
NETWORKS AND HETEROGENEOUS MEDIA doi:10.3934/nhm.2012.7.941
c©American Institute of Mathematical Sciences
Volume 7, Number 4, December 2012 pp. 941–966

ENTROPY SOLUTIONS

OF FORWARD-BACKWARD PARABOLIC EQUATIONS

WITH DEVONSHIRE FREE ENERGY

Flavia Smarrazzo and Alberto Tesei

Department of Mathematics “G. Castelnuovo”

University of Rome “La Sapienza”

P.le A. Moro 5, I-00185 Rome, Italy

Abstract. A class of quasilinear parabolic equations of forward-backward

type ut = [φ(u)]xx in one space dimension is addressed, under assumptions

on the nonlinear term φ which hold for a number of mathematical models in
the theory of phase transitions. The notion of a three-phase solution to the

Cauchy problem associated with the aforementioned equation is introduced.

Then the time evolution of three-phase solutions is investigated, relying on
a suitable entropy inequality satisfied by such a solution. In particular, it is

proven that transitions between stable phases must satisfy certain admissibility

conditions.

1. Introduction. This paper deals with the forward-backward parabolic equation

ut = [φ(u)]xx , (1)

where φ ∈ C2(R) is a non-monotonic function. Therefore, initial-value problems for
equation (1) are ill-posed whenever the solution u takes values where φ′ < 0.

In spite of this difficulty, motivations to study such forward-backward parabolic
equations come from various contexts. The most well-known case is probably that of
a cubic φ, which arises in the Landau theory of phase transitions. Different choices
of φ are suggested by mathematical models of population dynamics, oceanography
and image reconstruction (see [1, 9, 10]).

However, it has been pointed out that the Landau theory cannot account for
phase transition phenomena exhibited by certain materials (e.g., ferroelectrics; see
[2]). Hence it has been proposed to modify the Landau free energy by including
higher order terms – namely, to replace it by the Devonshire free energy

F (u) = F0(T ) + α1(T − Tc)u2 − α2u
4 + α3u

6 (α1, α2, α3 > 0)

(here the absolute temperature T , regarded as a parameter, is assumed to be less
than some critical value Tc). Then the response function φ becomes

φ(u) = 2α1(T − Tc)u− 4α2u
3 + 6α3u

5. (2)

It is the purpose of this paper to address equation (1) with a nonlinearity of the
form (2), extending to this case some relevant results which hold when φ is cubic.
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(i) Let us outline what is known for the case of a cubic-like φ ∈ C2(R), satisfying
the following assumption:

(H0)

 (i) φ′(u) > 0 if u ∈ (−∞, a) ∪ (b,∞),
φ′(u) < 0 if u ∈ (a, b);

(ii) φ(u)→ ±∞ as u→ ±∞ .

Set A := φ(b), B := φ(a). Denote by

S1 := {(u, φ(u)) | u ∈ (−∞, a]} = {(s1(v), v) | v ∈ (−∞, B]} ,
S2 := {(u, φ(u)) | u ∈ [b,∞)} = {(s2(v), v) | v ∈ [A,∞)}

the stable branches, and by

S0 := {(u, φ(u)) | u ∈ (a, b)} = {(s0(v), v) | v ∈ (A,B)}

the unstable branch of the graph of φ (see Figure 1).

Figure 1. Assumption (H0).

Consider for any ε > 0 the Neumann initial-boundary value problem uεt = vεxx in Ω× (0,∞) := Q
vεx = 0 in ∂Ω× (0,∞)
u = u0 in Ω× {0} ,

(3)

where Ω ⊆ R is a bounded interval, and

vε := φ(uε) + εuεt .

Problem (3) is the pseudoparabolic regularization of the Neumann problem ut = [φ(u)]xx in Q
[φ(u)]x = 0 in ∂Ω× (0,∞)
u = u0 in Ω× {0}

(4)

for equation (1), which is replaced by the Sobolev equation

ut = [φ(u)]xx + ε[ut]xx (ε > 0) .

Global existence and uniqueness of a solution (uε, vε) to problem (3) – namely,
of a couple uε ∈ C1([0, T ];L∞(Ω)), vε ∈ C([0, T ];W 2,∞(Ω)) which satisfies problem



FORWARD-BACKWARD EQUATIONS WITH DEVONSHIRE FREE ENERGY 943

(3) in the strong sense - was proven (see [8, 6]). Moreover, the following a priori
estimates of the families {uε}, {vε}, uniform with respect to ε, are known to hold:

‖uε‖ L∞(Q) ≤ C , (5)

‖ vε‖ L∞(Q) ≤ C , (6)

‖ vεx‖ L2(Q) +
√
ε ‖uεt‖ L2(Q) ≤ C , (7)

for some number C > 0 which only depends on the initial data function u0.
Estimates (5)-(6) suggest to study the limit as ε→ 0 of the families {uε}, {vε} in

the sense of Young measures. This was made in [11] showing that, for some sequence
{εk} with vanishing limit, the sequence {τ εk} of Young measures associated with
the sequence {uεk} converges in the narrow topology over Q×R to a Young measure
τ (e.g., see [15]), whose disintegration ν(x,t) is a superposition of three Dirac masses
concentrated on the branches S1, S2, S0 of the graph of φ. More precisely, there
exist λi ∈ L∞(Q) (i = 0, 1, 2), 0 ≤ λi ≤ 1,

∑2
i=0 λi = 1, such that

ν(x,t) =

2∑
i=0

λi(x, t)δ
(
· −si(v(x, t))

)
(8)

for almost every (x, t) ∈ Q, where λ1(x, t) = 1 if v(x, t) < A, λ2(x, t) = 1 if
v(x, t) > B, and v ∈ L∞(Q) is the weak* limit of the sequence {vεk} in L∞(Q) (see
(6)):

vεk
∗
⇀ v in L∞(Q) .

By equality (8), the coefficients λi can be interpreted as phase fractions, and the
solution u as a superposition of different phases (see (9) below). Moreover, by (8)
and general properties of the narrow convergence of Young measures we have

f(uεk)
∗
⇀ f∗ in L∞(Q) ,

where

f∗(x, t) :=

∫
R
f(ξ) dν(x,t)(ξ) =

2∑
i=0

λi(x, t)f(si(v(x, t)))

for almost every (x, t) ∈ Q. In particular, choosing f(u) = u gives

uεk
∗
⇀ u :=

2∑
i=0

λisi(v) in L∞(Q) . (9)

Besides, by estimate (7) there holds v ∈ L2((0, T );H1(Ω)) and

vεk ⇀ v in L2((0, T );H1(Ω))

for any T > 0. Finally, passing to the limit as εk → 0 in the weak formulation of
problem (3) proves that the couple (u, v) satisfies the equality∫∫

Q

{uψt − vxψx} dxdt+

∫
Ω

u0(x)ψ(x, 0)dx = 0

for any ψ ∈ C1(Q̄), ψ(·, T ) = 0 in Ω.

The above remarks suggest to regard the above quintuple u, λ0, λ1, λ2 ∈
L∞(Q), v ∈ L∞(Q)∩L2((0, T );H1(Ω)) as a weak measure-valued solution of prob-
lem (4) in Q, in the sense of Young measures. A major feature of such solutions,
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called entropy solutions of problem (4) hereafter, is that they satisfy an entropy
inequality, namely:∫∫

Q

{
G∗ψt − g(v)vxψx − g′(v)v2

xψ
}
dxdt+

∫
Ω

G(u0)ψ(x, 0)dx ≥ 0 . (10)

Here g is any nondecreasing function in C1(R),

G(u) :=

∫ u

0

g(φ(z))dz + k (k ∈ R) , (11)

the function G∗ ∈ L∞(Q) is defined by

G∗ :=

2∑
i=0

λiG(si(v)) ,

and ψ ∈ C1(Q̄), ψ ≥ 0, ψ(·, T ) = 0 in Ω. We refer the reader to [8, 11, 6] for the
proof of (10), which plays a central role in the subsequent analysis.

(ii) The above construction is reminiscent in several respects of that made for
hyperbolic conservation laws (e.g., see [12]). However, at variance with this case,
uniqueness within the class of entropy solutions of problem (4) has not been proven.
This motivated investigating well-posedness of the problem within a more restricted
class of solutions of physical interest, called two-phase solutions, where only transi-
tions between stable phases are allowed (see [4, 6, 7, 14]). More specifically, in [7]
the Cauchy problem for equation (1):{

ut = [φ(u)]xx in R× (0,∞) =: V
u = u0 in R× {0} (12)

was addressed, assuming that

V̄ = V1 ∪ γ ∪ V2 ,

where

V1 :=
{

(x, t) ∈ V̄ | x < ξ(t)
}
,

V2 :=
{

(x, t) ∈ V̄ | x > ξ(t)
}
,

γ := {(ξ(t), t)} (t ∈ [0,∞))

and

u = si(v) in Vi (i = 1, 2) ,

the alternative choice being dealt with similarly. Observe that this amounts to take

λ0 = 0 almost everywhere in Q , (13)

λ1 = 1 and λ2 = 0 almost everywhere in V1 ,

λ2 = 1 and λ1 = 0 almost everywhere in V2 .

It should be mentioned that, to our knowledge, it is in general unknown whether
two-phase solutions are limits of some sequence of approximating solutions {uεk},
{vεk} as εk → 0 (see [13] for the proof of this fact in a significant case).

In some respects, two-phase solutions of problem (12) can be regarded as the
counterpart of piecewise smooth solutions in the theory of hyperbolic conservation
laws. Like these, they exhibit an interface which evolves according to a suitable



FORWARD-BACKWARD EQUATIONS WITH DEVONSHIRE FREE ENERGY 945

Rankine-Hugoniot condition. Moreover, they satisfy the entropy inequality (10),
which now by equalities (13) takes the simpler form:∫∫

Q

{
G(u)ψt − g(v)vxψx − g′(v)v2

xψ
}
dx dt+

∫
R
G(u0)ψ(x, 0) dx ≥ 0 . (14)

A major point is that the entropy inequality (14) determines admissibility con-
ditions for the evolution of the interface γ. Precisely, it can be proven that (see
[4, 6]):  ξ′(t) ≥ 0 if v(ξ(t), t) = A ,

ξ′(t) ≤ 0 if v(ξ(t), t) = B ,
ξ′(t) = 0 if v(ξ(t), t) 6= A and v(ξ(t), t) 6= B .

(15)

In particular, this shows that transitions between the stable phases S1 and S2 can
only occur at the points (x, t) ∈ γ where v(x, t) takes the value A (jumps from S2

to S1) or B (jumps from S1 to S2). Therefore, the entropy conditions also select
admissible jumps between the stable branches of φ. As first pointed out in [11], this
gives rise to a hysteresis loop typical of first-order phase transitions (see [2]).

The a priori knowledge of the admissibility conditions (15) was instrumental to
show that two-phase solutions are a class of well-posedness for problem (12). In
fact, it was a basic tool in the proof of existence and uniqueness of such solutions,
given in [7] for a piecewise linear φ (see [13] for a general cubic-like φ). Moreover,
it provides information of heuristic interest to describe the qualitative behaviour of
these physically relevant solutions.

(iii) Extending the above results to the case of the Devonshire potential needs a
number of nontrivial steps. To be specific, let the response function φ satisfy the
following assumption (see Figure 2):

(H1)


(i) φ(s)→ ±∞ as s→ ±∞ ;
(ii) φ′(s) > 0 if s ∈ (−∞, a) ∪ (b, c) ∪ (d,∞) ;
(iii) φ′(s) < 0 if s ∈ (a, b) ∪ (c, d);
(iv) φ′(s) = 0 , φ′′(s) 6= 0 if s = a, b, c, d (a < b < c < d) .

Figure 2. Assumptions (H1) and (A1).
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Set A := φ(d), B := φ(b), C := φ(c), and D := φ(a). The three stable branches
of the graph of φ are

S1 := {(u, φ(u)) | u ∈ (−∞, a]} = {(s1(v), v) | v ∈ (−∞, D]} ,

S2 := {(u, φ(u)) | u ∈ [b, c]} = {(s2(v), v) | v ∈ [B,C]} ,
S3 := {(u, φ(u)) | u ∈ [d,∞)} = {(s3(v), v) | v ∈ [A,∞)} ,

whereas the unstable branches are

S01 := {(u, φ(u)) | u ∈ (a, b)} = {(s01(v), v)) | v ∈ (B,D)} ,
and

S02 := {(u, φ(u)) | u ∈ (c, d)} = {(s02(v), v)) | v ∈ (A,C)} .

It is easily seen that even in this case there exists a unique solution of the regu-
larized problem (4), which satisfies the same a priori estimates (5)-(7) of the case
(H0). Therefore, the limit (u, v) of the sequence {(uεk , vεk)} in the sense discussed
above can be considered. The validity of the characterization of the limiting Young
measure ν analogous to (8) will be addressed elsewhere (see [3]).

By analogy with two-phase solutions of the case (H0), we can now define three-
phase solutions of problem (12) (see Section 2). As in the case of a cubic-like φ, let
the entropy inequality (14) hold. As we shall see below, again the entropy inequality
determines admissibility conditions for the evolution of the interfaces, much as in
the case of the unique interface of two-phase solutions (compare (15) with (18)-(20)
below). In particular, jumps between stable branches can only occur to or from a
local extremum of the graph of φ. The novel feature is that in the present case only
jumps from an extremum to a visible stable branch are allowed.

To clarify this point, suppose that (see Figure 2):

(A1) A < B < C < D .

In this case the branch S1 is visible from the extremum (b, B), for the line v = B
intersects S1 at some point of abscissa ū, and no other intersection of this line with
the graph of φ has abscissa in the interval (ū, b). Instead, the branch S3 is not
visible from (b, B), since the line v = B intersects the unstable branch S02 before
than S3. Similarly, the branch S3 is visible, whereas S1 is not visible from the
extremum (c, C). On the other hand, from neither of the two extrema (a,D), (d,A)
the branch S2 is visible, since it does not intersect the lines v = A, v = D.

Clearly, the visibility of each stable branch depends on the value of the quantities
A,B,C and D. In turn, this determines the existence of hysteresis loops relative
to a couple of stable phases, thus the local behaviour of the relative interfaces. As
a consequence, a much richer structure of the interfaces arises with respect to the
case of a cubic-like φ.

In the following we describe this structure under different assumptions on the
value of A,B,C,D. In particular, we show that splitting or merging of interfaces –
which corresponds to the appearance or disappearance of a phase – is possible. This
can be regarded as a bifurcation of interfaces, which does not have a counterpart
for a cubic-like φ. A complete description of the local structure of interfaces will
also be given (e.g., see Theorems 3.4 and 3.5 for the case (A1)), which expectedly
will be instrumental to prove the actual existence and uniqueness of three-phase
solutions of problem (12).

It should be clear from the above remarks that the outlined phenomena depend
on the assumptions on A,B,C,D, which determine the shape of the graph of φ. By
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the general assumption (H1), the extrema (a,D) and (d,A) are a local maximum,
respectively a local minimum. Therefore, beside (A1) only the following possibilities
arise (see Figures 8, 13, 18 and 22):

(A2) B < A < C < D ,

(A3) B < A < D < C ,

(A4) A < B < D < C ,

(A5) B < D < A < C .

The plan of the paper is as follows. In Section 2, after introducing the definition
of a three-phase solution to problem (12) and some related concepts, we state our
main results (Theorems 2.4-2.6), which are proven by checking their validity in all
cases (A1) − (A5). In Section 3 a detailed proof is given for the case (A1); this is
the content of Theorems 3.1-3.5. To avoid tedious repetitions, in Section 4 we give
only a qualitative discussion of the analogous results for cases (A2)-(A5), leaving
statements and proofs to the reader.

2. Mathematical framework and results. Let us give the definition of a three-
phase solution to problem (12).

Definition 2.1. Let u0 ∈ L∞(R), φ(u0) ∈ H1
loc(R). By a three-phase solution of

problem (12) we mean any quartet (u, v, ξ1, ξ2) such that:

(i) u ∈ L∞(V ), v ∈ C(V̄ ) ∩ L2((0, T );H1
loc(R)) for every T > 0, and v(x, 0) =

φ(u0)(x) for all x ∈ R;
(ii) ξ1, ξ2 ∈ C1([0,∞)), and ξ1 ≤ ξ2 on [0,∞). Moreover, for every T > 0 there
exists a finite number of intervals (t′, t′′) ⊆ (0, T ] such that ξ2 − ξ1 > 0, ξ′1 6= 0 and
ξ′2 6= 0 on (t′, t′′);

(iii) set

V1 :=
{

(x, t) ∈ V̄ | x < ξ1(t)
}
,

V2 :=
{

(x, t) ∈ V̄ | ξ1(t) < x < ξ2(t)
}
,

V3 :=
{

(x, t) ∈ V̄ | x > ξ2(t)
}

(t ∈ [0,∞)) .

Then there is a one-to-one correspondence between the domains Vi and the stable
branches Sj of the graph of φ, in the sense that for every i there exists a unique j
such that u(x, t) = sj(v)(x, t) for almost every (x, t) ∈ Vi (i, j = 1, 2, 3);

(iv) for any t1, t2 ∈ [0,∞), t1 ≤ t2 and ψ ∈ C1([0,∞);C1
c (R)) there holds∫ t2

t1

∫
R
{uψt − vxψx} dxdt =

∫
R
u(x, t2)ψ(x, t2) dx−

∫
Ω

u(x, t1)ψ(x, t1)dx ; (16)

(v) for any t1, t2 ∈ [0,∞), t1 ≤ t2 and any g ∈ C1(R), g′ ≥ 0, ψ ∈ C1([0,∞);C1
c (R)),

ψ ≥ 0 in S there holds∫ t2

t1

∫
R

{
G(u)ψt − g(v)vxψx − g′(v)v2

xψ
}
dxdt ≥

≥
∫
R
G(u(x, t2))ψ(x, t2) dx−

∫
R
G(u(x, t1))ψ(x, t1) dx .

(17)
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The graphs

γ1 := {(ξ1(t), t)} , γ2 := {(ξ2(t), t)} (t ∈ [0,∞))

are called interfaces of the three-phase solution.

Observe that by the above definition

V̄ = V1 ∪ γ1 ∪ V2 ∪ γ2 ∪ V3 .

Moreover, we can have ξ1(t) = ξ2(t) for any t ∈ [0,∞), thus γ1 ≡ γ2, V2 = ∅ ;
in this case we obtain two-phase solutions of problem (12) as a particular case
of Definition 2.1. Also observe that u ∈ C(V̄i) (i = 1, 2, 3), since by assumption
v ∈ C(V̄ ). Moreover, u is a classical solution of the equation ut = [φ(u)]xx in
subdomains of Vi ∩ S where φ′(u) > 0 (e.g., see [5]; i = 1, 2, 3).

A specific three-phase solution to problem (12) is defined by fixing the correspon-
dence between domains Vi and stable branches Sj (see Definition 2.1-(iii) above).
For instance, we can consider (1,2,3)-solutions, namely

u = si(v) in Vi (i = 1, 2, 3) ,

or (1,3,2)-solutions, namely

u =

 s1(v) in V1 ,
s3(v) in V2 ,
s2(v) in V3 .

Other types of (k, l,m)-solutions (k, l,m = 1, 2, 3) can be similarly addressed. On
the other hand, observe that the actual existence of such solutions depends on
the possibility of jumping between stable branches, which depends on the entropy
conditions and the shape of the graph of φ. For instance, if the function φ satisfies
assumption (A5) below, only (1,2,3)- and (3,2,1)-solutions exist (see Subsection
4.4).

By the above regularity remarks, assigning a (k, l,m)-solution amounts to specify
on which stable branches the initial data u0 takes values. For instance, (1,2,3)-
solutions are singled out by the assignment

u0 =

 s1(φ(u0)) in (−∞, ξ1(0)) ,
s2(φ(u0)) in (ξ1(0), ξ2(0)) ,
s3(φ(u0)) in (ξ2(0),∞) ,

and similarly for (1,3,2)-solutions.

Once the initial data function u0 is assigned, a three-phase solution is determined
by the time evolution of its interfaces. This depends on the local behaviour of these
curves, which, as outlined in the Introduction, is determined by admissibility con-
ditions deriving from the entropy inequality. On the other hand, these admissibility
conditions depend on the possibility of jumping between stable branches of the
graph of φ (hence on their visibility, which depends on assumptions like (A1) above
and (A2)-(A5) below). Therefore, the local behaviour of an interface is expect-
edly related to which stable phases are contiguous across the interface itself. This
motivates the following definitions.

Definition 2.2. Let γ = {(ξ(t), t)} be either interface of a three-phase solution of
problem (12). A point P̄ ≡ (x̄, t̄) ∈ γ is called a (k,l)-point (k, l = 1, 2, 3) if there
exists a rectangle R ≡ (x̄− δ, x̄+ δ)× (t̄− τ, t̄+ τ) (δ, τ > 0) such that

x̄− δ < ξ(t) < x̄+ δ for any t ∈ (t̄− τ, t̄+ τ) ∩ [0,∞) ,
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u(x, t) = sk(v(x, t)) for any x ∈ (ξ(t)− δ, ξ(t)) , t ∈ (t̄− τ, t̄+ τ) ∩ [0,∞) ,

u(x, t) = sl(v(x, t)) for any x ∈ (ξ(t), ξ(t) + δ) , t ∈ (t̄− τ, t̄+ τ) ∩ [0,∞) .

The (k, l)-points are called regular points of the solution interfaces. We say that an
arc {(ξ(t), t) | t ∈ [t1, t2] ⊆ [0,∞)} ⊆ γ separates the phases k and l , if all its points
are (k, l)-points (k, l = 1, 2, 3).

Definition 2.3. Let (u, v, ξ1, ξ2) be any three-phase solution of problem (12) such
that ξ1(t∗) = ξ2(t∗) =: x∗ for some t∗ ∈ [0,∞).
(i) The point P ∗ ≡ (x∗, t∗) (t∗ > 0) is called a backward (k,l,m)-point (k, l,m =
1, 2, 3) if there exists a rectangle R ≡ (x∗− δ, x∗+ δ)× (t∗− τ, t∗+ τ) (δ, τ ∈ (0, t∗))
such that

x̄− δ < ξ1(t) < ξ2(t) < x̄+ δ for any t ∈ (t∗ − τ, t∗) ,
x̄− δ < ξ1(t) = ξ2(t) < x̄+ δ for any t ∈ (t∗, t∗ + τ) ,

u(x, t) = sk(v(x, t)) for any x ∈ (ξ1(t)− δ, ξ1(t)) , t ∈ (t∗ − τ, t∗ + τ) ,

u(x, t) = sl(v(x, t)) for any x ∈ (ξ1(t), ξ2(t)) , t ∈ (t∗ − τ, t∗) ,
u(x, t) = sm(v(x, t)) for any x ∈ (ξ2(t), ξ2(t) + δ) , t ∈ (t∗ − τ, t∗ + τ) .

(ii) The point P ∗ ≡ (x∗, t∗) is called a forward (k,l,m)-point (k, l,m = 1, 2, 3) if
there exists a rectangle R ≡ (x∗ − δ, x∗ + δ)× (t∗ − τ, t∗ + τ) (δ, τ > 0) such that

x̄− δ < ξ1(t) = ξ2(t) < x̄+ δ for any t ∈ (t∗ − τ, t∗) ∩ [0,∞) ,

x̄− δ < ξ1(t) < ξ2(t) < x̄+ δ for any t ∈ (t∗, t∗ + τ) ,

u(x, t) = sk(v(x, t)) for any x ∈ (ξ1(t)− δ, ξ1(t)) , t ∈ (t∗ − τ, t∗ + τ) ∩ [0,∞) ,

u(x, t) = sl(v(x, t)) for any x ∈ (ξ1(t), ξ2(t)) , t ∈ (t∗, t∗ + τ) ,

u(x, t) = sm(v(x, t)) for any x ∈ (ξ2(t), ξ2(t) + δ) , t ∈ (t∗ − τ, t∗ + τ) ∩ [0,∞) .

Backward and forward (k, l,m)-points are called bifurcation points of the solution
interfaces.

Now our main results can be concisely described as follows.1 Define

mi := inf {z ∈ R |(z, φ(z)) ∈ Si} ,Mi := sup {z ∈ R |(z, φ(z)) ∈ Si} (i = 1, 2, 3) ;

observe that by assumption (H1) m1,m2,m3,M1,M2 and M3 are all different. By
abuse of notation, write φ(m1) = φ(−∞) = −∞ and φ(M3) = φ(∞) = ∞. Then
the following statements hold.

Theorem 2.4. Let assumption (H1) hold and (ξ(t), t) be a (k,l)-point (k, l = 1, 2, 3).

(i) If ξ′(t) > 0, then either
mk > Ml, φ(Mk) > φ(Ml) = v(ξ(t), t), and φ(z) < φ(Ml) for all z ∈ (Ml,mk),

or,
Mk < ml, φ(mk) < φ(ml) = v(ξ(t), t), and φ(z) > φ(ml) for all z ∈ (Mk,ml).

(ii) If ξ′(t) < 0, then either
Mk < ml, φ(Mk) = v(ξ(t), t) < φ(Ml), and φ(z) < φ(Mk) for all z ∈ (Mk,ml),

or,
mk > Ml, φ(mk) = v(ξ(t), t) > φ(ml), and φ(z) > φ(mk) for all z ∈ (Ml,mk).

(iii) If ξ′(t) = 0, then v(ξ(t), t) ∈ (φ(mk), φ(Mk)) ∩ (φ(ml), φ(Ml)).

1We are indebted to one of the referees for the formulation of Theorems 2.4-2.6.
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Theorem 2.5. Let assumption (H1) hold and (ξ1(t), t) = (ξ2(t), t) be a backward
(k,l,m)-point (k, l,m = 1, 2, 3). Then there exists ε ∈ (0, t) such that either

ξ′1 > 0 on (t− ε, t), and ξ′2 = 0 on (t− ε, t+ ε),
or,

ξ′1 = 0 on (t− ε, t+ ε), and ξ′2 < 0 on (t− ε, t).

Theorem 2.6. Let assumption (H1) hold and (ξ1(t), t) = (ξ2(t), t) be a forward
(k,l,m)-point (k, l,m = 1, 2, 3). Then there exists ε ∈ (0, t) such that either

ξ′1 < 0 on (t, t+ ε), and ξ′2 = 0 on (t− ε, t+ ε),
or,

ξ′1 = 0 on (t− ε, t+ ε), and ξ′2 > 0 on (t, t+ ε).

3. The case (A1).

3.1. Results. It can be expected from the above remarks that the local behaviour
of an interface at a (k, l)-point is the opposite of that at an (l, k)-point – namely, if
the contiguous phases are exchanged (in this respect, see Remark 1). Therefore, it
is sufficient to describe the local behaviour at (1, 2), (2,3) and (1,3)-points, under
assumptions (A1)-(A5) which determine the visibility of the stable branches. A first
result of this kind is the content of the following theorem.

Theorem 3.1. Let assumptions (H1) and (A1) hold, and P̄ ≡ (x̄, t̄) ∈ γ, γ =
{(ξ(t), t)} being either interface of any three-phase solution (u, v, ξ1, ξ2) of problem
(12). Then:

(i) if P̄ is a (1, 2)-point of γ, there holds

ξ′(t̄ )

{
= 0 if v(P̄ ) ∈ (B,C] ,
≥ 0 if v(P̄ ) = B ;

(18)

(ii) if P̄ is a (2,3)-point of γ, there holds

ξ′(t̄ )

{
= 0 if v(P̄ ) ∈ [B,C) ,
≤ 0 if v(P̄ ) = C ;

(19)

(iii) if P̄ is a (1,3)-point of γ, there holds

ξ′(t̄ )

 ≥ 0 if v(P̄ ) = A ,
= 0 if v(P̄ ) ∈ (A,D) ,
≤ 0 if v(P̄ ) = D .

(20)

Remark 1. The same methods used in the proof of Theorem 3.1 show that under
assumption (A1):

(i) if P̄ is a (2,1)-point of γ, then

ξ′(t̄ )

{
= 0 if v(P̄ ) ∈ (B,C] ,
≤ 0 if v(P̄ ) = B ;

(ii) if P̄ is a (3, 2)-point of γ, then

ξ′(t̄ )

{
= 0 if v(P̄ ) ∈ [B,C) ,
≥ 0 if v(P̄ ) = C ;

(21)

(iii) if P̄ is a (3, 1)-point of γ, then

ξ′(t̄ )

 ≤ 0 if v(P̄ ) = A ,
= 0 if v(P̄ ) ∈ (A,D) ,
≥ 0 if v(P̄ ) = D .
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It follows from Theorem 3.1 and Remark 1 that the transitions

phase 2  phase 1 , phase 2  phase 3

are allowed by the entropy conditions, whereas the opposite transitions are forbid-
den. The former only occur at (1, 2)-points P̄ of the interface where v(P̄ ) = B, the
latter at (2,3)-points where v(P̄ ) = C. On the other hand, the transition

phase 1 − phase 3

is allowed in both directions, and occurs at (1,3)-points where either v(P̄ ) = A or
v(P̄ ) = D.

Clearly, the situation depicted above depends on the shape of the graph of φ
consistent with assumption (A1), which suggests the existence of a unique hysteresis
loop between the stable branches S1 and S3 (see Figure 2). This also suggests that:

• if the phase 2 disappears at some positive time, it will not reappear;
• if the phase 3 appears at some positive time, it will not disappear.

In fact, this is a consequence of the following theorem.

Theorem 3.2. Let assumptions (H1) and (A1) hold.
(i) Let (u, v, ξ1, ξ2) be a (1,2,3)-solution of problem (12). If ξ1(t∗) = ξ2(t∗) for some
t∗ ∈ [0,∞), then ξ1(t) = ξ2(t) for any t ∈ (t∗,∞).
(ii) Let (u, v, ξ1, ξ2) be any (1,3,2)-solution of problem (12). If ξ1(t∗) = ξ2(t∗) for
some t∗ ∈ (0,∞), then ξ1(t) = ξ2(t) for any t ∈ [0, t∗).

By Theorem 3.2 we have the following result, which describes the structure of
(1,2,3)- and (1,3,2)-solutions of problem (12) when (A1) holds.

Theorem 3.3. Let assumptions (H1) and (A1) hold.
(i) Let (u, v, ξ1, ξ2) be a (1,2,3)-solution of problem (12). Then exactly one of the
following possibilities occurs:

(a) there holds ξ1(t) < ξ2(t) for any t ∈ [0,∞);
(b) there holds ξ1(t) = ξ2(t) for any t ∈ [0,∞);
(c) there exists a unique backward (1,2,3)-point of the interface.

(ii) Let (u, v, ξ1, ξ2) be any (1,3,2)-solution of problem (12). Then exactly one of
the following possibilities occurs:

(a) there holds ξ1(t) < ξ2(t) for any t ∈ [0,∞);
(b) there holds ξ1(t) = ξ2(t) for any t ∈ [0,∞);
(c) there exists a unique forward (1,3,2)-point of the interface.

Let us now describe the local structure of the interface of (1,2,3)- and (1,3,2)-
solutions (similar results for other solutions are easily derived from Remark 1). In
sufficiently small neighbourhoods of regular points the following holds (see Figure
3).

Theorem 3.4. Let assumptions (H1) and (A1) hold.

(i) Let {(ξ(t), t) | t ∈ [t1, t2] ⊂ [0,∞)} ⊆ γ separate the phases 1 and 2. Then the
interval [t1, t2] is the union of a finite number of subintervals [t′, t′′] such that either
ξ′(t) = 0 and v(ξ(t), t) ∈ [B,C], or ξ′(t) > 0 and v(ξ(t), t) = B for any t ∈ (t′, t′′).
Moreover, if t′ > 0 there holds ξ′(t′) = ξ′(t′′) = 0, v(ξ(t′), t′) = v(ξ(t′′), t′′) = B.

(ii) Let {(ξ(t), t) | t ∈ [t1, t2] ⊂ [0,∞)} ⊆ γ separate the phases 2 and 3. Then the
interval [t1, t2] is the union of a finite number of subintervals [t′, t′′] such that either
ξ′(t) = 0 and v(ξ(t), t) ∈ [B,C], or ξ′(t) < 0 and v(ξ(t), t) = C for any t ∈ (t′, t′′).
Moreover, if t′ > 0 there holds ξ′(t′) = ξ′(t′′) = 0, v(ξ(t′), t′) = v(ξ(t′′), t′′) = C.
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Figure 3. Assumption (A1): (1,3,2)-solution without bifurcation.

(iii) Let {(ξ(t), t) | t ∈ [t1, t2]} ⊂ [0,∞)} ⊆ γ separate the phases 1 and 3. Then the
interval [t1, t2] is the union of a finite number of subintervals [t′, t′′] such that either
ξ′(t) = 0 and v(ξ(t), t) ∈ [A,D], or ξ′(t) < 0 and v(ξ(t), t) = D, or ξ′(t) > 0 and
v(ξ(t), t) = A for any t ∈ (t′, t′′). Moreover, if t′ > 0 there holds ξ′(t′) = ξ′(t′′) = 0
and either v(ξ(t′), t′) = A, v(ξ(t′′), t′′) = D, or v(ξ(t′), t′) = D, v(ξ(t′′), t′′) = A.

Concerning small neighbourhoods of bifurcation points of the interface, we have
the following result (see Figures 4 and 5).

Figure 4. Assumption (A1): Backward (1,2,3)-points.

Theorem 3.5. Let assumptions (H1) and (A1) hold.
(i) Let (u, v, ξ1, ξ2) be a (1,2,3)-solution of problem (12), and P ∗ ≡ (x∗, t∗) a back-
ward (1,2,3)-point of the interface. Then, either

(α) v(x∗, t∗) = B and there exists θ > 0 such that ξ′1(t) > 0, ξ′2(t) = 0,
v(ξ1(t), t) = B, v(ξ2(t), t) ∈ [B,C), for any t ∈ (t∗ − θ, t∗), or

(β) v(x∗, t∗) = C and there exists θ > 0 such that ξ′1(t) = 0, ξ′2(t) < 0,
v(ξ1(t), t) ∈ (B,C], v(ξ2(t), t) = C for any t ∈ (t∗ − θ, t∗).
Moreover, there holds ξ1(t) = ξ2(t) =: ξ(t) for any t ∈ [t∗,∞) and ξ′(t) = 0,
v(ξ(t), t) ∈ (A,D) for any t ∈ (t∗, t∗ + θ).

(ii) Let (u, v, ξ1, ξ2) be a (1,3,2)-solution of problem (12), and P ∗ ≡ (x∗, t∗) a
forward (1,3,2)-point of the interface. Then v(x∗, t∗) = C and there exists θ >
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0 such that ξ′1(t) = 0, ξ′2(t) > 0, v(ξ1(t), t) ∈ (A,D), v(ξ2(t), t) = C for any
t ∈ (t∗, t∗ + θ).
Moreover, there holds ξ1(t) = ξ2(t) =: ξ(t) for any t ∈ [0, t∗] and ξ′(t) = 0,
v(ξ(t), t) ∈ (B,C] for any t ∈ (t∗ − θ, t∗).

Figure 5. Assumption (A1): Forward (1,3,2)-point.

3.2. Proofs. Without loss of generality we can assume a < 0 < b.

Proof of Theorem 3.1. We shall only prove claim (i), the proof of claims (ii) and
(iii) being analogous.

We assume for convenience that the origin belongs to the first unstable branch
S01 of the graph of φ, thus in particular B < 0 < C (see Figure 6).

Let us prove claim (i). By assumption, there exist δ, τ > 0 such that

x̄− δ < ξ(t) < x̄+ δ for any t ∈ [t̄, t̄+ τ) ,

u(x, t) = s1(v(x, t)) for any x ∈ (ξ(t)− δ, ξ(t)) , t ∈ [t̄, t̄+ τ) , (22)

u(x, t) = s2(v(x, t)) for any x ∈ (ξ(t), ξ(t) + δ) , t ∈ [t̄, t̄+ τ) .

Since v ∈ C(V̄ ) (see Definition 2.1-(i)), v is continuous across the interface γ . Then
we have

v(ξ(t), t) ∈ [B,C] for any t ∈ [t̄, t̄+ τ) (23)

(see Figure 2). To prove (18), let us show that:
(α) there holds ξ′(t̄) ≥ 0 ;
(β) if v(P̄ ) ∈ (B,C], then ξ′(t̄) = 0 .

(α) Set

ρ0 :=
D − C

2
(observe that ρ0 > 0 by assumption (A1)). Since v ∈ C(V̄ ) and v(x̄, t̄) ≤ C by (23),
there exist δ1 ∈ (0, δ), τ1 ∈ (0, τ) such that

v(x, t) ≤ C + ρ0 (24)

for any (x, t) ∈ [x̄− δ1, x̄+ δ1]× [t̄, t̄+ τ1] . Observe that

C + ρ0 =
C +D

2
∈ (C,D) .
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Suppose, contrary to the assertion, that ξ′(t̄) < 0 . Then there exists θ ∈ (0, τ1)
such that

ξ(t) < ξ(t̄) = x̄ for any t ∈ (t̄, t̄+ θ] .

By equalities (22), this implies that there exists η ∈ (0, δ1) such that

u(x, t̄) = s1(v(x, t̄)) , u(x, t̄+ θ) = s2(v(x, t̄+ θ)) for any x ∈ [x̄− η, x̄) . (25)

Figure 6. Proof of Theorem 3.1: Claim (i)-(α).

Now fix any gρ0 ∈ C1(R), g′ρ0 ≥ 0 such that

gρ0

{
= 0 in (−∞, C + ρ0] ,
> 0 in (C + ρ0,∞) ,

(26)

and denote by Gρ0 the function (11) with g = gρ0 and k = 0. Then the entropy
inequality (17) with t1 = t̄, t2 = t̄ + θ, g = gρ0 and ψ = ζ ∈ C1

c ((x̄ − η, x̄)), ζ ≥ 0
reads ∫ x̄

x̄−η
Gρ0(u)(x, t̄+ θ)ζ(x) dx−

∫ x̄

x̄−η
Gρ0(u)(x, t̄)ζ(x) dx ≤

≤−
∫ t̄+θ

t̄

∫ x̄

x̄−η
gρ0(v)(x, t)vx(x, t)ζ ′(x) dxdt .

(27)

Since

[x̄− η, x̄]× [t̄, t̄+ θ] ⊆ [x̄− δ1, x̄+ δ1]× [t̄, t̄+ τ ] ,

by (24) and (26) there holds∫ t̄+θ

t̄

∫ x̄

x̄−η
gρ0(v)(x, t)︸ ︷︷ ︸

=0

vx(x, t)ζ ′(x) dxds = 0 . (28)
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On the other hand, by equalities (25), the definition of Gρ0 and (26), for any ζ as
above we have ∫ x̄

x̄−η
Gρ0(u)(x, t̄+ θ)ζ(x) dx =

=

∫ x̄

x̄−η

(∫ s2(v(x,t̄+θ))

0

gρ0(φ)(z) dz

)
︸ ︷︷ ︸

=0

ζ(x) dx = 0 ,
(29)

∫ x̄

x̄−η
Gρ0(u)(x, t̄)ζ(x) dx =

=

∫ x̄

x̄−η

(∫ s1(v(x,t̄))

0

gρ0(φ)(z) dz

)
ζ(x) dx ≤

≤
∫ x̄

x̄−η

(∫ s1(C+ρ0)

s01(C+ρ0)

gρ0(φ)(z) dz

)
ζ(x) dx ≤ 0 .

(30)

In fact, for any x ∈ [x̄− η, x̄] there holds

0 < b ≤ s2(v(x, t̄+ θ)) ≤ c ,

hence by (26)

B ≤ φ(z) ≤ C ⇒ gρ0(φ)(z) = 0 for any z ∈ (0, s2(v(x, t̄+ θ))) .

Moreover, by inequality (24) for any x ∈ [x̄− η, x̄] there holds

s1(v(x, t̄)) ≤ s1(C + ρ0) ≤ s01(C + ρ0) < 0

(where S01 denotes the first unstable branch of the graph of φ; see Figure 6), and
by (26)

C + ρ0 < φ(z) ≤ D ⇒ gρ0(φ)(z) > 0 for any z ∈ (s1(C + ρ0), s01(C + ρ0)) .

By the arbitrariness of the test function ζ, from (27)-(30) we obtain

0 = Gρ0(u)(x, t̄+ θ) ≤ Gρ0(u)(x, t̄) ≤
∫ s1(C+ρ0)

s01(C+ρ0)

gρ0(φ)(z) dz < 0

for any x ∈ (x̄− η, x̄), a contradiction. This proves that ξ′(t̄) ≥ 0 , as asserted.

(β) Let us now prove that ξ′(t̄) = 0 if v(P̄ ) ∈ (B,C]. Since v ∈ C(V̄ ) and by
assumption v(P̄ ) > B, there exist δ1 ∈ (0, δ), τ1 ∈ (0, τ) such that

v(x, t) ≥ B∗ − ρ1 (31)

for any (x, t) ∈ [x̄− δ1, x̄+ δ1]× [t̄, t̄+ τ1] and some B∗ ∈ (B, 0); here

ρ1 :=
B∗ −B

2
> 0 .

Observe that

B∗ − ρ1 =
B∗ +B

2
∈ (B, 0)

(recall that by assumption there holds B < 0; see Figure 7).
To argue by reduction to an absurdity, suppose that ξ′(t̄) > 0 . Arguing as in

(α) above, we see that there exist η ∈ (0, δ1), θ ∈ (0, τ1) such that

u(x, t̄+ θ) = s1(v(x, t̄+ θ)) , u(x, t̄) = s2(v(x, t̄)) for any x ∈ (x̄, x̄+ η] . (32)
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Figure 7. Proof of Theorem 3.1: Claim (i)-(β).

Fix any gρ1 ∈ C1(R), g′ρ1 ≥ 0 such that

gρ1

{
< 0 in (−∞, B∗ − ρ1) ,
= 0 in [B∗ − ρ1,∞) ,

(33)

and denote by Gρ1 the function (11) with g = gρ1 and k = 0. Now from the entropy
inequality (17) we obtain∫ x̄+η

x̄

Gρ1(u)(x, t̄+ θ)ζ(x) dx−
∫ x̄+η

x̄

Gρ1(u)(x, t̄)ζ(x) dx ≤

≤−
∫ t̄+θ

t̄

∫ x̄+η

x̄

gρ1(v)(x, t)vx(x, t)ζ ′(x) dxdt

(34)

for any ζ ∈ C1
c ((x̄, x̄+ η)), ζ ≥ 0. By (31) and (33) we have∫ t̄+θ

t̄

∫ x̄+η

x̄

gρ1(v)(x, t)︸ ︷︷ ︸
=0

vx(x, t)ζ ′(x) dxds = 0 . (35)

On the other hand, by (32) and (33) for any ζ as above there holds∫ x̄+η

x̄

Gρ1(u)(x, t̄+ θ)ζ(x) dx =

=

∫ x̄+η

x̄

(∫ s1(v(x,t̄+θ))

0

gρ1(φ)(z) dz

)
︸ ︷︷ ︸

=0

ζ(x) dx = 0 ,
(36)

∫ x̄+η

x̄

Gρ1(u)(x, t̄)ζ(x) dx =

=

∫ x̄+η

x̄

(∫ s2(v(x,t̄))

0

gρ1(φ)(z) dz

)
ζ(x) dx ≤

≤
∫ x̄+η

x̄

(∫ s2(B∗−ρ1)

s01(B∗−ρ1)

gρ1(φ)(z) dz

)
ζ(x) dx ≤ 0 .

(37)
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In fact, by inequality (31) there holds

s1(B∗ − ρ1) ≤ s1(v(x, t̄+ θ)) < 0 ,

0 < s01(B∗ − ρ1) ≤ s2(B∗ − ρ1) ≤ s2(v(x, t̄))

for any x ∈ [x̄, x̄+ η], and by (33)

B∗ − ρ1 ≤ φ(z) ≤ D ⇒ gρ1(φ)(z) = 0 for any z ∈ (s1(v(x, t̄+ θ)), 0) ,

B ≤ φ(z) < B∗ − ρ1 ⇒ gρ1(φ)(z) < 0 for any z ∈ (s01(B∗ − ρ1), s2(B∗ − ρ1))

(see Figure 7). By the arbitrariness of ζ, from (34)-(37) we obtain

0 = Gρ1(u)(x, t̄+ θ) ≤ Gρ1(u)(x, t̄) ≤
∫ s2(B∗−ρ1)

s01(B∗−ρ1)

gρ1(φ)(z) dz < 0

for any x ∈ (x̄ − η, x̄), a contradiction again. This proves that ξ′(t̄) = 0 if v(P̄ ) ∈
(B,C], hence claim (i) follows. This completes the proof. �
Proof of Theorem 3.2. We shall only prove claim (i); the proof of claim (ii) is
similar, thus we leave it to the reader.

Let ξ1(t∗) = ξ2(t∗) for some t∗ ∈ [0,∞). By the continuity of ξ1, ξ2 the claim will

follow, if we show that no forward (1,2,3)-point P̃ ≡ (x̃, t̃) with t̃ ∈ (t∗,∞) exists.
Suppose, contrary to the assertion, that such a point exists. Then there exists

t̂ ∈ (t̃,∞) such that for any t ∈ (t̃, t̂) (see Definitions 2.2-2.3):

(a) there holds ξ1(t) < ξ2(t) ;

(b) (ξ1(t), t) is a (1, 2)-point of γ1 ;

(c) (ξ2(t), t) is a (2,3)-point of γ2 .

Since ξ1(t̃) = ξ2(t̃) = x̃ (see Definition 2.3), by elementary results there exist
t̄1, t̄2 ∈ (t̃, t̂) such that

ξi
(
t̂
)
− x̃

t̂− t̃
= ξ′i (t̄i) (i = 1, 2) . (38)

Suppose ξ1
(
t̂
)
< x̃. Then equality (38) with i = 1 implies ξ′1 (t̄1) < 0, which

by (18) contradicts property (b) above (observe that by the continuity of v, ξ1, ξ2
there holds v(ξi(t), t) ∈ [B,C] for any t ∈ (t̃, t̂); i = 1, 2). On the other hand,
let ξ1

(
t̂
)
≥ x̃. Then by the above property (a) there holds ξ2

(
t̂
)
> x̃, whence

ξ′2 (t̄2) > 0 by equality (38) with i = 2. However, by (19) this contradicts property
(c) above. Therefore we have reached a contradiction, whence claim (i) follows.
This completes the proof. �

Proof of Theorem 3.4. We only prove claim (i), the proof of the other claims being
similar. By Definition 2.2 every point of the arc {(ξ(t), t) | t ∈ [t1, t2]} is a (1, 2)-
point, hence by (18) there holds ξ′(t) ≥ 0 for any t ∈ [t1, t2]. On the other hand, by
Definition 2.1-(ii) in the interval [t1, t2] there is only a finite number of subintervals
where ξ′ > 0. Then by (18) the conclusion follows. �

Proof of Theorem 3.5. Again we limit ourselves to prove claim (i). By assumption,
there exists t̂ ∈ (0, t∗) such that for any t ∈ (t̂, t∗):

(a) there holds ξ1(t) < ξ2(t) ;

(b) (ξ1(t), t) is a (1, 2)-point of γ1 ;

(c) (ξ2(t), t) is a (2,3)-point of γ2 .

By the continuity of v there holds v(ξi(t), t) ∈ [B,C] for any t ∈ (t̂, t∗) (i = 1, 2),
and v(x∗, t∗) ∈ [B,C].
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Were v(x∗, t∗) ∈ (B,C), by the equality ξ1(t∗) = ξ2(t∗) = x∗ and the continuity
of v, ξ1, ξ2 there would exist t̄ ∈ (t̂, t∗) such that v(ξi(t), t) ∈ (B,C) (i = 1, 2) for
any t ∈ (t̄, t∗). However, by the properties (b)-(c) above and (18)-(19) this would
imply that ξ′1(t) = ξ′2(t) = 0, thus ξ1(t) = ξ2(t) = x∗ for any t ∈ (t̄, t∗), which
contradicts property (a) above. Therefore, either v(x∗, t∗) = B or v(x∗, t∗) = C
holds true.

Let v(x∗, t∗) = B. Then by continuity there exists t̃ ∈ (t̂, t∗) such that v(ξi(t), t) ∈
[B,C) (i = 1, 2), thus by (18)-(19) ξ′1(t) ≥ 0, ξ′2(t) = 0 for any t ∈ (t̃, t∗). On
the other hand, in the interval (t̃, t∗) there is a finite number of subintervals (t′, t)
where ξ′1 > 0 (see Definition 2.1-(ii)). Therefore there exists θ > 0 such that
t∗ − θ > t̃, and either ξ′1(t) = 0, or ξ′1(t) > 0 for any t ∈ (t∗ − θ, t∗). However, the
former possibility can be ruled out, since it would imply that ξ1(t) = ξ2(t) = x∗

for any t ∈ (t∗ − θ, t∗), which again contradicts property (a). Therefore there holds
ξ′1(t) > 0, hence v(ξ1(t), t) = B by (18) for any t ∈ (t∗ − θ, t∗).

This establishes the possibility (α); the proof of (β) is similar, hence we omit it.
Finally, observe that in both cases there holds v(x∗, t∗) ∈ [B,C] ⊂ (A,D). Hence
by the continuity of v, possibly choosing θ smaller we have v(ξ1(t), t) = v(ξ2(t), t) ∈
(A,D), whence by (20) we have ξ′1(t) = ξ′2(t) = 0 for any t ∈ (t∗, t∗ + θ). Then by
Theorem 3.2-(i) claim (i) follows. This completes the proof. �

4. Different assumptions on φ.

4.1. The case (A2). In this subsection we suppose that the function φ, instead of
(A1), satisfies the assumption (see Figure 8):

(A2) B < A < C < D .

Figure 8. Assumption (A2).

In this case the branch S3 is visible from the extremum (c, C) and S2 is visible
from the extremum (d,A). Therefore, the transition

phase 2 − phase 3

is allowed in both directions, thus a hysteresis loop between the branches S1 and S3

arises. Clearly, the above transition occurs at (2,3)-points P̄ where either v(P̄ ) = A,
or v(P̄ ) = C.
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On the other hand,
- the branch S1 is visible, whereas S3 is not visible from the extremum (b, B);
- the branch S3 is visible, whereas S2 is not visible from the extremum (a,D).

Therefore, the transitions

phase 2  phase 1 , phase 1  phase 3

are allowed only in one direction.

Figure 9. Assumption (A2): (1,2,3)-solution without bifurcation.

Figure 10. Assumption (A2): (1,3,2)-solution without bifurcation.

The global structure of the interfaces is more complicated in the present case than
in case (A1), since both phases 2 and 3 can disappear and appear again. Therefore,
both backward and forward (1,2,3)- and (1,3,2)-points of the interface can exist,
at variance with Theorems 3.2-3.3 above. On the other hand, the local behaviour
of the interfaces can be described as in Theorems 3.4 and 3.5. The behaviour of
interfaces at regular points is qualitatively depicted in Figures 9 and 10, that in a
small neighbourhood of a bifurcation point is represented in Figures 11 and 12.
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Figure 11. Assumption (A2): (1,2,3)-points.

Figure 12. Assumption (A2): (1,3,2)-points.

4.2. The case (A3). Consider the case (see Figure 13):

(A3) B < A < D < C .

Figure 13. Assumption (A3)

In this case:
- the branch S1 is only visible from the extremum (b, B);



FORWARD-BACKWARD EQUATIONS WITH DEVONSHIRE FREE ENERGY 961

- the branch S2 is visible from both extrema (a,D) and (d,A);
- the branch S3 is only visible from the extremum (c, C).

Therefore, the transitions

phase 1 − phase 2 , phase 2 − phase 3

are allowed in both directions, whereas the transition

phase 1 − phase 3

is forbidden in both directions. It is easily seen that

• if the phase 2 appears at some positive time, it will not disappear;
• if the phase 3 disappears at some positive time, it will not reappear.

Comparing the above result with Theorem 3.2 shows that in the present case the
behaviour of (1,2,3)-solutions is the same as that of (1,3,2)-solutions in the case
(A1), and conversely.

Figure 14. Assumption (A3): (1,2,3)-solution without bifurcation.

Figure 15. Assumption (A3): (1,3,2)-solution without bifurcation.

On the other hand, since no transition between phases 1 and 3 is allowed, if
(u, v, ξ1, ξ2) is a (1,3,2)-solution and ξ1(t) < ξ2(t) for any t ∈ [0,∞), there holds
ξ′1(t) = 0 for any t ∈ [0,∞) (see Figures 14 and 15). The local structure of the
interface near bifurcation points is represented in Figures 16 and 17.
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Figure 16. Assumption (A3): Forward (1,2,3)-points.

Figure 17. Assumption (A3): Backward (1,3,2)-points.

4.3. The case (A4). The case

(A4) A < B < D < C

(see Figure 18) can be reduced to case (A2) by a suitable transformation.

Figure 18. Assumption (A4).

In fact, consider the function (see Figure 19):

φ∗(u) := −φ(−u) (u ∈ R) . (39)
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Now the previous definitions A := φ(d), B := φ(b), C := φ(c) and D := φ(a)
suggest to define

a∗ := −d , b∗ := −c , c∗ := −b , d∗ := −a ,

A∗ := φ∗(d∗) = −D , B∗ := φ∗(b∗) = −C ,
C∗ := φ∗(c∗) = −B , D∗ := φ∗(a∗) = −A .

Then (A4) reads

B∗ < A∗ < C∗ < D∗ ,

namely assumption (A2) with B replaced by B∗, and so on. Also observe the
following correspondence between stable branches of the graphs of φ and φ∗:

S1 ←→ S∗3 , S2 ←→ S∗2 , S3 ←→ S∗1 . (40)

Figure 19. The function φ∗ .

Figure 20. Assumption (A4): (1,2,3)-solution without bifurcation.

On the other hand, if (u, v, ξ1, ξ2) is any three-phase solution of problem (12),
by setting

u∗(x, t) := −u(x, t) , v∗(x, t) := −v(x, t) , (41)

ξ∗1(t) := ξ1(t) , ξ∗2(t) := ξ2(t) ((x, t) ∈ V )
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we obtain a three-phase solution of the new Cauchy problem:{
wt = [φ∗(w)]xx in S
w = w0 := −u0 in R× {0} .

In fact, there holds u∗ ∈ L∞(V ), v∗ ∈ C(V̄ ) ∩ L2((0, T );H1
loc(R)), and

v∗(x, t) = −v(x, t) = −φ(u(x, t)) = −φ(−u∗(x, t)) = φ∗(u∗(x, t)) ((x, t) ∈ V )

(see (39) and (41)); hence equalities (16) and the entropy inequality (17) (with
u and v replaced by u∗ and v∗, respectively) hold true. Observe that under the
transformation (40) a (2,1)-point of any interface γ of (u, v, ξ1, ξ2) corresponds to
a (2∗, 3∗)-point of γ∗, γ∗ denoting the corresponding interface of (u∗, v∗, ξ∗1 , ξ

∗
2).

Similarly, (1,3)-points and (2,3)-points of γ correspond to (3∗,1∗)-points and (2∗,1∗)-
points of γ∗, respectively.

By the above considerations, the results concerning the present case are easily
derived from those proven in case (A2). They are depicted in Figures 20 (for (1, 2, 3)-
solutions; the situation is similar for (1, 3, 2)-solutions) and 21.

Figure 21. Assumption (A4): (1,2,3)-points.

Figure 22. Assumption (A5).
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Figure 23. Assumption (A5): (1,2,3)-solution.

4.4. The case (A5). Now assume (see Figure 22):

(A5) B < D < A < C .

In this case the branch S1 is visible only from the extremum (b, B) and S3 only
from the extremum (c, C). On the other hand, the branch S2 is visible from both
extrema (a,D) and (d,A). Therefore, the transitions

phase 1 − phase 2 , phase 2 − phase 3

are allowed in both directions, whereas the transition

phase 1 − phase 3

is forbidden in both directions. Therefore only (1,2,3)- and (3,2,1)-solutions exist,
and no bifurcation of the interfaces arises. The situation arising in this simple case
is represented in Figure 23.
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