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Abstract. In this note we analyze a spatially structured SI epidemic model
with vertical transmission, a logistic effect on vital dynamics and a density

dependent incidence. The dynamics of the underlying system of ordinary dif-

ferential equations are first shown to exhibit an infinite number of heteroclinic
orbits connecting the trivial equilibrium with an interior equilibrium. Our

mathematical study of the corresponding reaction-diffusion system is concerned

with travelling wave solutions. Based on a detailed study of the center-unstable
manifold around the interior equilibrium, we are able to prove the existence of

an infinite number of travelling wave solutions connecting the trivial equilib-

rium and the interior equilibrium.

1. Introduction. The aim of this work is to consider a two component reaction-
diffusion system,

∂tS − ∂xxS = bS + b(1− θ)I − S
[
µ+

(b− µ)

κ
N

]
− βSI

∂tI − ∂xxI = bθI − I
[
µ+

(b− µ)

κ
N

]
+ βSI,

(1)

posed for t > 0 and x ∈ R, wherein N = S+I. This system of equations models the
spatio-temporal spread of a disease within a spatially structured population. Here
S(t, x) denotes the density of susceptibles at time t > 0 and location x ∈ R while
I(t, x) denotes the density of infective individuals. In a disease-free environment,
the total population density, N , satisfies the following scalar equation

∂tN − ∂xxN = N

[
b− µ− (b− µ)

κ
N

]
. (2)

When λ = b − µ > 0, the above equation corresponds a logistic or Fisher-KPP
equation [14, 18]. Classically, b > 0 denotes the birth rate, µ > 0 corresponds to
the death rate while κ > 0 denotes the carrying capacity of the environment. Going
back to (1), parameter θ ∈ [0, 1] describes the vertical transmission of the disease,
that is a fraction 1 − θ of offspring born from infective individuals are susceptible
at birth while a proportion θ remains infective at birth. Finally one assumes a
density dependent incidence, the usual law of mass action, with a parameter β > 0
denoting the efficient contamination rate. We refer for instance to the monograph
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of Busenberg and Cooke [8] for more details on such models. We also refer to
[1, 7, 9, 11, 17, 25] for more results on epidemic models; [22, 23] for recent survey
papers; and [12, 13] for related works on travelling waves for SI models.

Adding the two equations in (1) yields an equivalent system of equations,
∂tN − ∂xxN = λN

[
1− N

κ

]
∂tI − ∂xxI =

{
λ− θb+

(
β − λ

κ

)
N

}
I − βI2.

(3)

Note that the diffusive logistic equation for the N state variable in the above
system is uncoupled from the second equation. The dynamics of such a logistic
equation is well known and, in many cases, strongly related to travelling wave
solutions. The literature about this topic is very wide. We only quote some of
them, see for instance [2, 6, 16, 19, 20, 21, 27, 26] as well as references therein.

Recall that for each c ≥ c∗ = 2
√
λ this logistic equation has a unique (up to

translation) travelling wave solution connecting N = 0 to N = κ. This means that
for each c ≥ c∗, there exists a non-increasing function U ≡ Uc(x) such thatU ′′(x) + cU ′(x) + λU(x)

[
1− U(x)

κ

]
= 0, x ∈ R,

U(−∞) = κ, U(∞) = 0.
(4)

Going back to (3), we shall assume that the total population N is invading, that is
it follows such a travelling wave solution dynamics, U , for some given speed c ≥ c∗.
This allows to reduce system (3) to a forced speed equation,

∂tI − ∂xxI =

{
λ− θb+

(
β − λ

κ

)
U(x− ct)

}
I − βI2, (5)

where c ≥ c∗ is a given wave speed while U is Fisher-KPP travelling front, namely
a solution of (4).

Such a forced speed equation looks like equation (1.1) in Berestycki et al. [3] (see
also Berestycki and Rossi [4, 5] for multi-dimensional frameworks, and Volpert and
Suhov [28]). However in our study the “forcing” term, λ − θb +

(
β − λ

κ

)
U(x − ct)

in (5), remains positive at infinity and does not fit into the assumptions of [3] that
would require it to be negative (see Assumption 4.4 in [3]).

In this work we are interested in special entire solutions of (5) of the form,

I(t, x) = V (x− ct), ∀(t, x) ∈ R2,

where c ≥ c∗ is given while U a Fisher-KPP front solution of (4). This gives a new
system of equations,

U ′′(x) + cU ′(x) + λU(x)

[
1− U(x)

κ

]
= 0, x ∈ R,

V ′′(x) + cV ′(x) +

[
λ− θb+

(
β − λ

κ

)
U(x)

]
V (x)− βV 2(x) = 0,

(6)

supplemented with the following limiting behaviour{
U(−∞) = κ, U(∞) = 0

V (−∞) = v∗, V (∞) = 0,
(7)

wherein we have set

v∗ =
βκ− θb

β
,
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that is well defined when βκ− bθ > 0.
Let us first notice that when v∗ > 0, β − λ

κ = 0 and λ − θb > 0, system (6) is
fully uncoupled,U ′′(x) + cU ′(x) + λU(x)

[
1− U(x)

κ

]
= 0, x ∈ R,

V ′′(x) + cV ′(x) + V (x) [λ− θb− βV (x)] = 0.
(8)

For each c ≥ 2
√
λ, due to the translation invariance, each equation of the above

system has a one dimensional manifold of heteroclinic orbits. It follows that for each
speed c ≥ 2

√
λ, system (8) has a two dimensional manifold of heteroclinic orbits.

The aim of this work is to prove that such a property will persist with coupling. To
be more precise, the main result of our work reads as follows:

Theorem 1.1. Assume that

λ > βκ > θb.

Then for each c ≥ 2
√
λ, system (8) has infinitely many heteroclinic solutions (U, V )

connecting (0, 0) and
(
κ, βκ−θbβ

)
and such that

0 ≤ U ≤ κ and 0 ≤ V.

The proof of this result is based on arguments from monotone semiflows as well
as on a precise study of the center-unstable manifold for the fourth order ordinary
differential equation corresponding to (6).

The local center-unstable manifold theorem for ordinary differential equations is
recalled in Section 2. Section 3 deals with dynamical properties of the underlying
ODE described by (1). In this case, the existence of infinitely many heteroclinic
orbits is proved using invariant manifold arguments. Finally Section 4 is concerned
with the proof of Theorem 1.1. In this last section, existence and uniqueness results
for Fisher-KPP travelling fronts are added to present arguments based on the center-
unstable manifold.

2. Preliminaries on local center-unstable manifold theorem. In this sec-
tion, we recall the local center-unstable manifold theorem for ordinary differential
equations. This theorem is well known and we refer to the book of Chow, Li and
Wang [10] for more results about this topic. Consider an ordinary differential equa-
tion in Rn

dX(t)

dt
= AX(t) + F (X(t)), for t ≥ 0, and X (0) = X0, (9)

where A ∈Mn (R) is an n×n real matrix, and F : Rn → Rn is k-time continuously
differentiable for some integer k ≥ 1.

We will make the following assumption.

Assumption 2.1. Assume that

(i) F (0) = 0Rn and DF (0) = 0Mn(R).
(ii) The center-unstable spectrum σcu(A) = {λ ∈ σ (A) : Re (λ) ≥ 0} is non empty.

Define

σs(A) := σ (A) \ σcu(A) = {λ ∈ σ (A) : Re (λ) < 0} .
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By the Jordan’s theorem, we can find two linear subspaces Xcu ⊂ Rn and Xs ⊂ Rn
such that

AXs ⊂ Xs, AXcu ⊂ Xcu,

Rn = Xs ⊕Xcu.

For each k = s, cu we define a linear operator Ak : Xk → Xk such that σ (Ak) =
σk(A) upon setting

Akx = Ax, ∀x ∈ Xk.

Let Πcu : Rn → Rn be the linear projector such that

ΠcuA = AΠcu

and

Πcu (Rn) = Xcu and (I −Πcu) (Rn) = Xs.

The following theorem is obtained by a truncation procedure from the global center-
unstable manifold theorem.

Theorem 2.2. (Local center-unstable manifold) There exists Ψcu : Xcu → Xs

a Ck-map satisfying

Ψcu(0Xcu) = 0Xs and DΨcu(0) = 0L(Xcu,Xs)

and such that

Mcu = {xcu + Ψcu(xcu) : xcu ∈ Xcu}
is locally invariant by the maximal semiflow generated by (9). More precisely, there
exists a bounded neighbourhood Ω of 0 such that the following properties are satisfied:

(i) If I ⊂ R is an interval and ucu : I → Xcu is a solution of the system

u′cu(t) = Acuucu(t) + ΠcuF (ucu(t) + Ψcu(ucu(t))) (Reduced Equation) (10)

and

ucu(t) + Ψcu(ucu(t)) ∈ Ω,∀t ∈ I
then u(t) = ucu(t) + Ψcu(ucu(t)) is a solution of (9) on I.

(ii) If u : (−∞, 0]→ Rn is a solution of (9) such that

u(t) ∈ Ω,∀t ≤ 0,

then

u(t) ∈Mcu,∀t ≤ 0,

therefore ucu(t) = Πcuu(t) is a solution of (10).

Remark 1. The fact that DΨcu(0) = 0 implies that the manifold Mcu is tangent
to Xuc at 0.

3. The underlying ODE problem. The aim of this section is to provide infor-
mation about the existence and non-existence of heteroclinic connections for the
underlying ODE system corresponding to system (1). This problem reads as the
SI−epidemic model:{

S′(t) = bS(t) + bθI(t)− µS(t)− (b− µ)κ−1S(t) (I(t) + S(t))− βS(t)I(t),
I ′(t) = b(1− θ)I(t)− µI(t)− (b− µ)κ−1I(t) (I(t) + S(t)) + βS(t)I(t),

(11)
posed for time t > 0 and supplemented together with some initial values

S(0) = S0 ≥ 0 and I(0) = I0 ≥ 0.
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As explained in the introduction, the total number of individuals N defined by

N(t) := S(t) + I(t), t ≥ 0,

satisfies the scalar logistic equation

N ′(t) = (b− µ)N(t)
(
1− κ−1N(t)

)
,∀t ≥ 0, and N(0) = N0 ≥ 0. (12)

From here on we set and assume that

λ := b− µ > 0.

Using these notations, the I-equation in model (11) reads

I ′(t) = b(1− θ)I(t)− µI(t)− (b− µ)κ−1I(t)N(t) + β (N(t)− I(t)) I(t),

or equivalently as a non-autonomous logistic equation

I ′(t) =
[
λ− θb+

[
β − λκ−1

]
N(t)

]
I(t)− βI(t)2.

In the following we use the usual notion of global attractors for semiflows on a
metric space. We refer for example to the book of Hale [15] for more precisions and
results on this topic.

Lemma 3.1. The system (11) generates a unique semiflow {U(t)}t≥0 on [0,+∞)
2

such that for each (S0, I0) ∈ [0,+∞)
2
,

t→ (S(t), I(t)) := U(t)(S0, I0)

is the unique solution of (11). Moreover U has a global attractor A ⊂ [0,+∞)
2

which is a connected set.

Remark 2. The compact attractor contains in particular all the heteroclinic orbits
of the system.

Proof. The existence and uniqueness and the positivity of the semiflow follows from
classical arguments. Basically, we have

(S′(t), I ′(t)) = F (S(t), I(t))

where F : R2 → R2 is Lipschitz continuous on bounded sets, and for each M > 0,
there exists λ = λ(M) > 0

F (x) + λx ∈ [0,+∞)
2
,

for each x ≥ 0, such that ‖x‖1 ≤ M. Here recall that the notation x ≥ 0 for some
x ∈ R2 means that both components of x are positive. The existence and the
uniqueness of a positive maximal semiflow follows combined with the fact that N(t)
satisfies the logistic equation (for the global existence of solutions). Moreover since
N(t) satisfies a logistic equation, for each ε > 0 the bounded subset

Bε =
{

(S, I) ∈ [0,+∞)
2

: S + I ≤ κ+ ε
}

is an absorbing set for U, and therefore U has a (unique) global attractor A in

[0,+∞)
2
. Finally since [0,+∞)

2
is convex, it follows that A is connected (see Hale

[15] for more precisions).

Equilibria: The equilibrium N = 0 of equation (12) corresponds to the equilibrium(
S0, I0

)
= (0, 0) ,

of system (11).
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The equilibrium N = κ of equation (12) corresponds first to the disease free
equilibrium (

Sf , If
)

= (κ, 0) .

Since the I-equation can be rewritten as

I ′(t) =
[
(b− µ)− θb+

[
β − (b− µ)κ−1

]
N(t)

]
I(t)− βI(t)2,

the endemic equilibrium (or interior equilibrium) is(
Se, Ie

)
=
(
κ− Ie, Ie

)
where

Ie = β−1 [(b− µ)− θb+ [βκ− (b− µ)]] = β−1 [βκ− bθ] = κ− bθ

β
.

which is strictly positive if and only if

βκ > bθ.

From now on, we assume that there exists an endemic equilibrium. Therefore we
make the following assumption.

Assumption 3.2. Assume that b > µ and βκ > bθ.

Heteroclinic orbits for system (11): Since the region

∂M := {(S, 0) : S ≥ 0}
is invariant by the flow generated by (11), by using the properties of the logistic
equation

S′(t) = (b− µ)S
(
1− κ−1S

)
we deduce that there exists a unique heteroclinic orbit O0 = {(S0(t), 0)}t∈R ⊂ ∂M
of system (11) going from (0, 0) to (κ, 0).

The segment

∆ =
{

(S, I) ∈ [0,+∞)
2

: S + I = κ
}

is also invariant by the semiflow. The I-equation for N = κ reads as

I ′(t) =
[
λ− θb+

[
β − λκ−1

]
κ
]
I(t)− βI(t)2

or

I ′(t) = [βκ− θb] I(t)− βI(t)2.

From this, there exists a unique heteroclinic orbit O1 = {(S1(t), I1(t))}t∈R ⊂ ∆

going from the disease free equilibrium
(
Sf , If

)
to the endemic equilibrium

(
Se, Ie

)
.

In term of heteroclinic orbits, it becomes less clear to understand if there ex-
ists a heteroclinic orbit O2 = {(S2(t), I2(t))}t∈R ⊂ (0,+∞)

2
going from the trivial

equilibrium (0, 0) to the endemic equilibrium
(
Se, Ie

)
in (0,+∞)

2
. The rest of this

section is devoted to this question.

Linearized equation at (0, 0): The linearized equation at (0, 0) is the following(
S′

I ′

)
= L0

(
S
I

)
wherein we have set

L0 =

[
b− µ bθ

0 b(1− θ)− µ

]
.
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Note that the eigenvalues of the matrix L0 are

λ+ := b− µ ≥ λ− := b(1− θ)− µ,
while the corresponding eigenspaces are

Eλ+ =
{

(S, I) ∈ R2 : I = 0
}

and

Eλ− =

{ {
(S, I) ∈ R2 : S = −I

}
if θ > 0,{

(S, I) ∈ R2 : S = 0
}
, if θ = 0.

Next consider the linear projector Πλ+ on R2 defined by

Πλ+

(
x1

x2

)
=

〈(
1
1

)
,

(
x1

x2

)〉(
1
0

)
, ∀
(
x1

x2

)
∈ R2.

Note that it satisfies
Πλ+L0 = L0Πλ+ = λ+Πλ+ .

Next the following non-existence of heteroclinic connection holds true:

Lemma 3.3. Let Assumption 3.2 be satisfied and assume furthermore that

λ− := b(1− θ)− µ < 0.

Then there is no heteroclinic orbit going from (0, 0) to the endemic equilibrium(
Se, Ie

)
in (0,+∞)

2
.

Proof. Since λ− < 0 and λ+ > 0, the center-unstable manifold at (0, 0) is one-
dimensional. Let Ψcu : Eλ+ → Eλ− be a C1-map parametrizing the center-unstable
manifold and so that the one dimensional manifold defined by

Mcu := {xcu + Ψcu(xcu) : xcu ∈ Eλ+}
is locally invariant under the semiflow U around (0, 0). Then it furthermore satisfies

DxcuΨcu(0) = 0,

meaning that the manifold that Mcu is tangent to Eλ+ . Moreover we know that
there exists ε > 0, such that Mcu contains all negative orbits of U staying in the
ball BR2 (0, ε) for all negative times.

In order to prove the lemma, let us argue by contradiction, and assume that
there exists an heteroclinic orbit O2 = {(S2(t), I2(t))}t∈R ⊂ (0,+∞)

2
connecting

(0, 0) to the endemic equilibrium
(
Se, Ie

)
in (0,+∞)

2
. Since

lim
t→−∞

(S2(t), I2(t)) = (0, 0) and lim
t→−∞

(S0(t), 0) = (0, 0) ,

without loss of generality (i.e. using a translation in time) one may assume that

(S2(t), I2(t)) ∈ BR2 (0, ε) and (S0(t), 0) ∈ BR2 (0, ε) ,∀t ≤ 0.

This implies that

(S2(t), I2(t)) ∈Mcu and (S0(t), 0) ∈Mcu,∀t ≤ 0.

But since Mcu is the graph of a map from Eλ+ into Eλ− , this leads us to a contra-
diction. Indeed, one has

Πλ+

(
S2(t)
I2(t)

)
=

(
(S2(t) + I2(t))

0

)
and (I −Πλ+)

(
S2(t)
I2(t)

)
=

(
−I2(t)
I2(t)

)
Πλ+

(
S0(t)

0

)
=

(
S0(t)

0

)
and (I −Πλ+)

(
S2(t)

0

)
=

(
0
0

)
.
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If we fix t0 < 0 and t2 < 0 such that

S0(t0) = (S2(t2) + I2(t2)) ,

we obtain that

Ψcu

((
S0(t0)

0

))
=

(
0
0

)
=

(
−I2(t2)
I2(t2)

)
,

that leads us to a contradiction since I2(t2) > 0. This completes the proof of the
result.

Existence of non-trivial heteroclinic orbits: In order to deal with the existence
of non-trivial heteroclinic orbits, we assume

λ− = b(1− θ)− µ = λ− θb > 0,

where
λ := (b− µ) > 0.

Then system (N, I) can be rewritten as N ′(t) = λN
(
1− κ−1N

)
I ′(t) =

[
λ− θb+

(
β − λκ−1

)
N
]
I − βI2

N(0) = N0 ≥ 0, and I(0) = I0 ≥ 0.

Set
n(t) = κ−1N(t) and i(t) = κ−1I(t) n′(t) = λn (1− n)
i′ = (λ− θb+ (κβ − λ)n) i− κβi2
n(0) = n0 ≥ 0 and i(0) = i0 ≥ 0.

(13)

Let n0 and i0 such that
0 < i0 ≤ n0 < 1.

Since by assumption βκ > bθ and θ ≤ 1, we have

κβ ≥ λ = b− µ,
therefore system (13) is monotone on [0,+∞)

2
(see Smith [24] for more precisions

and more results on this topic). Since 0 < i0 ≤ n0 < 1, we observe that

(n(t), i(t))→ (1,
βκ− bθ
κβ

) as t→ +∞.

Therefore it remains to investigate the behaviour of such a solution for negative
times. To do so, let us first notice that we have

n(t) =
eλtn0

1 + λ
∫ t

0
eλln0dl

=
eλtn0

1 + [eλt − 1]n0
,∀t ∈ R.

Similarly the i-equation can be rewritten as

i′(t) = Λ(t)i(t)− κβi(t)2

wherein we have set

Λ(t) := (λ− θb+ (κβ − λ)n(t)) =
n′(t)

n(t)
+ κβn(t)− θb.

Therefore for each t > 0 we have

i(t) =
e
∫ t
0

Λ(l)dli0

1 + κβ
∫ t

0
e
∫ σ
0

Λ(l)dli0dσ
.
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For t < 0, we obtain

i(t) =
e−

∫ 0
t

Λ(t)dli0(
1− κβ

∫ 0

t
e−

∫ 0
σ

Λ(t)dldσi0

)
=

i0

e
∫ 0
t

Λ(t)dl
(

1− κβ
∫ 0

t
e−

∫ 0
σ

Λ(t)dldσi0

) (14)

Since

lim
t→−∞

Λ(t) = γ = λ− θb > 0,

one deduces that

lim
t→−∞

e
∫ 0
t

Λ(l)dl = +∞,

and therefore

χ := lim
t→−∞

∫ 0

t

e−
∫ 0
σ

Λ(l)dldσ < +∞.

Next we infer from (14) that for each i0 ∈
(

0, (χκβ)
−1
)

:

i(t)→ 0 as t→ −∞.

As a consequence, system (13) has a heteroclinic orbit from (0, 0) to (1, βκ−bθκβ )

passing through (n0, i0).
The above arguments can be summarized as follows:

Lemma 3.4. Let Assumption 3.2 be satisfied. Assume furthermore that

λ− := b(1− θ)− µ > 0.

Then there is an infinite number of heteroclinic orbits going from (0, 0) to the en-

demic equilibrium
(
Se, Ie

)
in (0,+∞)

2
. More precisely, the global attractor A is

composed by the equilibria and all the heteroclinic orbits connected the equilibria.

Remark 3. When θ = 0 (which implies λ− > 0) the global attractor is

A =
{

(S, I) ∈ [0,+∞)
2

: S + I ≤ κ
}

and every point of this domain is either an equilibrium or belongs to a heteroclinic
orbit.

4. Travelling wave problem. The aim of this section is to prove Theorem 1.1.
Before doing so, we will first come back to the Fisher-KPP travelling front problem
described in (4). We will derive for this problem an existence and uniqueness
result. This topic is widely developed (we refer for instance to [2, 27, 26]). Here
we use attractor arguments for the existence proof while center-unstable manifold
arguments are used to prove the uniqueness. The second part deals with system (6)
and completes the proof of Theorem 1.1.

To simplify the notations, by using appropriate changes of variable (in time and
space), we will assume that

λ := (b− µ) = 1, and κ = 1.

In order to assure the existence of the (interior) positive equilibrium we further
assume

β > bθ.
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4.1. ODE methods for the KPP equation. In this section, we discuss the
existence and uniqueness of solutions for (4) by using invariant manifold techniques.
Let us notice that (4) can be re-written as(

d

dx
+
c

2

)2

U − c2

4
U + U(1− U) = 0.

Next setting  U1 := U

U2 :=

(
d

dx
+
c

2

)
U.

we obtain the following first order system of ordinary differential equations
(
d

dx
+
c

2

)
U1 = U2(

d

dx
+
c

2

)
U2 =

c2

4
U1 − U1(1− U1).

Set

α :=
c

2
we obtain the system {

dU1

dx = −αU1 + U2
dU2

dx = −αU2 +
(
α2 − 1

)
U1 + U2

1

(15)

Note that this system is monotone increasing on [0,+∞)
2

whenever

α ≥ 1. (16)

Moreover one has

d (αU1 + U2)

dt
= −U1(x) + U1(x)2 = −U1(x)(1− U1(x)) (17)

and the points

U
0

:= (0, 0) and U
1

:= (1, α)

are the only equilibria of the system in [0,+∞)
2
.

4.1.1. Existence of travelling waves. Since [0, 1]× [0, α] is invariant by the semiflow
{T (t)}t≥0 generated by the system (15). There exists a connected subset A ⊂
[0, 1] × [0, α] , which is the global attractor of the semiflow T on [0, 1] × [0, α].
Recalling that the global attractor is connected, since it contains both equilibria
(0, 0) and (1, α) , by considering the linear functional P : R2 → R

P (U1, U2) = U1

we deduce that P (A) is compact and connected and contains P (0, 0) = 0 and
P (1, α) = 1. Hence one concludes that

P (A) = [0, 1] .

Moreover

T (t)A = A,∀t ≥ 0.

Therefore {T (t)}t∈R is a flow on A, and it follows that there exists a complete orbit

(U1, U2) ∈ C1
(
R,R2

)
of system (15) such that

(U1(t), U2(t)) ∈ A,∀t ≥ 0,
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and passing t = 0 through

(U1, U2) with U1 = 1/2 and U2 ∈ [0, α] .

By using (17) we deduce that

lim
t→+∞

(U1(t), U2(t)) = (0, 0) and lim
t→−∞

(U1(t), U2(t)) = (1, α) .

Therefore A contains the equilibria, and all the travelling waves going from (1, α)
to (0, 0) .

4.1.2. Uniqueness of the travelling waves. In order to prove the uniqueness of the
heteroclinic orbit going from (1, α) to (0, 0) we will study the center-unstable man-
ifold around the equilibrium (1, α).

Linearized equation at U
1

= (1, α): The matrix of the linearized equation of
system (15) at (1, α) is

LU =

[
−α 1

α2 + 1 −α

]
,

the characteristic equation is given by

(α+ λ)
2 − α2 − 1 = 0⇔ λ2 + 2αλ+ α2 − α2 − 1 = 0

⇔ λ2 + 2αλ− 1 = 0,

hence the spectrum of LU is given by

σ (LU ) =
{
λ−U , λ

+
U

}
,

with
λ−U := −α−

√
α2 + 1 < 0 < λ+

U := −α+
√
α2 + 1.

It follows that the center-unstable manifold at (1, α) is a one dimensional locally
invariant manifold. Therefore by using the same arguments as in Lemma 3.3, it
follows that the travelling wave going from (1, α) to (0, 0) is unique (we refer for
instance to [26] for an other proof). The precise result proven is the following:

Lemma 4.1. Assume that α ≥ 1 (that reads c ≥ 2). Then there exists at most
one travelling wave going from (1, α) to (0, 0) for (4). More precisely, there exists
a unique solution U∗(x) = (U∗1 (x), U∗2 (x)) of system (15) satisfying

lim
x→−∞

U∗(x) = (1, α) and lim
x→+∞

U∗(x) = (0, 0).

Since we will use it in the following, we can detail a little bit more the system
reduced to the center-unstable manifold around the interior equilibrium. First the
projector in the center-unstable space reads as

Πcu

(
U1

U2

)
=
(√

α2 + 1U1 + U2

)( (√
α2 + 1

)−1

1

)
.

Moreover the reduced system of (15) takes the following form

U ′cu = ΠcuF
(
Ucu + Ψ̃cu (Ucu)

)
(18)

where F is the second member of system (15), and the unstable manifold is the

graph of Ψ̃cu : Πcu

(
R2
)
→ (I −Πcu)

(
R2
)
. Since Πcu has a one-dimensional rank,

equation (18) around the equilibrium Πcu (1, α) can be identified to a scalar ordinary
differential equation of the form

u′cu = f (ucu) (19)



182 ARNAUD DUCROT, MICHEL LANGLAIS AND PIERRE MAGAL

with

f(0) = 0 and f ′(0) = λ+
U . (20)

4.2. Travelling waves for the full model. The aim of this section is to prove
Theorem 1.1. To do so we consider system (6). Recalling that λ = κ = 1 so that
the system under consideration reads as{

U ′′ + cU ′ = −λU [1− U ] ,
V ′′ + cV ′ = − (1− bθ + (β − 1)U)V + βV 2.

As before we can reformulate the U -equation as system (15). Similarily by setting V1 := V

V2 :=

(
d

dx
+
c

2

)
V1,

and by using the fact that(
d

dx
+
c

2

)2

V −
( c

2

)2

V = − (1− bθ + (β − 1)U)V + βV 2

the V -equation becomes{
V ′1 = −αV1 + V2

V ′2 = −αV2 +
[
α2 − (1− bθ) + (1− β)U1

]
V1 + βV 2

1
(21)

wherein we have set α = c
2 . Note that as above one has

(αV1 + V2)
′

= −V1 [(1− bθ + (β − 1)U1)− βV1] . (22)

Then the fourth-dimensional system (15) and (21) is monotone increasing on [0,

+∞)
4

whenever

α2 ≥ 1− bθ and 1 ≥ β. (23)

Moreover, in order to obtain a positive equilibrium, we impose that

β > bθ. (24)

By combining the conditions (16) (23) and (24), we obtain the following set of
conditions that will be assumed in the rest of the paper:

Assumption 4.2. We assume that

α ≥ 1 and 1 ≥ β > bθ.

Equilibria for the V -system: When U1 = 1, the non-negative equilibria for the
V -system are

V
0

= (0, 0) and V
1

=

((
1− bθ

β

)
, α

(
1− bθ

β

))
.

For U1 = 0, the non-negative equilibria for the V -equation are

V
0

= (0, 0) and V
2

=

(
(1− bθ)

β
, α

(1− bθ)
β

)
.
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Remark 4. One may observe that we need to impose

0 ≤ i ≤ n,
which implies

0 ≤ V1 ≤ U1.

Therefore the biological constraint permits to exclude the equilibrium U1 = 0 and

V ≡
(

(1− bθ)
β

, α
(1− bθ)

β

)
.

When β = 1 the U -equation and the V -equation are uncoupled. In this case, we
also observe that the positive equilibria

V
1

= V
2
.

By apply the results for the Fisher-KPP equation to the V -equation, we obtain the
following lemma.

Lemma 4.3. (Decoupled case) Let Assumption 4.2 be satisfied. Assume in ad-
dition that

β = 1.

Then there exists a unique solution V ∗(x) = (V ∗1 (x), V ∗2 (x)) of system{
V ′1 = −αV1 + V2

V ′2 = −αV2 +
[
α2 − (1− bθ)

]
V1 + βV 2

1
(25)

satisfying

lim
x→−∞

V ∗(x) = ((1− bθ) , α (1− bθ)) and lim
x→+∞

V ∗(x) = (0, 0).

Moreover for each δ ∈ R

Uδ(x) := U∗ (x+ δ) and Vδ(x) = V ∗ (x)

is a heteroclinic orbit of system (15) and (21). Therefore system (15) and (21) has

an infinite number of heteroclinic orbits going from
(
U

1
, V

1
)

to (0, 0).

The rest of the paper is devoted to the coupled case

1 > β

which is of course more delicate. To prove the existence of an infinite number of

heteroclinic orbits going from
(
U

1
, V

1
)

to (0, 0) for system (15) and (21) we will

analyze the local unstable manifold around
(
U

1
, V

1
)
.

Trivial heteroclinic orbit: We observe that when we fix

U ≡ U1
=

(
1
α

)
the V -equation becomes{

V ′1 = −αV1 + V2

V ′2 = −αV2 +
[
α2 − (β − bθ)

]
V1 + βV 2

1
(26)

There exists a unique solution V̂ (x) =
(
V̂1(x), V̂2(x)

)
of system (26) satisfying

lim
x→−∞

V̂ (x) =

((
1− bθ

β

)
, α

(
1− bθ

β

))
and lim

x→+∞
V̂ (x) = (0, 0).
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Linearized equation at
(
U

1
, V

1
)
: The matrix of the linearized equation is

L =

[
LU 0
M LV

]
where

LV :=

[
−α 1

α2 + (β − bθ) −α

]
and M :=

[
0 0(

1− bθ
β

)
(1− β) 0

]
.

The characteristic equation of LV is

(α+ λ)
2 −

[
α2 + (β − bθ)

]
= 0⇔ λ2 + 2αλ− (β − bθ) = 0

so that the spectrum of LV is given by

σ (LV ) =
{
λ−V , λ

+
V

}
,

where

λ−V := −α−
√
α2 + (β − bθ) < 0 < λ+

V := −α+
√
α2 + (β − bθ).

The spectrum of L is
σ (L) =

{
λ−U , λ

+
U , λ

−
V , λ

+
V

}
.

Since β < 1, one has

λ−U = −α−
√
α2 + 1 < λ−V < 0,

and
0 < λ+

V < λ+
U = −α+

√
α2 + 1.

As a consequence the center-unstable manifold is two dimensional. We need to
specify further the linear center-unstable space Xcu for L. The right eigenvector of
L associated to λ+

U satisfies

L

(
Uλ+

U

Vλ+
U

)
= λ+

U

(
Uλ+

U

Vλ+
U

)
⇔

{
LUUλ+

U
= λ+

UUλ+
U

MUλ+
U

+ LV Vλ+
U

= λ+
UVλ+

U
.

So we can fix

Uλ+
U

:=

( (√
α2 + 1

)−1

1

)
. (27)

In order to compute Vλ+
U

, observe that

MUλ+
U

+ LV Vλ+
U

= λ+
UVλ+

U
⇔
(
λ+
UI − LV

)
Vλ+

U
= MUλ+

U
.

Since λ+
U > λ+

V , the matrix λ+
UI − LV is invertible, and one has(

λ+
UI − LV

)−1
=

∫ +∞

0

e−λ
+
U teLV tdt >> 0,

a componetwized non-negative matrix. Next due to Assumption 4.2 and since β < 1,
one has (

1− bθ

β

)
(1− β) > 0,

hence
Vλ+

U
:=
(
λ+
UI − LV

)−1
MUλ+

U
>> 0 (28)

is a componentwized non-negative matrix. Therefore the eigenspace of L associated
to λ+

U is given by
Eλ+

U
= RWλ+

U
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where

Wλ+
U

=

(
Uλ+

U

Vλ+
U

)
>> 0.

To summarize, we have the following lemma.

Lemma 4.4. The center-unstable space is given by

Xcu = RWλ+
U
⊕ RWλ+

V
.

where

Wλ+
U

=

(
Uλ+

U

Vλ+
U

)
>> 0 and Wλ+

V
:=

(
0R2

Vλ+
V

)
,

with

Vλ+
V

:=

( (√
α2 + (β − bθ)

)−1

1

)
.

Remark 5. The projector of the eigenspace associated to λ+
U for L is given by

ΠL
λ+
U

(
U
V

)
=
(√

α2 + 1U1 + U2

)
Wλ+

U
.

The projector of the eigenspace associated to λ+
V for L is given by

ΠL
λ+
V

(
U
V

)
=
(
aU1 + bU2 +

√
α2 + (β − bθ)V1 + V2

)
Wλ+

V
.

where
(
UT , V T

)
=
(
a, b,

√
α2 + (β − bθ), 1

)
is a left eigenvector of L associated to

λ+
V , and

UT = (a, b) = V TM
(
λ+
V I − LU

)−1

with

V T =
(√

α2 + (β − bθ), 1
)
.

Indeed, a left eigenvector of L associated to λ+
V should satisfy(

UT , V T
)
L = λ+

V

(
UT , V T

)
⇔
{
UTLU + V TM = λ+

V U
T

V TLV = λ+
V V

T .

System reduced to the center-unstable manifold around
(
U

1
, V

1
)
: The

system formed by the U -equation and the V -equation can be rewritten as{
U ′ = F (U)
V ′ = G(U, V ).

(29)

The center-unstable space of the linearized equation at
(
U

1
, V

1
)

is given

Xcu = RWλ+
U
⊕ RWλ+

V
.

The projector on the center-unstable space Xcu reads as

Πcu

(
U
V

)
=
(

ΠL
λ+
U

+ ΠL
λ+
V

)(
U
V

)
.
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The center-unstable manifold of system (29) around
(
U

1
, V

1
)

is therefore charac-

terized as follows:(
U
V

)
∈Mcu ⇔(

U
V

)
=

 U
1

+ Θ1

(
U − U1

)
V

1
+ Θ2

(
U − U1

, V − V 1
) ⇔

(
U
V

)
=

(
U

1

V
1

)
+ Πcu

(
U − U1

V − V 1

)
+ Ψcu

(
U − U1

V − V 1

)
where

Ψcu

(
U − U1

V − V 1

)
=

 Ψ1
cu

(
U − U1

)
Ψ2
cu

(
U − U1

, V − V 1
)  ∈ (I −Πcu)R4

and

DΨcu (0) = 0.

Lemma 4.5. We have the following properties:

(i) The trivial heteroclinic orbit
(
U

1
, V̂
)

belongs to the center-unstable manifold

of system (29) locally around
(
U

1
, V

1
)
.

(ii) The eigenspace Eλ+
V

= RWλ+
V

is tangent to the trivial heteroclinic orbit
(
Û , V̂

)
at
(
U

1
, V

1
)
.

Proof. The prove (i), it is sufficient to apply the property (ii) of Theorem 2.2. To

show (ii), it is sufficient to observe that Û = U
1
, therefore V̂ is an heteroclinic

orbit going from V
1

to 0 solution of the system

V̂ ′(x) = G(U
1
, V̂ (x)). (30)

Therefore, V̂ belongs to the local center-unstable manifold of (30) locally around

V
1
. Hence, by applying Remark 1 to this system the result follows.

Lemma 4.6. Locally around U
1
, the heteroclinic orbit U∗ for the U -equation pro-

vided by Lemma 4.1 belongs to PMcu, where P : R4 → R2 is defined by

P

(
U
V

)
:= U.

Moreover U∗ is tangent to Eλ+
U

= RWλ+
U

at U
1
.

More precisely, we have for ε > 0 small enough that

Oε = {U∗(x) : x ∈ R} ∩BR2

(
U

1
, ε
)

= PMcu ∩
[
0, U

1
[
∩BR2

(
U

1
, ε
)
,

where [
0, U

1
[

=
{
U : 0 ≤ U < U

1
}
.

The main result of this section is the following theorem.
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Theorem 4.7. (Coupled case) From each point of the trivial heteroclinic orbit(
U

1

V̂ (x)

)
(with x ∈ R) close enough to

(
U

1

V
1

)
, there exists a sequence of points{(

Un
Vn

)}
n≥0

∈
[
0, U

1
]
×
[
0, V

1
]

satisfying the following properties:

(i)

(
Un
Vn

)
→

(
U

1

V̂ (x)

)
as n→ +∞;

(ii) For each integer n ≥ 0, Un = U∗(yn) for some yn ∈ R and Vn 6= V̂ (x̂) for
each x̂ ∈ R;

(iii) For each integer n ≥ 0, there exists an heteroclinic orbit of (29) passing

through

(
Un
Vn

)
and going from

(
U

1

V
1

)
to

(
0R2

0R2

)
.

Consequently (since by construction yn → −∞) there exists an infinite number

of heteroclinic orbits of system (29) going from

(
U

1

V
1

)
to

(
0R2

0R2

)
and passing

in any fixed neighbourhood of

(
U

1

V̂ (x)

)
.

Proof. Existence of heteroclinic orbits: The system reduced on the unstable

manifold around

(
U

1

V
1

)
can be identify to a system of two scalar ordinary differ-

ential equations of the form {
u′cu = f (ucu)
v′cu = g (ucu, vcu)

(31)

where f : R → R and g : R2 → R are two maps of the class C1 that satisfy the
following properties

f(0) = 0 and f ′(0) = λ+
U > 0

and

g (0, 0) and
∂g (0, 0)

∂vcu
= λ+

V > 0.

Therefore by apply the Hartman-Grobman theorem, or the exponential stability

theorem (back in time) to system (31), we deduce that for each ball BR2

((
0
0

)
, ε

)
(with ε > 0) there exists a ball BR2

((
0
0

)
, η

)
(with 0 < η ≤ ε) such that for

each point (
u0

v0

)
∈ BR2

((
0
0

)
, η

)
there exists a negative orbit passing through

(
u0

v0

)
at time t = 0 and staying in

BR2

((
0
0

)
, ε

)
for all negative time and converging to

(
0
0

)
as t→ −∞.
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It follows that there exists ε∗ > 0 such that for each point(
U0

V0

)
∈
[
0, U

1
]
×
[
0, V

1
]
∩Mcu ∩BR4

((
U

1

V
1

)
, ε∗

)
(32)

with

V0 << V
1
, (33)

there exists a negative orbit

{(
U(x)
V (x)

)}
x≤0

of system (29) passing through(
U0

V0

)
as x = 0 and such that(

U(x)
V (x)

)
→

(
U

1

V
1

)
as x→ −∞.

Moreover by (32) we have(
U0

V0

)
≤

(
U

1

V̂ (x)

)
for some x ∈ R

therefore by using the monotony of system (29) we deduce that(
U(x)
V (x)

)
→ 0 as x→ +∞.

Therefore each initial value satisfying (32) and (33) is a point of an heteroclinic

orbit of system (29) going from

(
U

1

V
1

)
to

(
0R2

0R2

)
.

Infinite number of heteroclinic orbits: Let r ∈ R such that(
U0

V0

)
:=

(
U

1

V̂ (r)

)
∈ BR4

((
U

1

V
1

)
, ε∗

)
.

Then by construction

(
U0

V0

)
satisfies (32) and (33). By perturbing the U -compo-

nent, and by using Lemma 4.6, we can find a sequence{(
Un
Vn

)}
⊂Mcu ∩BR4

((
U

1

V
1

)
, ε∗

)
→

(
U

1

V̂ (r)

)
=

(
U0

V0

)
with

Un = U∗ (yn) << U
1

and yn → −∞ as n→ +∞.
Since V̂ (x) << V

1
, for each n ≥ 0 positive large enough

Vn << V
1
.

So for each n ≥ 0 large enough, the point(
Un
Vn

)
satisfies (32) and (33). Therefore for each n ≥ 0 large enough we can find an

heteroclinic orbit going from

(
U

1

V
1

)
to

(
0R2

0R2

)
.
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To conclude it remains to verify that we can fix

Vn 6= V̂ (r).

If Vn = V̂ (x), we consider

(
Un(x)
Vn(x)

)
the solution of system (29) passing through(

Un
Vn

)
as x = 0. By construction, we have

Un(x) = U∗ (x+ yn) << U
1

and by using the monotonicity of system (29) we have

V ′n = G(Un, Vn) < G(U
1
, Vn) and Vn(0) = V̂ (x).

Therefore

Vn(ε) < V̂ (x+ ε) ,∀ε > 0.

So when Vn = V̂ (x), by replacing

(
Un
Vn

)
by

(
U∗ (ε+ yn)
Vn(ε)

)
for ε > 0 small

enough, the problem is unchanged and assertion (ii) is verified. This complete the
proof of the result.
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