and Joly [20], it is argued by phase plane method, that
for the case N − 1 = 2, L1 = L2 and h(y, s) = −ms for |y| ≥ L2 that indeed this is
the case. We note that it is an interesting open problem to derive such uniqueness
results in more general situations or to complete the heuristic part of the argument
of [20].

9.2. Traveling fronts for the CSD model. In this section, we prove Theorem
1.5. The proof is similar as in Section 8. There we used that h(y, u) = f(u)−αg(y)u
with g → +∞. But actually, the same properties that were entailed one can derived
for h(y, u) ≤ −mu for large |y|. We start by constructing a solution of{

∆ua − ca∂1ua = h(y, ua) in (−a, a)× RN−1

ua(−a, y) = V (y), ua(+a, y) = 0,
(54)

that verifies

sup
y∈RN−1

ua(0, y) = θ (55)

for a ≥ 1 and where θ is the unstable 0 of f(u), that is f(θ) = 0 and 0 < θ < 1. We
recall that ca is uniquely determined by the renormalization condition (55).
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Let f̃(u) = max{f(u),−m(u)}. Note that f̃ itself is
bistable:

f̃(0) = f̃(θ) = f̃(1), f̃(s) < 0 in (0, θ), f̃(s) > 0 in (θ, 1).

t

t = −ms
t = f (s)

t = f̃ (s)

s

0 1θ

We denote by zca the solution of{
−z′′ − cz′ = f̃(z)

z(−a) = 1, z(+a) = 0.
(56)

The function zcaa is a supersolution of (54) thus ua ≤ zcaa . In view of (55) this
implies that zcaa (0) ≥ θ and this implies that ca ≤ γa where γa is the unique value
of c such that the solution of (56) verifies zγaa (0) = θ. This as before yields the
upper bound for ca.

The lower bound is achieved in the same manner as in the section 8 and the
convergence for a→ +∞ also.
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