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Abstract. This paper deals with the long-time behavior of solutions of nonlin-
ear reaction-diffusion equations describing formation of morphogen gradients,

the concentration fields of molecules acting as spatial regulators of cell differ-

entiation in developing tissues. For the considered class of models, we establish
existence of a new type of ultra-singular self-similar solutions. These solutions

arise as limits of the solutions of the initial value problem with zero initial

data and infinitely strong source at the boundary. We prove existence and
uniqueness of such solutions in the suitable weighted energy spaces. Moreover,

we prove that the obtained self-similar solutions are the long-time limits of
the solutions of the initial value problem with zero initial data and a time-

independent boundary source.

1. Introduction. In the studies of reaction-diffusion equations, one canonical prob-
lem deals with the following equation [2, 11]:

ut = ∆u− up, (x, t) ∈ Rd × (0,∞). (1)

Here p > 1 is a constant and u = u(x, t) > 0 can be viewed as the concentration of a
chemical species diffusing in the d-dimensional space subject to degradation whose
rate is an increasing function of the species concentration. Usually, one considers
the associated Cauchy problem with some non-negative initial data u(x, 0) = u0(x).
During the 1980’s, this problem attracted a considerable attention, in particular in
the case of measure-valued initial data (e.g., when u0 is a Dirac mass) [2, 3, 8, 13,
17,24]. In the course of these studies, it was discovered that (1) possess self-similar
solutions for all 1 < p < (2+d)/d, which are smooth for all t > 0 and converge to zero
outside the origin, while blowing up at the origin when t → 0+ [3, 11] (see also [8]
for a variational approach). These solutions play important roles in determining
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the long-time behavior of the solutions of the Cauchy problem for general classes of
initial data and in some sense describe the transient dynamics in systems described
by (1) [4, 10, 11, 15, 17, 24, 31]. In particular, a special class of self-similar solutions
of (1) called very singular solutions attract the physically important class of initial
data with sufficiently fast asymptotic decay [9, 11,17].

Equation (1) with p ≥ 1 on domains with boundaries also arises as a canonical
model of morphogen gradient formation (for recent reviews, see [20,25,27,30]). Mor-
phogen gradients are concentration fields of molecules acting as spatial regulators
of cell differentiation in developing tissues [22]. In particular, the case p > 1 was
proposed to describe a robust patterning mechanism whereby morphogen increases
the production of molecules which, in turn, increase the rate of morphogen degra-
dation [7]. For example, a protein called Sonic hedgehog (Shh) is known to induce
the expression of its receptor Patched, which both transduces the Shh signal and
mediates Shh degradation by cells in the Drosophila embryo [5, 16].

An important aspect of morphogen dynamics is the presence of localized sources
at the boundary of the morphogenetic field. This leads to the need to consider
initial boundary value problems, whose prototype is the following one-dimensional
problem:  ut = uxx − up (x, t) ∈ [0,∞)× (0,∞),

ux(0, t) = −α t ∈ (0,∞),
u(x, 0) = 0 x ∈ [0,∞).

(2)

This problem can be viewed as an extension of the Cauchy problem for (1) defined
for x > 0 in the presence of a boundary source at x = 0. Here α > 0 is a constant
characterizing the source strength of morphogen production, and the zero initial
condition corresponds to the absence of the morphogen at the onset of patterning. In
what follows, we will restrict our attention only to this simplest model of morphogen
gradient formation.

In the context of morphogenesis, one is often interested in the establishment of
a stationary morphogen profile and the transient dynamics that leads to it. The
stationary problem for (2) can be written as the following boundary value problem:

vxx − vp = 0, vx(0) = −α, v(∞) = 0, (3)

whose unique solution for any p > 1 is explicitly given by

v(x) =

(
2(p+ 1)

(p− 1)2

) 1
p−1

(a+ x)−
2

p−1 , a =

(
2

p
p+1 (p+ 1)

1
p+1

p− 1

)
α−

p−1
p+1 . (4)

In fact, it is easy to see that the stationary solution v(x) in (3) is the limit of the
solution u(x, t) of (2) as t → ∞ for each x ≥ 0, and is approached monotonically
from below [14]. However, as we noted in [14], this approach is not uniform in x
and for each fixed x ≥ 0 occurs on the diffusive time scale τp(x) = O(x2), which
diverges as x→∞. Thus, the timing of the establishment of the steady morphogen
concentration at a given point depends rather sensitively on the location of that
point.

To better understand the dynamics of the approach of the solution of (2) to
the stationary solution, we undertook numerical studies of the initial boundary
problem in (2) for various values of p > 1. In those studies, we discovered that
when the ratio of the solution at a given x to the value of the stationary solution
at x is plotted vs. the diffusion similarity variable x/

√
t, the numerical solution

approaches some universal limit curve depending only on the value of p [23]. This
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Figure 1. Numerical solution of (2) in self-similar variables for
p = 2 and α = 1. Thin lines show snapshots of the solution cor-
responding to t = 0.1, 1, 10, 100 (the direction of time increase is
indicated by the arrow). The bold line shows the asymptotic solu-
tion.

process is illustrated in Fig. 1, where the results are presented for the biophysically
important case p = 2. This observation suggested to us some hidden self-similarity
in the behavior of solutions of (2) [1]. A simple scaling argument indicates that the
long-time behavior of the solution of (2) for a fixed value of α > 0 is closely related
to the behavior of solutions of (2) at fixed x > 0 and t > 0 as α → ∞ [23]. We
found numerically that in the limit α→∞ the solutions of (2) attain a self-similar
profile (see the following section for precise definitions) [23]. The purpose of this
paper is to substantiate these numerical observations by establishing existence and
properties of what we will call ultra-singular self-similar solutions in the limit of
infinite boundary source strength. We also prove that these solutions are indeed
the long-time limits of the solutions of (2) in the above sense.

We note that the solutions constructed by us form a new class of self-similar
solutions to (1) in d = 1. Indeed, our solutions can be trivially extended to the
whole real line by a reflection and can be viewed as singular solutions of (1) that
blow up at the origin. We point out that these solutions are different from the self-
similar solutions studied in [3, 11]. The ultra-singular solutions of (1) constructed
by us can be viewed as the more singular counterparts of the very singular solutions
of [3] in the following sense: the singularity in the former is concentrated on a half-
line (x = 0, t > 0) in the (x, t) plane, while the singularity in the latter occurs only
at a single point (x = 0, t = 0). Similarly, our convergence result for the solutions
of (2) with α ∈ (0,∞) may be viewed as a counterpart of the result of [17], in
the sense that in the former case the solution can be viewed as the distributional
solution of (1) with an added term 2αδ(x) in the right-hand side, while in the latter
case one can think of the solution as the distributional solution of (1) with the term
αδ(x)δ(t) added to the right-hand side.

Before concluding this section, let us briefly mention a few possible extensions and
open problems related to our present work. It would be interesting to understand
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the role our self-similar solutions play for the singular solutions of the initial value
problem associated with (1) for general non-zero initial data. Let us point out that
even the basic questions of existence and uniqueness of such singular solutions for
the considered parabolic problems in suitable function classes are currently open
(see [29] for a very recent related work). Other natural extensions include higher
dimensional versions of the considered problem, as well as a proof of global stability
of self-similar solutions. These studies are currently ongoing. From the point of view
of applications, it is also important to consider solutions of (1) with added time-
varying singular sources, for which both the very singular and the ultra-singular
solutions may be relevant.

Our paper is organized as follows. In Sec. 2, we introduce a singular version of the
initial boundary value problem in (2) and prove existence, uniqueness, monotonicity
and limiting behavior of the self-similar solution to this singular problem. Then, in
Sec. 3 we prove that the obtained self-similar solutions are the long-time limits of
the solutions of (2) in an appropriate sense.

2. Singular solutions and the similarity ansatz. Let us consider (2) with
infinite source at the boundary, i.e., the following singular initial boundary value
problem:  ut = uxx − up (x, t) ∈ (0,∞)× (0,∞),

u(0, t) =∞, t ∈ (0,∞),
u(x, 0) = 0 x ∈ (0,∞).

(5)

By a solution to (5), we mean a classical solution for all (x, t) ∈ (0,∞) × (0,∞)
decaying sufficiently fast as x → +∞ for all t > 0, and continuous up to t = 0 for
all x > 0. Note that for each p > 1 this problem possesses a singular stationary
solution

v∞(x) =

(
2(p+ 1)

(p− 1)2

) 1
p−1

(
1

x

) 2
p−1

, (6)

which is the limit of vα(x) as α→∞ for each x > 0.
Consistently with the discussion in the introduction, we now seek solutions of

(5) in the form

u(x, t) = v∞(x)φ(ζ), ζ = ln(x/
√
t), (7)

for some function 0 ≤ φ(ζ) ≤ 1, which will be referred to as the self-similar profile.
Substituting the similarity ansatz from (7) into (5), after some algebra we obtain
the following equation for the self-similar profile φ:

d2φ

dζ2
+

(
e2ζ

2
− p+ 3

p− 1

)
dφ

dζ
+

2(p+ 1)

(p− 1)2
φ(1− φp−1) = 0, (8)

which must hold for all ζ ∈ (−∞,∞), supplemented with the limit behavior

lim
ζ→−∞

φ(ζ) = 1, lim
ζ→−∞

dφ(ζ)

dζ
= 0, (9)

lim
ζ→+∞

φ(ζ) = 0, lim
ζ→+∞

dφ(ζ)

dζ
= 0. (10)

Existence and multiplicity of solutions of (8) satisfying (9) and (10) are not at all a
priori obvious in view of both the non-linearity and the presence of singular terms
in the considered boundary value problem. In [23], we were able to construct such
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solutions numerically for several values of p. Here we establish their existence and
uniqueness for all p > 1 within a natural class of functions.

We will prove existence and uniqueness of solutions of (8) satisfying (9) and (10)
in the weighted Sobolev space H1(R, dµ), which is obtained as the completion of
the family of smooth functions with compact support with respect to the Sobolev
norm ||.||H1(R,dµ), defined as

||w||2H1(R,dµ) = ||wζ ||2L2(R,dµ) + ||w||2L2(R,dµ), (11)

where ||w||2L2(R,dµ) =
∫
R w

2(ζ)dµ(ζ), and the measure dµ is

dµ(ζ) = ρ(ζ)dζ, ρ(ζ) = exp

{
e2ζ

4
−
(
p+ 3

p− 1

)
ζ

}
. (12)

Our existence and uniqueness result is given by the following theorem.

Theorem 2.1. There exists a unique weak solution φ of (8), such that φ − η ∈
H1(R, dµ), with µ defined in (12), for every η ∈ C∞(R), such that η(ζ) = 1 for all
ζ ≤ 0 and η(ζ) = 0 for all ζ ≥ 1. Furthermore, φ ∈ C∞(R), satisfies (8) classically
and 0 < φ < 1. In addition, φ is strictly decreasing and satisfies (9) and (10).

Before proceeding to the proof of Theorem 2.1, let us establish a basic technical
lemma needed to deal with the weighted spaces introduced above, which is an
extension of [21, Lemma 4.1] for exponentially weighted Sobolev spaces (cf. also [8,
Lemma 1.5]).

Lemma 2.2. Let w ∈ H1(R, dµ). Then there exists R0 > 0 such that∫ ∞
R

w2dµ ≤ e−2R

2

∫ ∞
R

(
dw

dζ

)2

dµ ∀R ≥ R0, (13)

and

ρ(R)w2(R) ≤ 2e−R
∫ ∞
R

(
dw

dζ

)2

dµ for a.e. R ≥ R0. (14)

Moreover, there exists R′0 < 0 such that∫ R

−∞
w2dµ ≤ 8

(
p− 1

p+ 3

)2 ∫ R

−∞

(
dw

dζ

)2

dµ ∀R ≤ R′0, (15)

and

ρ(R)w2(R) ≤ 8

(
p− 1

p+ 3

)∫ R

−∞

(
dw

dζ

)2

dµ for a.e. R ≤ R′0. (16)

Proof. Arguing by approximation, observe that by an explicit computation and an
application of Cauchy-Schwarz inequality we have

1

2

(
w2(R)ρ(R) +

∫ ∞
R

(
d

dζ
ln ρ

)
w2dµ

)

= −
∫ ∞
R

w
dw

dζ
dµ ≤

(∫ ∞
R

w2dµ

∫ ∞
R

(
dw

dζ

)2

dµ

)1/2

. (17)

In particular, (12) and (17) yield(
e2R

2
− p+ 3

p− 1

)2 ∫ ∞
R

w2dµ ≤ 4

∫ ∞
R

(
dw

dζ

)2

dµ, (18)
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which for large enough R implies (13). Next, since d
dζ ln ρ > 0 for large positive ζ,

dropping the second term in the left-hand side of (17) and using (13), we obtain
(14).

Similarly, we note that

1

2

(
w2(R)ρ(R)−

∫ R

−∞

(
d

dζ
ln ρ

)
w2dµ

)

=

∫ R

−∞
w
dw

dζ
dµ ≤

(∫ R

−∞
w2dµ

∫ R

−∞

(
dw

dζ

)2

dµ

)1/2

, (19)

which implies (
p+ 3

p− 1
− e2R

2

)2 ∫ R

−∞
w2dµ ≤ 4

∫ R

−∞

(
dw

dζ

)2

dµ, (20)

and thus (15) holds for sufficiently large negative R. Finally since d
dζ ln ρ < 0 for

large negative ζ, from (19) and (15) we obtain (16).

Proof of Theorem 2.1. The proof consists of five steps.

Step 1. We first note that (8) is the Euler-Lagrange equation for the energy func-
tional

E [φ] =

∫
R

{
1

2

(
dφ

dζ

)2

+
η

p− 1
− φ2(p+ 1− 2φp−1)

(p− 1)2

}
dµ, (21)

where η(ζ) is as in the statement of the theorem. Indeed, the functional E in (21)
is continuously differentiable in H1(R, dµ) in the natural admissible class A defined
as:

A := {φ ∈ H1
loc(R) : φ− η ∈ H1(R, dµ), 0 ≤ φ ≤ 1}. (22)

Note that the role of η in the definition of E is to make φ(ζ) → 0 as ζ → +∞ and
φ(ζ) → 1 as ζ → −∞ sufficiently fast, ensuring that the integral in (21) converges
for all φ ∈ A. The precise form of η(ζ) is unimportant and it is easy to see that the
class A does not depend on the choice of η. Then it is easy to see that the weak
form of (8) in H1(R, dµ) is precisely the condition that the Fréchet derivative of
E [φ] is zero.

Step 2. We now establish weak sequential lower-semicontinuity and coercivity of
the functional E in the admissible class A in the following sense: let φk = η + wk,
where wk ⇀ w in H1(R, dµ). Then 1) lim infk→∞ E [φk] ≥ E [φ], where φ = η + w,
and 2) if E [φk] ≤M for some M ∈ R, then ||wk||H1(R,dµ) ≤M ′ for some M ′ > 0.

Let us introduce the notation E [φ, (a, b)] for the integral in (21), in which inte-
gration is over all ζ ∈ (a, b). Then, using (13) from Lemma 2.2 we find that for
R ≥ 1

E [φk, (R,+∞)] ≥
(
e2R − p+ 1

(p− 1)2

)∫ ∞
R

w2
kdµ > 0. (23)

Similarly, taking into account that the integrand in (21) is non-negative for ζ ≤
0, we have E [φk, (−∞,−R)] ≥ 0 for every R ≥ 0. Since E [·, (−R,R)] is lower-
semicontinuous by standard theory [6], we obtain E [φk] ≥ E [φk, (−R,R)], yielding
the first claim by passing to the limit R→∞.
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To prove coercivity, we first note that by (13)

E [φk, (R,+∞)] ≥
∫ ∞
R

{
1

2

(
dwk
dζ

)2

− p+ 1

(p− 1)2
w2
k

}
dµ

≥ 1

4

∫ ∞
R

{(
dwk
dζ

)2

+ w2
k

}
dµ, (24)

for large positiveR. On the other hand, since p−1−φ2(p+1−2φp−1) ≥ (p−1)(1−φ)2

for all 0 ≤ φ ≤ 1, we have

E [φk, (−∞, 0)] ≥
∫ 0

−∞

{
1

2

(
dwk
dζ

)2

+
w2
k

p− 1

}
dµ. (25)

Finally, by boundedness of φk and η, we also have

E [φk, (0, R)] ≥ 1

2

∫ R

0

{(
dwk
dζ

)2

+ w2
k

}
dµ− CR, (26)

for some C > 0 independent of wk. So the second claim follows.

Step 3. In view of the lower-semicontinuity and coercivity of E proved in Step 2,
by the direct method of calculus of variations there exists a minimizer φ ∈ A of
E . Noting that since the barriers φ = 0 and φ = 1 solve (8) as well, we also have
(see e.g. [19]) that φ is a weak solution of (8) by continuous differentiability of E in
H1(R, dµ) noted in Step 1. Furthermore, by standard elliptic regularity theory [12],
φ ∈ C∞(R) and is, in fact, a classical solution of (8). Also, by strong maximum
principle [12], we have 0 < φ < 1. To show monotonicity, suppose, to the contrary,
that φ(a) < φ(b) for some a < b. Then φ(ζ) attains a local minimum for some
ζ0 ∈ (−∞, b). However, by (8) we have d2φ(ζ0)/dζ2 < 0, giving a contradiction.
By the same argument dφ/dζ = 0 is also impossible for any ζ ∈ R. Finally, since
φ− η ∈ H1(R, dµ), monotonicity implies the first condition in (9) and (10).

Step 4. We now discuss the asymptotic behavior of minimizers obtained in Step 3
as ζ → ±∞ and, in particular, prove the second parts of (9) and (10) and the fact
that every solution of (8) belonging to A has the same asymptotic decay, which will
be needed later. Let us first consider the case of ζ → +∞. Performing the Liouville
transformation by introducing

ψ = φ
√
ρ ∈ L2(R,+∞), (27)

where ρ is defined in (12) and R ≥ 1 is arbitrary, we rewrite (8) in the form

d2ψ

dζ2
= q(ζ)ψ, ζ ≥ R. (28)

Here q(ζ) = q0(ζ) + q1(ζ), where

q0(ζ) =
1

4

(
e4ζ

4
+
p− 5

p− 1
e2ζ + 1

)
, (29)

q1(ζ) =
2(p+ 1)

(p− 1)2
φp−1(ζ). (30)

Observe that q(ζ) ≥ q0(ζ) ≥ 1
4 > 0 for all ζ ≥ R, with R sufficiently large positive.

Therefore, (28) has two linearly-independent positive solutions ψ1 and ψ2, such that
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ψ1 → 0 and ψ2 →∞ together with their derivatives as ζ → +∞ (see e.g. [28]). In
particular, ψ = Cψ1 ∈ L2(R,+∞) for some 0 < C <∞, and by direct computation

dφ

dζ
=

C
√
ρ

(
dψ1

dζ
− ψ1

2

d

dζ
ln ρ

)
→ 0 as ζ → +∞. (31)

On the other hand, as follows from (14), we have

q1(ζ) = o(ρ
1−p
2 ), (32)

so q1(ζ) has a super-exponential decay as ζ → +∞. Let ψ0 be the unique positive
solution of (28) with q = q0 and ψ0(R) = 1 which goes to zero as ζ → +∞. Then
we claim that ψ1(ζ)/ψ0(ζ) → c for some 0 < c < ∞. Indeed, functions ψ1 and ψ0

satisfy

d2ψ1

dζ2
= (q0(ζ) + q1(ζ))ψ1,

d2ψ0

dζ2
= q0(ζ)ψ0, ζ ≥ R. (33)

Multiplying the first and the second equation of (33) by ψ0 and ψ1, respectively,
and taking the difference, we obtain

d

dζ

(
ψ0
dψ1

dζ
− ψ1

dψ0

dζ

)
= q1(ζ)ψ0ψ1. (34)

Integrating this equation and taking into account that ψ0, ψ1 and their derivatives
vanish as ζ → +∞, we have

ψ0(ζ)
dψ1(ζ)

dζ
− ψ1(ζ)

dψ0(ζ)

dζ
= −

∫ ∞
ζ

q1(s)ψ0(s)ψ1(s)ds, (35)

and therefore

d

dζ
ln

(
ψ1

ψ0

)
= −

∫ ∞
ζ

q1(s)
ψ1(s)ψ0(s)

ψ1(ζ)ψ0(ζ)
ds. (36)

Integrating this equation again, we obtain

ln

(
ψ1(ζ)

ψ0(ζ)

)
= ln

(
ψ1(R)

ψ0(R)

)
−
∫ ζ

R

∫ ∞
σ

q1(s)
ψ1(s)ψ0(s)

ψ1(σ)ψ0(σ)
dsdσ. (37)

In a view of boundedness of functions ψ0 and ψ1, we have |ψ0(s)/ψ0(σ)|, |ψ1(s)/ψ1

(σ)| ≤ C for some C > 0 and all s ≥ σ ≥ R. Moreover, the estimate in (32) gives
|q1(s)| ≤ C ′ exp(−s) for some C ′ > 0 and all s ∈ [R,∞). Therefore, the integral in
the right-hand side of (37) converges:∫ ζ

R

∫ ∞
σ

∣∣∣∣q1(s)
ψ1(s)ψ0(s)

ψ1(σ)ψ0(σ)

∣∣∣∣ dsdσ ≤ C ∫ ζ

R

∫ ∞
σ

e−sdsdσ ≤ Ce−R <∞, (38)

which immediately implies that the ratio of ψ0 and ψ1 approaches a finite non-zero
limit as ζ → +∞.

We can use a similar treatment to establish the asymptotic behavior of minimizers
when ζ → −∞. The Liouville transformation

θ = (1− φ)
√
ρ ∈ L2(−∞, R), (39)

with ρ defined by (12) and arbitrary R ≤ 0 applied to (8) yields

d2θ

dζ2
= r(ζ)θ, ζ ≤ R. (40)
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Here r(ζ) = r0(ζ) + r1(ζ), where

r0(ζ) =
1

4

((
3p+ 1

p− 1

)2

+
p− 5

p− 1
e2ζ +

e4ζ

4

)
, (41)

r1(ζ) =
2(p+ 1)

(p− 1)2

(
φ(1− φp−1)

1− φ
+ 1− p

)
. (42)

By direct computation, note that in the limit ζ → −∞ we have

r0(ζ)→ 1

4

(
3p+ 1

p− 1

)2

, r1(ζ)→ 0−. (43)

Therefore, r0(ζ) ≥ r(ζ) ≥ 1
4 > 0 for all ζ ≤ R with R sufficiently large negative,

and (40) has two linearly-independent positive solutions θ1 and θ2 such that θ1 → 0
and θ2 → ∞ together with their derivatives as ζ → −∞. In particular, θ = Cθ1 ∈
L2(−∞, R) for some 0 < C <∞, and

dφ

dζ
= − C
√
ρ

(
dθ1
dζ
− θ1

2

d

dζ
ln ρ

)
→ 0 as ζ → −∞. (44)

On the other hand, as follows from (16) we have

r1(ζ) = o(ρ−1/2), (45)

so r1(ζ) has an exponential decay as ζ → −∞. Computations practically identical
to those presented above show that the ratio of θ0 (the solution of (40) with r = r0
which decays as ζ → −∞) and θ1 tends to a positive constant as ζ → −∞.

Step 5. We now prove uniqueness of the obtained solution, taking advantage of
a sort of convexity of E similar to the one pointed out in [18]. Suppose, to the
contrary, that there are two functions φ1, φ2 ∈ A which solve (8). Define

φt :=
√
tφ22 + (1− t)φ21. (46)

We claim that φt ∈ A as well. Indeed, in view of the result of Step 4 we have
m < φ1/φ2 < M for some M > m > 0 and, therefore,

||φt||L2((0,1),dµ) ≤ C,
||φt||2L2((1,∞),dµ) ≤ ||φ1||

2
L2((1,∞),dµ) + ||φ2||2L2((1,∞),dµ), (47)

||1− φt||2L2((−∞,0),dµ) =

∫ 0

−∞

(
1− tφ22 − (1− t)φ21

1 +
√
tφ22 + (1− t)φ21

)2

dµ

≤ C(||1− φ1||L2((−∞,0),dµ) + ||1− φ2||L2((−∞,0),dµ))
2, (48)

||dφt/dζ||2L2(R,dµ) =

∫
R

1

tφ22 + (1− t)φ21

(
tφ2

dφ2
dζ

+ (1− t)φ1
dφ1
dζ

)2

dµ

≤ C(||dφ1/dζ||L2(R,dµ) + ||dφ2/dζ||L2(R,dµ))
2, (49)
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for some C > 0. In fact, it is easy to see that the function E(t) := E [φt] is twice
continuously differentiable for all t ∈ [0, 1]. A direct computation yields

d2E(t)

dt2
=

∫
R

{
φ21φ

2
2

(tφ22 + (1− t)φ21)3

(
φ2
dφ1
dζ
− φ1

dφ2
dζ

)2

+
p+ 1

2p− 2
(φ21 − φ22)2(tφ22 + (1− t)φ21)

p−3
2

}
dµ(ζ). (50)

Therefore, d2E(t)/dt2 > 0 for all t ∈ [0, 1], and so E(t) is strictly convex. However,
since the map t 7→ φt − η is of class C1([0, 1];H1(R, dµ)), which can be seen by a
computation analogous to the one in (50), this contradicts the fact that dE(0)/dt =
dE(1)/dt = 0 by the assumption that φ1 and φ2 solve weakly (8) and hence are
critical points of E . 2

Remark 1. Results of Step 4 of the proof above allow to obtain the precise as-
ymptotic behavior of the solution of (8) constructed in Theorem 2.1 by using the
exact solutions of the associated linearizations of (8) about φ = 0 and φ = 1. These
asymptotics read [23]:

φ(ζ) ∼ exp

(
−e

2ζ

4
+

5− p
p− 1

ζ

)
, ζ → +∞,

1− φ(ζ) ∼ exp

(
2(p+ 1)

p− 1
ζ

)
, ζ → −∞. (51)

3. Long time behavior of solutions for problem (2). In this section we prove
that the ultra-singular solutions constructed in Sec. 2 have a direct relevance to the
long time behavior of solutions for the problem in (2). Specifically, solutions of (2)
converge to self-similar profile φ at the fixed ratio x/

√
t as t → ∞. That is, the

following result holds:

Theorem 3.1. Given α > 0, let u and v be the solutions of (2) and (3), respec-
tively, and set

F (ζ, t) =
u(x, t)

v(x)
, ζ = ln

(
x√
t

)
. (52)

Then

lim
t→∞

F (ζ, t) = φ(ζ) ∀ζ ∈ R. (53)

Moreover,

φ(ξ) ≤ F (ζ, t) ≤ φ(ζ) (54)

where ξ(ζ, t) = ln(eζ + bt−1/2) and b is some large enough constant.

Proof. The proof relies on a direct application of the comparison principle. We
start with a formulation of the comparison principle which will be applied to (2).
Define the following quantities

P [u] = ut − uxx + up, (55)

Q[u] = ux + α, (56)

assume that the functions ū and u satisfy the differential inequalities

P [ū] ≥ 0, t > 0, x > 0, (57)

Q[ū] ≤ 0, t > 0, x = 0, (58)
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and

P [u] ≤ 0, t > 0, x > 0, (59)

Q[u] ≥ 0, t > 0, x = 0. (60)

and, in addition, assume that ū(x, t = 0) = u(x, t = 0) = 0. Such functions are
called super- and sub-solutions for (2) and have the property [26]:

u(x, t) ≤ u(x, t) ≤ ū(x, t), (x, t) ∈ [0,∞)× [0,∞). (61)

In what follows we will explicitly construct sub- and super-solutions for (2).
We first show that the function

u(x, t) = v(x)φ(z), z = ln

(
x+ b√

t

)
, (62)

is a sub-solution, provided b ≥ a is large enough. Here φ verifies (8), (9) and (10),
and a is defined in (4). Direct substitution of (62) into (59) gives:

P [u] =
v(x)

(x+ b)2

×

{
4

p− 1

(
1− x+ b

x+ a

)(
− d

dz
φ

)
+

2(p+ 1)

(p− 1)2

(
1−

(
x+ b

x+ a

)2
)
φ(1− φp−1)

}
.

(63)

In view of the fact that dφ/dz < 0 we have

P [u] ≤ 0 ∀x > 0, ∀t > 0, (64)

provided that b ≥ a.
Next, direct computations also give

Q[u(x = 0, t)] =
2A

(p− 1)a
p+1
p−1

(
1− φ(zb) +

1

b

a(p− 1)

2

d

dz
φ(zb)

)
,

zb = ln

(
b√
t

)
. (65)

Let us show that Q[u(x = 0, t)] ≥ 0 for t > 0 when b is large. To do so, it is enough
to show that

g(z) := 1− φ(z) + ε
d

dz
φ(z) ≥ 0 ∀z ∈ R, (66)

for ε > 0 small. Indeed, observe first that limz→+∞ g(z) = 1 and limz→−∞ g(z) = 0.
So, if (66) is violated, g(z) has a local minimum at some point z∗ ∈ R with g(z∗) < 0.
Since z∗ is a critical point we have

0 =
d

dz
g(z∗) = − d

dz
φ(z∗) + ε

d2

dz2
φ(z∗) =

−
(

1 + ε
e2z

∗

2
− ε p+ 3

p− 1

)
d

dz
φ(z∗)− 2ε

(p+ 1)

(p− 1)2
(φ(z∗)− φp(z∗)). (67)

Therefore, there exists ε ∈ (0, 1) such that

|φz(z∗)| ≤ 1− φ(z∗), (68)

Thus, from the definition of g we have

g(z∗) ≥ (1− ε) (1− φ(z∗)) ≥ 0, (69)
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contradicting our assumption about g(z∗). Finally, choosing b = max{a, a(p−1)2ε }
we have that the conditions in (59) and (60) are satisfied and thus (62) is indeed a
sub-solution for u.

Now we turn to the construction of a super-solution, which we will seek in the
form

ū(x, t) = v(x)φ(ζ), ζ = ln

(
x√
t

)
. (70)

Straightforward computations give

P [ū(x, t)] =
v(x)

x2

{ 4

p− 1

(
1− x

x+ a

)(
− d

dζ
φ

)
+

2(p+ 1)

(p− 1)2

(
1−

(
x

x+ a

)2
)
φ(1− φp−1)

}
, (71)

and

Q[ū(x = 0, t)] =
2A

(p− 1)a
p+1
p−1

lim
ζ→−∞

(
1− φ(ζ) +

1√
t

a(p− 1)

2
e−ζ

d

dζ
φ(ζ)

)
, (72)

It is clear that P [ū(x, t)] ≥ 0 for all t > 0 and x > 0. Let us now show that

Q[ū(x = 0, t)] = 0 ∀t > 0. (73)

Since by (9) and (10)

lim
ζ→−∞

(1− φ(ζ)) = 0, (74)

we only need to show that

lim
ζ→−∞

e−ζ
d

dζ
φ(ζ) = 0. (75)

Indeed, multiplying (8) by ρ we have

d

dζ

(
ρ
d

dζ
φ

)
= −2(p+ 1)

(p− 1)2
ρφ(1− φp−1). (76)

Integrating this equation and rearranging terms involving ρ, we obtain

e−ζ
d

dζ
φ(ζ) = exp

(
−e

2ζ

4
+

4

p− 1
ζ

)
×

(
ρ(R)

d

dζ
φ(R) +

2(p+ 1)

(p− 1)2

∫ R

ζ

ρ(s)φ(s)(1− φp−1(s))ds

)
. (77)

By (51) we have ρ(ζ)φ(ζ)(1− φp−1(ζ)) ∼ exp(ζ) as ζ → −∞ and thus the integral
in the right-hand side of (77) converges as ζ → −∞, which readily implies (75).
Therefore, both conditions (57) and (58) are satisfied and so (70) is a super-solution.

Finally, the statement of the theorem follows from (61), (62) and (70). 2

Remark 2. Note that the result of Theorem 3.1 may be extended to problem (2) in
which the constant α is replaced by a bounded, monotonically increasing function
α(t) > 0.
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