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Centre de Mathématiques Laurent Schwartz
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Abstract. An entire solution of the Allen-Cahn equation ∆u = f(u), where
f is an odd function and has exactly three zeros at ±1 and 0, e.g. f(u) =

u(u2 − 1), is called a 2k-ended solution if its nodal set is asymptotic to 2k

half lines, and if along each of these half lines the function u looks (up to a
multiplication by −1) like the one dimensional, odd, heteroclinic solution H, of

H′′ = f(H). In this paper we present some recent advances in the theory of the

multiple-end solutions. We begin with the description of the moduli space of
such solutions. Next we move on to study a special class of these solutions with

just four ends. A special example is the saddle solutions U whose nodal lines

are precisely the straight lines y = ±x. We describe the connected components
of the moduli space of 4-ended solutions. Finally we establish a uniqueness

result which gives a complete classification of these solutions. It says that all

4-ended solutions are continuous deformations of the saddle solution.

1. Some entire solutions to the Allen-Cahn equation in R2. In this paper
we present some recent results in the theory of entire solutions to the Allen-Cahn
equation:

∆u = F ′ (u) in R2. (1.1)
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The function F is a smooth, double well potential, which means that we assume
the following conditions for F : F is even, nonnegative and has only two zeros at
±1, F ′ (t) 6= 0, t ∈ (0, 1). We also suppose F ′′ (1) 6= 0, F ′′(0) 6= 0. A standard
example is F (u) = 1

4 (1 − u2)2 and for simplification in this paper we will restrict
our considerations to this nonlinearity. Our results apply as well in the most general
setting but the presentation becomes somewhat cumbersome.

It is known that (1.1) has a solution whose nodal set is a straight line, it will be
called a planar solution. It is simply obtained by taking the unique, odd, heteroclinic
solution connecting −1 to 1:

H ′′ = F ′(H), H(±∞) = ±1, H(0) = 0, (1.2)

which in the particular case of F we are considering is explicit H(t) = tanh
(
t√
2

)
,

and letting
u(x) = ±H(x · e⊥ − r), (1.3)

for some vector e ∈ S1, and r ∈ R, where ⊥ denotes the rotation by the angle π/2
in R2. The nodal set of the planar solution is the affine line

s 7→ re⊥ + se, s ∈ R.
We note that ∂±e⊥u = H ′ > 0. De Giorgi conjecture says that if u is any smooth
and bounded solution of (1.1) such that ∂vu > 0 for certain fixed direction v then
in fact u must be the planar solution of the form (1.3) with ±e⊥ · v > 0. Indeed
this conjecture holds in RN , N ≤ 8 ([12] when N = 2, [2] when N = 3, and [28],
for 4 ≤ N ≤ 8 under some additional limit condition), while a counterexample can
be given when N ≥ 9 [9]. It is worth mentioning that the De Giorgi conjecture is a
direct analog of the famous Bernstein conjecture in the theory of minimal surfaces.

There are other examples of entire solutions of (1.1) that are of interest. The
simplest one is the so called saddle solution U whose existence was established in
[6]. The nodal set of this solution is the union of the two lines y = ±x. Another
important fact, also proven in [6] (see also [13]), is that up to a sign and a rigid
motion, the saddle solution is the unique bounded solution whose nodal set coincides
with the union of the two lines y = ±x. The saddle solution satisfies U(x, y) =
U(−x, y) = U(x,−y), i.e. it is even with respect to the coordinate axis. Also, we
have ∂yU > 0, and ∂xU < 0 in the upper right quadrant Qx. More general examples
include solutions whose nodal lines are precisely the affine half lines

s 7→ se jπi/k+iπ/4, s ≥ 0, j = 1, . . . , 2k,

see [1]. Again, along each of the half lines these solutions are asymptotic to copies
of ±H, i.e the planar solutions.

This example do no exhaust all the possible entire solutions of (1.1). In [8] it is
shown that for any k ≥ 2 there exists a family of solutions to (1.1) with the follow-
ing characteristics: (1) the nodal set of each solution consists of k nonintersecting
curves; (2) outside of a large compact set each of these curves is asymptotic to a
set of 2k affine half lines and along each of these half lines the solution looks like
a copy of the planar solution; (3) the angles between the asymptotic half lines are
small, or in other words the nodal lines are nearly parallel, outside of a compact.
This family depends smoothly on 2k parameters.

From the above rough description we see that all the entire solutions we have
considered so far share a common feature: their asymptotic behavior outside of a
compact is that of a planar solution along a set of 2k affine half lines. This leads
to the definition of the set of 2k-ended solution: we define M2k to be the set of
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solutions of (1.1) whose nodal set outside of a compact is asymptotic to 2k affine
half lines and which, along each of these half lines looks like copies of ±H (more
precise definition will follow). The main question we will deal with in this paper
is the description of the set of 2k-ended solutions M2k. In general terms our goal
is twofold: first we want to understand the local structure of M2k, and second we
want to classify 2k-ended solutions. As for the former question our main result says
that locally near a nondegenerate solution u ∈ M2k, the set M2k has a structure
of 2k dimensional, smooth manifold. As for the second issue at this point we can
only give a satisfactory answer in the case k = 2, i.e. for 4-ended solution. We will
show that M4 consists of a single connected component that contains the saddle
solution U and the 4-ended solutions with almost parallel ends.

2. Existence of 2k-ended solutions with almost parallel nodal lines. The
starting point of the program outlined above is the existence result which shows that
for any k > 1 there exists a 2k parameter family of 2k-ended solutions [8]. To state
our result in precise way, we assume that we are given a solution q := (q1, . . . , qk)
of the Toda system

c0 q
′′
j = e

√
2(qj−1−qj) − e

√
2(qj−qj+1) , (2.1)

for j = 1, . . . , k, where c0 =
√

2
24 and we agree that

q0 ≡ −∞ and qk+1 ≡ +∞ .

The Toda system (2.1) is a classical example of integrable system which has been
extensively studied. It models the dynamics of finitely many mass points on the
line under the influence of an exponential potential. We refer to [16] and [24] for the
complete description of the theory. Of importance for us is the fact that solutions
of (2.1) can be described (almost explicitly) in terms of 2k parameters. Moreover,
if q is a solution of (2.1), then the long term behavior (i.e. long term scattering)
of the qj at ±∞ is well understood and it is known that, for all j = 1, . . . , k, there
exist a+

j , b
+
j ∈ R and a−j , b

−
j ∈ R, all depending on the solution q, such that

qj(t) = a±j |t|+ b±j +OC∞(R)(e
−τ0 |t|) , (2.2)

as t tends to ±∞, for some τ0 > 0. Moreover, a±j+1 > a±j for all j = 1, . . . , k − 1.
Given ε > 0, we define the vector valued function qε, whose components are

given by

qj,ε(x) := qj(ε x)−
√

2
(
j − k + 1

2

)
log ε . (2.3)

It is easy to check that the qj,ε are again solutions of (2.1).
Observe that, according to the description of the asymptotics of the functions qj ,

the graphs of the functions qj,ε are asymptotic to oriented half lines at infinity. In
addition, for ε > 0 small enough, these graphs are disjoint and in fact their mutual
distance is given by −

√
2 log ε+O(1) as ε tends to 0.

It will be convenient to agree that χ+ (resp. χ−) is a smooth cutoff function
defined on R which is identically equal to 1 for x > 1 (resp. for x < −1) and
identically equal to 0 for x < −1 (resp. for x > 1) and additionally χ− + χ+ ≡ 1.
With these cutoff functions at hand, we define the 4 dimensional space

D := Span {x 7−→ χ±(x), x 7−→ xχ±(x)} , (2.4)
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and, for all µ ∈ (0, 1) and all τ ∈ R, we define the space C2,µ
τ (R) of C2,µ functions h

which satisfy

‖h‖C2,µτ (R) := ‖?(coshx)τ h‖C2,µ(R) <∞ .

Keeping in mind the above notations, we have the following theorem [8] :

Theorem 2.1. For all ε > 0 sufficiently small, there exists an entire solution uε
of the Allen-Cahn equation (1.1) whose nodal set is the union of k disjoint curves
Γ1,ε, . . . ,Γk,ε which are the graphs of the functions

x 7−→ qj,ε(x) + hj,ε(ε x) ,

for some functions hj,ε ∈ C2,µ
τ (R)⊕D satisfying

‖hj,ε‖C2,µτ (R)⊕D ≤ C ε
α,

for some constants C,α, τ, µ > 0 independent of ε > 0.

In other words, for any solution of the Toda system of the form (2.3), with ε
small, we can find a 2k-ended solutions of (1.1) whose nodal lines are asymptotic to
the graphs of the functions qj,ε, as ε tends to 0. Also, as x→ ±∞ the nodal lines of
the function uε approach some affine half lines with small slopes at an exponential
rate. Since, as we have observed, the family of solutions of the Toda system depends
smoothly on 2k parameters, the same apply for the family of solutions of the (1.1)
we have constructed in [8].

Going through the proof, one can be more precise about the description of the
solution uε. If Γ ⊂ R2 is a curve in R2 which is the graph over the x-axis of some
function, we denote by dists (·,Γ) the signed distance to Γ which is positive in the
upper half of R2 \Γ and is negative in the lower half of R2 \Γ. Then, we have the :

Proposition 2.1. [8] The solution of (1.1) provided by Theorem 2.1 satisfies

‖eε α̂ |x| (uε − u∗ε)‖L∞(R2) ≤ C εᾱ ,

for some constants C, ᾱ, α̂ > 0 independent of ε, where

u∗ε :=

k∑
j=1

(−1)j+1H
(
dists(·,Γj,ε)

)
− 1

2
((−1)k + 1) . (2.5)

It is interesting to observe that, when k ≥ 3, there are solutions of (2.1) whose
graphs have no symmetry and our result yields the existence of entire solutions of
(1.1) without any symmetry provided the number of ends is larger than or equal to
6.

Let us also remark that when k ≥ 3 is odd, the solutions constructed in Theorem
2.1 satisfy

lim
y→±∞

uε(x, y) = ±1. (2.6)

This shows that the uniformity condition in Gibbons’ conjecture is necessary. Let
us recall that Gibbons’ conjecture states that the level sets of any bounded solution
to (1.1) satisfying

lim
xN→±∞

u(x1, ..., xN−1, xN ) = ±1, uniformly in (x1, ..., xN−1), (2.7)

must be hyperplanes. Gibbons’ conjecture for all dimensions is proved indepen-
dently in [3], [4] and [10].
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3. Moduli space of 2k-ended solutions. We start with a brief review of the
material which is necessary for a precise statement of results proven in [7]. Let us
recall that in the case of the bistable quartic nonlinearity F (u) = 1

4 (1− u2)2 which

we are considering here the heteroclinic solution H(t) = tanh
(
t√
2

)
. We now collect

some basic information about the spectrum of the operator

L := −∂2
x + F ′′(H),

which arises as the linearized operator of one dimensional Allen-Cahn equation:

∂2
xu = F ′(u), in R,

about H and which is acting on functions defined on R. All the information we
need is included in the :

Lemma 3.1. All the the eigenvalues of L are known and are given by

µ0 = 0, with associated eigenfunction w0(x) =
1

cosh2( x√
2
)
,

and

µ1 =
3

2
, with associated eigenfunction w1(x) =

sinh( x√
2
)

cosh2( x√
2
)
,

while the bottom of the continuous spectrum is α2 = 2.

For a proof of this fact, we refer to [25].

3.1. Geometric description of the solutions. As promised, we give a precise
definition of the concept of 2k-ended solutions as it was introduced in [7] (the set of
such solutions is denoted by M2k). This requires some preliminary definitions. At
the heart of the description of the nodal set of the solutions is the set Λ of oriented
affine lines in R2. Any element λ ∈ Λ can be uniquely written as

λ := r e⊥ + R e,

for some r ∈ R and some unit vector e ∈ S1, which defines the orientation of the
line. Recall that we denote by ⊥ the rotation of angle π/2 in R2. Clearly, Λ is
diffeomorphic to R×S1 and writing e = (cos θ, sin θ), we get local coordinates (r, θ)
in Λ. Observe that the affine lines are oriented and hence we do not identify the
line corresponding to (r, θ) and the line corresponding to (−r, θ + π). There is also
a natural symplectic structure on Λ which, in these local coordinates, is given by

ω := dr ∧ dθ.

Note that the map J defined by

J ∂θ = −∂r and J ∂r = ∂θ,

(which corresponds to the rotation by π/2 in the tangent space) induces an almost
complex structure on Λ. This map, together with the 2-form ω induces the natural
metric on Λ

g = dr2 + dθ2.

More generally, for all k′ ≥ 1, let us denote by Λk
′

the set of k′-tuples of ori-
ented affine lines in R2. This set is clearly diffeomorphic to Rk′ × (S1)k

′
and,
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again, there exists a natural symplectic structure on Λk
′

which, in local coordinates
(r1, . . . , rk′ , θ1, . . . , θk′), can be written as

ωk′ := dr1 ∧ dθ1 + . . .+ drk′ ∧ dθk′ . (3.1)

The almost complex structure and the metric on Λk
′

can be introduced in the same
way this was done for Λ.

We have the definition :

Definition 3.1. A k′-tuple of oriented affine lines λ = (λ1, . . . , λk′) ∈ Λk
′

is said
to be ordered if each λj can be written as

λj := rj e
⊥
j + R ej , (3.2)

for some rj ∈ R and some unit vector ej ∈ S1 which can be written as ej =
(cos θj , sin θj) with

θ1 < θ2 < . . . < θk′ < 2π + θ1.

We denote by Λk
′

ord the set of k′-tuples of ordered, oriented affine lines and we denote
by

θλ :=
1

2
min{θ2 − θ1, . . . , θk′ − θk′−1, 2π + θ1 − θk′},

the half of the minimum of the angles between any two consecutive oriented affine
lines λ1, . . . , λk′ .

Assume that we are given a k′-tuple of oriented affine lines λ = (λ1, . . . , λk′) as
in (3.2). It is easy to check that for all R > 0 large enough and for all j = 1, . . . , k′,
there exists sj ∈ R such that :

(i) The point xj := rj e
⊥
j + sj ej belongs to the circle ∂BR, with R > 0.

(ii) The half lines
λ+
j := xj + R+ ej , (3.3)

are disjoint and included in R2 \BR.

(iii) The minimum of the distance between two distinct half lines λ+
i and λ+

j is
larger than 4.

The set of half affine lines λ+
1 , . . . , λ

+
k′ together with the circle ∂BR induce a

decomposition of R2 into k′ + 1 slightly overlapping connected components

R2 = Ω0 ∪ Ω1 ∪ . . . ∪ Ωk′ ,

where
Ω0 := BR+1,

and where, for j = 1, . . . , k′,

Ωj :=
{
x ∈ R2 : |x| > R− 1 and dist(x, λ+

j ) < dist(x, λ+
i ) + 2, ∀i 6= j

}
,

(3.4)

where dist(x, λj) denotes the distance to λ+
j . Observe that, for all j = 1, . . . , k′, the

set Ωj contains the half line λ+
j .

We define I0, I1, . . . , Ik′ , a smooth partition of unity of R2 which is subordinate
to the above decomposition of R2. Hence

k′∑
j=0

Ij ≡ 1,
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and the support of Ij is included in Ωj , for j = 0, . . . , k′. Without loss of generality,
we can also assume that I0 ≡ 1 in

Ω′0 := BR−1,

and Ij ≡ 1 in

Ω′j :=
{
x ∈ R2 : |x| > R+ 1 and dist(x, λ+

j ) < dist(x, λ+
i )− 2, ∀i 6= j

}
,

for j = 1, . . . , k′. Finally, we assume that

‖Ij‖C2(R2) ≤ C.

We now take k′ = 2k, for some k ≥ 1 and

λ = (λ1, . . . , λ2k) ∈ Λ2k
ord,

we write λ+
j = xj + R+ ej and we define

uλ :=

2k∑
j=1

(−1)j Ij H(dists( ·, λj)), (3.5)

where

dists(x, λj) := (x− xj) · e⊥j , (3.6)

denotes the signed distance from a point x ∈ R2 to λj .
Observe that, by construction, the function uλ is, away from a compact, as-

ymptotic to copies of the model solutions whose nodal set are the half affine lines
λ+

1 , . . . , λ
+
2k. A simple computation shows that uλ is not far from being a solution

of (1.1) in the sense that ∆uλ−F ′(uλ) is a function which decays exponentially to
0 at infinity (this uses the fact that θλ > 0).

We are interested in solutions of (1.1) which are asymptotic to a function uλ for
some choice of λ ∈ Λ2k

ord. More precisely, we have the :

Definition 3.2. Let S2k denote the set of functions u which are defined in R2 and
which satisfy

u− uλ ∈W 2,2 (R2), (3.7)

for some λ ∈ Λ2k
ord. We also define the decomposition operator J by

J : S2k −→ W 2,2(R2)× Λ2k
ord

u 7−→ (u− uλ, λ) .

The topology on S2k is the one for which the operator J is continuous (the target
space being endowed with the product topology). We define M2k to be the set of
solutions u of (1.1) which belong to S2k.

The set M2 is non empty since it contains the planar solutions. As we have
already discussed in the previous section, the result of [8] provides infinitely many
solutions of (1.1) whose nodal set decomposes into 2k nearly parallel half lines. This
result, together with the results in [6] and [1], imply that M2k 6= ∅ for any k ≥ 1.
Investigation of the structure ofM2k is then a natural question. At this point, the
questions which are relevant are the following :

1. Is the spaceM2k a smooth submanifold of S2k ? If so, what is the dimension
of M2k ?
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2. There exists a natural map

P :M2k −→ Λ2k
ord,

defined by

P(u) := λ, (3.8)

if u−uλ ∈W 2,2 (R2). What can be said about this map ? Is it surjective ? If
not, can one characterize its image ? In other words, what sets of half affine
lines are asymptotic to nodal sets of solutions of (1.1) ?

3.2. Local structure of the moduli space. We keep the notations introduced
above. Given k ≥ 1 and

λ = (λ1, . . . , λ2k) ∈ Λ2k
ord,

we write λ+
j = xj +R+ ej as in (3.3). We denote by Ω0, . . . ,Ω2k the decomposition

of R2 associated to this 2k-tuple of half affine lines and I0, . . . , I2k the partition of
unity subordinate to this partition. Given γ, δ ∈ R, we define a weight function Γγ,δ
such that

Γγ,δ(x) ∼ 1 ,

in Ω0 and, for j = 1, . . . , 2k,

Γγ,δ(x) ∼ eγs (cosh r)δ.

in Ωj , where we have writen

x = xj + r e⊥j + s ej ,

for some r ∈ R and s > 0 (observe that (r, s) are local coordinates which are well
defined in each Ωj). As usual, the notation f ∼ g means that there exists some
constant C > 1 such that

1

C
|g| ≤ |f | ≤ C |g|.

The explicit definition of the weight function Γγ,δ is given by

Γγ,δ(x) := I0(x) +

2k∑
j=1

Ij(x) eγ (x−xj)·ej
(
cosh((x− xj) · e⊥j )

)δ
, (3.9)

so that, by construction, γ is the rate of decay or blow up along the half lines λ+
j

and δ is the rate of decay or blow up in the direction orthogonal to λ+
j .

With this definition in mind, we define the weighted Lebesgue space

L2
γ,δ(R2) := Γγ,δ L

2(R2), (3.10)

and the weighted Sobolev space

W 2,2
γ,δ (R2) := Γγ,δW

2,2(R2). (3.11)

Observe that, even though this does not appear in the notations, the partition of
unity, the weight function and the induced weighted spaces all depend on the choice
of λ ∈ Λ2k

ord.
Our first result shows that, if u is a solution of (1.1) which is close to uλ (in W 2,2

topology) then u− uλ tends to 0 exponentially fast at infinity.
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Theorem 3.1 (Refined Asymptotics). [7] Assume that u ∈ S2k is a solution of
(1.1) and define λ = P(u) ∈ Λ2k

ord, so that

u− uλ ∈W 2,2(R2).

Then, there exist δ ∈ (0, α) and γ > 0 such that

u− uλ ∈W 2,2
−γ,−δ(R

2). (3.12)

More precisely, δ > 0 and γ > 0 can be chosen so that

γ ∈ (0,
√
µ1), γ2 + δ2 < α2 and α > δ + γ cot θλ, (3.13)

where θλ is equal to the half of the minimum of the angles between two consecutive
oriented affine lines λ1, . . . , λ2k (see Definition 3.1).

In particular, this implies that, given u ∈M2k, there exists δ̄ > 0 such that

J (u) ∈ e−δ̄|x|
2

W 2,2(R2)× Λ2k
ord.

In fact more is true. Namely, the choice of δ̄ can be made uniform in any neighbor-
hood of u ∈ M2k in S2k. More, precisely, given u ∈ M2k, there exists δu > 0 and
there exists a neighborhood U of u in S2k such that

J : U ∩M2k −→ e−δu|x|
2

W 2,2(R2)× Λ2k
ord

ū 7−→ J ū,
,

is well defined and continuous (observe that continuity of this mapping is not a
straightforward consequence of the definition of J ).

Before we state the next result, we have to introduce the notion of nondegeneracy
in this context.

Definition 3.3. A function u ∈ M2k is said to be nondegenerate if the linearized
operator

−∆ + F ′′(u),

is injective in the space L2
−γ,δ(R2), for some γ ∈ (0,

√
µ

1
) and some δ ∈ R satisfying

γ2 + δ2 < α2.

As already mentioned, the existence of a family of solutions of (1.1) which belongs
toM2k is guarantied by the result in [8]. We prove in [7] that the solutions obtained
in [8] are nondegenerate, this implies that :

Proposition 3.1. [7] For each k ≥ 1, M2k contains nondegenerate elements.

Checking whether a given solution is nondegenerate or not is a hard problem.
For example, non-degeneracy of the saddle solution U ∈ M4 constructed in [6] is
shown in [17]. Anticipating a little bit further developments we should add that in
fact all solutions in M4 are nondegenerate [19].

The second result of this paper is the following :

Theorem 3.2 (Dimension of the moduli space). [7] Assume that u ∈ M2k is
nondegenerate. Then, in a neighborhood of u in S2k, the set of solutions of (1.1) is
a smooth manifold of dimension 2k.

Near any nondegenerate elements ofM2k, we also have some information about
the mapping P.
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Theorem 3.3. [7] Assume that u ∈ M2k is nondegenerate. Then, there exists an
open neighborhood of u in M2k whose image by P is a Lagrangian submanifold of
Λ2k for the symplectic structure defined in (3.1).

Geometrically the meaning of the mapping P is clear : Given any solution
u ∈ M2k, P(u) ∈ Λ2k corresponds to the choice of 2k oriented affine lines which
determine the asymptotics of the nodal set of u at infinity. Theorem 3.2 and The-
orem 3.3 show that there is in reality less freedom than what might be initially
expected in selecting the half lines which are the asymptotes of the nodal sets
of the solutions of (1.1). Indeed, at regular points of M2k, the image of P is
a 2k-dimensional submanifold of Λ2k which is 4k-dimensional. By definition the
Lagrangian submanifold of a symplectic manifold (M,ω) of dimension 2n is a sub-
manifold of M of half of the dimension of the ambient manifold (i.e. dimension
= n), and such that on its tangent space the two form ω is degenerate. Let us
explain what this means in the case at hand i.e. M = Λ2k, ω = ω2k. First we
introduce the natural representation of the tangent space TλΛ2k, λ = (λ1, . . . , λ2k).
To each λj we associate its representation

λj := rj e
⊥
j + R ej , rj ∈ R, ej = (cos θj , sin θj).

Each affine half line λj can be translated in the direction orthogonal to ej and
rotated about the the point xj = rje

⊥. In local coordinates (r1, . . . , r2k, θ1, . . . , θ2k)
of λ these transformations correspond to vectors

X̊j := (0, . . . , 1, . . . , 0, . . . , 0),

and
Y̊j(x) := (0, . . . , 0, 0, . . . , 1, . . . , 0),

respectively. Let us consider vectors w(`) ∈ TλΛ2k, ` = 1, 2, where:

w(`) =

2k∑
j=1

a
(`)
j X̊j + b

(`)
j Y̊j .

Then the condition ω2k(w(1), w(2)) = 0 is equivalent to:

2k∑
j=1

(
a

(1)
j b

(2)
j − a

(2)
j b

(1)
j

)
= 0.

Observe that the image of P is naturally constrained. In fact it follows from [13]
that

2k∑
j=1

ej = 0. (3.14)

Moreover, pushing further the analysis in [13], we can also prove that

2k∑
j=1

rj = 0. (3.15)

These conservation laws stem from the fact that (1.1) is invariant under the
action of isometries of R2 and, for the sake of completeness, we give a simple proof
of these equalities below. Observe that (3.14) implies that the angle between two
consecutive half lines is always less than or equal to π and that it can only be equal
to π when k = 1. Therefore, if u ∈M2k and λ = P(u), we always have

0 ≤ θλ ≤ π/2.
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To prove (3.14)–(3.15) we will derive more general identity called the balancing
formula. Actually, the balancing formula is a fundamental tool of our theory and
its applications are crucial for most of the results we present here. To proceed we
assume that u is a solution of (1.1) which is defined in R2. Assume that X and Y
are two vector fields also defined in R2. In coordinates, we can write

X =
∑
j

Xj∂xj , Y =
∑
j

Y j∂xj ,

and, if f is a smooth function, we use the following notations

X(f) :=
∑
j

Xj ∂xjf, ∇f :=
∑
j

∂xjf ∂xj ,

divX :=
∑
i

∂xiX
i,

and

d∗X :=
1

2

∑
i,j

(∂xiX
j + ∂xjX

i) dxi ⊗ dxj ,

so that

d∗X (Y, Y ) =
∑
i,j

∂xiX
j Y i Y j .

Computing directly we get:

Lemma 3.2 (Balancing formula). The following identity holds

div

((
1

2
|∇u|2 + F (u)

)
X −X(u)∇u

)
=

(
1

2
|∇u|2 + F (u)

)
divX − d∗X(∇u,∇u).

Translations of R2 correspond to the constant vector field

X := X0

where X0 is a fixed vector, while rotations correspond to the vector field

X := x ∂y − y ∂x.

In either case, we have divX = 0 and d∗X = 0. Therefore, we conclude that

div

((
1

2
|∇u|2 + F (u)

)
X −X(u)∇u

)
= 0,

for these two vector fields. The divergence theorem implies that∫
∂Ω

((
1

2
|∇u|2 + F (u)

)
X −X(u)∇u

)
· ν ds = 0, (3.16)

where ν is the (outward pointing) unit normal vector field to ∂Ω.
We define

c0 :=

∫ +∞

−∞

(
1

2
(∂xu0)2 + F (u0)

)
dx.
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We now assume that u ∈ M2k and we keep the notations introduced above. We
use (3.16) with Ω which is equal to the ball of radius R centered at the origin and
then, we let R tend to ∞. Taking X = X0, we find with little work

c0

2k∑
j=1

ej ·X0 = 0.

Taking X = x ∂y − y ∂x, we find as well

2k∑
j=1

rj = 0.

This completes the proof of (3.14) and (3.15).
The proofs of Theorem 3.2 and Theorem 3.3 follow from the application of the

implicit function theorem in a suitably designed weighted function space. The
results and the arguments are very much in the spirit of what has already been
done in the study of the moduli spaces of complete non compact constant mean
curvatures surfaces in Euclidean space or complete constant scalar curvature metrics
in conformal geometry [20], [22] and [21]. We refer the reader to [7] for detailed
proofs of the theorems.

4. Classification of 4-ended solutions.

4.1. The space of 4-ended solutions. In general understanding the structure
of the space of 2k-ended solutions is quite a difficult question. However in case of
4-ended solutions it is possible to describe all connected components of M4. This
is the subject of the present section in which we summarize the results obtained in
[19] and [18]. We have already mentioned two important examples of solutions to
(1.1) that belong to M4: the saddle solution constructed in [6] and the solutions
with almost parallel ends constructed in [8]. As far as the structure of the set of
4-ended solutions is concerned, the main result of the previous section asserts that if
u ∈M4 is nondegenerate, then, close to u,M4 is a 4-dimensional smooth manifold.
Observe that, given u ∈ M4, translations and rotations of u are also elements of
M4 and this accounts for 3 of the 4 formal dimensions ofM4, moreover, if u ∈M4

then −u ∈M4.
All the 4-ended solutions constructed so far have two axes of symmetry and in

fact, it follows from a result of C. Gui [14] that all 4-ended solutions are symmetric
up to an isometry:

Theorem 4.1. [14] Assume that u ∈M4. Then, there exists a rigid motion g such
that ū := u ◦ g is even with respect to the x-axis and the y-axis, namely

ū(x, y) = ū(−x, y) = ū(x,−y). (4.1)

In addition, ū is a monotone function of both the x and y variables in the upper
right quadrant Qx defined by

Qx := {(x, y) ∈ R2 : x > 0 y > 0},

and, changing the sign of ū if this is necessary, we can assume that

∂xū < 0 and ∂yū > 0,

in Qx.
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Thanks to this result, we can define the moduli space of 4-ended even solutions
by :

Definition 4.1. The setMeven
4 is defined to be the set of u ∈ S4 which are solutions

of (1.1), are even with respect to the x-axis and the y-axis and which tend to +1 at
infinity along the y-axis (and tend to −1 at infinity along the x-axis). In particular,

∂xu < 0 and ∂yu > 0,

in the upper right quadrant Qx.

Thus, when studying M4, we restrict our attention to functions which are even
with respect to the x-axis and the y-axis and, in this case, a solution u ∈Meven

4 is
said to be even-nondegenerate if there is no w ∈W 2,2(R2)−{0}, which is symmetric
with respect to the x-axis and the y-axis, belongs to the kernel of

L := −∆ + F ′′(u),

and which decays exponentially at infinity.

In the equivariant case (namely solutions which are invariant under both the
symmetry with respect to the x-axis and the y-axis), Theorem 3.2 reduces to :

Theorem 4.2. Assume that u ∈ Meven
4 is even-nondegenerate, then, close to u,

Meven
4 is a 1-dimensional smooth manifold.

Any solution u ∈ Meven
4 has a nodal set which is asymptotic to 4 half oriented

affine lines and, given the symmetries of u, these half oriented affine lines are images
of each other by the symmetries with respect to the x-axis and the y-axis. In
particular, there is at most one of these half oriented affine line

λ := r e⊥ + R e,

which is included in the upper right quadrant Qx. Writing e = (cos θ, sin θ) where
θ ∈ (0, π/2), we define

F : Meven
4 → (−π/4, π/4)× R,

u 7→ (θ − π/4, r).

For example, the image by F of the saddle solution defined in [6] is precisely (0, 0),
while the images by F of the solutions constructed in [8] correspond to parameters
(θ, r) where θ is close to ±π/4 and r is close to ∓∞.

Remark 4.1. Let us observe that, if u ∈Meven
4 , then ū defined by

ū(x, y) = −u(y, x),

also belongs to Meven
4 and

F(ū) = −F(u).

In this paper, we are interested in understanding the structure of Meven
4 . To

begin with, we prove that :

Theorem 4.3 (Nondegeneracy). [19] Any u ∈M4 is nondegenerate and hence any
u ∈Meven

4 is even-nondegenerate.



850 MICHA L KOWALCZYK, YONG LIU AND FRANK PACARD

As a consequence of this result, we find that all connected components ofMeven
4

are one-dimensional smooth manifolds. Moreover, as a byproduct of the proof of
this result, we also obtain that the image by F of any connected component of
Meven

4 is a smooth immersed curve in (−π/4, π/4)×R. Thanks to Remark 4.1, we
find that the image of Meven

4 by F is invariant under the action of the symmetry
with respect to (0, 0).

To proceed, we define the classifying map to be the projection of F onto the first
variable

P : Meven
4 → (−π/4, π/4),

u 7→ θ − π/4.
Our second result reads :

Theorem 4.4 (Properness). [19] The mapping P is proper, i.e. the pre-image of
a compact in (−π/4, π/4) is compact in Meven

4 (endowed with the topology induced
by the one of S4).

Let M0 be the connected component ofMeven
4 which contains the saddle solution.

We claim that the properness of P implies that the image by P of M0 is the
entire interval (−π/4, π/4). The proof of this claim goes as follows : we argue by
contradiction and assume that P : M0 → (−π/4, π/4) is not onto. Recall that if
u ∈Meven

4 , then ū defined by

ū(x, y) := −u(y, x),

also belongs to Meven
4 and M0 is also invariant under this transformation. We will

write ū = J u. The properness of P implies thatM0 is compact and one dimensional.
Hence, it must be diffeomorphic to S1. Obviously J : M0 →M0 is a diffeomorphism
and the saddle solution is a fixed point of J . Since M0 is diffeomorphic to S1, there
must be at least another fixed element v ∈ M0 which is a fixed point of J . Then,
the zero set of v is union of the two lines y = ±x. But, according to [6] or [13], a
solution of (1.1) having as zero set the two lines y = ±x is the saddle solution. This
is a contradiction and the proof of the claim is complete. Note that this argument
does not guarantee that there are no other components in M4, and in particular
there may exist compact connected components in Meven

4 . To exclude this last
possibiility we have:

Theorem 4.5. [19] All connected components of Meven
4 are diffeomorphic to R,

i.e. there is no closed loop in Meven
4 .

Looking at the image by P of the connected component ofMeven
4 which contains

the saddle solution, we conclude from the above results that :

Theorem 4.6 (Surjectivity of P). [19] The mapping P is onto.

As a consequence, for any θ ∈ (0, π/2), there exists a solution u ∈Meven
4 whose

nodal set at infinity is asymptotic to the half oriented affine lines whose angles with
the x-axis are given by θ, π − θ, π + θ and 2π − θ.

Given all the evidence we have, it is tempting to conjecture thatMeven
4 has only

one connected component and that the image ofMeven
4 by F is a smooth embedded

curve. Moreover, it is very likely that P is a diffeomorphism from Meven
4 onto

(−π/4, π/4). Observe that Theorem 4.6 already proves that P is onto. To prove
that P is a diffeomorphism is so far beyond our reach. But in the next section we
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will show that M4 consist of just one connected component which contains both
the saddle solution and the solutions with almost parallel ends.

To complete this list of results, we mention an interesting by-product of the proof
of Theorem 4.3. Assume that u is a solution of (1.1) and denote by

L := −∆ + F ′′(u),

the linearized operator about u. Recall that, if Ω is a bounded domain in R2, then
the index of L in Ω is given by the number of negative eigenvalues of the operator
L which belong to W 1,2

0 (Ω). Following [11], we have the :

Definition 4.2. The function u, solution of (1.1), has finite Morse index if the
index of every bounded domain Ω ⊂ R2 has a uniform upper bound.

In [19], we prove the :

Theorem 4.7 (Morse index). [19] Any 2k-ended solution of (1.1) has finite Morse
index.

Since the Morse index of a 2k-ended solution u is finite (equal to m), we know
from [11], that there exists a finite dimensional subspace E ⊂ L2(R2), with dimE =
m, which is spanned by the eigenfunctions φ1, . . . , φm of the operator L, correspond-
ing to the negative eigenvalues µ1, . . . , µm of L.

4.2. Uniqueness. Our goal in this section is to show thatM4 consists of just one
connected component, as we have conjectured above. We refer the reader to [18]
for the details of the proofs of the results we describe below.

Our point of departure is the existence result in [8], where we have shown that
there exists a small number ε0 such that for all 0 < θ, with tan θ < ε0 there exists a
4-ended solution with corresponding angles of the half lines λ+

j , j = 1, . . . , 4 given
by

θ1 = θ, θ2 = π − θ, θ3 = θ + π, θ4 = 2π − θ.
Observe that the fact that θ is small implies that the ends of this solution are
almost parallel and their slopes given by ±ε, ε = tan θ, are small as well. Clearly,
by symmetry, it is easy to see that there exist also solutions with parallel ends whose
angles are given by:

θ1 = π/2− θ, θ2 = π/2 + θ, θ3 = −θ + 3π/2, θ4 = 3π/2 + θ.

In this case we have tan θ > 1
ε0

.
In principle the value of the classifying map P map is not enough to identify in a

unique way a solution to (1.1) inMeven
4 . However for solutions with almost parallel

ends we have the following:

Theorem 4.8. [18] There exists a small number ε0 such that for any two solutions
u1, u2 ∈Meven

4 satisfying tan θ(u1) = tan θ(u2) < ε0, we have necessarily u1 ≡ u2.

This result gives in some sense classification of the subfamily of the family of
4-ended solutions which contains solutions with almost parallel ends. It says that
this subfamily consists precisely of the solutions constructed in [8]. Let us explain
the importance of this statement from the point of view of classification of all 4-
ended solutions. We recall that by Theorem 4.5 the classifying map is surjective.
Consider for example the connected component M0 ⊂ Meven

4 which contains the
saddle solution U . Theorem 4.5 implies that U can be deformed along M0 to a
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solution with the value of the classifying map arbitrarily close to −π4 or to π
4 , thus

yielding a solution in the subfamily of the solutions with almost parallel ends. But
these solutions are uniquely determined by the values of P, which follows from
the uniqueness statement in Theorem 4.8. As a result we obtain the following
classification theorem:

Theorem 4.9. [18] Any solution u ∈ Meven
4 belongs to M0 and is a continuous

deformation of the saddle solution U .

We observe that according to the conjecture of De Giorgi in two dimensions any
bounded solution u which is monotonic in one direction must be one dimensional
and equal to u(x) = H(a · x + b), i.e. it is a planar solution. In the language of
multiple-end solutions, this solution has two (heteroclinic, planar) ends. Theorem
4.9 gives on the other hand the classification of the family of solutions with four
planar ends. Since the number of ends of a solution to (1.1) must be even, the
family of 4-ended solutions is the natural object to study. In this context, one may
wonder if it is possible to classify solutions to (1.1) assuming for instance that the
nodal sets of ux, and uy have just one component. This question is beyond the
scope of this paper, however since partial derivatives of 4-ended solution satisfy
this assumption it seems reasonable to conjecture that a result similar to Theorem
4.9 should hold in this more general setting. We should mention here that it is in
principle possible to study the problem of classification of solutions assuming for
example that their Morse index is 1. This is natural since the Morse index of u and
the number of the nodal domains of ux and uy are related. We recall here that the
heteroclinic is stable, and from [5] we know that in dimension N = 2 stability of
a solution implies that it is necessarily a one dimensional solution (for the related
minimality conjecture, see for example [28] and [26] and the reference therein). We
expect that in fact the family of 4-ended solutions should contain all multiple-end
solutions with Morse index 1. We recall here that the Morse index of the saddle
solution is 1 [29].

Let us now explain the analogy of Theorem 4.9 with some aspects of the theory
of minimal surfaces in R3. In 1834, Scherk discovered an example of singly-periodic,
embedded, minimal surface in R3 which, in a complement of a vertical cylinder, is
asymptotic to 4 half planes with angle π

2 between them. This surface, after a rigid
motion, has two planes of symmetry, say {x2 = 0} plane and {x1 = 0}, and it is
periodic, with period 1 in the x3 direction. If θ is the angle between the asymptotic
end of the Scherk surface contained in {x1 > 0, x2 > 0} and the {x2 = 0} plane
then θ = π

4 . This is the so called second Scherk’s surface and it will be denoted here
by Sπ

4
. In 1988 Karcher [15] found Scherk surfaces other than the original example

in the sense that the corresponding angle between their asymptotic planes and the
{x2 = 0} plane can be any θ ∈ (0, π2 ). The one parameter family {Sθ}{0<θ<π

2 }
of these surfaces is the family of Scherk singly periodic minimal surfaces. Thus,
accepting that the saddle solution of the Allen-Cahn equation U corresponds to the
Scherk surface Sπ

4
Theorem 4.5, can be understood as an analog of the result of

Karcher. We note that, unlike in the case of the Allen-Cahn equation, the Scherk
family is given explicitly, for example it can be represented as the zero level set of
the function:

Fθ(x1, x2, x3) = cos2 θ cosh
( x1

cos θ

)
− sin2 θ cosh

( x2

cos θ

)
− cosx3.
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From this it follows immediately that the angle map (which is the classifying map
in this context) Sθ 7→ θ is a diffeomorphism. A corresponding result for the family
Meven

4 is of course more difficult since no explicit formula is available in this case.
We will explore further the analogy of our result with the theory of minimal

surfaces in R3, now in the context of the classification of the 4-ended solutions
in Theorem 4.9. The corresponding problem can be stated as follows: if S is an
embedded, singly periodic, minimal surface with 4 Scherk ends, what can be said
about this surface? It is proven by Meeks and Wolf [23] that S must be one of
the Scherk surfaces Sθ described above (similar result is proven in [27] assuming
additionally that the genus of S in the quotient R3/Z is 0). The key results to prove
this general statement are in fact the counterparts of Theorem 4.8 and Theorem
4.5.

We now sketch the basic elements in the proofs of Theorem 4.8. First of all let
us discuss the existence result in [8] in the particular case of 4-ended solutions. The
point of departure of the construction is the following Toda system{

c0q
′′
1 = −e

√
2(q1−q2)

c0q
′′
2 = e

√
2(q1−q2)

, (4.2)

for which q1 < 0 < q2 and q1(x) = −q2(x), as well as qj(x) = qj(−x), j = 1, 2. Here

c0 =
√

2
24 . Any solution of this system is asymptotically linear, namely:

qj(x) = (−1)j(m|x|+ b) +O(e−2
√

2m|x|), x→∞,
where m > 0 is the slope of the asymptotic straight line in the first quadrant. On the
other hand, given that we only consider solutions whose trajectories are symmetric
with respect to the x-axis, the value of the slope m determines the unique solution
of (4.2). When the asymptotic lines become parallel then m → 0 or m → ∞. By
symmetry it suffices to consider the case m → 0 and in this paper we will denote
small slopes by m = ε and the corresponding solutions by qε,j . Note that if by q1,j

we denote a solution with slope m = 1 then

qε,j(x) = q1,j(εx) +
(−1)j√

2
log

1

ε
.

Then, the existence result in [8] implies that given a small ε, there exists a 4-ended
solution u to (1.1) whose nodal set N(u) is close to the trajectories of the Toda
system given by the graphs y = qε,j(x). Although we do not use directly this
result in [18] but the idea of relating solutions of the Toda system and the 4-ended
solutions of (1.1) that comes from [8] is very important. In fact, what we want to
achieve is to parameterize the manifold of 4-ended solutions with almost parallel
ends using corresponding solutions of the Toda system as parameters. To do this we
first obtain a very precise control of the nodal sets of the 4-ended solutions. The key
observation is that in every quadrant the nodal set N(u) of any 4-ended solution is
a bigraph, and if we assume that the slope of its asymptotic lines is small then it
is a graph of a smooth function, both in the lower and in the upper half plane. We
have then

N(u) = {(x, y) ∈ R2 | y = fε,j(x), j = 1, 2, fε,1(x) < 0, fε,2(x) = −fε,1(x)},
for any u ∈ Meven

4 , with ε = tan θ(u). Then we prove that for each ε small there
exists a constant vε, with |vε| = O(εα) such that

fε,1(x) + vε − qε,1(x) = O(εαe−εβ|x|), x→∞
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with some positive constants α, β. Next, we define a suitable approximate 4-ended
solution based on the solution of the Toda system with slope ε. To explain this,
by Ñε,1 we denote the graph of the function y = qε,1(x), which is contained in the

lower half plane. In a suitable neighborhood of the curve Ñε,1 we introduce Fermi

coordinates x = (x, y) 7→ (x1, y1), where y1 denotes the signed distance to Ñε,1, and

x1 is the x coordinate of the projection of the point x onto Ñε,1. With this notation
we write locally the solution u, with ε = tan θ(u) in the form

u(x) = H(y1 − hε(x1)− wε) + φ.

This definition is suitably adjusted to yield a globally defined function. Then it
is proven that wε is a small constant, and hε : R → R and φ : R2 → R are small
functions, of order O(εα) in some weighted norms.

Finally we prove the Lipschitz dependence of the solution u on wε and the func-
tion hε and conclude the proof of Theorem 4.8 using the mapping property of the
linearized Toda system.
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