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Abstract. We provide formal matched asymptotic expansions for ancient con-

vex solutions to MCF. The formal analysis leading to the solutions is analogous
to that for the generic MCF neck pinch in [1].

For any p, q with p + q = n, p ≥ 1, q ≥ 2 we find a formal ancient solution
which is a small perturbation of an ellipsoid. For t→ −∞ the solution becomes

increasingly astigmatic: q of its major axes have length ≈
√

2(q − 1)(−t), while

the other p axes have length ≈
√
−2t log(−t).

We conjecture that an analysis similar to that in [2] will lead to a rigorous

construction of ancient solutions to MCF with the asymptotics described in
this paper.

1. Introduction. A family of immersed hypersurfaces Xt : M → Rn, t0 < t < t1,
moves by Mean Curvature flow if Xt satisfies the PDE(

∂Xt

∂t

)⊥
= Hν (MCF)

where ν is a unit normal to Xt, (· · · )⊥ is the normal component of a vector and H
is the mean curvature of Xt in the direction of ν.

Ancient solutions to (MCF) are solutions which are defined for all t ∈ (−∞,−T ),
where we may assume without loss of generality that T = 0. Common examples of
ancient solutions are given by self similar shrinking solutions, i.e. solutions defined
for all t < 0 which have the form

Xt =
√
−t X∗

where X∗ : M → Rn is some fixed immersion. E.g. the cylinder with radius
r(t) =

√
2(n− 1)(−t) for all t < 0 is an ancient solution. Other ancient solutions

are provided by self-translating solitons, the simplest of which is the “Grim Reaper,”
i.e. the graph of y = − log cosx+ t in the xy plane.
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Figure 1. The paper clip solution: an ancient convex and compact
solution of curve shortening.

Another ancient solution for Curve Shortening, the “shrinking paper clip” was
found in [3]. In the (k, θ) representation (as used in [5]) it is given by

k(θ, t) =
√
B(cos 2θ + cothBt) (1)

where B > 0 is an arbitrary constant. Daskalopoulos, Hamilton and Sesum [4]
showed that the circle and the paper clip are the only ancient solutions for CS
which are convex and embedded.

Here we look for higher dimensional analogs of the paper clip solution. For
simplicity we confine our search to solutions with rotational symmetry.

2. SO(p,R)×SO(q,R) invariant hypersurfaces. For any choice of integers p and
q with p + q = n we consider hypersurfaces in Rn = Rp × Rq which are invariant
under the action of the subgroup G = SO(p,R)×SO(q,R) of SO(n,R). The quotient
of Rn under the action of G is the first quadrant, i.e. Rn/G = [0,∞)× [0,∞). Any
G-invariant hypersurface is completely determined by its image under the map

Π : Rn → Rn/G, Π : (X,Y ) 7→
(
|X|, |Y |

)
.

The image of any G-invariant hypersurface under Π is a curve in Rn/G. In the
particular case that this curve is the graph of a function |Y | = u(|X|, t), evolution
by (MCF) for the hypersurface is equivalent with the following PDE for u:

∂u

∂t
=

uxx
1 + u2x

+
p− 1

x
ux −

q − 1

u
. (2)

This is the equation we will study. Our main result is a computation of a formal
matched expansion of an ancient solution of (2). The asymptotic description of this
formal solution as t→ −∞ consists of three pieces.

Parabolic region. In the region |x| = O(
√
−t) is close to the cylindrical solution.

One has

u(x, t) ≈
√

2(q − 1)(−t)
{

1 +
x2/(−t)− 2p

4 log(−t)
}

(t→ −∞). (3)

Intermediate region. When
√
−t � |x| = O(

√
−t log(−t)) is approximately el-

lipsoidal, with

u2

−t
+

x2

−t log(−t)
≈ 2(q − 1), (t→ −∞). (4)
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Figure 2. the three regions in the asymptotic expansion for the
ancient ovals.

The tip. The end of the hypersurface is located at x ≈
√
−2t log(−t). Near this

end point the surface is approximated by a translating soliton,

x(u, t) ≈
√
−t log(−t)

{√
2 +

1

log(−t)
P
(
u

√
log(−t)
−t

)}
(t→ −∞). (5)

Here P (ξ) is the unique solution of

P ′′(ξ) +
q − 1

ξ
P ′(ξ) = − 1

2

√
2, P (0) = P ′(0) = 0

that is defined for all ξ ≥ 0.
See Figure 2.
We now turn to the derivation of the asymptotic expansions, beginning with the

inner “parabolic region.”

3. Solutions near the cylinder. The cylinder, represented by

u(x, t) =
√
−2(q − 1)t, (x ∈ R, t < 0) (6)

is a noncompact ancient solution. To find other ancient solutions we consider the
rescaled variables

u(x, t) =
√
−t U

( x√
−t
,− log(−t)

)
, y =

x√
−t
, s = − log(−t).

In these new variables we have
∂U

∂s
=

Uyy
1 + U2

y

+
(p− 1

y
− y

2

)
Uy +

U

2
− q − 1

U
. (7)

To obtain ancient solutions for MCF we must find ancient solutions for (7), i.e. so-
lutions which are defined for all s ∈ (−∞, s0) for some s0 ∈ R.

The cylinder, which is an ancient solution to MCF, corresponds to the constant
solution of (7)

U∗ =
√

2(q − 1). (8)

Our formal construction of compact ancient solutions begins by looking for a solu-
tion which within the parabolic region |x| = O(

√
−t) is a small perturbation of the

cylinder. To study such perturbations we linearize (7) around the constant solution
U(y, s) = U∗ by setting

U = U∗ + v.

This substitution leads to an equation for v,

∂v

∂s
=

vyy
1 + v2y

+
(p− 1

y
− y

2

)
vy +

v

2
+
U∗
2
− q − 1

U∗ + v
.
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Using U2
∗ = 2(q − 1) we rewrite this as

∂v

∂s
= vyy +

(p− 1

y
− y

2

)
vy + v − v2

2(U∗ + v)
−
v2yvyy

1 + v2y
.

or, expanded even further,

∂v

∂s
= vyy +

(p− 1

y
− y

2

)
vy + v − v2

2U∗
+

v3

2U∗(U∗ + v)
−
v2yvyy

1 + v2y
.

The last two terms here are cubic, so that we can summarize this expansion as

∂v

∂s
= vyy +

(p− 1

y
− y

2

)
vy + v − v2

2U∗
+ O(v, vy, vyy)3. (9)

The linear part of this equation is of the form

vs = Lv

where

Lφ = φyy +
(p− 1

y
− y

2

)
φy + φ (10)

We are looking for solutions of this equation which in backward time (s → −∞)
tend to zero. It is natural to separate variables and to look for solutions of the
form φ ≈ eλsφλ(y), where φλ is an eigenfunction of L with eigenvalue λ. If we want
eλsφλ(y) → 0 for s → −∞, then the eigenvalue λ should be positive, or at least
nonnegative. If we find an eigenvalue λ = 0 (as we will), then the corresponding
solution of the linearized equation (10) will be stationary. To see if a solution of
the actual equation (7) exists which decays for s → −∞, we will have to take the
second order terms in (9) into account. But first we compute the eigenfunctions
and eigenvalues of L.

4. The spectrum of L. This operator with the appropriate domain is self adjoint
in the Hilbert space

H = L2
(
R+; yp−1e−y

2/4
)
.

It also maps polynomials in y2 to polynomials in y2 with the same or lower degree.
Therefore the matrix of L in the basis {1, y2, y4, y6, . . .} of R[y2] is upper triangular.
In particular,

L[ym] = m(m+ p− 2)ym−2 +
(
1− m

2

)
ym.

Using this one finds that H has a basis of orthogonal polynomials which are eigen-
functions of L. More precisely,

φ2m(y) = y2m + cm−1y
2(m−1) + · · ·+ c2y

2 + c0

satisfies

L[φ2m] = (1−m)φ2m

provided

ck−1 = −2k(p+ 2k − 2)

m− k + 1
ck.

The first few eigenfunctions are:

φ0(y) = 1, λ0 = +1,

φ2(y) = y2 − 2p, λ2 = 0,

φ4(y) = y4 − 4(p+ 2)y2 + 4p(p+ 2), λ4 = −1.

(11)
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We note for future reference that

φ2(y)2 = φ4(y) + 8φ2(y) + 8pφ0(y),

and hence
〈φ2, (φ2)2〉 = 8‖φ2‖2,

where 〈. . . , . . . 〉 and ‖ . . . ‖ are the inner product and norm on H.

5. The parabolic region. In the inner region |y| ≤ C we assume that v(y, s)
can be expanded in terms of the eigenfunctions v(y, s) =

∑
j aj(s)φ2j(y). We also

assume that there is one dominating term, so that v(y, s) ∼ aj(s)φ2j(y) for some j.

The linear equation predicts that a′j(s) = (1− j)aj(s), so that aj(s) = e(1−j)saj(0).
The nonlinear terms in the equation modify this to a′j(s) = (1− j+ o(1))aj(s), and
thus

aj(s) ≈ aj(0)e(1−j+o(1))s. (12)

For j > 1 this tells us that v(y, s) grows exponentially as s → −∞, thereby vio-
lating our assumption that v is always close to the cylinder. For j < 1, and here
there is only one possibility, namely j = 0, we get a solution v which does decay
exponentially as s → −∞. Since φ0(y) = 1 this solution is spatially constant. It
corresponds to another cylinder solution of MCF which focusses at a time other
than t = 0.

Thus the only interesting case for us here is j = 1. In this case the linearized
equation predicts a′1(s) = o(a1(s)), from which we cannot even tell if a1 grows or
decays. For more information we look at the second order terms. Assuming the
expansion (12), and substituting it in the nonlinear equation (9) we find∑

k

a′2k(s)φ2k(y) = Lv − v2

2U∗
+ O(v, vy, vyy)3.

Take the H inner product with φ2, to get

a′2(s)‖φ2‖2 =
〈
φ2,Lv −

v2

2U∗
+ O(v, vy, vyy)3

〉
=
〈
φ2,Lv

〉
− 1

2U∗

〈
φ2, v

2
〉

+
〈
φ2,O(v, vy, vyy)3

〉
.

The first term vanishes since 〈φ2,Lv〉 = 〈Lφ2, v〉 = 0. Assume that the φ2 term
in the expansion of v dominates, and that v can therefore be approximated by
v ≈ a2(s)φ2. Also assume that the O(· · · )3 term is in fact O(a2)3. Then we find
that

a′2(s) = −a2(s)2

2U∗

〈φ2, φ22〉
‖φ2‖2

+ O(a32) = − 4

U∗
a22 + O(a32).

Ignoring the O(a32) term we get a simple differential equation for a2 whose solution
is

a2(s) = −U∗
4

1

S − s
,

for some constant S. The arbitrary constant S appears here because the equations
(7) and (9) which we are trying to solve are autonomous. Any solution we find
can therefore be translated in the s-time variable to produce new solutions. This
translation corresponds to the parabolic rescaling (x, t) 7→ (λx, λ2t) of space time.
Parabolic rescaling leaves (MCF) and our cylindrical self similar solution u(y, s) =
U∗ invariant. However, the ancient solutions we will construct are not invariant
under this rescaling, and therefore we will get a one parameter family of such
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solutions. Since these solutions are all related by a simple rescaling we may choose
S = 0 without losing generality. In choosing S = 0 we are essentially fixing a length
and time scale in the original (x, t) variables.

Thus we arrive at the following approximation for a2(s)

a2(s) =
U∗
4s
. (13)

In the parabolic region our solution is given by

U(y, s) = U∗ +
U∗
4s
φ2(y) = U∗

{
1 +

y2 − 2p

4s

}
. (14)

6. The intermediate region. We introduce the coordinate

z =
y√
−s

and consider U as a function of z instead of y. In fact, to simplify notation we
will not quite do this. Instead, we consider the quantities x, t, s, u, U, v, y, z as
functions on the solution of (MCF) viewed as a submanifold of space-time. When
we then specify a time derivative ∂U

∂s we must, for completeness, also specify if
in this derivative y is kept constant or z is kept constant. With this notational
convention we avoid having to introduce a new variable to denote the quantity U
regarded as a function of z.

If we write
∂U

∂s

∣∣∣∣
z

for the rate at which U changes with respect to s when z is kept constant, and if
∂U
∂s

∣∣
y

denotes the analogous derivative with constant y, then by the chain rule we

have
∂U

∂s

∣∣∣∣
z

=
∂U

∂s

∣∣∣∣
y

+
∂y

∂s

∣∣∣∣
z

∂U

∂y
,

and thus

∂U

∂s

∣∣∣∣
z

=
Uyy

1 + U2
y

+
(p− 1

y
− y

2

)
Uy +

U

2
− q − 1

U
− 1

2
(−s)−1/2zUy (15a)

=
Uzz

−s+ U2
z

−
(z

2
− z

2s
+
p− 1

zs

)
Uz +

U

2
− q − 1

U
(15b)

Assuming that for z fixed U converges as s→ −∞, we find that the limit

Um(z) = lim
s→−∞

U |z const

must satisfy the ODE
z

2

dUm

dz
=
Um

2
− q − 1

Um
(16)

This equation is easily integrated. Keeping in mind that U∗ =
√

2(q − 1) one can
write the solution as

Um(z) =
√
U2
∗ +Kz2 (17)

where K is the integration constant. To determine K we compare with the inner
solution (14) which tells us that

U = U∗ −
U∗
4
z2 + o(z2) (z ↘ 0),
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while (17) claims

Um(z) = U∗ +
K

2U∗
z2 + o(z2).

For these two expressions to be compatible at small z we must choose K = −U2
∗/2 =

−(q − 1). The solution in the intermediate region is thus

Um(z) =
√
q − 1

√
2− z2. (18)

7. The tip. Since Um
z and Um

zz both diverge as z ↗
√

2, the formal solution Um(z)

breaks down near the tip z =
√

2. To analyze the solution near this tip we follow
the formal computations in [1, p.23].

First we choose U as the coordinate on the surface and compute the evolution of
z. One finds

∂z

∂s

∣∣∣∣
U

=
zUU

1− sz2U
+
(q − 1

U
− U

2

)
zU +

z

2
− z

2s
+
p− 1

sz
. (19)

Assuming, as we did above, that when U is kept fixed, z converges as s→ −∞, one
finds that the limit zm should satisfy(q − 1

U
− U

2

)
zU +

z

2
= 0 (20)

The solution of this ODE on the interval 0 < U < U∗ which matches the inner
solution (14) at U = U∗ is

zm =

√
2− U2

q − 1
. (21)

In obtaining (20) from (19) we let s → −∞, and assumed ∂z/∂s → 0; we also
assumed that zU 6= 0 so that for large −s the second derivative term becomes
negligible. If −sz2U = O(1), then the second order term in (19) becomes important
and we must treat (19) as a heat equation. To find the scale at which this happens
we apply the condition (−s)z2U � 1 to the intermediate solution zm. The result is

that (20) fails to approximate (19) when U = O((−s)−1/2). We therefore introduce
a new coordinate

V =
√
−s U.

We also rescale in the z direction, choosing

z =
√

2 +
w

−s
,

where w is the new coordinate. We compute the following PDE for the evolution
of w:

1

−s
∂w

∂s

∣∣∣∣
V

=
wV V

1 + w2
V

+
q − 1

V
wV +

√
2

2

1

−2s

{
−
√

2 + w − V wV −
2(p− 1)√

2 + w/(−s)

}
+
w − V wV

2(−s)2
. (22)

Assuming that w converges as s→ −∞ with V fixed, we get an ODE for the limit
by setting ∂w/∂s = 0 on the left, and taking the limit on the right. We get

wV V
1 + w2

V

+
q − 1

V
wV = −

√
2

2
. (23)

This equation also appeared in [1]. The graph of any solution of (23) is the profile

of a rotationally symmetric translating soliton for (MCF) in Rq+1 with velocity 1
2

√
2.
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In [1, prop.2.1] it was shown that there is, up to an additive constant, a unique so-
lution of (23) which is defined for all V > 0. These solutions all have an asymptotic
expansion for large V which begins with

w = − V 2

2
√

2(q − 1)
+ O(log V ) (V →∞) (24)

On the other hand, our solution zm in the intermediate region is given by (21),
which in terms of (w, V ) implies

wm = (−s)
(
zm −

√
2
)

= (−s)
{√

2− U2

2
√

2(q − 1)
+ O(U4)−

√
2
}

= − V 2

2
√

2(q − 1)
+ o(V 2).

Therefore the inner approximation in which w is given by any solution of (23)
matches to lowest order with the approximate solution zm in the intermediate re-
gion.
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