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Abstract. We consider a semilinear parabolic equation of the form ut = uxx+
f(u, ux) defined on the circle x ∈ S1 = R/2πZ. For a dissipative nonlinearity

f this equation generates a dissipative semiflow in the appropriate function

space, and the corresponding global attractor Af is called a Sturm attractor.
If f = f(u, p) is even in p, then the semiflow possesses an embedded flow

satisfying Neumann boundary conditions on the half-interval (0, π). This is due

to O(2) equivariance of the semiflow and, more specifically, due to reflection
at the axis through x = 0, π ∈ S1. For general f = f(u, p), where only

SO(2) equivariance prevails, we will nevertheless use the Sturm permutation

σ introduced for the characterization of Neumann flows to obtain a purely
combinatorial characterization of the Sturm attractors Af on the circle. With

this Sturm permutation σ we then enumerate and describe the heteroclinic
connections of all Morse-Smale attractors Af with m stationary solutions and

q periodic orbits, up to n := m+ 2q ≤ 9.

1. Introduction. Consider scalar semilinear parabolic equations of the form

ut = uxx + f(x, u, ux) (1)

defined on the interval 0 ≤ x ≤ 2π with periodic boundary conditions

u(t, 0) = u(t, 2π), ux(t, 0) = ux(t, 2π) , (2)

or equivalently, defined on the circle x ∈ S1 = R/2πZ. Under suitable regularity
and growth assumptions on the nonlinearity f = f(x, u, ux), such equations generate
global semiflows on appropriate function spaces, that is, any solution u(t, ·) of (1),
(2) is defined for all time t ≥ 0 (see, e.g., [31, 45]). Here we assume

f ∈ C2 is dissipative . (3)
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This is guaranteed, for example, by sign and growth conditions of the form

f(x, v, 0) · v < 0 for all large |v| , (4)

|f(x, v, p)| < C(|v|)(1 + |p|γ) , (5)

for all (x, v, p) ∈ S1 ×R2, with some suitable constant 0 ≤ γ < 2, and a continuous
function C(|v|). In fact these specific conditions are sufficient (but not necessary)
to ensure that (1), (2) generates a global dissipative semigroup

SP
f (t) : XP → XP , t ≥ 0 , (6)

on a Sobolev space XP = Hs(S1), 3/2 < s < 2, which embeds into C1(S1). See,
for example, [4, 40, 41, 23, 10] and the references included there. Here and onwards
the superscript P stands for the periodic boundary conditions (2) on the interval
(0, 2π). We recall the definition of XP in terms of the fractional power space for the
Laplacian ∂xx under periodic boundary conditions, that is XP := D((id−∂xx)sP).
Fourier expansion representation of the elements u ∈ XP,

u =
∑
k≥0

ak cos kx+ bk sin kx , (7)

provides the Sobolev norm ‖ · ‖XP as

‖u‖2XP =
∑
k≥0

(1 + k2)s(a2k + b2k) . (8)

The dissipative property of the semigroup SP
f (t), t ≥ 0, requires the existence

of a fixed large ball in XP in which any solution u(t, ·) eventually stays for all
time t ≥ t0(u(0, ·)). This property is ensured by conditions (4), (5). It entails the
existence of a nonempty global attractor

AP
f ⊂ XP (9)

which is the maximal compact invariant subset of the state space XP and consists
of all globally defined bounded orbits of the semiflow, see [26, 6, 27]. In particular
any solution u(t) = u(t, ·) of (1), (2), has a nonempty ω-limit set in AP

f . To

emphasize the Sturm type nonlinear nodal properties of equation (1), we call the
global attractor AP

f a Sturm attractor, in this setting.

In the case of separated boundary conditions the semiflow (6) is gradient and the
ω-limit set of any solution is a unique equilibrium point, [59, 38, 28]. However, in
our case of periodic boundary conditions the semiflow is not gradient-like in gen-
eral. This provides for a more interesting geometric and dynamical structure of AP

f

since, in addition to equilibria, the global attractor may also exhibit nonequilibrium
periodic orbits, (cf. [4, 40, 41]).

The absence of a variational structure for the semiflow complicates the study of
the geometric and dynamical structure of AP

f . To our rescue we have the Sturm

property: for any given pair of solutions u1, u2 of (1), (2) and any fixed t, let
zP = zP(u1(t, ·)−u2(t, ·)) denote the number of strict sign changes of the x-profiles
x 7→ u1(t, x)− u2(t, x) of the difference u1 − u2. Then the zero number

t 7→ zP(u1(t, ·)− u2(t, ·)) , (10)

is a monotone nonincreasing function of time t and is finite for any t > 0, [54, 39, 3].
Moreover zP drops strictly at multiple zeros of the x-profile. It was Matano who
first introduced the closely related concept of the lap number z(ux) + 1, and thus
initiated todays insight into the central importance of the zero number z for the



ATTRACTORS FOR PARABOLIC EQUATIONS 619

global dynamics of PDEs like (1); [39]. As a consequence, for example, the ω-limit
set of any solution u(t) = u(t, ·) of (1), (2) either contains an equilibrium or is a
periodic orbit, (cf. [12]).

The set EP
f of equilibrium solutions of (1), (2) is the set of solutions of the

spatially 2π-periodic ODE boundary value problem (here and where convenient we
use ′ = d/dx)

v′′ + f(x, v, v′) = 0 , x ∈ S1 , (11)

corresponding to the stationary problem. To assure finiteness and nondegeneracy
of the equilibria v ∈ EP

f we assume hyperbolicity. An equilibrium v ∈ EP
f is called

hyperbolic if the linearized problem around v,

λu = uxx + ∂pf(x, v(x), vx(x))ux + ∂vf(x, v(x), vx(x))u , x ∈ S1 , (12)

has no eigenvalue λ with zero real part, Re(λ) = 0. Then the unstable dimension of
v, iP(v), is given by the number of eigenvalues of (12) with strictly positive real part,
counting algebraic multiplicities. In spite of the apparent absence of a variational
context the unstable dimension iP(v) is called the Morse index of v.

Similarly, to require nondegeneracy of a periodic orbit we assume hyperbolicity.
Let u(t) = u(t, ·) denote a nonstationary periodic solution of SP

f (t) with minimal

period τ > 0 and initial value u(0) = u0 ∈ XP. The Floquet multipliers of u(t) are
the eigenvalues of the evolution operator Pτ : XP → XP defined by the linearization
of (1), (2) around the periodic solution u(t), at time t = τ ;

Pτ = DSP
f (τ)u0 . (13)

Then the periodic orbit u = {u(t) : 0 ≤ t < τ} is hyperbolic if µ = 1 is an
algebraically simple eigenvalue of Pτ and is the unique Floquet multiplier of u(t)
on the complex unit circle. The (strong) unstable dimension iP(u) of u is the
number of characteristic multipliers of u(t) with modulus |µ| > 1, counting algebraic
multiplicities. For details see, e.g., [31, 10]. As in the case of equilibria, iP(u) is
called the Morse index of the (hyperbolic) periodic orbit u. Note that the dimension
of the unstable manifold is iP(v), for a hyperbolic equilibrium v, but is iP(u) + 1,
for a hyperbolic periodic orbit u.

Let

SturmP(x, u, ux) (14)

denote the Sturm class of dissipative C2-nonlinearities f = f(x, u, ux), satisfying
(3), for which all equilibria and periodic orbits are hyperbolic. The restricted Sturm
classes

SturmP(u, ux) , SturmP(x, u) , . . . , (15)

are also defined in the obvious way.
The characterization of Sturm attractors AP

f for f ∈ SturmP(x, u, ux) has been

considered in the literature. See for example [10, 33, 34] and their references for
some results on the geometric and dynamical properties of AP

f . We remark that
hyperbolicity of all equilibria and rotating waves is a generic property in the space
G of functions f = f(x, u, ux) endowed with the Whitney C2 topology, [33]. This
is equally true in the space G0 of functions f = f(u, ux). We also quote the fol-
lowing remarkable transversality property of the stable and unstable manifolds of
hyperbolic periodic orbits:
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Theorem 1. (See [10], Theorem 8.2.) The stable and unstable manifolds of two
hyperbolic periodic orbits u± of (1), (2) always intersect transversely,

Wu(u−) ∩ W s(u+) . (16)

In the case of equilibria for semilinear parabolic equations under separated bound-
ary conditions such transversality results have been previously established in [32, 2].

The transversality result of Theorem 1 still holds when one of the periodic orbits
is replaced by a hyperbolic equilibrium. However, in general this result does not
extend to the case of a pair of equilibria v± ∈ EP

f . Furthermore, while homoclinic

behavior to periodic orbits is excluded, cf. [44, 10], homoclinic behavior to equilibria
is known to occur, see [51]. Due to this main difficulty the characterization of Sturm

attractors AP
f for f ∈ SturmP(x, u, ux) is still open.

The main goal of the present paper is a systematic study of heteroclinic orbits
of the problem

ut = uxx + f(u, ux) , x ∈ S1 = R/2πZ , (17)

corresponding to (1), (2) with nonlinearity in the restricted Sturm class

f ∈ SturmP(u, ux) , (18)

where f = f(u, ux) is not allowed to depend on x, explicitly. In contrast with the
general case, the geometric and dynamical structure of Sturm attractors AP

f for

f ∈ SturmP(u, ux) is much more tractable. Our aim here is the presentation of
a purely combinatorial characterization of the heteroclinic orbit structure in the
Sturm attractors AP

f for f in the restricted class (18); see Theorem 3.

The important characteristic feature of our problem (17) is its S1-equivariance
with respect to shifts, due to the x-independent form of the nonlinearity f =
f(u, ux). Indeed fix any shift by ϑ ∈ S1. Then u(t, x + ϑ) is a solution of (17)
whenever u(t, x) itself is. This S1-equivariance is inherited as S1-invariance by the
Sturm global attractor AP

f . Moreover, any periodic orbit of (17) is a rotating wave,

that is, the corresponding solution has the form u(t, x) = v(x− ct) rotating around
S1 with arbitrary constant speed c 6= 0, [4, 40, 41]. Here v is any 2π-periodic
solution of the ODE

v′′ + f(v, v′) + cv′ = 0 , x ∈ S1 = R/2πZ , (19)

again with ′ = d/dx. In the following we let RP
f denote the set of rotating waves of

(17).

It follows from the Sturm property that, for f ∈ SturmP(u, ux), any solution of
(17) either approaches a single (hyperbolic) equilibrium solution or a (hyperbolic)
rotating wave as t→ +∞.

The same remains true in backwards time, for t → −∞, due to the backward
uniqueness result for parabolic equations, see [31]. In fact, the restriction of SP

f (t)

to the set AP
f defines a flow on AP

f and therefore it makes sense even for t < 0.

In addition, for f ∈ SturmP(u, ux) homoclinic behavior to equilibria is also ex-
cluded, see [41]. Then, the global attractor AP

f decomposes as

AP
f = EP

f ∪ RP
f ∪HP

f , (20)

where HP
f denotes the set of heteroclinic orbits, i.e. solutions u(t, ·) which limit to

two different elements of EP
f ∪RP

f for t→ ±∞; see for example [23]. In the following
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we write v ; w, for v, w ∈ EP
f ∪ RP

f , if there exists a connecting heteroclinic orbit
from v to w.

The set of equilibria EP
f for f = f(u, ux) is the set of spatially 2π-periodic

solutions of the ODE

v′′ + f(v, v′) = 0 , x ∈ S1 = R/2πZ . (21)

In general, this set is composed of two types of solutions: the set ZP
f of spatially

homogeneous solutions, v ≡ e, corresponding to the zeros of f(·, 0),

f(e, 0) = 0 ; (22)

and the set FP
f of spatially nonhomogeneous solutions of (21), v = v(x) with v′ 6≡ 0.

We use the letter F because we sometimes view nonhomogeneous equilibria as frozen
waves, i.e. rotating waves with zero wave speed c; compare (21) with (19). However,
spatially nonhomogeneous solutions are always nonhyperbolic in the S1-equivariant
case f = f(u, ux). In fact, in this case u = vx is an eigenfunction of the linearization
at v

λu = uxx + fp(v, vx)ux + fv(v, vx)u , x ∈ S1 , (23)

corresponding to the trivial eigenvalue λ = 0. We also remark that these solutions
always occur in families of shifted copies around x ∈ S1 due to the S1-equivariance of
(21). Therefore we caution the reader that for f ∈ SturmP(u, ux), due to hyperbol-

icity, all equilibria v ∈ EP
f are spatially homogeneous. Hence, for f ∈ SturmP(u, ux)

we have that FP
f = ∅ and

EP
f = ZP

f . (24)

In fact a small perturbation f(u, ux) + εux shows that FP
f = ∅ is a generic property

in the space G0.
The transversality result of Theorem 1 extends to all the hyperbolic elements of

EP
f ∪ RP

f , equilibria and periodic orbits, as follows.

Theorem 2. (See [23], Proposition 3.2.) The stable and unstable manifolds of two
hyperbolic elements v± ∈ EP

f ∪ RP
f of (17) always intersect transversely,

Wu(v−) ∩ W s(v+) . (25)

This transversality and rigidity result is essential for the geometric description
of the Sturm attractor AP

f for f ∈ SturmP(u, ux) and is the main reason why it

possesses the Morse-Smale property; see for example [27] for details on this property.
Using transversality the authors have determined necessary and sufficient condi-

tions for the existence of heteroclinic orbit connections between any pair of hyper-
bolic equilibria or rotating waves of the semiflow SP

f (t) generated by (17). See [23],

and for partial results also [43].
Due to the Morse-Smale rigidity property the heteroclinic connections in the

global attractor AP
f are preserved when the nonlinearity f is changed by a smooth

homotopy that preserves hyperbolicity of all equilibria and periodic orbits. Such a
homotopy was used in [23] to obtain a semiflow SP

f (t) with an embedded semiflow
satisfying Neumann boundary conditions on the half-interval 0 ≤ x ≤ π. The hete-
roclinic connections were subsequently determined from adjacency relations which
encode the configuration of the stationary states of this Neumann problem. Further
on, in Section 4, we will review the appropriate adjacency relation for our problem
(17), namely the notion of (P)-adjacency; see [23].
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To distinguish the problem satisfying Neumann boundary conditions on the half-
interval 0 ≤ x ≤ π from our case of periodic boundary conditions on the interval
0 ≤ x ≤ 2π we will use the superscript N whenever referring to the Neumann
problem. We will also refer to this problem as the Neumann case (N), while our
problem (1), (2) will be called the periodic case (P).

The embedded Neumann problem obtained by the homotopy process also pos-
sesses a Sturm attractor AN

f . A characterization for this Neumann Sturm attractor

AN
f in purely combinatorial terms is provided by a permutation defined on the set

of its stationary states. Assuming hyperbolicity (but not necessarily homogeneity)
of all equilibria v1, . . . , vn in AN

f , the permutation σ = σN
f ∈ S(n) is given by the

ordering of the Neumann boundary values of the equilibria at x = 0 and x = π. To
be specific, if the equilibria are labeled by the ordering at x = 0

v1(0) < v2(0) < · · · < vn(0) , (26)

then σ = σN
f is defined by the labeling at x = π

vσ(1)(π) < vσ(2)(π) < · · · < vσ(n)(π) . (27)

Such a permutation is called Sturm permutation and is an appropriate object for
the combinatorial characterization of Sturm attractors. See [25, 13, 15, 14, 16, 17]
in the case of semilinear parabolic equations under separated boundary conditions
and [49] in the case of finite dimensional discretizations. We also refer to [48, 21,
56, 57, 29, 18, 19, 20] for applications of this characterization, and to [22, 47] for
surveys on the subject.

We will recall some of these results in Section 2. Here it suffices to mention
that a characterization of Neumann Sturm attractors for some restricted classes of
nonlinearities has recently been obtained in terms of particular Sturm permutations
called integrable involutions; see [24]. For f in restricted classes like f = f(u) or
f = f(u, ux) with even dependence on ux the ODE

v′′ + f(v, v′) = 0 (28)

has a first integral which we denote by H = H(v, v′); see [46]. In this case there
is an intimate relation between the Neumann solutions of the ODE (28) on the
interval 0 ≤ x ≤ π, alias the equilibria vj ∈ EN

f , and the 2π-periodic solutions of

(28). This relation is behind all the results obtained for the periodic problem (P)
and is due to the cyclic reflection symmetric shape of the bounded level curves of
H. In fact, extending any equilibrium solution vj(x) to −∞ < x <∞ by reflection
through the boundaries we obtain a periodic solution of (28) with possibly non-
minimal period 2π. Conversely, from any 2π-periodic solution of (28) we obtain,
after an appropriate x-shift, an equilibrium solution vj ∈ EN

f .

To prepare our main result we first define a Sturm permutation σ = σP
f ∈ S(n)

associated to our problem (17) for f ∈ SturmP(u, ux). Let us collect all the values
ej of the spatially homogeneous equilibria vj ≡ ej ∈ EP

f and all the maxima wk and

minima wk of the rotating waves wk ∈ RP
f in a vector (ν1, . . . , νn) such that

ν1 < ν2 < · · · < νn . (29)

Then, σP
f ∈ S(n) is defined as the permutation of {ν1, . . . , νn} corresponding to the

product of all maximum/minimum 2-cycles (wk wk) for the rotating waves wk with
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odd `k = zP(wk,x)/2.

σP
f =

∏
`k odd

(wk wk) . (30)

Note that for a rotating wave wk ∈ RP
f the number zP(wk,x) is related to the Matano

lap number introduced in [39] in the setting of Neumann boundary conditions.
Our main result consists of the following theorem:

Theorem 3. A Sturm permutation σ ∈ S(n) is a Sturm permutation σ = σP
f in the

class f ∈ SturmP(u, ux) of x-periodic S1-equivariant Sturm problems (17) if and
only if σ is an integrable involution, as defined in Section 3.

We postpone the proof of this theorem to Section 5. As a preparation we review
in Section 2 the definition and characterization of Sturm permutations σ for the
case of semilinear parabolic equations defined on the interval 0 ≤ x ≤ π and sat-
isfying Neumann boundary conditions. We recall the Sturm class of nonlinearities
f ∈ SturmN(x, u, ux) for the Neumann problem (N). In Section 3 we review the
characterization of Sturm permutations σ for the restricted (Hamiltonian) class of

nonlinearities f ∈ SturmN(u). We recall the definition of integrable involutions,
and also the extension of the characterization results to the restricted class of x-
reversible nonlinearities in SturmN(u, ux), which are even in p = ux. In Section 4 we
review the adjacency relations for the equilibria EN

f of the Neumann flow and for the

critical elements EP
f ∪ RP

f of (17). In Theorem 8 we establish a convenient link be-
tween the two adjacency relations, and in Theorem 9 we recall the characterization
of heteroclinic orbits for (17) in terms of adjacency.

Finally, in Section 6 we apply Theorems 3 and 9 to describe the heteroclinic
orbit connections of a number of examples of Sturm attractors AP

f with f ∈
SturmP(u, ux). In particular, we use the list of all Sturm permutations σ ∈ S(n)
with n ≤ 9 which are integrable involutions σ = σN

f in the Neumann problem

f ∈ SturmN(u) (cf. [24]) to:

(a) enumerate all Sturm attractors AP
f , f ∈ SturmP(u, ux), with up to m equilib-

ria and q rotating waves for n = m+ 2q ≤ 9; and
(b) determine their heteroclinic orbit connections.

2. Sturm permutations. In this section we recall some results for the semilinear
parabolic equation

ut = uxx + f(x, u, ux) , 0 ≤ x ≤ π , (31)

subject to the Neumann boundary conditions

ux(t, 0) = ux(t, π) = 0 . (32)

For a dissipative C2-nonlinearity f = f(x, u, ux) this problem – the Neumann
case (N) – generates a global dissipative Neumann semiflow

SN
f (t) : XN → XN , t ≥ 0 , (33)

on a Sobolev space XN = Hs(0, π) ∩ {u : ux = 0 at x = 0, π}, 3/2 < s < 2, which
embeds in C1(0, π). Then, due to dissipativeness, the semiflow SN

f (t) also has a
Sturm attractor

AN
f ⊂ XN . (34)
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Besides, SN
f (t) possesses a gradient-like structure due to the existence of a Lyapunov

function; see [59, 40]. Therefore, the Neumann Sturm attractor AN
f decomposes as

AN
f = EN

f ∪HN , (35)

where EN
f denotes the set of equilibria of (31), (32) and HN

f denotes the set of
heteroclinic orbits.

The set EN
f is the set of solutions of the ODE Neumann boundary value problem

(again ′ = d/dx)

v′′ + f(x, v, v′) = 0 , 0 ≤ x ≤ π , (36)

v′(0) = v′(π) = 0 . (37)

Here, as in (12), an equilibrium v ∈ EN
f is called hyperbolic if λ = 0 is not an

eigenvalue of the linearization at v, given by

λu = uxx + ∂pf(x, v(x), vx(x))ux + ∂vf(x, v(x), vx(x))u (38)

for 0 ≤ x ≤ π and satisfying the Neumann boundary conditions (32). The number
iN(v) of positive eigenvalues is the Neumann Morse index of v.

The Sturm class of nonlinearities

SturmN(x, u, ux) (39)

is defined as the set of dissipative f = f(x, u, ux) for which all equilibria of (31),
(32) are hyperbolic. Likewise, the more restrictive classes

SturmN(u) , SturmN(u, ux) , . . . (40)

are also defined. Unlike the equivariant S1 case f ∈ SturmP(u, ux), hyperbolic

equilibria in the x-independent Neumann case f ∈ SturmN(u, ux) need not be
spatially homogeneous.

As before, for f ∈ SturmN(x, u, ux) problem (N) possesses only a finite number
n of equilibria,

EN
f = {v1, . . . , vn} , (41)

which turns out to be odd. The graphs of the equilibria vj ∈ EN
f ,

{(x, vj(x), v′j(x)) : 0 ≤ x ≤ π} , (42)

define a braid on n strands in [0, π]×R2. Traversing the strands from x = 0 to x = π
the braid defines a permutation σ = σN

f ∈ S(n). This is the Sturm permutation

for problem (N), introduced in [25], which is determined by the ordering of the
Neumann boundary values of the equilibria at x = 0 and x = π. To be specific, we
label the equilibria by their ordering at x = 0

v1(0) < v2(0) < · · · < vn(0) . (43)

Then the Sturm permutation σ = σN
f is defined by the labeling at x = π

vσ(1)(π) < vσ(2)(π) < · · · < vσ(n)(π) . (44)

This permutation is essential for the characterization of Sturm attractors. Its dy-
namical importance stems from the fact that Sturm attractors AN

f and AN
g are

C0-orbit equivalent if σN
f = σN

g , see [17]. In particular, as shown in [15], σN
f deter-

mines all heteroclinic orbit connections in AN
f .

Sturm permutations are characterized, in purely combinatorial terms, as dis-
sipative Morse meander permutations; see [16]. For a permutation σ ∈ S(n) to
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be dissipative requires σ(1) = 1 and σ(n) = n. The Morse property requires the
integers (called Morse numbers)

ij(σ) :=

j−1∑
k=1

(−1)k+1 sign(σ−1(k + 1)− σ−1(k)) , 1 ≤ j ≤ n , (45)

to be all nonnegative (empty sums denoting zero). In fact the Neumann Morse
indices of the hyperbolic equilibria vj ∈ EN

f , i.e. the number of strictly positive

eigenvalues λ of (38), satisfy:

iN(vj) = ij(σ) , 1 ≤ j ≤ n . (46)

To define the meander property consider a C1 Jordan curve which intersects the
horizontal axis transversely at exactly n points. Numbering the intersections by
1, 2, . . . , n along the Jordan curve, let σ(1), σ(2), . . . , σ(n) denote the numbering
along the horizontal axis. Any permutation σ ∈ S(n) which is obtained in this way
is called meander permutation; see [5].

Then we have the following characterization of Sturm permutations for the Neu-
mann case (N):

Theorem 4. (See [16], Theorem 1.2.) A permutation σ ∈ S(n) is a Sturm per-

mutation σ = σN
f in the Sturm class f ∈ SturmN(x, u, ux) if and only if σ is a

dissipative Morse meander permutation.

3. Hamiltonian type. Here we consider again the Neumann case (N) and recall
our characterization [24] of Sturm permutations in the more restrictive class of

f ∈ SturmN(u). In this case the ODE (36) in the stationary problem for the
equilibria v ∈ EN

f has the form

v′′ + f(v) = 0 , (47)

which corresponds to the integrable Hamiltonian planar system

v′ = p , p′ = −f(v) . (48)

For this reason when f ∈ SturmN(u) we say that the Sturm attractor AN
f is of

Hamiltonian type.
The Hamiltonian function H = H(v, p) for the pendulum equation (48) is

H(v, p) =
1

2
p2 + F (v) , (49)

where 1
2p

2 is the kinetic energy and the potential F satisfies dF (v)/dv = f(v).
The level sets of H contain essential information regarding the shape of the equi-
librium solutions in the phase plane (v, p). Via the nesting of equilibria vj , the
Hamiltonian imposes constraints on the Sturm permutation σf . In [24] these con-
straints were used to characterize the Sturm permutations in the Hamiltonian class
f ∈ SturmN(u).

Reversibility with respect to the reflection x 7→ −x is a second distinctive prop-
erty of (47). This property immediately implies that the Sturm permutation σ = σN

f

for f ∈ SturmN(u) must necessarily be an involution, i.e. satisfies

σ = σ−1 . (50)

Indeed, the involution x → π − x leaves (47) invariant and maps the set EN
f of

equilibria to itself. The same transformation replaces σ by σ−1, which proves (50).
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Because σ = σN
f is an involution it possesses a unique representation as a product

of disjoint 2-cycles

σ = (c1 c1) . . . (cr cr) . (51)

Sturm permutations σN
f in the class f ∈ SturmN(u) are characterized as inte-

grable involutions (cf. [24]). The integrability property of an arbitrary involution
σ ∈ S(n) is defined in terms of the nesting properties of its 2-cycles (51) as follows:

• For α 6= β the 2-cycles (cα cα) and (cβ cβ) are intersecting if the corresponding
open intervals in R possess a nonempty intersection, that is (cα, cα)∩(cβ , cβ) 6=
∅;

• Intersecting 2-cycles (cα cα) and (cβ cβ) are nested if one of these intervals
strictly contains the other, i.e. if (cβ − cα)(cα − cβ) > 0;

• Nested 2-cycles (cα cα) and (cβ cβ) are centered if the mid-points of these
intervals coincide, i.e. if cα + cα = cβ + cβ ;

• In view of (46) a point j is called σ-stable if ij(σ) = 0. Then the σ-stable core
Cα of the 2-cycle (cα cα) is defined as the set

Cα = {j : ij(σ) = 0, cα < j < cα} , (52)

and two nested 2-cycles (cα cα) and (cβ cβ) are core-equivalent if they share
the same σ-stable core, Cα = Cβ .

Finally an arbitrary involution permutation σ ∈ S(n) is called integrable if the
following three conditions all hold:

(I.1) intersecting 2-cycles are nested;
(I.2) core-equivalent 2-cycles are centered;
(I.3) non-nested 2-cycles are separated by at least one σ-stable point.

We recall the following characterization of Sturm permutations in the Hamilton-
ian class f ∈ SturmN(u):

Theorem 5. (See [24], Theorem 1.) A Sturm permutation σ = σN
f ∈ S(n) is in the

Hamiltonian class f ∈ SturmN(u) if and only if σ ∈ S(n) is an integrable involution.

We remark that the integrability condition, with a complexity of the order O(n2)
steps, is easy to verify for any given Sturm involution σ ∈ S(n).

For future reference we next recall the standard tool widely used to discuss
periodic solutions of (47) – the period map; see for example [55, 53, 52, 50]. Let
v = v(x, a) denote the solution of (47) with initial value v(0, a) = a, v′(0, a) = 0,
and let D ⊂ R denote the open set of real values a ∈ R such that v = v(x, a) is a
periodic nonconstant solution of (47). Then the period map

TN
f = TN

f (a) : D→ R+ (53)

is defined as the minimal period of the solution v = v(x, a), that is

v(TN
f (a), a) = v(0, a) = a , v′(TN

f (a), a) = v′(0, a) = 0 , (54)

and TN
f > 0 is minimal with these properties. Then a ∈ R corresponds to the left

boundary value of a nonconstant equilibrium vj ∈ EN
f , i.e. a = vj(0), if and only if

TN
f (a) = 2π/` , for some ` ∈ N . (55)

The period map was used in an essential way in the proof of Theorem 5.
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The above results, established for the Hamiltonian case f ∈ SturmN(u), also

extend to f ∈ SturmN(u, ux) in the class of reversible nonlinearities f = f(v, p),
which are even in the second variable,

f(v,−p) = f(v, p) . (56)

Indeed this ensures reversibility with respect to the reflection x 7→ −x of the ODE
(36) corresponding to the stationary problem for the equilibria vj ∈ EN

f , which in
this case has the form

v′′ + f(v, v′) = 0 . (57)

For this reason the class of nonlinearities f satisfying (56) is called reversible in [24].

Here the class of reversible f ∈ SturmN(u, ux) will be denoted symbolically by

SturmN(u, u2x) . (58)

The study of the Neumann problem (N) in the case of f ∈ SturmN(u, u2x) is

analogous to the Hamiltonian case f ∈ SturmN(u). In fact, the discussion of the
phase portrait for the planar system

v′ = p , p′ = −f(v, p) , (59)

corresponding to the ODE (57) in the reversible case, is analogous to the study of
the planar system (48). In particular (57) is integrable as an ODE, and the set C of
its periodic orbits is open and bounded in the plane (v, v′) due to dissipativity sign
condition (4) of f . Moreover, C is symmetric with respect to the v-axis and there
is a period map TN

f of class C2,

TN
f : DN → R+ (60)

with DN := {a ∈ R : (a, 0) ∈ C}, which extends the period map (53) introduced for

f ∈ SturmN(u) to the case of reversible f ∈ SturmN(u, u2x). For the details see [24].
These observations are condensed in the following

Theorem 6. A Sturm permutation σ = σN
f ∈ S(n) is in the class of reversible

f ∈ SturmN(u, u2x) if and only if σ is an integrable involution.

4. Heteroclinic connections: S1 versus Neumann. In this section we compare
the characterization of heteroclinic orbits in Sturm attractors, both, under periodic
and Neumann boundary conditions. We first recall the adjacency relations: for
equilibria vj ∈ EN

f in the Neumann problem (N), and for equilibria and rotating

waves wj ∈ EP
f ∪ RP

f in the periodic problem (P). We also recall a period map

defined for problem (P). Then we follow a homotopy which freezes all rotating
waves and symmetrizes f = f(v, p) while preserving the Morse-Smale structure of
the Sturm attractor AP

f . This homotopy establishes an embedding relation between

problems (P) and (N), which we use as a bridge between the adjacency relations in
both problems.

The adjacency relations, as developed by [57] for the Neumann problem (N),
involve the use of zero numbers. We recall that zP in (10) is computed for x ∈
S1 = R/2πZ. In the following we let zN denote the zero number computed on
the restricted half-interval x ∈ [0, π]. Accordingly, the adjacency relation for the
Neumann problem (N) employs the zero number zN, while the adjacency relation
for the periodic problem (P) uses the zero number zP, see [23].
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Two different hyperbolic equilibria v1, v2 ∈ EN
f of the Neumann problem (31),

(32) are called (N)-adjacent if there does not exist another equilibrium v ∈ EN
f such

that

zN(v1 − v) = zN(v2 − v) = zN(v1 − v2) , and (61)

v(0) is strictly between v1(0) and v2(0) . (62)

Two hyperbolic Neumann equilibria v1, v2 ∈ EN
f possess a heteroclinic orbit if, and

only if, they are (N)-adjacent, see [57], Theorem 2.1.
In the case of periodic boundary conditions (P) the notion of adjacency is entirely

analogous. Two different hyperbolic equilibria or rotating waves of (17), w1, w2 ∈
EP
f ∪RP

f , are called (P)-adjacent if there does not exist another element w ∈ EP
f ∪RP

f

such that

zP(w1 − w) = zP(w2 − w) = zP(w1 − w2) , and (63)

max
x∈S1

w(x) is strictly between max
x∈S1

w1(x) and max
x∈S1

w2(x) . (64)

Here k := zP(w1 − w2) must be even, due to the periodic boundary conditions. In
[23], Theorem 1.3, it is shown that two equilibria or rotating waves are connected
by a heteroclinic orbit if, and only if, they are (P)-adjacent.

The heteroclinic orbit connection results of [23] are based on the relation between
the solutions of the periodic problem (P) on S1 = R/2πZ and the solutions of a
Neumann problem set up on the full interval 0 ≤ x ≤ 2π. In the present paper,
however, it is more advantageous to relate the solutions of our periodic problem
(P), (17), which is set up on the full interval 0 ≤ x ≤ 2π, with the solutions of
the Neumann problem (N) set up on the half-interval 0 ≤ x ≤ π. Therefore we
need to adapt the heteroclinic orbit connection results of [23] to the setting of the
half-interval.

We first recall the “freezing” and “symmetrizing” homotopies that change the
nonlinearity f = f(u, ux) preserving the heteroclinic structure by the Morse-Smale
property. We start with problem (P).

We define the period map TP
f to be used with problem (P) via the planar system

v′ = p , p′ = −f(v, p)− cp (65)

which corresponds to the rotating wave equation (19) with wave speed parameter
c ∈ R.

Let CP ⊂ R2 denote the open set of initial conditions (v, p) for which there exists
some c ∈ R such that (v, p) is a periodic point of (65). Note that dissipativity sign
condition (4) of f = f(v, p) implies that CP and the possible wave speeds c are
bounded, [23]. Inspired by Matano and Nakamura, [41], we define:

(i) the unique wave speed c = c(v, p) such that (v, p) is a periodic point;
(ii) the minimal period

TP
f = TP

f (v, p) (66)

of the periodic orbit through (v, p).

See also [23], Lemma 4.2. Let TP
f (a) = TP

f (a, 0) denote the restriction of TP
f (v, p)

to the open set of initial values (v, p) on the v-axis,

TP
f : DP → R+ (67)

with DP := {a ∈ R : (a, 0) ∈ CP}. Note that the function c = c(v, p) is bounded.
Moreover, by construction, c(v, p) is in fact a first integral of (65). Indeed all points
on the periodic orbit through the point (v, p) share the same value c = c(v, p).
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The solution w = w(x) of (65) with initial value (v, p) = (a, 0) for a ∈ DP and
nonzero c := c(a, 0) corresponds to a rotating wave w ∈ RP

f of (17) if, and only if,

TP
f (a) = 2π/`, for some ` ∈ N . (68)

Furthermore, this rotating wave is hyperbolic if and only if

ṪP
f (a) := dTP

f (a)/da 6= 0 . (69)

See [23], Lemma 4.4. The integer number ` = `(w) introduced in (68) is called the
period lap number of w, and is half of the Matano lap number,

`(w) = zP(wx)/2 . (70)

See, also [24].
We recall that CP is bounded and that minimal periods are uniformly bounded

from below [1, 58]. Hence hyperbolicity of all rotating waves implies finiteness of

RP
f . In the following, for f ∈ SturmP(u, ux), we denote by m the number of spatially

homogeneous equilibria of (17) and by q the number of its rotating waves, i.e.

m := #EP
f , q := #RP

f . (71)

Shifted spatial profile snapshots of the same rotating wave are considered identical,
of course.

The “freezing” homotopy introduced in [23] is a C2-smooth homotopy fτ , 0 ≤
τ ≤ 1, of the form

fτ (v, p) = f(v, p) + τc(v, p)p . (72)

This homotopy, from f0 = f(v, p) to h(v, p) := f1, “freezes” all rotating waves to
zero wave speed as τ goes from 0 to 1. Most importantly the homotopy does not
change the spatial profiles of the rotating waves and preserves the period map TP

f

in an open region CP
0 ⊂ CP which includes all interesting values of TP

f in view of

(68), say for example TP
f (v, p) ≤ 3π. Hence, this homotopy produces a nonlinearity

h for which the period map, in the region CP
0 , satisfies

TP
h = TP

f , (73)

and all rotating waves become frozen waves. Therefore we obtain

RP
h = FP

h , (74)

and the x-profiles w = w(x) of the previously rotating waves become the x-profiles
of frozen waves, alias spatially nonhomogeneous stationary solutions w ∈ FP

h . Of
course, here the frozen waves w ∈ FP

h are taken together with all their shifted
snapshot copies w(·+ ϑ) for ϑ ∈ S1.

In addition, h satisfies h(a, 0) = f(a, 0) for all a ∈ R. Thus the zero sets ZP of
f(·, 0) and h(·, 0) coincide,

ZP
h = ZP

f (75)

and hyperbolicity of all spatially homogeneous equilibria e ∈ ZP
h is preserved. In

fact, an easy computation shows that hyperbolicity of e ∈ ZP
h is equivalent to

hv(e, 0) 6= k2, k ∈ Z and this condition is ensured by hv(e, 0) = fv(e, 0). Therefore,
the freezing homotopy does not affect the homogeneous equilibria. Moreover, it
does not introduce any additional equilibria, frozen or rotating waves.

As remarked before, spatially nonhomogeneous equilibria w ∈ FP
h which arrise

from hyperbolic rotating waves are not hyperbolic as equilibria. For this reason
h 6∈ SturmP(u, ux), in general. However, in view of (73), (69), the equilibria w ∈
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Figure 1. Top: A phase portrait corresponding to a frozen non-
linearity h. The region CP

0 := C1 ∪ C2 ∪ C3 is shaded in light
gray. The region U, in dark gray, corresponds to the set of orbits
which intersect the v-axis exactly once. Bottom: A phase por-
trait corresponding to the symmetrized nonlinearity g. The region
Q1(CP

0 ) := C1 ∪ C2 ∪ C3 is shaded in light gray, and the region

Q1(U) = U is shaded in dark gray.

FP
h are normally hyperbolic, i.e. the trivial eigenvalue of the linearization at w is

simple. This condition is sufficient to invoke the Morse-Smale property and claim
the preservation of the heteroclinic connectivity along the homotopy. See [23] for
details.

The “symmetrizing” homotopy, also introduced in [23], runs from the nonlinear-
ity h to a reversible nonlinearity g, i.e. such that

g(v,−p) = g(v, p) (76)

for all v, p. This homotopy symmetrizes the periodic orbits of the planar system
(65) with respect to the v-axis and preserves the period map TP

h , again in the region
CP
0 . The symmetrization homotopy is a family of diffeomorphisms Qτ , 0 ≤ τ ≤ 1,

of the phase plane (v, p) which takes the region Q0(CP
0 ) = CP

0 to a region Q1(CP
0 )

which is symmetric with respect to the v-axis. This symmetric region is obtained
from CP

0 by the harmonic mean between orbit points (v, p) on the upper half-plane
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and their images (v,−p̃) from the lower half-plane. For details we refer to [23]. An
illustration is shown in Figure 1. We remark that this symmetrization extends to all
the orbits which intersect the v-axis only once. Then the homotopy gτ , 0 ≤ τ ≤ 1,
with g0 = h, is obtained from the phase portrait defined in Qτ (CP

0 ). The final
nonlinearity g is obtained by an arbitrary C2-smooth extension of g1 to the plane,
preserving the reversibility symmetry (76). Then we have

TP
g ◦Q1 = TP

h , (77)

on CP
0 . Moreover, the symmetrization can be accomplished in such way that

g(a, 0) = h(a, 0) for all a ∈ R, so that all the spatially homogeneous equilibria
are preserved, i.e.

ZP
g = ZP

h , (78)

together with their hyperbolicity. Again, dissipativity sign condition (4) is preserved
and no new equilibria, frozen or rotating waves are introduced.

We emphasize that both the freezing and symmetrizing homotopies preserve the
relative configuration in the phase plane (v, p) of the periodic orbits and fixed points
corresponding to rotating waves and equilibria of problem (P).

Since hyperbolicity fails at frozen waves, we have g 6∈ SturmP(u, ux). However,
normal hyperbolicity for v ∈ FP

g prevails. Indeed (77) restricted to the v-axis yields

TP
g (a) = TP

h (a) , (79)

for all a ∈ DP
0 := {a ∈ R : (a, 0) ∈ CP

0 }. Hence preservation of heteroclinic
connectivity ensues.

Let v ∈ FP
g denote a symmetrized frozen wave, i.e. a solution of

v′′ + g(v, v′) = 0 , x ∈ S1 . (80)

In fact, each frozen wave v = v(x) is reflection symmetric in S1, by reversibility of
g(v, p). Consider the extreme values

v = max
x∈S1

v(x) , v = min
x∈S1

v(x) . (81)

Among the x-shifted copies of v in FP
g there are representatives v±(x) = v(x− s±)

which satisfy
v′±(0) = 0 , ±v′′±(0) < 0 . (82)

That is, v+, v− correspond to the solutions which have their maximum and minimum
value, respectively, occurring at x = 0:

v+(0) = v , v−(0) = v . (83)

This is where we invoke the reversibility (76) of g(v, p). By reflection symmetry of
(80), periodicity v±(0) = v±(2π) and v′±(0) = v′±(2π) = 0 imply

v±(x) = v±(2π − x) , v′±(x) = −v′±(2π − x) . (84)

For x = π we obtain
v′±(π) = 0 . (85)

Therefore v±(x) both satisfy Neumann boundary conditions on the half-interval
0 ≤ x ≤ π and, using the same notation for the restrictions of v± to the half-
interval, we have v± ∈ FN

g ⊂ EN
g .

Since we obtain exactly two distinct solutions v+, v− ∈ FN
g for each rotating wave

w ∈ RP
f , the Neumann problem possesses exactly 2q spatially nonhomogeneous

solutions. In addition to these solutions, also the spatially homogeneous solutions
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e ∈ ZP
g = ZP

f of (80) satisfy Neumann boundary conditions. Hence v ≡ e ∈ ZN
g

and the Neumann problem possesses exactly m spatially homogeneous solutions.
Therefore, by cutting the circle S1 at x = 0 and x = π we obtain a Neumann
problem (N) on the resulting half-interval with n := m + 2q stationary solutions,
EN
g = ZN

g ∪ FN
g .

Comparing the period maps for (N) and (P) we obviously have the identity

TN
g = TP

g . Hence g ∈ SturmN(u, u2x). In addition, if v ∈ FN
g possesses the extreme

values (81), then

TN
g (v) = TN

g (v) = 2π/` , ` ∈ N , (86)

by (55). Moreover, the following alternative is satisfied:

v+(π) = v+(0) = v , v−(π) = v−(0) = v if ` is even ,

v+(π) = v−(0) = v , v−(π) = v+(0) = v if ` is odd .
(87)

The integer ` := 2π/TN
g (v) is the period lap number of the frozen wave v+. Indeed

` = `(v+) = `(v−). Note that

`(v±) = zP(v±,x)/2 = zN(v±,x) + 1 (88)

coincides with the Matano lap number on the Neumann half-interval x ∈ [0, π].
We collect the properties of the composed freezing and symmetrizing homotopy

in the following:

Lemma 7. Let f ∈ SturmP(u, ux). Then there exists a C2 homotopy fτ , 0 ≤ τ ≤ 1,
from f0 = f(v, p) to a reversible f1 = g(v, p), which is even in p, such that:

(i) All spatially homogeneous solutions of the periodic problem (P) are preserved,

ZP
g = ZP

f = EP
f , (89)

and remain hyperbolic along the homotopy.
(ii) All rotating waves wk ∈ RP

f remain (normally) hyperbolic and become reflec-

tion symmetric frozen waves vk ∈ FP
g which satisfy

max
x∈S1

vk(x) = max
x∈S1

wk(x) ,

min
x∈S1

vk(x) = min
x∈S1

wk(x) .
(90)

Furthermore, the period map TP
f is preserved along the homotopy, on a re-

stricted domain CP
0 which contains the periodic spatial profiles of all rotating

waves wk ∈ FP
f . Hence,

TP
g (a) = TP

f (a) for a ∈ DP
0 , (91)

where DP
0 = {a ∈ R : (a, 0) ∈ CP

0 }. Therefore, all frozen waves vk ∈ FP
g are

normally hyperbolic. Moreover, no new frozen or rotating waves are intro-
duced.

In general g 6∈ SturmP(u, ux) but, instead, g ∈ SturmN(u, u2x). In addition, the
following relations between problems (P) and (N) are satisfied:

(iii) v ≡ e is a spatially homogeneous equilibrium v ∈ ZP
g if and only if also

v ≡ e ∈ ZN
g .

(iv) Each frozen wave v ∈ FP
g has two different Neumann representatives v+, v−

defined by (83), (81). Denoting their restrictions to the half-interval 0 ≤ x ≤ π
by v+, v− again, we have that v ∈ FP

g if and only if v+, v− ∈ FN
g .
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(v) The period maps TN
g and TP

g are identical,

TN
g = TP

g . (92)

(vi) The boundary values of v+, v− ∈ FN
g on the half-interval 0 ≤ x ≤ π satisfy

(87), (86).

Let us relate the Neumann semiflow SN
g (t) on XN = Hs(0, π)∩{u : ux = 0 at x =

0, π} with the S1 semiflow SP
g (t) on XP = Hs(S1) = Hs(R/2πZ). Recall that

g = g(v, p) is even in p, i.e. reversible. We first observe the isometric equivalence

XN ∼= XP ∩ {u : all bk = 0} (93)

in terms of the Fourier expansion (7) of u in Section 1. Here we have represented
elements u ∈ XN as

u =
∑
k≥0

ak cos kx , (94)

due to their L2 eigenfunction expansion for the Laplacian ∂xx, and we can define
XN by the Fourier coefficients ak via the bounded norm

‖u‖2XN :=
∑
k≥0

(1 + k2)sa2k . (95)

Thanks to Fourier, this follows directly from the definition of the fractional power
space XN := D((id−∂2xx)s) under Neumann boundary conditions. Alternatively,
and circumventing the above slight abuse of notation, we may define the equivalence
(93) by explicit reflection through the boundary as the lifting

E : XN → XP ∩ {u : all bk = 0}
u 7→ ũ

(96)

where ũ(x) := u(x), for 0 ≤ x ≤ π, and ũ(x) := u(2π − x), for π ≤ x ≤ 2π. In
particular the lift E commutes with the respective semiflows

SP
g (t)Eu = ESN

g (t)u , (97)

for all u ∈ XN. Indeed this follows from uniqueness of both semiflows and invariance
of the reflection invariant subspace XP∩{u : all bk = 0} under the O(2)-equivariant
semiflow SP

g (t). The latter fact hinges on x-reversibility of g, of course.
Remark that, by Lemma 7, (iii) and (iv), each equilibrium or rotating wave

w ∈ EP
f ∪ RP

f of (P) is represented by an equilibrium v+ ∈ EN
g of (N) on the

half-interval x ∈ [0, π] with maximum value at x = 0. Comparing the adjacency
definitions (62) in (N) and (64) in (P) we obtain the following correspondence:

Theorem 8. Let f ∈ SturmP(u, ux) and g ∈ SturmN(u, u2x) denote two homotopy
related nonlinearities as in Lemma 7. Let w1, w2 ∈ EP

f ∪ RP
f denote two different

equilibria or rotating waves of problem (P) given by (17), and let v1+, v
2
+ ∈ EN

g denote
the corresponding representative equilibria of problem (N), i.e. the frozen Neumann
solutions. Then w1, w2 are (P)-adjacent if and only if v1+, v

2
+ are (N)-adjacent.

Moreover

zN(v2+ − v1+) = zP(w2 − w1)/2 . (98)

Proof. As in the previous Lemma, we let vj+ ∈ EP
g denote the frozen and sym-

metrized representatives of the elements wj ∈ EP
f ∪RP

f , using the same notation as

for their restrictions to the half-interval, vj+ ∈ EN
g . We recall that the composed
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freezing and symmetrizing homotopy preserves the relative configuration in the
phase plane (v, p) of the periodic orbits and fixed points corresponding to rotating
waves and equilibria of problem (P). In particular, (90) implies that the periodic
orbits of v1+ and v2+ have the same relative position in the phase plane (v, p) as the
periodic orbits of w1 and w2. If these orbits are not nested then

zP(v2+ − v1+) = zP(w2 − w1) = 0 . (99)

If, without loss, the orbit of w1 is in the interior of the orbit of w2, then the phase
plane argument of [41], Lemma 4.8, implies that

zP(w2 − w1) = zP(w2
x) , (100)

and also

zP(v2+ − v1+) = zP(v2+,x) . (101)

Then (91) shows that

zP(w2
x) = 4π/TP

f (a) = 4π/TP
g (a) = zP(v2+,x) , (102)

where a := maxx∈S1 w2(x) = maxx∈S1 v2+(x). Hence

zP(v2+ − v1+) = zP(w2 − w1) . (103)

Since the periodic problem is set up on the full interval x ∈ [0, 2π] while the Neu-
mann problem is set up on the half-interval x ∈ [0, π], we indeed have (98). In
particular k := zP(w1 − w2) is even.

If w1, w2 are not (P)-adjacent, then there is an equilibrium or rotating wave
w ∈ EP

f ∪ RP
f of (17) with

zP(w1 − w) = zP(w2 − w) = k (104)

and satisfying (64). The corresponding representatives v1+, v
2
+ and v+ in EN

g , which
are equilibria of the Neumann problem (N) with maximum values occurring at
x = 0, satisfy

v+(0) is strictly between v1+(0) and v2+(0) . (105)

By the phase plane argument ([41], Lemma 4.8) we have

zN(v1+ − v+) = zN(v2+ − v+) = k/2 . (106)

Hence, in view of (98), v1+, v
2
+ are not (N)-adjacent, cf. (61), (62).

Conversely, suppose v1+, v
2
+ are not (N)-adjacent. Then there exists an equilib-

rium solution v ∈ EN
g of the Neumann problem satisfying

zN(v1+ − v) = zN(v2+ − v) = zN(v1+ − v2+) (107)

and v(0) strictly between v1+(0) and v2+(0). Without loss of generality we assume

v1+(0) < v(0) < v2+(0) . (108)

Let ṽ1+, ṽ
2
+ and ṽ denote the reflection extensions through the boundary of v1+, v

2
+

and v, respectively. These are frozen waves or spatially homogeneous equilibria of
the frozen symmetrized periodic problem (P),

ṽ1+, ṽ
2
+, ṽ ∈ EP

g = ZP
g ∪ FP

g . (109)

Then (107) implies

zP(ṽ1+ − ṽ) = zP(ṽ2+ − ṽ) = zP(ṽ1+ − ṽ2+) = k (110)
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with k := 2zN(v1+ − v2+). Moreover, if ṽ is spatially nonhomogenous, then ṽ(0)

is either the maximum or the minimum value of ṽ. Respectively, ṽ ∈ FP
g is the

representative v+, or v−, of a frozen wave corresponding to a rotating wave w ∈ RP
f .

Therefore, by the invariance of zP(ṽj+(·+ϑ)−ṽ(·)) with respect to phase shifts ϑ ∈ S1

(see [4, 41, 23] again) we find that

zP(w1 − w) = zP(w2 − w) = zP(w1 − w2) . (111)

The same holds true if ṽ ≡ e ∈ ZP
g is spatially homogeneous, in which case w ≡ e ∈

EP
f is the corresponding spatially homogeneous equilibrium. Furthermore, we also

have

max
x∈S1

w1(x) = v1+(0) , max
x∈S1

w2(x) = v2+(0) . (112)

If k > 0 we conclude from ṽ(0) = v(0) > v1+(0) and zP(v1+ − ṽ) = k that ṽ = v+.
Hence

max
x∈S1

w(x) = max
x∈S1

ṽ(x) = v(0) . (113)

Consequently, we have

max
x∈S1

w1(x) < max
x∈S1

w(x) < max
x∈S1

w2(x) . (114)

If k = 0 this holds true trivially. Hence w blocks adjacency of w1 and w2 which,
therefore, cannot be (P)-adjacent. This concludes the proof.

Adjacency in (N) determines the heteroclinic connectivity of the elements in EN
g .

The same occurs in (P) for the elements of EP
f ∪RP

f . In fact, we recall the following

relation between adjacency and connectivity in (P):

Theorem 9. (See [23], Theorems 1.3 and 1.4.) Again let f ∈ SturmP(u, ux) and
consider any two different (hyperbolic) elements w± ∈ EP

f ∪ RP
f . Then there is a

heteroclinic orbit connection between w+ and w− if, and only if, w+ and w− are
(P)-adjacent. Moreover, the connecting orbits run in the direction of decreasing
Morse indices, that is, w+ ; w− only if

iP(w+) > iP(w−) . (115)

The two previous theorems together show that, for f ∈ SturmP(u, ux), two
different (hyperbolic) equilibria or rotating waves w1, w2 ∈ EP

f ∪ RP
f of (17) on

S1 = R/2πZ are connected by a heteroclinic orbit if, and only if, the corresponding
frozen Neumann solutions v1+, v

2
+ ∈ EN

g are (N)-adjacent on the half-interval [0, π].
For completeness we next collect various aspects of this relation between the

equilibria and rotating waves of our periodic problem (P) and the corresponding
frozen equilibria of the Neumann problem (N).

Theorem 10. (i) Let f(e, 0) = 0 define a homogeneous equilibrium of (P) or (N).
Then e is an equilibrium both for (P) and (N). Moreover, e is hyperbolic if and only
if fv(e, 0) 6= k2, k ∈ Z. The respective Morse indices iP(e) for e ∈ EP

f and iN(e) for

e ∈ EN
f satisfy:

iP(e) = 2iN(e)− 1 = 1 + 2[
√
fv(e, 0)] > 0 if fv(e, 0) > 0 ,

iP(e) = iN(e) = 0 if fv(e, 0) < 0 ,
(116)

where the floor function [·] denotes the integer part.
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(ii) Let w ∈ RP
f denote a rotating wave of the periodic problem (P) with nonlinear-

ity f = f(v, p). Also for problem (P), but with a reversible nonlinearity g = g(v, p)
obtained from f by the freezing and symmetrizing homotopy of Lemma 7, let v ∈ FP

g

represent a nonhomogeneous frozen wave equilibrium corresponding to w. In addi-
tion, let v± ∈ FP

g denote x-shifted copies of v such that

v+(0) = max
x∈S1

v(x) = max
x∈S1

w(x) ,

v−(0) = min
x∈S1

v(x) = min
x∈S1

w(x) .
(117)

Then the rotating wave w is (normally) hyperbolic for the problem (P) with non-
linearity f if, and only if, the frozen representation v+ ∈ EN

g in the half-interval
x ∈ [0, π] is a hyperbolic equilibrium of the Neumann problem (N) with nonlinearity
g. This statement also holds with v+ replaced by v−.

Let `(w) denote the period lap number of the rotating wave w ∈ RP
f ; see (70).

Then, the period lap number of the frozen waves v, v± ∈ FP
g satisfy

`(v+) = `(v−) = `(v) = `(w) . (118)

Moreover, the Morse indices of w ∈ RP
f and v+ ∈ EN

g , for problems (P) and (N)
respectively, satisfy

iN(v+) ∈ {`(v+), `(v+) + 1} , and (119)

iP(w) =

 2iN(v+)− 1 if iN(v+) = `(v+) ,

2iN(v+)− 2 if iN(v+) = `(v+) + 1 .
(120)

In addition iN(v+) = iN(v−) and (119), (120) also hold with v+ replaced by v−.

Proof of Theorem 10(i). The proof of (i) is an elementary computation involving
sines and cosines in the case of (P) and only cosines in the case of (N). As a
remark we point out that (116) implies that the Morse index iP(e) of an unstable
homogeneous hyperbolic equilibrium e ∈ EP

f of (P) is always odd.

As an outline to the proof of (ii) we recall the relations (91), (92) between period
maps of (P) and (N) in Lemma 7, i.e.

TN
g (a) = TP

g (a) = TP
f (a) for a ∈ DP

0 . (121)

We use these identities to show that hyperbolicity of the equilibrium v+ ∈ EN
g of

(N) is equivalent to hyperbolicity of w ∈ RP
f in case w is a rotating wave of (P), or

its normal hyperbolicity in case w is a frozen wave.
The Neumann case (N) is considered in [24], Lemma 2, and refers to similar

results appearing in the literature, in particular [53, 7, 8, 23]. We restate this result
in the following Proposition.

Proposition 11. Let v+, v− ∈ EN
g denote equilibrium solutions of the Neumann

problem (N) in the half-interval x ∈ [0, π] corresponding to x-shifted copies of a
frozen wave v ∈ FP

g with v+(0) = maxx∈S1 v(x), v−(0) = minx∈S1 v(x). Then,

hyperbolicity of v+ ∈ EN
g (and also of v− ∈ EN

g ) occurs if and only if

ṪN
g (a) 6= 0 (122)
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for a := v+(0). Also iN(v+) = iN(v−) in the hyperbolic case. Moreover,

iN(v+) =


`(v+) if ṪN

g (a) > 0 ,

`(v+) + 1 if ṪN
g (a) < 0 ,

(123)

where the period lap number `(v+) of v+ satisfies `(v+) = 2π/TN
g (a).

For the benefit of the reader we include the proof of this well known result.

Proof. We start with a reversible C2-smooth nonlinearity g = g(v, p), even in p,
and let v = v(·, α) denote the solution of the ODE

v′′ + g(v, v′) = 0 , (124)

with initial conditions

v(0, α) = α , v′(0, α) = 0 . (125)

By definition (60) of the period map TN
g : DN → R+ we also have that

v(kTN
g (α), α) = α , v′(kTN

g (α), α) = 0 (126)

for α ∈ DN and any integer k ∈ N. Moreover, in view of the reversibility of g and
by the arguments (84)-(85) we obtain

v′(kTN
g (α)/2, α) = 0 . (127)

Differentiating this equation with respect to α and defining

v(·, α) := ∂v(·, α)/∂α (128)

we have
v′(kTN

g (α)/2, α) + v′′(kTN
g (α)/2, α) k ṪN

g (α)/2 = 0 . (129)

For a ∈ DN such that TN
g (a) = 2π/k and v′′(0, a) < 0 we have that a = v(0, a) is the

maximum value of the 2π-periodic solution v of (124). In this case, the restriction
of v(·, a) to the interval x ∈ [0, π] is v+ ∈ EN

g . In addition,

sign v′′(π, a) = (−1)` sign v′′(0, a) = (−1)`+1 , (130)

where ` := `(v+) is the period lap number of the equilibrium v+; see (88). Together

with (129) this shows that ṪN
g (a) 6= 0 implies

sign v′(π, a) = (−1)` sign ṪN
g (a) . (131)

To prove the specific claims (123) we establish a relation between v′(π, a) and
the Morse index iN(v+). Towards this objective we first remark that v solves the
linearization

Lv := v′′ + gp(v(x), v′(x))v′ + gv(v(x), v′(x))v = 0 , (132)

with initial conditions
v(0, α) = 1 , v′(0, α) = 0 ; (133)

see (125). But vx also solves Lvx = 0 and is linearly independent from v, by (125),
(133). Hence the classical Sturm comparison theorem implies that the zeros of v
and vx alternate. See, for example, [9] or [30]. Therefore, we obtain

zN(v(·, a)) = zN(vx) + 1 = `(v+) . (134)

More generally, let ψµ denote the solution of the eigenvalue problem

Lψµ = µψµ (135)
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with initial conditions
ψµ(0) = 1 , ψ′µ(0) = 0 . (136)

Then we have
v(·, a) = ψ0 . (137)

Note that (129) with ṪN
g (a) = 0 yields v′(π, a) = 0. In this case ψ0 restricted

to x ∈ [0, π] is an eigenfunction of the linearization of the Neumann problem (N)
around the equilibrium v+ corresponding to the eigenvalue µ = 0 = λ`. In partic-
ular, this yields the hyperbolicity claim (122) for the Neumann equilibrium v+ on
the half-interval x ∈ [0, π].

Again by Sturm comparison, the nonzero vector Ψµ := (ψµ, ψ
′
µ) rotates more

slowly than V := (v, v′) for positive eigenvalue parameters µ, whereas it rotates
faster for negative µ. Therefore (133) and (134) imply that the eigenvalues λk of
the Sturm-Liouville Neumann linearization L satisfy

λ` > 0 > λ`+1 ⇔ sign v′(π, a) = (−1)`+1 ,
λ` < 0 < λ`−1 ⇔ sign v′(π, a) = (−1)` .

(138)

Combined with (131), this is equivalent to

iN(v+) = `(v+) + 1 ⇔ ṪN
g (a) < 0 ,

iN(v+) = `(v+) ⇔ ṪN
g (a) > 0 ,

(139)

which proves claim (123). The claims on v− follow from (86) and the same Sturm
comparison argument.

Proof of Theorem 10(ii). To prove (ii) we use (121) to establish the relation between
hyperbolicity of the Neumann equilibria v± ∈ EN

g of (N) and (normal) hyperbolicity

of the rotating or frozen wave w ∈ RP
f ∪ FP

f of (P). Hyperbolicity in the Neumann

case (N) is the subject of Proposition 11. In the case of problem (P), (normal)

hyperbolicity of w ∈ RP
f occurs if, and only if, ṪP

f (w) 6= 0 for w := maxx∈S1 w(x),

see also (69). For the proof of this result see [23], Lemmas 4.3 and 4.4. Moreover,
by [23], Lemma 5.3, the following alternative holds

iP(w) =


2`(w)− 1 if ṪP

f (w) > 0 ,

2`(w) if ṪP
f (w) < 0 ,

(140)

where `(w) = zP(wx)/2 is the period lap number of w, (70). By (68) we have
`(w) = 2π/TP

f (w). Then, equality of the period lap numbers (118) follows from

(121). Finally, a comparison between (140) and (123) via

`(v+) = 2π/TN
g (w) = 2π/TP

f (w) = `(w) (141)

yields (120) and completes the proof.

5. Proof of the main result. This section is dedicated to the proof of Theorem
3, which is the main result already stated in Section 1. In preparation for this
proof, we recall the definition of the Sturm permutation σP

f in the spatially periodic

setting of f ∈ SturmP(u, ux). Let (ν1, . . . , νn) denote the vector whose entries,
ordered by ν1 < ν2 < · · · < νn, correspond to the collected values of the spatially
homogeneous equilibria ej ∈ EP

f , j = 1, . . . ,m, and the maxima wk and minima wk
of the rotating waves wk ∈ RP

f , k = 1, . . . , q. Of course n = m + 2q. Then, the

cycle decomposition of the permutation σP
f ∈ S(n) of {ν1, . . . , νn} consists of all
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maximum/minimum 2-cycles (wk wk) for those rotating waves wk with odd period
lap number `k := `(wk), see (70):

σP
f =

∏
`k odd

(wk wk) . (142)

Proof of Theorem 3. Let g = g(v, p) denote the reversible nonlinearity obtained
from f = f(v, p) by the freezing and symmetrizing homotopy of Lemma 7. Our ob-

jective is to identify the Sturm permutation σP
f defined for f ∈ SturmP(u, ux) as the

Sturm permutation σN
g derived from the frozen and symmetrized g ∈ SturmN(u, u2x),

σP
f = σN

g . (143)

Indeed suppose (143) has been proved. Theorem 6 applied to σN
g then shows that

the Sturm permutation σP
f is necessarily an integrable involution. Moreover, this

condition is also sufficient. In fact, by Theorem 5 all Sturm integrable involutions are
realized by nonlinearities g ∈ SturmN(u). Therefore, all Sturm integrable involu-

tions are realized by nonlinearities f ∈ SturmP(u, ux) of the form f(u, p) = g(u)+cp

with g ∈ SturmN(u) and c 6= 0. This proves Theorem 3, up to the P − N claim
(143) above.

To prove (143) we scrutinize the freezing and symmetrizing homotopy of Lemma
7. The homogeneous equilibria ej , j = 1, . . . ,m, in EP

g are also zeros of g(·, 0), hence
equilibria of the Neumann problem (N) on the half-interval x ∈ [0, π];

ej ∈ EN
g , j = 1, . . . ,m . (144)

Let vk ∈ FP
g , k = 1, . . . , q, denote the reflection symmetric frozen waves corre-

sponding to the rotating waves wk ∈ RP
f , k = 1, . . . , q; see Lemma 7, (ii). Moreover,

let vk,± ∈ FN
g , k = 1, . . . , q, denote the representatives of the frozen waves vk which

satisfy Neumann boundary conditions on the half-interval x ∈ [0, π]; see Lemma 7,
(iv). By (83), (81) and (90) we have

vk,+(0) = wk = max
x∈S1

wk(x) ,

vk,−(0) = wk = min
x∈S1

wk(x) .
(145)

To compute the Sturm permutation σN
g , let {v̂1, . . . , v̂n}, denote the set of equi-

libria of the Neumann problem, v̂r ∈ EN
g , r = 1, . . . , n, ordered by their initial

values

v̂1(0) < v̂2(0) < · · · < v̂n(0) . (146)

Then, we have v̂r = νr for 1 ≤ r ≤ n and one of the following three possibilities
occur:

• v̂r is a spatially homogeneous equilibrium ej ∈ EN
g , in which case

v̂r(π) = v̂r(0) ; (147)

• v̂r is a frozen wave representative vk,± ∈ EN
g such that `k is even, in which

case again we have (147);
• v̂r is a frozen wave representative vk,± ∈ EN

g such that `k is odd, in which case
we have the alternative

v̂r(0) = wk and v̂r(π) = wk if v̂r = vk,+ ,

v̂r(0) = wk and v̂r(π) = wk if v̂r = vk,− .
(148)
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Since σ = σN
g is defined by (44),

v̂σ(1)(π) < v̂σ(2)(π) < · · · < v̂σ(n)(π) , (149)

we conclude from (147), (148) that σP
f = σN

g . This identifies σP
f as σN

g and completes
the proof of Theorem 3.

6. Sturm attractors in the class SturmP(u, ux). Sturm permutations σP
f encode

essential information on the Sturm attractors AP
f . In particular, σP

f in the class of

f ∈ SturmP(u, ux) collects ODE information regarding the equilibria and rotating
waves of AP

f such as Morse indices, zero numbers, adjacency relations and period
lap numbers.

In the following we represent the PDE Sturm attractors AP
f in the spatially peri-

odic class of S1-equivariant f ∈ SturmP(u, ux) by connection graphs GP
f . The graphs

GP
f are directed acyclic with m+ q vertices of two types: m vertices corresponding

to the homogeneous equilibria v1, . . . , vm ∈ EP
f , represented by black dots; and q

vertices corresponding to the rotating waves w1, . . . , wq ∈ RP
f , represented by cir-

cles with Matano’s period lap numbers `(wk) = zP(wk,x)/2 attached. The directed
edges of GP

f correspond to heteroclinic orbit connections between adjacent elements

of EP
f ∪ RP

f . By transversality, heteroclinic connectivity in AP
f is transitive; see for

example [27]. Moreover, Theorem 9 implies that heteroclinic orbits can only run
from higher to strictly lower Morse indices. Hence the connection graph GP

f comes
with a natural flow defined edge orientation. In addition, we invoke transitivity to
represent only heteroclinic connections v+ ; v− between elements v± ∈ EP

f ∪ RP
f

which are not transitively connected via additional elements w ∈ EP
f ∪ RP

f , eg.

v+ ; w ; v−. We call such heteroclinic connections minimal since they are mini-
mal with respect to the transitivity of ;. Therefore, an edge between two vertices
v+, v− ∈ EP

f ∪ RP
f represents a heteroclinic orbit connection v+ ; v− which is

minimal. By transitivity, all heteroclinic connections in AP
f can be inferred from

the minimal heteroclinic connections.
The (minimal) flow-defined order of a Morse decomposition is an equivalent no-

tion; see for example [42]. Indeed the homogeneous equilibria EP
f and the rotating

wave circles RP
f together define a Morse decomposition of the global attractor AP

f ,
due to the absence of homoclinic orbits and of heteroclinic cycles among them.
The flow-defined order is the minimal transitive order relation compatible with the
directed heteroclinic orbits u(t), t ∈ R, among the distinct elements of EP

f ∪ RP
f .

In other words, the flow-defined order prefers to order as few pairs as possible:
only if there exists a directed heteroclinic path between two distinct elements of
EP
f ∪RP

f this pair is ordered accordingly. Therefore the flow-defined order is indeed

equivalent to the above orientation of the acyclic connection graph GP
f of the global

attractor AP
f .

In the Neumann class SturmN(x, u, ux), Sturm attractors AN
f1
,AN

f2
with the same

Sturm permutation σN
f1

= σN
f2

are flow equivalent, cf. [17]. We suspect that this

also holds in the spatially periodic class SturmP(u, ux). Alas, a proof is elusive
even though transversality reduces flow equivalence to the construction of homo-
topies. By Lemma 7 we have reduced SturmP(u, ux) to the reversible/integrable

class SturmN(u, u2x), but we are lacking a homotopy in this class, as in the original
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equivariant class. Nevertheless, Theorem 9 shows that σP
f1

= σP
f2

implies connection

equivalence of AP
f1
,AP

f2
, in the sense that

GP
f1 = GP

f2 . (150)

Therefore, a list of all integrable Sturm involutions σP
f provides a first step towards

a classification of the Sturm attractors AP
f for f ∈ SturmP(u, ux).

We represent permutations σ ∈ S(n) of {1, 2, . . . , n} by cycle notation. Let
ι(n) denote the number of integrable Sturm involutions σ ∈ S(n). As the number of
meander permutations in S(n) increases exponentially with n (see [37]), the number
ι(n) might also get very large with increasing n. Table 1 shows the first six numbers
in the sequence. Table 2 lists, up to trivial equivalences induced by x 7→ −x,
u 7→ −u, all Sturm permutations σn,κ ∈ S(n), 1 ≤ κ ≤ ι(n), n ≤ 7, which are
integrable involutions. See [24] for details on these lists.

n 1 3 5 7 9 11
ι(n) 1 1 2 4 10 23

Table 1. Number ι(n) of Sturm permutations σ ∈ S(n) which are
integrable involutions.

n = 1 :
σ1,1 = {1} = id ;

n = 3 :
σ3,1 = {1, 2, 3} = id ;

n = 5 :
σ5,1 = {1, 2, 3, 4, 5} = id ;
σ5,2 = {1, 4, 3, 2, 5} = (2 4) ;

n = 7 :
σ7,1 = {1, 2, 3, 4, 5, 6, 7} = id ;
σ7,2 = {1, 2, 3, 6, 5, 4, 7} = (4 6) ;
σ7,3 = {1, 6, 3, 4, 5, 2, 7} = (2 6) ;
σ7,4 = {1, 6, 5, 4, 3, 2, 7} = (2 6)(3 5) ;

Table 2. List of all integrable Sturm involutions σn,κ ∈ S(n), 1 ≤
κ ≤ ι(n), n ≤ 7, up to trivial equivalence.

By Theorem 3, Tables 1 and 2 also provide complete lists of all Sturm permuta-
tions σP

f in the spatially periodic class f ∈ SturmP(u, ux).

All necessary information to construct the connection graphs GP
f of the associated

Sturm attractors AP
f in that periodic class is contained in the Sturm permutation

σP
f . This includes not only ODE information like the Morse indices and the period

lap numbers. It also contains PDE information like the heteroclinic adjacency
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relations of all equilibria and rotating waves in EP
f ∪ RP

f . With the objective of

constructing the connection graphs GP
f from the Sturm integrable involution σ = σP

f

we proceed in five steps to sequentially determine all:

1. Stable homogeneous equilibria;
2. Unstable homogeneous equilibria;
3. Rotating waves;
4. Heteroclinic orbit connections;
5. Period lap numbers and Morse indices.

Step 1: Stable homogeneous equilibria.

Given an integrable Sturm involution σ = σP
f , we first compute the Morse num-

bers ik(σ) according to (45). Then we determine the σ-stable points, i.e. the points
k such that ik(σ) = 0; see Section 3. By [24], Lemma 7, all σ-stable points k are
fixed points of σ, that is σ(k) = k. This immediately identifies the stable equilibria
of AP

f , alias the ODE saddles of (80). Indeed, by Theorem 10, (116), and (46) the

stable equilibria correspond to the solutions vk ∈ EP
f ∪ RP

f for which

iP(vk) = iN(vk) = ik(σ) = 0 . (151)

We recall that only equilibria of AP
f can be stable, [4]. Moreover, all equilibria are

spatially homogeneous, EP
f = ZP

f .

Step 2: Unstable homogeneous equilibria.

Next, we determine the remaining (unstable homogeneous) equilibria. We remark
that between each pair of consecutive stable equilibria there is exactly one PDE
unstable equilibrium, alias an ODE center of (80). Let j < k denote the ordering
of two successive stable equilibria, i.e.

ij(σ) = ik(σ) = 0 and ic(σ) > 0 for all j < c < k . (152)

Of course j and k are fixed by the permutation σ and, by [24], Lemma 1, they are
both odd. By the meander property of the permutation σ we have a Jordan curve
which intersects the horizontal axis transversely at exactly n points; see Section
2. In our stylized version this Jordan curve always intersects verticaly the horizon-
tal axis and is composed of half-circles. This curve is called a meander (see [5])
and the intersection points are numbered by 1, 2, . . . , n along the meander, and by
σ(1), σ(2), . . . , σ(n) along the horizontal axis. The meander section µ(j, k) corre-
sponding to the interval j, j+1, . . . , k is also a Jordan curve which yields the section
σ(j), σ(j + 1), . . . , σ(k) of the permutation σ.

The Morse property ic(σ) ≥ 0, for j < c < k, implies

σ(j + 1) > j . (153)

In fact, since σ = σ−1 is an involution, from (45) we obtain

ij+1(σ) = ij(σ) + (−1)j+1 sign(σ(j + 1)− σ(j)) . (154)

Hence ij(σ) = 0, σ(j) = j odd and ij+1(σ) > 0 yields (153). Therefore σ(j + 1) is
located to the right of j on the horizontal axis. Similarly we have

σ(k − 1) < k (155)

and conclude that σ(k − 1) is located to the left of k on the horizontal axis.
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To determine the (unique) unstable homogeneous equilibrium located between
the (stable) equilibria vj and vk we consider the alternative k = j + 2 or k > j + 2
(alias k ≥ j + 4).

If k = j+2 by (153) and (155) we have that σ(j+1) = j+1 is fixed as well by the
permutation. In this case, vj+1 = vk−1 is the unique (homogeneous) equilibrium
between vj and vk and is unstable with

iP(vj+1) = iN(vj+1) = ij+1(σ) = 1 , (156)

by (116). See Figure 2 (i) for an illustration of the meander section in this case.

j j+1 j+2=k

j j+1 k-1 kc0

(iii)

(i)

(ii)

j j+1 k-1 kc0c’0

(iv) j j+1 ks(k-1)k-1 j+2 s(j+2)

a

g

(-)

(+)

Figure 2. Illustration of meander sections µ(j, k) in the following
cases: (i) k = j + 2; (ii) k > j + 2 and J(j + 1, c0) (with shaded
interior) oriented counter-clockwise (−); (iii) k > j + 2 and J(j +
1, c0) oriented clockwise (+); (iv) 2-cycles α and γ for k > j + 2
and j + 1 fixed by σ.

If k > j + 2, we first remark that j + 1 and k − 1 cannot both be fixed by σ. To
show this we argue by contradiction.
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Assume that j + 1 and k − 1 are both fixed. Then

ik−1(σ) = ij+1(σ) = 1 , (157)

by (45); see illustration in Figure 2 (ii).
Let I(j + 1, k − 1) denote the section of the horizontal axis between j + 1 and

k − 1. If the meander section µ(j + 1, k − 1) does not intersect I(j + 1, k − 1) then
the union of µ(j + 1, k − 1) with I(j + 1, k − 1) is a closed Jordan curve

J(j + 1, k − 1) = µ(j + 1, k − 1) ∪ I(j + 1, k − 1) . (158)

In this case the rotation δ(j + 1, k − 1) of the tangent to the meander section
µ(j + 1, k − 1) between the extreme points j + 1 and k − 1 is equal to the total
rotation around the (piecewise smooth) Jordan curve J(j+ 1, k− 1), which is ±2π;
see [11]. From the relation between the tangent rotation and the Morse numbers,
see for example [48], we have

δ(j + 1, k − 1)/π = ik−1(σ)− ij+1(σ) . (159)

Then (157) implies δ(j + 1, k − 1)/π = 0 which contradicts the total rotation of
±2π.

Hence the meander section µ(j + 1, k − 1) must intersect I(j + 1, k − 1) at some
point c0, j + 1 < c0 < k − 1. Assume that c0 is the first such point along the
meander µ(j + 1, k − 1), see again Figure 2 (ii). Then the union of the meander
section µ(j + 1, c0) with I(j + 1, c0) is also a closed Jordan curve,

J(j + 1, c0) = µ(j + 1, c0) ∪ I(j + 1, c0) , (160)

with the orientation provided by the meander section µ(j + 1, c0). Moreover, as in
(159) the rotation δ(j + 1, c0) of the tangent to the meander section µ(j + 1, c0)
between the extreme points j + 1 and c0 is

δ(j + 1, c0)/π = ic0(σ)− ij+1(σ) . (161)

This implies that the orientation of the Jordan curve J(j + 1, c0) is not counter-
clockwise. Indeed, the total rotation of the tangent around the Jordan curve yields
δ(j + 1, c0) = −2π. Then ij+1 = 1 implies ic0(σ) = 0 which corresponds to a
σ-stable point c0 between j and k contradicting the assumption ic0(σ) > 0 of (152).

We show next that the orientation of J(j + 1, c0) cannot be clockwise either. In
fact, in that case there must exist a point c′0 on the meander section µ(j + 1, c0),
i.e. j + 1 < c′0 < c0, which is located on the horizontal axis to the left of j + 1 (and
j). See the illustration in Figure 2 (iii). This implies that c′0 is in a 2-cycle α0 of σ
with

σ(c′0) < j < j + 1 < c′0 < k − 1 < k . (162)

Arguing symmetrically for the σ-fixed point k− 1 we have a last point c1 along the
meander µ(j + 1, k − 1) at which µ(j + 1, k − 1) intersects I(j + 1, k − 1) and we
obtain a point c′1, with c1 < c′1 < k − 1, which is in a 2-cycle α1 of σ with

j < j + 1 < c′1 < k − 1 < k < σ(c′1) . (163)

By (162) and (163) the 2-cycles α0 and α1 are non-nested. Therefore they must be
separated by a σ-stable point c between j and k, by the integrability condition (I.3)
of σ. See Section 3. This contradicts the assumption ic(σ) > 0 of (152) and shows
that j + 1 and k − 1 cannot both be fixed by σ.

Let j+ 1 be fixed by σ. Then the point k− 1 belongs to a 2-cycle α = (cα k− 1)
of σ. Since k is σ-stable, cα satisfies cα = σ(k−1) < k−1. See illustration in Figure
2 (iv). Remark that the point j+2 belongs to a 2-cycle γ of σ with σ(j+2) < j+2.



ATTRACTORS FOR PARABOLIC EQUATIONS 645

Therefore, to avoid a forbidden σ-stable point, the integrability condition (I.3) of σ
implies that α and γ are nested, hence σ(k − 1) < j < j + 1. Moreover, the same
argument implies that there are no 2-cycles comprised between j and k. Then vj+1

is the unstable equilibrium and has Morse index

iP(vj+1) = 2iN(vj+1)− 1 = 2ij+1(σ)− 1 > 0 (164)

by (116).
Arguing symmetrically if k− 1 is fixed by σ, we obtain the unstable equilibrium

vk−1 with Morse index

iP(vk−1) = 2iN(vk−1)− 1 = 2ik−1(σ)− 1 > 0 . (165)

(a)

j j+1 kk-1 c = (k-1)b s

j j+1= (k-1)s k

(b)

a

b

c = (j+1)a s

(c) j j+1kk-1 c = (k-1)b s

a

b

c = (j+1)a s

k-1= (j+1)s

a=b

Figure 3. Relative position of the 2-cycles α = (cα j + 1) and
β = (k − 1 cβ) of σ: (a) α = β; (b) α ⊂ β; (c) α ⊃ β.

Finally, if j + 1 also belongs to a 2-cycle β, the above argument symmetrically
implies that β = (j + 1 cβ) with j + 1 < cβ = σ(j + 1). Hence, the points j + 1 and
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k − 1 belong to the 2-cycles,

α = (cα k − 1) and β = (j + 1 cβ) , (166)

and the integrability condition (I.3) of σ implies

cα = σ(k − 1) < cβ = σ(j + 1) , (167)

again to avoid a forbidden σ-stable point. Therefore, either α and β are identical,
or they are nested by the integrability condition (I.1) of σ. In the first case α = β
implies j + 1 = σ(k − 1) and k − 1 = σ(j + 1). See the illustration in Figure 3 (a).
If α 6= β the following alternative applies: either α is the inner 2-cycle, i.e. α ⊂ β
in the obvious notation, in which case

cβ < j + 1 < cα < k − 1 ; (168)

or β is the inner 2-cycle, i.e. α ⊃ β, in which case

j + 1 < cβ < k − 1 < cα . (169)

See the illustration in Figure 3 (b) and (c), respectively.
Note that all 2-cycles comprised between j and k are centered. In fact, they are

core-equivalent by the absence of σ-stable points. Hence they are centered by the
integrability condition (I.2) of σ. Therefore, the middle point of the innermost 2-
cycle is a fixed point of σ and corresponds to the unstable homogeneous equilibrium.

If α ⊂ β then c := (j + 1 + cα)/2 is the middle point of α. Remark that
cα = σ(j + 1) and j + 1 have the same even/odd parity by [24], Lemma 6. Then vc
is the unstable homogeneous equilibrium with Morse index

iP(vc) = 2iN(vc)− 1 = 2ic(σ)− 1 > 0 , (170)

again by (116). The same result applies if α = β with c := (j+ k)/2. If α ⊃ β then
the middle point of β is c := (cβ + k − 1)/2 and the same result ensues.

This completes the localization of all the unstable (spatially homogeneous) equi-
libria and the computation of their Morse indices. Summarizing, if either j + 1
or k − 1 is a fixed point of σ then the unstable homogeneous equilibrium between
vj and vk is, respectively, vj+1 or vk−1 with Morse index given by (164) or (165).
If both j + 1 and k − 1 belong to 2-cycles of σ then the unstable homogeneous
equilibrium between vj and vk is vc, where c corresponds to the middle point of the
innermost 2-cycle, and its Morse index is given by (170).

Step 3: Rotating waves.

We proceed by determining the rotating waves of AP
f , i.e. the 2π-periodic or-

bits of (80). After exhausting, in the previous steps, the set of fixed points of σ
corresponding to the (spatially homogeneous) equilibria we are left with an even
number of points corresponding to the rotating waves. Recall that each rotating
wave wk ∈ RP

f corresponds to a pair of points representing its maximum and mini-
mum values, wk and wk respectively. Therefore our next objective is to match the
pair of points corresponding to each rotating wave.

By construction, each 2-cycle of σ corresponds to a rotating wave wk ∈ RP
f

with odd period lap number. In this case the 2-cycles of σ immediately identify
the matching pair of points corresponding to the same rotating wave. All the
remaining points are fixed by σ and correspond to the rotating waves wk ∈ RP

f with
even period lap number. The relative position of the 2-cycles of σ and of the σ-fixed
points corresponding to the (homogeneous) equilibria determine the matching pairs
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among these remaining fixed points of σ. In fact, the nesting in the ODE phase
plane (v, p) of the periodic orbits corresponding to rotating waves induces a regular
bracket structure on the matching pairs of points representing the rotating waves.
This is the structure of the parentheses ordinarily used in the arithmetic expressions
to indicate the hierarchical order of computations, [36]. The matching of left and
right brackets uniquely determines the pair of points representing the same rotating
wave. See [24] for more details.

Step 4: Heteroclinic orbit connections.

With all equilibria and rotating waves wk ∈ EP
f ∪ RP

f determined from σ = σP
f

we turn to the heteroclinic orbit connections between them. These are determined
from the (P)-adjacency relations as asserted by Theorem 9. Let w1, w2 denote
two different equilibria or rotating waves in EP

f ∪ RP
f and let v1+, v

2
+ ∈ EN

g denote
the corresponding representative Neumann equilibria of the frozen symmetrized
problem (N) on the half-interval x ∈ [0, π]. Of course vj+ = wj ≡ e in case of

an equilibrium wj ∈ EP
f , which we recall is spatially homogeneous. We now use

that a heteroclinic orbit (of (P) with nonlinearity f) from w1 to w2 exists if and
only if a heteroclinic orbit (of (N) with nonlinearity g) exists from the frozen and
symmetrized Neumann representative v1+ to v2+; see Theorem 8.

Let v1, . . . , vn ∈ EN
g denote the Neumann equilibria of the problem (N). To

establish heteroclinic (N)-adjacency of equilibria vj ∈ EN
g we consider the differences

vj − vk for all equilibria vj 6= vk and compute the zero numbers zN(vj − vk). We
recall that the Sturm permutation σN

g = σP
f determines these zero numbers; see

[15], Proposition 2.1. Specifically

zN(vj − vk) = zjk(σ) , (171)

where

zjk(σ) := ij(σ) +
1

2
[(−1)k sign(σ(k)− σ(j))− 1]

+

k−1∑
c=j+1

(−1)c sign(σ(c)− σ(j)) ,
(172)

for j < k, and zkj(σ) = zjk(σ). In particular for two successive equilibria, e.g.
k = j + 1, we have

zN(vj − vj+1) = min{ij(σ), ij+1(σ)} . (173)

For details we refer to [15].

Step 5: Period lap numbers and Morse indices.

In this final step we determine the Matano period lap numbers `(w) = zP(wx)/2
and the Morse indices iP(w) of all rotating waves w of AP

f . By (118) a rotating

wave w ∈ RP
f and the corresponding symmetrized frozen wave v+ ∈ FP

g have the

same period lap number, `(w) = `(v+). Let v0 ∈ ZP
g ∪ FP

g denote a homogeneous
equilibrium or symmetrized frozen wave of the spatially periodic problem (P) with
v0 6= v+. Choose v0 such that on the phase plane (v, p) the periodic orbit of v+
encircles the orbit of v0. Then, by [41], Lemma 4.8, we have

zP(v+ − v0) = zP(v+,x) . (174)
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By (88) this implies

`(v+) = zP(v+ − v0)/2 . (175)

Therefore Theorem 8, (98) implies

`(w) = `(v+) = zN(v+ − v0+) . (176)

This determines the Matano period lap number of the rotating wave w ∈ RP
f . Note

that the zero number zN(v+ − v0+) was already computed in the previous step.

Finally, the Morse indices of all rotating waves wk ∈ RP
f are determined from σ

using Theorem 10. Let vj ∈ EN
g denote the equilibrium of the frozen symmetrized

problem (N) corresponding to the restriction of vk,+ ∈ EP
g to the half-interval,

vj = vk,+ in 0 ≤ x ≤ π. Then iN(vj) = ij(σ) and (120) implies

iP(w) =

 2ij(σ)− 1 if ij(σ) = `(w) ,

2ij(σ)− 2 if ij(σ) = `(w) + 1 .
(177)

This completes the recipe for the construction of the connection graph GP
f from

the Sturm permutation σ = σP
f . Let us denote by AP

n,κ and GP
n,κ the Sturm attractor

and connection graph of (17) corresponding to σn,κ ∈ S(n) with n = m+ 2q.
The Sturm attractors AP

1,1 and AP
3,1 are particularly simple. They correspond to

(m, q) = (1, 0) and (m, q) = (3, 0), respectively, and have dimensions dimAP
1,1 = 0

and dimAP
3,1 = 1.

For n = 5, the two cases AP
5,1 and AP

5,2 correspond to (m, q) = (5, 0) and (m, q) =

(3, 1), respectively. Their dimensions are dimAP
5,1 = 1 and dimAP

5,2 = 3. Figure 4
shows stylized meanders corresponding to the Sturm permutations σ5,1 and σ5,2, and
the nesting configuration in the ODE phase plane (v, p) of the PDE homogeneous
equilibria and periodic orbits of (80) corresponding to the equilibria and rotating
waves of (17).

1 2 3 4 5

(m,q)=(5,0)

1 234 5

1

(m,q)=(3,1)

s5,2

s5,1

Figure 4. Meanders and phase plane configurations for σ5,1 and
σ5,2. Left: Stylized meanders. Right: Phase plane configurations
(m and q denote the number of equilibria and 2π-periodic orbits,
respectively). The number attached to the periodic orbit denotes
its Matano period lap number.

The connection graphs for the Sturm attractors with n ≤ 5 are shown in Figure
5.

In the following we denote by AP
1 tAP

2 the connected sum of AP
1 and AP

2 obtained
by gluing the two attractors via the identification of the maximal equilibrium of AP

1
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i=0 i=0

i=1G1,1

G3,1 G5,1

1

i=0

i=1

i=3G5,2

i=0

i=1

Figure 5. Connection graphs GP
n,κ for Sturm attractors AP

n,κ with
1 ≤ κ ≤ ι(n) and n ≤ 5.

with the minimal equilibrium of AP
2 . Indeed dissipativeness of f ∈ SturmP(u, ux)

imply that such highest and lowest elements of EP
f ∪RP

f exist in AP
f , due to mono-

tonicity of the semiflow. In fact these extreme objects are stable and hence coincide
with spatially homogeneous equilibria.

Likewise we define GP
1 t GP

2 as the connection graph associated with AP
1 t AP

2 .
Then, we can easily see that

GP
5,1 = GP

3,1 t GP
3,1 . (178)

In fact, this is already visible in the corresponding permutations. At the meander
level this connected sum corresponds to a concatenation of the respective meanders
by their extreme points.

The connection graph GP
5,2 corresponds to a Sturm attractor AP

5,2 with three
equilibria and one rotating wave. From our list of integrable Sturm involutions it
is the simplest Sturm attractor AP

n,κ with exactly one rotating wave.

The rotating wave w of AP
5,2, with period lap number `(w) = 1 and Morse index

iP(w) = 1, possesses an unstable manifold of dimension dimWu(w) = iP(w) + 1 =
2. Moreover, the middle unstable equilibrium e2, with Morse index iP(e2) = 3,
possesses heteroclinic orbit connections to the rotating wave w, e2 ; w. Since
codimW s(w) = iP(w) = 1, by transversality we have

dim(Wu(e2) ∩W s(w)) = dimWu(e2)− codimW s(w) = 2 . (179)

Also w ; e1, w ; e3 and the respective connecting sets are two dimensional
manifolds,

dim(Wu(w) ∩W s(e1)) = dim(Wu(w) ∩W s(e3)) = dimWu(w) = 2 . (180)

A geometric model studied by [35] in the technically somewhat different setting of
positive feedback delay equations is the spindle attractor. See Figure 6. The spindle
attractor W is the closure of the unstable manifold of a central equilibrium e0 and
is split by an invariant disk S into the basins of attraction toward the tips e+, e−.
The invariant disk S corresponds to heteroclinic orbit connections between e0 and
a unique periodic orbit w. Clearly the connection graph of the spindle attractor
coincides with our connection graph GP

5,2. We suspect, but did not prove, that in

fact the global PDE attractor AP
5,2 is C0 orbit equivalent to the spindle attractor.

For n = 7 we have four connection graphs. The corresponding stylized meanders
and ODE phase plane nesting configurations are presented in Figure 7. All the
connection graphs GP

n,κ for n = 7 are shown in Figure 8.
We can immediately see that the first two cases correspond to the concatenation

of previous ones. In fact, we have

GP
7,1 = GP

3,1 t GP
3,1 t GP

3,1 , (181)

GP
7,2 = GP

3,1 t GP
5,2 . (182)
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w

e
1

e
3

e
2

Figure 6. A geometric representation of the Sturm “spindle” at-
tractor AP

5,2, with m = 3 and q = 1. See also [35].

1 2 3 4 5 6 7

(m,q)=(7,0)

1 2 3 456 7

(m,q)=(5,1)

1

1 23 4 56 7

2
1

(m,q)=(3,2)

1 23456 7

(m,q)=(3,2)

s7,1

s7,2

s7,3

s7,4

1
1

Figure 7. Meanders and phase plane configurations for all inte-
grable Sturm involutions σn,κ with n = 7. Left: Stylized meanders.
Right: Phase plane configurations. The periodic orbits have the
Matano period lap number attached.

Each of the other two cases, AP
7,3 and AP

7,4, possesses two rotating waves: q =
2 and m = 3. In the ODE phase plane (v, p) the periodic orbits associated to
these rotating waves are nested, see Figure 7. Therefore we denote by w1 and
w2 the rotating waves associated to the innermost and outermost periodic orbits,
respectively.
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i=0

i=1 1

i=0

i=1

i=3

1

2

i=0

i=1

i=3

i=5

1

1

i=0

i=1

i=2

G7,1 G7,2

G7,3 G7,4

Figure 8. Connection graphs GP
n,κ for the Sturm attractors AP

n,κ

with 1 ≤ k ≤ κ(n) and n = 7.

The attractor AP
7,3 has dimension dimAP

7,3 = 5. In fact the unstable middle

equilibrium, e2, has Morse index iP(e2) = 5. The (innermost) rotating wave w1 has
period lap number `(w1) = 2 and Morse index iP(w1) = 3, while the (outermost)
rotating wave w2 has period lap number `(w2) = 1 and Morse index iP(w2) = 1.
We have e2 ; w1, w2 ; e1, w2 ; e3 and, due to transversality, the connecting sets
are two dimensional manifolds,

dim(Wu(e2) ∩W s(w1)) = dimWu(e2)− codimW s(w1)

= iP(e2)− iP(w1) = 2 ,
(183)

dim(Wu(w2) ∩W s(e1)) = dim(Wu(w2) ∩W s(e3)) = dimWu(w2)

= iP(w2) + 1 = 2 .
(184)

We also have w1 ; w2 and, since the two rotating waves have different periods, it
should be interesting to study the geometry of the respective connecting set. This
set is a three dimensional manifold. In fact, since dimWu(w1) = iP(w1) + 1 = 4
and codimW s(w2) = iP(w2) = 1, by transversality we obtain

dim(Wu(w1) ∩W s(w2)) = dimWu(w1)− codimW s(w2) = 3 . (185)

We recall that all the possible asymptotic phases are realized by heteroclinic orbits,
(see [23] for details).

In spite of exhibiting also two rotating waves, the Sturm attractor AP
7,4 is quite

different from the previous one. Both rotating waves w1 and w2 have the same
period lap number, `(w1) = `(w2) = 1, and the corresponding Morse indices differ
by one, iP(w1) = 2 and iP(w2) = 1. In this case we have dimWu(w1) = iP(w1)+1 =
3, dimWu(w2) = iP(w2)+1 = 2 and the unstable middle equilibrium e2 has Morse
index iP(e2) = 1. Therefore, the Sturm attractor has dimension dimAP

7,4 = 3.
Moreover, w1 ; w2, w1 ; e2 and the respective connecting sets are two dimensional
manifolds. Indeed, since codimW s(w2) = iP(w2) = 1 and codimW s(e2) = iP(e2) =
1, tranversality implies

dim(Wu(w1) ∩W s(w2)) = dimWu(w1)− codimW s(w2) = 2 , (186)

dim(Wu(w1) ∩W s(e2)) = dimWu(w1)− codimW s(e2) = 2 . (187)

Also w2 ; e1, w2 ; e3 with connecting sets which are two dimensional manifolds,
and e2 ; e1, e2 ; e3 with one dimensional manifold connections.

For n = 9 the list of Sturm attractors AP
n,κ and connection graphs GP

n,κ becomes
even more variegated, while still manageable. Up to trivial equivalence, there are
exactly 10 Sturm permutations which are integrable involutions. These are listed
in Table 3, see [24] for details.
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σ9,1 = {1, 2, 3, 4, 5, 6, 7, 8, 9} = id ;
σ9,2 = {1, 2, 3, 4, 5, 8, 7, 6, 9} = (6 8) ;
σ9,3 = {1, 2, 3, 6, 5, 4, 7, 8, 9} = (4 6) ;
σ9,4 = {1, 2, 3, 8, 5, 6, 7, 4, 9} = (4 8) ;
σ9,5 = {1, 2, 3, 8, 7, 6, 5, 4, 9} = (4 8)(5 7) ;
σ9,6 = {1, 4, 3, 2, 5, 8, 7, 6, 9} = (2 4)(6 8) ;
σ9,7 = {1, 8, 3, 4, 5, 6, 7, 2, 9} = (2 8) ;
σ9,8 = {1, 8, 3, 6, 5, 4, 7, 2, 9} = (2 8)(4 6) ;
σ9,9 = {1, 8, 7, 4, 5, 6, 3, 2, 9} = (2 8)(3 7) ;
σ9,10 = {1, 8, 7, 6, 5, 4, 3, 2, 9} = (2 8)(3 7)(4 6) ;

Table 3. List of integrable involutive Sturm permutations σ ∈ S(9).

For presentation purposes we organize these Sturm permutations into four sets Pq
according to the number q of rotating waves of the corresponding Sturm attractors:

P0 = {σ9,1} ,
P1 = {σ9,2, σ9,3} ,
P2 = {σ9,4, σ9,5, σ9,6, σ9,9} ,
P3 = {σ9,7, σ9,8, σ9,10} .

(188)

The first set P0 corresponds to Sturm attractors without rotating waves. There
is, of course, one attractor AP

9,1 with nine equilibria and no rotating waves, corre-

sponding to σP
f = σ9,1 = id. It has dimAP

9,1 = 1, and one easily verifies that

GP
9,1 = GP

3,1 t GP
3,1 t GP

3,1 t GP
3,1 . (189)

See Figure 9.
The second set P1 consists of two Sturm permutations. The corresponding at-

tractors AP
9,2 and AP

9,3 possess one rotating wave and seven homogeneous equilibria

each. They both satisfy dimAP
9,2 = dimAP

9,3 = 3, and their connection graphs can
be written as

GP
9,2 = GP

3,1 t GP
3,1 t GP

5,2 , GP
9,3 = GP

3,1 t GP
5,2 t GP

3,1 . (190)

The meanders and phase plane configurations obtained from the Sturm per-
mutations in P0 and P1 are shown in Figure 9. The connection graphs of the
corresponding Sturm attractors are presented in Figure 10.

The third set of Sturm permutations P2 consists of four permutations correspond-
ing to Sturm attractors with exactly two rotating waves and five equilibria. The
connection graphs of the first three Sturm attractors are concatenations of previous
ones. We have

GP
9,4 = GP

3,1 t GP
7,3 , GP

9,5 = GP
3,1 t GP

7,4 , GP
9,6 = GP

5,2 t GP
5,2 , (191)

and dimAP
9,4 = 5, dimAP

9,5 = dimAP
9,6 = 3.

The connection graph GP
9,9 of the fourth attractor AP

9,9 does not decompose into
previous ones. It has a special geometrical interest because in the phase plane the
periodic orbits corresponding to the rotating waves are nested and both encircle the
three middle equilibria. The meanders and phase plane configurations associated
to the set P2 of Sturm permutations are shown in Figure 11.
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1 2 3 4 5 6 7 8 9

(m,q)=(9,0)

1 2 3 4 5 678 9

1

(m,q)=(7,1)

1

1 2 3 456 7 8 9

s9,1

s9,2

s9,3

(m,q)=(7,1)

Figure 9. Meanders and phase plane configurations for the Sturm
permutations in P0 and P1. Left: Stylized meanders. Right: Phase
plane configurations.

i=0

i=1 1

i=0

i=1

i=3

1

i=0

i=1

i=3

G9,1 G9,2 G9,3

Figure 10. Connection graphs GP
9,κ for the Sturm permutations

in P0 and P1.

In several aspects the Sturm attractor AP
9,9 is similar to AP

7,4. We denote again
by w1 and w2 the rotating waves corresponding to the innermost and the outermost
periodic orbits, respectively. Then both have the same period lap number `(w1) =
`(w2) = 1 and their Morse indices differ by one, iP(w1) = 2 and iP(w2) = 1.
Again we have dimWu(w1) = iP(w1) + 1 = 3 and the attractor has dimension
dimAP

9,9 = 3. The middle equilibrium e3 is stable, iP(e3) = 0, and the two unstable

equilibria have Morse indices iP(e2) = iP(e4) = 1. With respect to heteroclinic
orbit connections in AP

9,9 we have w1 ; w2, w1 ; e2 and w1 ; e4 for which the
corresponding connecting sets are two dimensional manifolds,

dim(Wu(w1) ∩W s(w2)) = dimWu(w1)− codimW s(w2) = 2 , (192)

dim(Wu(w1) ∩W s(e2)) = dimWu(w1)− codimW s(e2) = 2 , (193)

dim(Wu(w1) ∩W s(e4)) = dimWu(w1)− codimW s(e4) = 2 . (194)

Moreover, we also have w2 ; e1, w2 ; e5 with two dimensional connecting man-
ifolds, and e2 ; e1, e2 ; e3, e4 ; e1, e4 ; e5 with one dimensional heteroclinic
connections.

All the connection graphs GP
9,κ associated to the Sturm permutations in P2 are

presented in Figure 12.
Finally, the set of Sturm permutations P3 corresponds to three Sturm attractors

AP
9,7, AP

9,8, and AP
9,10, each with exactly three rotating waves and three equilibria. In

all three cases the ODE periodic orbits which generate the rotating waves are nested
and encircle the middle equilibrium e2. Otherwise the attractors are completely
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Figure 11. Meanders and phase plane configurations for the set
P2 of Sturm permutations. Left: Stylized meanders. Right: Phase
plane configurations with attached Matano period lap numbers.
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Figure 12. Connection graphs GP
9,κ for the set P2 of Sturm permutations.

different. The meanders and phase plane configurations associated to this set P3 of
Sturm permutations are depicted in Figure 13.

Let w1, w2 and w3 denote the rotating waves corresponding to the innermost,
the middle and the outermost periodic orbits, respectively. For the Sturm attractor
AP

9,7, the period lap numbers of the rotating waves are `(w1) = `(w2) = 2 and

`(w3) = 1, while the Morse indices are iP(w1) = 4, iP(w2) = 3 and iP(w3) =
1. Moreover, the middle equilibrium e2 has Morse index iP(e2) = 3. Therefore
dimWu(w1) = iP(w1) + 1 = 5 and the attractor has dimension dimAP

9,7 = 5. In

AP
9,7 we have the heteroclinic orbit connections w1 ; w2, w1 ; e2 and e2 ; w3 for
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Figure 13. Meanders and phase plane configurations for the set
P3 of Sturm permutations. Left: Stylized meanders. Right: Phase
plane configurations with attached Matano period lap numbers.

which the connecting sets are two dimensional manifolds,

dim(Wu(w1) ∩W s(w2)) = dimWu(w1)− codimW s(w2) = 2 , (195)

dim(Wu(w1) ∩W s(e2)) = dimWu(w1)− codimW s(e2) = 2 , (196)

dim(Wu(e2) ∩W s(w3)) = iP(e2)− iP(w3) = 2 . (197)

In addition w2 ; w3 and the connecting set is a three dimensional manifold,

dim(Wu(w2) ∩W s(w3)) = iP(w2) + 1− iP(w3) = 3 , (198)

Note that by transitivity also w1 ; w3, and the connecting set is a four dimensional
manifold,

dim(Wu(w1) ∩W s(w3)) = iP(w1) + 1− iP(w3) = 4 . (199)

The heteroclinic orbit connections w3 ; e1, w3 ; e3, which complete the edges of
the connection graph GP

9,7, are two dimensional manifolds,

dim(Wu(w3) ∩W s(e1)) = dim(Wu(w3) ∩W s(e3)) = dimWu(w3)

= iP(w3) + 1 = 2 .
(200)

In the case of the Sturm attractor AP
9,8, the inner rotating wave has period lap

number `(w1) = 3 and Morse index iP(w1) = 5, the middle one has period lap
number `(w2) = 2 and Morse index iP(w2) = 3, and the outer one has period
lap number `(w3) = 1 and Morse index iP(w3) = 1. Moreover, the unstable middle
equilibrium has index iP(e2) = 7 and the Sturm attractor has dimension dimAP

9,8 =
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7. The heteroclinic orbit connections corresponding to w1 ; w2, w2 ; w3 are three
dimensional manifolds,

dim(Wu(w1) ∩W s(w2)) = dimWu(w1)− codimW s(w2)

= iP(w1) + 1− iP(w2) = 3 ,
(201)

dim(Wu(w2) ∩W s(w3)) = dimWu(w2)− codimW s(w3)

= iP(w2) + 1− iP(w3) = 3 ,
(202)

The remaining edges of the connection graph GP
9,8 correspond to e2 ; w1, w3 ; e1,

w3 ; e3 and are two dimensional manifolds,

dim(Wu(e2) ∩W s(w1)) = dimWu(e2)− codimW s(w1)

= iP(e2)− iP(w1) = 2 ,
(203)

dim(Wu(w3) ∩W s(e1)) = dim(Wu(w3) ∩W s(e3)) = dimWu(w3)

= iP(w3) + 1 = 2 .
(204)

Finally, in the case of the Sturm attractor AP
9,10 all the rotating waves have the

same period lap number, `(w1) = `(w2) = `(w3) = 1. Yet, while w1, w3 have Morse
indices iP(w1) = iP(w3) = 1, the rotating wave w2 has Morse index iP(w2) = 2.
Moreover, the unstable middle equilibrium e2 has Morse index iP(e2) = 3 and the
attractor has dimension dimAP

9,10 = 3. The connecting sets corresponding to the

edges of the connection graph GP
9,10 are all two dimensional manifolds. In fact, we

have the connections w2 ; w1 and w2 ; w3 for which

dim(Wu(w2) ∩W s(w1)) = iP(w2) + 1− iP(w1) = 2 , (205)

dim(Wu(w2) ∩W s(w3)) = iP(w2) + 1− iP(w3) = 2 . (206)

Also the middle equilibrium e2 satisfies e2 ; w1 and

dim(Wu(e2) ∩W s(w1)) = iP(e2)− iP(w1) = 2 . (207)

Moreover, the edges of the connection graph GP
9,10 are completed by w1 ; e1,

w1 ; e3, w3 ; e1 and w3 ; e3 for which

dim(Wu(w1) ∩W s(e1)) = dim(Wu(w1) ∩W s(e3)) = iP(w1) + 1 = 2 , (208)

dim(Wu(w3) ∩W s(e1)) = dim(Wu(w3) ∩W s(e3)) = iP(w3) + 1 = 2 . (209)

All the connection graphs GP
9,κ associated to the Sturm permutations in P3 are

shown in Figure 14.
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Figure 14. Connection graphs GP
9,κ for the set P3 of Sturm permutations.
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This completes the description, up to trivial equivalence, of all the Sturm con-
nection graphs GP

f for f ∈ SturmP(u, ux) with m equilibria, q rotating waves, and
n = m+ 2q ≤ 9.
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