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Abstract. We study the behavior of unbounded global orbits in a class of

strongly monotone semiflows and give a criterion for the existence of orbits

with periodic growth. We also prove the uniqueness and asymptotic stability
of such orbits. We apply our results to a certain class of nonlinear parabolic

equations including a weakly anisotropic curvature flow in a two-dimensional

annulus and show the convergence of the solutions to a periodically growing
solution which grows up in infinite time changing its profile time-periodically.

1. Introduction. Various types of differential equations enjoy a comparison prin-
ciple, which has been a useful method of analysis for many problems — to show
the existence of equilibria, to prove the convergence of solutions, and so on. Such
equations, characterized as dynamical systems having an order-preserving prop-
erty, include second-order scalar parabolic equations or weakly coupled systems of
ordinary, parabolic and delay differential equations.

Hirsch [2, 3] and Matano [8] independently developed the theory of infinite-
dimensional dynamical systems called strongly monotone semiflows or strongly order-
preserving semiflows which have a stronger version of order-preserving property.

One of the most important result in the theory of order-preserving dynamical
systems is the quasi-convergence (that is, convergence to the set of equilibrium
points) or the convergence of the generic orbit. Hirsch [2, 3] proved that almost
all of the bounded orbits of a strongly monotone semiflow are quasi-convergent.
Matano [9] (and also Smith and Thieme [16]) extended this result using the strong
order-preserving property which is more flexible than strong monotonicity used by
Hirsch. The convergence result was given by Poláčik [15] for abstract semilinear
parabolic evolution equations, and later extended by Smith and Thieme [17] to
general strongly order-preserving semilflows. However, little is known about the
behavior of the orbit which is defined globally in time but not bounded.

There are several earlier works on the asymptotic behavior of unbounded time-
global solutions for nonlinear parabolic equations. Namah and Roquejoffre [12]
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studied the equation

ut = ∆u+ f(x, u,∇u), x ∈ RN , t > 0, (1)

where the nonlinearity f(x, u, p) is 1-periodic in x, u and satisfies f(x, u, p) ≥ m for
some m > 0. The comparison principle yields that every solution u(x, t) of (1) has
no L∞-bound. Under some growth conditions on f , they proved that there exist a
unique T > 0 and a unique (up to time shift) ϕ(x, t) ∈ C2(RN × R), 1-periodic in
x and T -periodic in t such that

U(x, t) =
t

T
+ ϕ(x, t) (2)

is a solution of (1). Furthermore, they proved the asymptotic stability of the so-
lution. In [14], the authors of the present paper studied the following semilinear
parabolic equation related to a model of spiral crystal growth:{

ut = ∆u+ f(u− σθ), x ∈ Ω, t > 0,

ur = 0, x ∈ ∂Ω, t > 0,
(3)

where σ is a positive integer, Ω is a two-dimensional annulus, (r, θ) denotes the polar
coordinates of x ∈ Ω and f ∈ C1 is a 2π-periodic function. Under the supposition
that f has positive integral mean, every solution u(x, t) of (3) has no L∞-bound.
They proved the existence and asymptotic stability of the spiral traveling wave
solution of the form

U(x, t) = ϕ
(
r, θ − ω

σ
t
)

+ ωt, (4)

where ϕ = ϕ(r, θ) is 2π/σ-periodic in θ and ω > 0. Both solutions U in (2) and (4)
have the following property: there exist positive constants T and L satisfying

U(x, t+ T ) = U(x, t) + L for all x, t. (5)

In other words, they grow up in infinite time varying their speeds and profiles
time-periodically. We call such solutions periodically growing solutions.

In the present paper we will discuss the existence, uniqueness and asymptotic
stability of periodically growing solutions in a more general framework, namely that
of strongly monotone semiflows having a certain compactness property. This gen-
eralization applies to a much wider class of nonlinear parabolic problems including
(1) and (3).

This paper is organized as follows: in Section 2 we state our main theorems,
Theorems 2.1 to 2.3. Theorems 2.1 and 2.2 assert the existence and uniqueness of
orbits with periodic growth for a class of strongly monotone semiflows. Theorem
2.3 asserts that the orbit with periodic growth is asymptotically stable. We prove
Theorems 2.1 and 2.2 in Section 3, and Theorem 2.3 in Section 4. Some applications
of the main theorems to nonlinear parabolic equations are given in Section 5. In
Appendix we recall the results of Ogiwara and Matano [13] on the structure of a
class of subsets in an ordered metric space, which will be helpful in proving our
theorems.

2. Main Results. Let X be a strongly ordered Banach space with norm ‖ · ‖,
namely, X is a real Banach space and a partial order relation on X is defined by a
closed convex cone X+ ⊂ X with nonempty interior int(X+). In what follows we
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use the following notation:

u ≤ v if v − u ∈ X+,

u < v if u ≤ v and u 6= v,

u� v if v − u ∈ int(X+).

A set B ⊂ X is called order-bounded if there exist u1, u2 ∈ X, u1 ≤ u2 satisfying
u1 ≤ v ≤ u2 for all v ∈ B.

Remark 1. Since X is strongly ordered, any bounded set in X is order-bounded.
In particular, for any e ∈ int(X+) and v ∈ X, there exists a positive constant k
satisfying −ke ≤ v ≤ ke. In fact, since Br(e) = {u ∈ X | ‖u − e‖ < r} ⊂ X+ for
some r > 0, we have

e± r

‖v‖+ 1
v ∈ Br(e),

hence

−‖v‖+ 1

r
e ≤ v ≤ ‖v‖+ 1

r
e.

Let Φ = {Φt}t≥0 be a global semiflow defined on a closed subset V of X. More
precisely, Φ is a family of mappings Φt : V → V with the following properties:

(i) Φt(u) is continuous in (t, u) ∈ [0,+∞)× V ;
(ii) Φ0(u) = u for all u ∈ V ;

(iii) Φt ◦ Φs = Φt+s for any t, s ≥ 0.

In this paper, we assume that

(H1) For each t > 0, Φt is strongly monotone (that is, u < v implies Φt(u)� Φt(v)
for all u, v ∈ V );

(H2) For each t > 0, Φt is order-compact (that is, Φt(B) is relatively compact
whenever B ⊂ V is order-bounded);

(H3) There exists an element e ∈ int(X+) such that for any u ∈ V , t ≥ 0, we have
u+ e ∈ V and Φt(u+ e) = Φt(u) + e;

(H4) There exist u0 ∈ V , {tj}j ⊂ R and {kj}j ⊂ N with tj → +∞, kj → ∞ such
that the set {Φtj (u0)− kje}j∈N is order-bounded.

The condition (H3) implies that

Φt(u+ ke) = Φt(u) + ke for all u ∈ V, k ∈ Z, t ≥ 0. (6)

This can be regarded as an invariance of the semiflow Φ under some group action in
the following way: let Z be the additive group of integers and define a continuous
mapping γ : Z× V → V by

γ(k, u) := u+ ke.

Then k 7→ γ(k, ·) is a group homomorphism of Z into Hom(V ), the group of home-
omorphism of V into itself, hence Z acts on V . Furthermore, (6) means that the
action γ commutes with Φt for each t ≥ 0, namely,

Φt(γ(k, u)) = γ(k,Φt(u)) for k ∈ Z, u ∈ V, t ≥ 0.

Some examples of nonlinear parabolic equations which satisfy all the assumptions
(H1)-(H4) are given in Section 5.

Our results are stated as follows:
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Theorem 2.1. There exist ϕ ∈ V and T > 0 such that

ΦT (ϕ) = ϕ+ e. (7)

Furthermore, if there exists ψ ∈ V satisfying ΦS(ψ) = ψ + e for some S > 0, then
S = T .

By (7) and (H3), we obtain ΦnT (ϕ) = ϕ+ne for all n ∈ N. This means that the
orbit of ϕ is not order-bounded (hence unbounded) in V and grows in e-direction.
Furthermore, modulo the growing direction the orbit behaves periodically in time.
The latter statement implies the uniqueness of the growth speed.

Set W = {u ∈ V | ΦT (u) = u + e} 3 ϕ. For each t < 0 we define a map
Φt : W →W by

Φt(u) := Φt+m(t)T (u)−m(t)e,

where m(t) is the smallest nonnegative integer such that t + m(t)T ≥ 0. One can
easily see that Φ∗ = {Φt}t∈R is a continuous one-parameter group acting on W
and is a flow extension of the semiflow Φ. Furthermore, by (H1) and (H3), Φt is
monotone (that is, u ≤ v implies Φt(u) ≤ Φt(v)) for each t ∈ R. The Φ∗-orbit of u
is denoted by O(u) = {Φt(u) | t ∈ R}.

Theorem 2.2. The group Φ∗ acts on W transitively. In other words, W = O(ϕ).
Furthermore, the orbit O(ϕ) is strongly monotone increasing in t, namely, Φt1(ϕ)�
Φt2(ϕ) holds for any t1 < t2.

The above theorem implies the uniqueness and monotonicity of the orbit with
periodic growth.

Theorem 2.3. Let ϕ ∈ V be as in Theorem 2.1 and let O(ϕ) is the orbit of ϕ.
Then we have the following:

(i) O(ϕ) is order-stable in the following sense: for any v ∈ O(ϕ) and ε > 0 there
exists some δ > 0 such that −δe� u−v � δe implies −εe� Φt(u)−Φt(v)�
εe for all t ≥ 0.

(ii) O(ϕ) is stable in the sense of Lyapunov, that is, for any v ∈ O(ϕ) and ε > 0
there exists some δ > 0 such that ‖u− v‖ < δ implies ‖Φt(u)−Φt(v)‖ < ε for
all t ≥ 0.

(iii) For any u ∈ V , there exists some τ ∈ R such that

lim
t→+∞

‖Φt(u)− Φt+τ (ϕ)‖ = 0.

This theorem yields that the orbit O(ϕ) is globally stable with asymptotic phase.

Remark 2. Theorems 2.1-2.3 remain true if we replace (H2) and (H4) by (H2′)
and (H4′) below.

(H2′) For each t > 0, Φt is compact;
(H4′) There exist u0 ∈ V , {tj}j ⊂ R and {kj}j ⊂ N with tj → +∞, kj → ∞ such

that the set {Φtj (u0)− kje}j∈N is bounded.

3. Existence and uniqueness of orbits with periodic growth. In this section
we prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. Let u0 ∈ V , {tj}j∈N ⊂ R and {kj}j∈N ⊂ N be as in (H4).
Fix a positive constant δ and put wj = Φδ(Φtj (u0) − kje) = Φtj+δ(u0) − kje. In
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view of (H2) and (H4), taking a subsequence if necessary, we see that wj → ϕ as
j →∞ for some ϕ ∈ V . For t ≥ 0, we define

τ(t) = inf{s ≥ 0 | Φt(u0) + e ≤ Φt+s(u0)}.

We will show that τ(t) is well-defined for each t ≥ 0. By (H4), we can find u1 ∈ V
such that

u1 ≤ Φtj (u0)− kje for j ∈ N.
In view of Remark 1, for each t ≥ 0 we can take m ∈ N satisfying

Φt(u0) ≤ u1 +me.

Therefore, for sufficiently large j, we have

Φt(u0) + e ≤ u1 + (m+ 1)e ≤ u1 + kje ≤ Φtj (u0),

hence τ(t) is well-defined. Since Φt(u0)� Φt(u0) + e, the function τ(t) is positive.
Furthermore, by the continuity of Φ, we have

Φt(u0) + e ≤ Φt+τ(t)(u0) for t ≥ 0. (8)

In the case where Φt0(u0)+e = Φt0+τ(t0)(u0) for some t0 > 0, taking ϕ = Φt0(u0)
and T = τ(t0) > 0, we obtain the assertion.

Next we consider the case where Φt(u0) + e < Φt+τ(t)(u0) for all t ≥ 0. In this
case, the function τ(t) is strictly monotone decreasing in t. Indeed, (H1) implies
Φt+s(u0) + e � Φt+s+τ(t)(u0) for any s > 0, hence τ(t + s) < τ(t). Therefore, the
limit

T := lim
t→+∞

τ(t) ≥ 0

exists and satisfies τ(t) > T for all t ≥ 0. By (8), we have wj + e ≤ Φτ(tj+δ)(wj)
for any j ∈ N, hence

ϕ+ e ≤ ΦT (ϕ). (9)

This implies T > 0.
Suppose that ϕ+e 6= ΦT (ϕ). Then (9) implies ϕ+e < ΦT (ϕ). By (H1) and (H3),

we have Φδ(ϕ) + e � ΦT+δ(ϕ). Therefore, Φδ(wj) + e ≤ ΦT+δ(wj) for sufficiently
large j ∈ N, hence Φtj+2δ(u0) + e ≤ Φtj+2δ+T (u0). This means that τ(tj + 2δ) ≤ T ,
contradicting the fact that τ(t) > T for all t ≥ 0. Thus we obtain ϕ+ e = ΦT (ϕ).

Next we assume that there exists a positive constant S 6= T such that ΦS(ψ) =
ψ+ e for some ψ ∈ V . We only consider the case S < T , since the other case S > T
can be treated in the same manner.

By Remark 1, we can find m ∈ N satisfying −me ≤ ψ − ϕ ≤ me. Then we have
ϕ −me ≤ Φn(T−S)(ψ) ≤ ϕ + me for all n ∈ N. Hence the set {Φn(T−S)(ψ)}n∈N is
order-bounded.

On the other hand, since S < T ,

Φn(T−S)(ψ) = Φrn(ΦqnS(ψ)) = Φrn(ψ) + qne, (10)

where n(T−S) = qnS+rn with qn ∈ N, qn →∞ and rn ∈ [0, S). Since {Φrn(ψ)}n∈N
is bounded, (10) contradicts the fact that {Φn(T−S)(ψ)}n∈N is order-bounded.

The theorem is proved.

In order to prove the uniqueness of orbits with periodic growth, we use the result
of Ogiwara and Matano [13] on the structure of a certain class of subsets in an
ordered metric space.
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Proof of Theorem 2.2. Applying Proposition 1 in Appendix for X = V , Y = W ,
G = Φ∗ and ϕ = ϕ, we see that W = O(ϕ) and that W is order-isomorphic to R.
The last statement of the theorem follows from (H1) and (H3).

4. Stability of orbits with periodic growth.

Proof of Theorem 2.3. (i) For any v ∈ O(ϕ) and ε > 0, we can take δ0 > 0 satisfying

Φτ+δ0(v)− Φτ−δ0(v)� εe for all τ ∈ [0, T ],

where T > 0 be the constant in Theorem 2.1. Fix t ≥ 0 and let q ∈ N, r ∈ [0, T ) be
such that t = qT + r. Then, since v ∈ O(ϕ),

0� Φt+δ0(v)− Φt−δ0(v) = Φr+δ0(v)− Φr−δ0(v)� εe. (11)

On the other hand, by Theorem 2.2, we have

Φ−δ0(v)� v � Φδ0(v). (12)

This implies that Φ−δ0(v) + δe � v � Φδ0(v) − δe for some δ > 0. Therefore, for
any u ∈ V satisfying −δe� u− v � δe, we obtain

Φ−δ0(v)� u� Φδ0(v). (13)

In view of (12) and (13), we see that

Φt−δ0(v)− Φt+δ0(v)� Φt(u)− Φt(v)� Φt+δ0(v)− Φt−δ0(v). (14)

Combining this with (11), we obtain

−εe� Φt(u)− Φt(v)� εe

for all t ≥ 0.
(ii) Suppose that O(ϕ) is not stable in the sense of Lyapunov. Then there exist

v ∈ O(ϕ), ν > 0, {un}n∈N ⊂ V and {tn}n∈N ⊂ R satisfying

lim
n→∞

‖un − v‖ = 0, inf
n∈N
‖Φtn(un)− Φtn(v)‖ ≥ ν. (15)

Fix s > 0 and let qn ∈ N, rn ∈ [0, T ) be such that tn− s = qnT + rn for each n ∈ N.
By (i), for any fixed ε ∈ (0, 1) there exists N(ε) ∈ N such that if n ≥ N(ε), then

− εe� Φt(un)− Φt(v)� εe for t ≥ 0. (16)

Hence we have

−εe� Φtn−s(un)− Φtn−s(v) = Φtn−s(un)− Φrn(v)− qne� εe, n ≥ N(ε).

Since {Φrn(v)}n is bounded, the above inequalities imply that {Φtn−s(un)− qne}n
is order-bounded and hence {Φtn(un)− qne}n is relatively compact. Furthermore,
{Φrn(v)}n = {Φtn−s(v) − qne}n is order-bounded and hence {Φtn(v) − qne}n is
relatively compact. Therefore, taking a subsequence if necessary, we see that
Φtn(un) − qne → u and Φtn(v) − qne → v for some u, v ∈ V . Combining these
with (15) and (16), we obtain

‖u− v‖ ≥ ν, −εe ≤ u− v ≤ εe.

However, they are inconsistent, since ε > 0 can be chosen arbitrarily small.
(iii) Define a strongly monotone map F on V by F (u) = ΦT (u) − e. Then the

set of fixed points of F coincides with O(ϕ) by Theorem 2.2. We remark that
Fn(u) = ΦnT (u)− ne for all n ∈ N.
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Fix u ∈ V and let k ∈ N be such that −ke ≤ u − ϕ ≤ ke. This shows that
ϕ − ke ≤ Fn(u) ≤ ϕ + ke, hence {Fn(u)}n∈N is order-bounded. Therefore, the
omega limit set of u

ω(u) =
⋂
n∈N
{Fm(u) | m ≥ n}

is nonempty and compact, where M denotes the closure of a set M . Note that
ω(v) = {v} for v ∈ O(ϕ).

Applying Proposition 2 in Appendix for X = V , Y = {ω(u) | u ∈ V } 3 {ϕ} and
G = Φ∗ acting on O(ϕ), we obtain Y = {{v} | v ∈ O(ϕ)}. This means that for any
u ∈ V there exists some v = Φτ (ϕ) ∈ O(ϕ) satisfying

lim
n→∞

‖Fn(u)− v‖ = 0.

Let {tj}j∈N be any sequence with tj → +∞ as j → ∞. Then there exists a
subsequence also denoted by {tj}j∈N such that tj = qjT + rj with qj ∈ N, qj →∞,
rj ∈ [0, T ) and rj → r for some r ∈ [0, T ]. Since

Φtj (u)− Φtj (v) = Φrj (ΦqjT (u))− Φrj (ΦqjT (v)) = Φrj (F
qj (u))− Φrj (v),

we have
lim
j→∞

‖Φtj (u)− Φtj (v)‖ = 0.

The proof of the theorem is completed.

5. Application to quasilinear equations. Let us consider an initial-boundary
value problem for a quasilinear parabolic equation:

ut = d(x, u, ux)uxx + f(x, u, ux), x ∈ I := (a, b), t > 0,

ux(a, t) = ux(b, t) = 0, t > 0,

u(x, 0) = u0(x), x ∈ I.
(17)

Concerning the asymptotic behavior of bounded solutions of (17) as t → +∞, ex-
tensive studies have been made in earlier works including Zelenyak [18] and Matano
[7]. Applying the result in [18], we see that there exists a nontrivial Lyapunov
functional of the form

E[u(·, t)] :=

∫ b

a

Φ(x, u(x, t), ux(x, t))dx

satisfying d
dtE[u(·, t)] ≤ 0 and that any solution with bounded C2+α-norm converges

in C2(I) to an equilibrium solution of (17) as t→ +∞. Matano [10] also constructed
a Lyapunov functional for one-dimensional quasilinear parabolic equations including
(17) by a different method. In [7], Matano discussed convergence of solutions of one-
dimensional semilinear parabolic equations and proved that the ω-limit set of any
bounded solution consists of a single equilibrium solution. Since the main tool in
[7] is the so-called zero-number argument, the convergence result is given also for
quasilinear equations by virtually the same argument.

In this section, we study the asymptotic behavior of the solution which has no
L∞-bound. Assume the following:

(A1) d(x, u, p) > 0 and f(x, u, p) are smooth functions and are L-periodic in u;
(A2) there exists a positive constant M such that for any fixed t0 > 0, if u(x, t) is

a solution of (17) on [0, t0] with initial data u0 satisfying ‖u′0‖∞ ≤ M , then
the gradient estimate ‖ux(·, t)‖∞ ≤M holds for all t ∈ [0, t0];
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By the theory of quasilinear parabolic equations [4, 5] and the optimal regularity
theory of analytic semigroups [6], for every u0 ∈ h1+β(I) with β ∈ (0, 1) satisfying
u′0(a) = u′0(b) = 0, problem (17) has a solution u(x, t) in some time interval [0, T ]
with u ∈ C([0, T ];h1+β(I)). Here the space h1+β(I) is the so-called “little-Hölder
space”, which is the closure in the usual Hölder space C1+β(I) of the subspace of
smooth functions.

Since f is L-periodic in u,

K := sup
x∈I,u∈R

|f(x, u, 0)|

is finite and hence u+(t) := Kt+ ‖u0‖∞ is a supersolution of (17), while u−(t) :=
−u+(t) is a subsolution of (17). Therefore, by the comparison principle we have

‖u(·, t)‖∞ ≤ Kt+ ‖u0‖∞, t ∈ [0, T ]. (18)

Furthermore, since ux solves a linear parabolic equation of divergence form, the
uniform gradient bound (A2) and the Hölder estimates for linear parabolic equations
imply the Hölder gradient estimates

‖ux‖Cα,α/2(I×[τ,T ]) ≤ Cτ (19)

for some constants α ∈ (0, 1) and Cτ > 0 independent of u and T . Consequently,
under the conditions (A1) and (A2), equation (17) defines a global semiflow on V ,
where V is a closed subset of X = h1+α(I) defined by

V := {u ∈ X | u′(a) = u′(b) = 0, ‖u′‖∞ ≤M} .
We define an order relation in X by

u ≤ v if u(x) ≤ v(x) for all x ∈ I.
Then the space X is strongly ordered with the interior of the positive cone being
{u ∈ X | u(x) > 0 for all x ∈ I}.

We further assume the existence of an unbounded solution:

(A3) there exists a u0 ∈ V such that the solution u(x, t) of (17) with initial value
u0 satisfies

lim sup
t→+∞

max
x∈I

u(x, t) = +∞.

Condition (A3) and the periodicity of d and f in u ensure that for any u0 ∈ V the
solution u(x, t) diverges to +∞ everywhere as t → +∞ and hence no equilibrium
solution exists. A sufficient condition for (A2) and (A3) is that f = f(ux) with
f(0) > 0. Conditions (A1)-(A3) are also fulfilled for a quasilinear parabolic equa-
tion related to a curvature-dependent motion of plane curves in a two-dimensional
cylinder with periodically undulating boundary. See [11] for details.

Applying the theorems in Section 2 to (17), we obtain the following:

Theorem 5.1. Assume (A1), (A2) and (A3). Then the following hold:

(i) There exists a periodically growing solution U(x, t) of (17) satisfying

U(x, t+ T ) = U(x, t) + L for all (x, t) ∈ I × R (20)

for some T > 0. Furthermore, such a periodically growing solution is unique
up to time shift.

(ii) infx∈I, t∈R Ut(x, t) > 0.
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(iii) U is globally stable with asymptotic phase, that is, for any u0 ∈ V , there exists
a constant τ ∈ R such that the solution u(x, t) of (17) with initial value u0
satisfies

lim
t→+∞

‖u(·, t)− U(·, t+ τ)‖C2(I) = 0.

Proof. Let Φ = {Φt}t≥0 be the global semiflow on V defined by (17). First we shall
show that Φ satisfies all the conditions (H1)-(H4).

The condition (H1) immediately follows from the strong comparison principle for
(17).

For any order-bounded set B in V , there exists a constant K > 0 such that
‖u0‖∞ ≤ K for all u0 ∈ B. Therefore, by (18), (19) and the a priori estimates
for linear parabolic equations, for each t > 0 the set Φt(B) is bounded in C2+α(I),
hence relatively compact in V . Thus (H2) holds.

Since d and f are L-periodic in u, if u(x, t) is a solution of (17), then so is
u(x, t) + L. This implies (H3) with e(x) ≡ L > 0.

By (H3), we may assume that u0 ∈ V in (A3) satisfies 0 ≤ u0(x) ≤M(b−a) +L
for all x ∈ I. Then we can find a sequence 0 ≤ t1 < t2 < · · · → +∞ satisfying

max
x∈I

u(x, tj) = M(b− a) + jL

for j ∈ N. This means that 0 ≤ Φtj (u0)− je ≤ M(b− a) for all j ∈ N, hence (H4)
holds.

(i) By Theorem 2.1, we can find ϕ ∈ V and T > 0 satisfying (7). Let Φ∗ =
{Φt}t∈R be the flow extension of Φ defined as in Section 2 and define U(·, t) = Φt(ϕ)
for t ∈ R. Then U is a periodically growing solution satisfying (20). The uniqueness
(up to time shift) of U follows from Theorems 2.1 and 2.2.

(ii) Theorem 2.2 implies that U is strictly increasing in t ∈ R. Hence we have
Ut(x, t) ≥ 0 for all (x, t) ∈ I × R. Furthermore, the strict inequality Ut(x, t) > 0
follows from the strong comparison principle. In view of this and (20), we see that
Ut is bounded away from 0 for all (x, t) ∈ I × R.

(iii) Let u0 ∈ V and define u(·, t) = Φt(u0) for t ≥ 0. Then it follows from
Theorem 2.3 (iii) that

lim
t→+∞

‖u(·, t)− U(·, t+ τ)‖h1+α(I) = 0.

Furthermore, by the a priori estimates, {u(·, t) − U(·, t + τ)}t≥τ remains bounded

in C2+α(I) for some fixed τ > 0. Therefore, the above convergence takes place in
the C2 topology.

The theorem is proved.

Remark 3. Giga, Ishimura and Kohsaka [1] studied a weakly anisotropic curvature
flow in an annulus {x ∈ R2 | ρ < |x| < R} and considered spiral shaped solutions
of the form

Γ(t) = {(r cos θ(r, t), r sin θ(r, t)) | ρ ≤ r ≤ R}. (21)

Then the function θ(r, t) satisfies the following equation:θt = M(n)

(
a(n)(rθrr + r2θ3r + 2θr)

r(1 + r2θ2r)
+
V0(1 + r2θ2r)

1/2

r

)
,

θr(ρ, t) = θr(R, t) = 0.

(22)
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Here, M(n) is called the mobility which depends on the unit vector n represented
as

n = n(r, θ, θr) =
1

(1 + r2θ2r)
1/2

(
− sin θ − rθr cos θ

cos θ − rθr sin θ

)
,

a(n) is a positive coefficient which comes from the anisotropic curvature of Γ(t) and
V0 is a positive constant corresponding to a driving force term. They proved that
the conditions (A2) and (A3) are satisfied for (22) and that there exists a unique
(up to translation of time) spiral solution Γ(t) of the form (21) satisfying

θ(r, t+ T ) = θ(r, t) + 2π, r ∈ [ρ,R], t > 0

for some T > 0. Concerning the stability they proved the Lyapunov stability of the
spiral solution Γ(t), but the asymptotic stability of Γ(t) was not discussed in [1].
Applying our Theorem 5.1 (iii) to (22), we see that Γ(t) is stable with asymptotic
phase. Note that the usual Hölder space C1+α was used in [1] as state space V ;
while we adopt the little-Hölder space h1+α to assure the continuity of Φt at t = 0.

Remark 4. Similar results to Theorem 5.1 also hold for a class of semilinear or
more generally quasilinear parabolic equations in higher space dimension including
(1) and (3).

Appendix A. Structure of subsets under a group action. In this appendix
we recall two propositions in the paper of Ogiwara and Matano [13]. Proposition
1 is concerned with the structure of subsets of an ordered metric space satisfying
certain conditions. Proposition 2 is a set-valued version of Proposition 1.

Let G be a metrizable topological group acting on an ordered metric space X.
In other words, X is a metric space on which a closed partial order relation ≤ is
defined and there exists a continuous mapping γ : G×X → X such that g 7→ γ(g, ·)
is a group homomorphism of G into the group of homeomorphism of X onto itself.
For brevity, we write γ(g, u) = gu and identify the element g ∈ G with its action
γ(g, ·). Furthermore, we assume that

(G1) γ is order-preserving (that is, u ≤ v implies gu ≤ gv for any g ∈ G);
(G2) G is connected.

As in the previous sections, we write u < v if u ≤ v and u 6= v. Similarly, for
subsets Y,Z ⊂ X, we write Y < Z if u ≤ v for all u ∈ Y , v ∈ Z and Y 6= Z.

Proposition 1. [13, Proposition B1] Let Y be a subset of X and u be an element
of Y such that

(Y1) gu ∈ Y for any g ∈ G;
(Y2) for any v ∈ Y , there exist g1, g2 ∈ G satisfying g1u < v < g2u;
(Y3) for any v ∈ Y with v < hu for some h ∈ G, there exists a neighborhood B of

the identity element e ∈ G such that v < ghu for any g ∈ B.

Then Y is totally-ordered connected set and satisfies

Y = Gu := {gu | g ∈ G}.
If, in addition, Y is locally precompact, then Y is homeomorphic and order-isomorph-

ic to R.

Proposition 2. [13, Proposition B1] Let Y be a subset of the power set of X and
{u} be an element of Y such that

(Y1) {gu} ∈ Y for any g ∈ G;
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(Y2) for any V ∈ Y , there exist g1, g2 ∈ G satisfying {g1u} < V < {g2u}.
(Y3) for any V ∈ Y with V < {hu} for some h ∈ G, there exists a neighborhood B

of the identity element e ∈ G such that V < {ghu} for any g ∈ B.

Then
Y = G{u} := {{gu} | g ∈ G}.
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