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Abstract. In this article we consider a model first order mean field game

problem, introduced by J.M. Lasry and P.L. Lions in [18]. Its solution (v,m)

can be obtained as the limit of the solutions of the second order mean field
game problems, when the noise parameter tends to zero (see [18]). We pro-

pose a semi-discrete in time approximation of the system and, under natural

assumptions, we prove that it is well posed and that it converges to (v,m)
when the discretization parameter tends to zero.

1. Introduction. The aim of Mean Field Game theory (MFG), introduced by
Lasry and Lions in [16, 17, 18], is to describe analytically when N ↑ ∞ the behavior
of the limit of Nash equilibria for N -players stochastic differential games. In the
presence of stochastic dynamics of Itô type for the state of each player, the limit
system is, at least formally, of the following form (see [18]):

− ∂tv(t, x)− σ2∆v(x, t) +H(x,Dv(x, t))F (x,m(t)), in Rd × (0, T ), (1)

∂tm(t, x)− σ2∆m(x, t)− div
(
m(t, x)

∂H

∂p
(x,Dv(t, x))

)
= 0, in Rd × (0, T ), (2)

v(x, T ) = G(x,m(T )) for x ∈ Rd, m(0) = m0 ∈ P1. (3)

In the notation above we have: the noise parameter σ ∈ R, the Hamiltonian H,
which is convex with respect to the second variable, the space P1 of probability
measures on Rd and the functions F,G : Rd × P1 → R, which can be non local
operators. It is shown in [18] that, under natural assumptions and in an appropriate
sense, system (1)-(3) admits a unique solution (vσ,mσ). Let us also point out that
a discrete analogous model has been proposed in [13]. The authors prove its well-
posedness as well as exponential convergence towards an equilibrium.

Regarding numerical methods, a finite-difference scheme for (1)-(3) is proposed
in [2], as well as the corresponding scheme for the stationary version. See also [1]
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where a Newton method is used to solve the discretized system in the context of the
planning problem. A different approach is explored in [15], based on the fact that,
for some particular cases (see [18]), system (1)-(3) characterizes the saddle points
of an associated optimization problem. Let us also mention [14] where, in the case
of a quadratic Hamiltonian, a change of variable allows to rewrite system (1)-(3) in
a simpler manner which in turns permits to design a monotone scheme.

In this work we focus our attention on the vanishing viscosity limit of (1)-(3)
as σ ↓ 0, when H(x, p) = 1

2 |p|
2. This is interpreted as that the noise σ for each

player tends to disappear. The limit equations are the so-called first order mean
field system (see [18])

−∂tv(t, x) + 1
2 |Dv(t, x)|2 = F (x,m(t)), in Rd × (0, T ),

∂tm(t, x)− div
(
Dv(t, x)m(t, x)

)
= 0, in Rd × (0, T ),

v(x, T ) = G(x,m(T )) for x ∈ Rd, m(0) = m0 ∈ P1.

(4)

It is well known (see [18])) that, under natural assumptions, system (4) has a unique
solution (v,m) and that (vσ,mσ)→ (v,m) in appropriate spaces.

In this work we study a time discretization of (4), which is precisely described
in section 4. This is motivated by a forthcoming work in which a fully discrete (i.e.
where space discretization is added) semi-lagrangian method is studied, together
with some numerical experiments. Our main results in this article is that the
resulting discretization is well-posed (see theorem 4.2) and that, as the discretization
parameter goes to zero, we have the convergence to the solution (v,m) of (4). This
is the first result concerning the approximation of a first order MFG system.

The article is organized as follows: After setting the notation and introducing
the fundamental assumptions in section 2, we analyze in section 3 a discrete in
time approximation of the first and second equations in (4), separately. This is
fundamental in order to prove in section 4 the well-posedness of the semi-discrete
scheme, as well as its convergence. Finally, we provide in the appendix a proof of a
technical result stated in section 3.

2. Prerequisites. Let us first fix some notation. We denote by P1 the set of
the Borel probability measures m such that

∫
Rd |x|dm(x) < ∞. The set P1 is be

endowed with the Kantorovich-Rubinstein distance

d1(µ, ν) = sup

{∫
Rd

φ(x)d[µ− ν](x) ; φ : Rd → R is 1-Lipschitz

}
. (5)

Given a measure µ ∈ P1 we denote by supp (µ) its support and given x ∈ Rd′

(d′ ∈ N) we set xi for its i-th coordinate. For a Lebesgue measurable set A ⊆ Rd
we denote by Ld(A) its Lebesgue measure. In what follows, in order to simplify the
notation, the operator D (resp. D2) will denote the derivative (resp. the second
derivative) with respect to the space variable x ∈ Rd. We suppose that the functions
F,G : Rd × P1 → R and m0 ∈ P1, which are the data of system (4), satisfy the
following assumptions:

(H1) F and G are continuous over Rd × P1.

(H2) There exists a constant C > 0 such that for any m ∈ P1

‖F (·,m)‖C2 + ‖G(·,m)‖C2 ≤ C.



APPROXIMATION OF MEAN FIELD GAMES 265

(H3) The following monotonicity conditions holds true∫
Rd

[F (x,m1)− F (x,m2)] d[m1 −m2](x) > 0 for all m1, m2 ∈ P1, m1 6= m2,

(6)∫
Rd

[G(x,m1)−G(x,m2)] d[m1 −m2](x) > 0 for all m1, m2 ∈ P1, m1 6= m2.

(7)

(H4) The measure m0, appearing in the third equation of (4), is absolutely con-
tinuous with respect to the Lebesgue measure. Its density, still denoted as m0, is
essentially bounded and satisfies supp (m0) ⊂ B(0, C).

Remark 1. Assumption (7) is slightly stronger than the corresponding assumption
in [7].

Now we define what we mean by a solution of (4).

Definition 2.1. The pair (v,m) ∈W 1,∞
loc (Rd× [0, T ])×L1(Rd×(0, T )) is a solution

of (4) if the first equation is satisfied in the viscosity sense, while the second one in
sense of distributions.

The following existence and uniqueness result is proved in [18, 19, 7]

Theorem 2.2. Under (H1)-(H4) there exists a unique solution (v,m) to (4).

In the proof of the above theorem, as well that in the the proof of our main
results, the concept of semi-concavity plays a crucial role. For a complete account
of the theory and its applications to the solution of HJB equations, we refer the
reader to [6].

Definition 2.3. We say that w : Rd → R is semi-concave with constant Cconc > 0
if for every x1, x2 ∈ Rd, λ ∈ (0, 1) we have

w(λx1 + (1− λ)x2) ≥ λw(x1) + (1− λ)w(x2)− λ(1− λ)Cconc|x1 − x2|2. (8)

A function ŵ is said to be semi-convex if −ŵ is semi-concave.

Recall that for w : Rd → R the super-differential D+w(x) at x ∈ Rd is defined as

D+w(x) :=

{
p ∈ Rd ; lim sup

y→x

w(y)− w(x)− 〈p, y − x〉
|y − x|

≤ 0

}
.

We collect in the following lemmas some useful properties of semi-concave functions
(see [6]) .

Lemma 2.4. For a function w : Rd → R, the following assertions are equivalent:

(i) The function w is semi-concave, with constant Cconc.

(ii) For all x, y ∈ Rd, we have

w(x+ y) + w(x− y)− 2w(x) ≤ Cconc|y|2.

(iii) For all x1, x2 ∈ Rd and p ∈ D+w(x1), q ∈ D+w(x2)

〈q − p, x2 − x1〉 ≤ Cconc|x− y|2. (9)

(iv) Setting Id for the identity matrix, we have that D2w ≤ CconcId in the sense of
distributions.
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Lemma 2.5. Let w : Rd → R be semi-concave. Then:

(i) w is locally Lipschitz.

(ii) If wn is a sequence of uniformly semi-concave converging point-wisely to w, then
the convergence is locally uniform and Dwn(x)→ Dw(x) for a.e. x ∈ Rd.

3. The semi-discrete scheme for the “separated” equations. In order to
describe a discrete in time approximation for (4), we first analyze the discretization
of both equations separately.

3.1. Approximation of the Hamilton-Jacobi equation. For a given m ∈
C([0, T ];P1), the first equation in (4), together with the corresponding boundary
value at t = T , characterizes the value function of an associated optimal control
problem. In this subsection we recall some basic properties of this problem and
some facts about its semi-discrete in time discretization (see [8, 9, 10] for the semi-
discrete approximation and the forthcoming book [11] for a complete account of the
theory including the fully discrete semi-lagrangian scheme).

For t ∈ [0, T ] set A(t) := L2([t, T ];Rd) for the set of admissible controls. Given
α ∈ A(t) its associated state Xx,t[α] is defined as the unique solution of

Ẋ(s) = −α(s) for s ∈ (t, T ), X(t) = x. (10)

Now, let f : Rd × [0, T ]→ R, g : Rd → R be continuous, satisfying that

‖f(·, t)‖C2 ≤ C ∀t ∈ [0, T ], ‖g‖C2 ≤ C. (11)

Consider the following cost function

J(α;x, t) :=

∫ T

t

[
1
2 |α(s)|2 + f(Xx,t[α](s), s)

]
ds+ g(Xx,t[α](T )). (12)

We define w : Rd × [0, T ]→ R as the value function of the optimal control problem
with dynamics (10) and cost (12), i.e.

w(x, t) = inf
α∈A(t)

J(α;x, t) for all (x, t) ∈ Rd × [0, T ]. (13)

We recall in the next proposition some basic properties of the function w (see e.g.
[7] for our model problem and [4, 6] for generalizations).

Proposition 1. The following statement hold true:

(i) The value function is globally Lipschitz w.r.t. the pair (x, t).

(ii) The value function is semi-concave w.r.t. x.

It is well known that w is the unique viscosity solution of (see e.g. [4]){
−∂tw(x, t) + 1

2 |Dw(x, t)|2 = f(x, t), in Rd × (0, T ),

w(x, T ) = g(x) in Rd.
(14)

We define the set of optimal controls A(x, t) as

A(x, t) := {α ∈ A(t) ; J(α;x, t) = w(x, t)} . (15)

Under our assumptions, classical arguments show that for all (x, t) ∈ Rd × (0, T )
the set A(x, t) is non-empty. Moreover, the next lemma (proved in e.g. [7, Lemma
4.8 and Lemma 4.9]) shows that unicity in A(x, t) characterizes the existence of
Dw(x, t).
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Lemma 3.1. Let (x, t) ∈ Rd × [0, T ]. Then,

(i) For any α ∈ A(x, t) and s ∈ (t, T ], we have that A(Xx,t[α](s), s) =
{
α(·)

∣∣
(s,T ]

}
.

(ii) If α ∈ A(x, t) then α is C1 in [t, T ] and satisfies

α̇(t) = −Df(Xx,t[α](s), s), for s ∈ (t, T ); α(T ) = Dg(Xx,t[α](T )). (16)

(iii) The function w is differentiable with respect to x at (x, t) iff there exists α ∈
A(t) such that A(x, t) = {α}. In this case, Dxw(x, t) = α(t).

(iv) For every (x, t) ∈ Rd, any optimal trajectory X(·) : [t, T ] → Rd for problem
(13) satisfies

Ẋ(s) = −Dw(X(s), s) for s ∈ (t, T ), X(t) = x, (17)

i.e. every α(·) ∈ A(x, t) admits a feedback representation as α(s) = Dw(X(s), s)
where X is a solution of (17). Conversely, any solution X(·) : [t, T ]→ Rd of (17)
is an optimal trajectory for problem (13). In particular, equation (17) admits a
unique solution iff the optimal control problem for w(x, t) has a unique solution.

Remark 2. Proposition 1(i) and lemma 3.1(iii) imply that given t ∈ [0, T ] we have
that A(x, t) is a singleton a.e. in Rd.

Let us now introduce a time discretization of (14). Fix h > 0, set N = T/h (we
assume N to be an integer) and for n = 0, ..., N−1 define the set of discrete controls

Ah(n) := Rd×(N−n). Given α = (αk)N−1
k=n ∈ Ah(n), let us define, for k = n, ..., N ,

the discrete states Xx,n
k [α] as the solution of{

Xk+1 = Xk − hαk = x− h
∑k
i=n αi for k = n, . . . , N − 1,

Xn = x.
(18)

In order to simplify the notation, when the context is clear, we do not write the
dependence of the discrete state on (x, n) and α and we will simply write Xk. The
discrete cost function Jh(·;x, n) : Ah(n)→ R is defined by

Jh(α;x, n) = h

N−1∑
k=n

[
1
2 |αk|

2 + f(Xk, kh)
]

+ g(XN ). (19)

The value function wh is given by

(x, n) ∈ Rd × {0, ..., N − 1} → wh(x, n) := inf
α∈Ah(n)

J(α;x, n), wh(x,N) = g(x).

(20)
We easily obtain that wh satisfies the following dynamic programming equation wh(x, n) = infα∈Rd

{
wh(x− hα, n+ 1) + 1

2h|α|
2
}

+ hf(x, nh), for x ∈ Rd,
n = 1, . . . , N − 1,

wh(x,N) = g(x) for x ∈ Rd.
(21)

We denote by α̂(x, n) ∈ Rd an optimal solution (possibly not unique) of the r.h.s.
of (21). The next lemma, proved in the appendix, provide useful properties of the
discrete value function.

Lemma 3.2. The following assertions hold true:

(i) The function wh satisfies (recall that C is the constant in (11)):

|wh(x, n)| ≤ C(1 + T ) for x ∈ Rd, n = 1, . . . , N − 1. (22)
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(ii) There exists a constant C1 > 0 independent of h, such that

|wh(x1, n1)− wh(x2, n2)| ≤ C1 (|x1 − x2|+ h|n1 − n2|) .
(iii) wh(·, n) is semi-concave with an associated constant C2 independent on h.

(iv) The function wh(·, n) is locally semi-convex at x − hα̂(x, n). More precisely,
there exists C3 > 0 (independent of h) such that for y in a compact set, we have

wh(x− hα̂(x, n) + y, n) +wh(x− hα̂(x, n)− y, n)− 2wh(x− hα̂(x, n), n) ≥ −
C3

h
|y|2 (23)

(v) The following local Lipschitz property for the derivative along the trajectory
holds: We have that

|Dwh(x− hα̂(x, n), n)−Dwh(y − hα̂(y, n), n)| ≤
C3

h
|x− hα̂(x, n)− y + hα̂(y, n)|, (24)

provided that x, y belong to a compact set.

It is clear that for every (x, n) ∈ Rd × {0, ..., N − 1} there exists a least one
α ∈ Ah(n) with

wh(x, n) = Jh(α;x, n). (25)

We denote by Ah(x, n) for the set of discrete controls α ∈ Ah(n) such that (25)
holds. Let us now provide a “discrete” version of lemma 3.1.

Lemma 3.3. Let (x, n) ∈ Rd × {0, ..., N − 1}. Then,

(i) The set Ah(x, n) is bounded by a constant independent of h.
(i) For any α ∈ Ah(x, n) and k = n + 1, ..., N − 1, we have Ah(Xx,n

k [α], k) =
{(αk, ..., αN−1)} .
(iii) The function w(·, n) is differentiable at x iff there exists ᾱ(x, n) ∈ Ah(n) such
that Ah(x, n) = {ᾱ(x, n)}. In that case,

Dxw(x, n) = ᾱn(x, n) + hDf(x, nh).

In particular, the problem associated with wh(x, n) has a unique solution a.e. in
Rd.

(iv) For all α ∈ Ah(x, n), the following relation hold true:

αk(Xk, k) = Dwh(Xk − hαk(Xk, k), k + 1) for k = n, ..., N − 1.

Proof. By definition of α̂(x, n), lemma 3.2(ii) yields

1
2h|α̂(x, n)|2 = wh(x, n)− wh(x− hα̂(x, n), n+ 1)− hf(x, hn)

≤ C1h (|α̂(x, n)|+ 1) + hC,

which easily implies (i). The optimality condition for (25) yields that any α ∈
Ah(x, n) satisfies

αk = h

N−1∑
i=k+1

Df(Xx,n
i [α], ih) +Dg(Xx,n

N [α]) for k = n, ..., N − 1. (26)

In particular, for all k = n, ..., N − 2, we get that

αk+1 − αk = −hDf(Xx,n
k+1[α], (k + 1)h) = −hDf(Xx,n

k [α]− hαk, (k + 1)h). (27)

Letting k = n we get that αn+1 is uniquely determined by αn and assertion (ii) fol-
lows from a recursive argument. Now, let us prove (iii). For notational convenience
we prove the result for n = 0. One implication is a straightforward consequence of
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Danskin theorem (see e.g. [5, Theorem 4.13]). Now, let us assume that wh(·, 0) is
differentiable at x ∈ Rd and let α ∈ Ah(x, 0). For p ∈ Rd and σ > 0, we have

wh(x+σp, 0) ≤ 1
2h|α0|2+hf(x+σp, 0)+h

N−1∑
k=1

[
1
2 |αk|

2+f(Xk+σp, kh)
]
+g(XN+σp),

with equality for p = 0. Subtracting wh(x, 0), dividing by σ and letting σ ↓ 0, we
get

Dwh(x, 0)p ≤ hDf(x, 0)p+ h

N−1∑
k=1

Df(Xk, kh)p+Dg(XN )p.

Since p is arbitrary we obtain that

Dwh(x, 0) = hDf(x, 0) + h

N−1∑
k=1

Df(Xk, kh) +Dg(XN ).

Using (26) with k = 0, we obtain

Dwh(x, 0) = hDf(x, 0) + α0,

and thus α0 is unique. Therefore, in view of (27), we obtain that α is unique.
Finally, by (ii), we can apply Danskin theorem to obtain that

Dwh(Xk − hαk(Xk, k), k + 1) = h

N−1∑
i=k+1

Df(Xx,n
i [α], ih) +Dg(Xx,n

N [α])

for k = n, ..., N − 1, and with (26) we obtain (iv).

Consider the function ŵh : Rd × [0, T ] → R defined by ŵh(x, t) := wh(x, [t/h]).
For notational convenience, when the context is clear we will write also wh for ŵh.
The following convergence result is well known (see e.g. [4, Chapter V, theorem
1.1], for the stationary case and for more general assumptions).

Theorem 3.4. As h ↓ 0, wh converges locally uniformly in Rd×[0, T ] to the solution
w of (14).

3.2. Approximation of the continuity equation. We now discuss the approx-
imation scheme for the continuity equation{

∂tµ(x, t)− div(Dw(x, t)µ(x, t)) = 0 for (x, t) ∈ Rd × (0, T ],

µ(x, 0) = m0(x), for x ∈ Rd.
(28)

with w being the solution of (14). We recall that µ is said to be a solution of
(28) if it satisfies the equation in the distributional sense. Let us first present some
well-known results about the existence and uniqueness for a solution of (28).

Consider the multivalued mapping x ∈ Rd → A(x, 0). Standard arguments (see
e.g. [3]) easily show that it admits a measurable selection α. Thus, we can define a
measurable map x ∈ Rd → Φ(x, ·) ∈ C([0, T ];Rd) by

Φ(x, t) = x−
∫ t

0

α(x, s)ds for all x ∈ Rd. (29)

Note that lemma 3.1(iv), implies that given x ∈ Rd, we have

∂tΦ(x, t) = −Dw(Φ(x, t), t) for t ∈ (0, T ), Φ(x, 0) = x. (30)
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Recall that for T : Rd → Rd and µ ∈ P1, the push-forward T]µ ∈ P1 of µ is defined
by T]µ(A) := µ(T−1(A)) for all A ∈ B(Rd). We have (see e.g. [7, theorem 4.18 and
lemma 4.14])

Theorem 3.5. Given a solution w of (13), the map t ∈ [0, T ]→ µ(t) := Φ(·, t)]m0 ∈
P1 is the unique solution of (28). Moreover, the following assertions hold true:

(i) There exists C4 > 0 such that for all s ∈ [0, T ], µ(s) is absolutely continuous
(with density still denoted by µ(s)), is bounded and has support in B(0, C4) .

(ii) For all t, t′ ∈ [0, T ], we have that

d1(µ(t), µ(t′)) ≤ ‖Dw(x, t)‖∞|t− t′|.

Our aim now is to define a discrete in time approximation of t ∈ [0, T ]→ µ(t) :=
Φ(·, t)]m0 ∈ P1. Given h > 0, let ᾱ(·, 0) be a measurable selection of the optimal
controls Ah(·, 0). For x ∈ Rd, the optimal flux (Φk(x))Nk=0 for (20) (where the
dependence on h is omitted for simplicity) is defined as

Φk(x) = x− h
k−1∑
i=0

ᾱi(x, 0) for k = 1, ..., N − 1 and Φ0(x) = x. (31)

Lemma 3.3 allows us to give the following equivalent form

Φk+1(x) = Φk(x)− hDwh(Φk+1(x), k + 1) for k = 1, ..., N − 1 and Φ0(x) = x.
(32)

Lemma 3.6. The flow Φk satisfies

|Φk(x)− Φk(y)|2 ≥
(

1

1 + C3 + 2Ch

)k
|x− y|2. (33)

Hence the map x 7→ Φk(x) is invertible in Φk(Rd) and the inverse is Lipschitz
continuous.

Proof. Set Φk = Φk(x) and Ψk = Φk(y). Using (32), we have

|Φk+1 −Ψk+1|2 = |Φk −Ψk|2 + h2|Dwh(Φk+1, k + 1)−Dwh(Ψk+1, k + 1)|2
−2h〈Dwh(Φk+1, k + 1)−Dwh(Ψk+1, k + 1),Φk −Ψk〉.

(34)
Now, since Φk = Φk+1 + hDwh(Φk+1, k+ 1) and Ψk = Ψk+1 + hDwh(Ψk+1, k+ 1),
the sum of the last two terms in (34) is given by

− 2h〈Dwh(Φk+1, k + 1)−Dwh(Ψk+1, k + 1),Φk+1 −Ψk+1〉
− h2|Dwh(Φk+1, k + 1)−Dwh(Ψk+1, k + 1)|2.

Therefore, by the semi-concavity of wh(·, k + 1) and lemma 3.2(v), we obtain

|Φk+1 −Ψk+1|2 ≥ |Φk −Ψk|2 − 2Ch|Φk+1 −Ψk+1|2 − C3|Φk+1 −Ψk+1|2,

which implies that

|Φk+1 −Ψk+1|2 ≥
1

1 + C3 + 2Ch
|Φk −Ψk|2

and (33) follows by iteration.

We define µh : {1, ..., N} → P1 by

µh(k) := Φk(·)]m0, for all k = 1, ..., N. (35)
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Equivalently,∫
Rd

φ(x)dµh(k)(x) =

∫
Rd

φ(Φk(x))m0(x)dx, for any φ ∈ C(Rd). (36)

We have the following lemma, whose proof follows the lines of lemma 4.14 in [7].

Lemma 3.7. There exists C5 > 0 (independent of h) such that:

(i) For all k1, k2 ∈ {1, ..., N}, we have that

d1(µh(k1), µh(k2)) ≤ C5h|k1 − k2|. (37)

(ii) For all k = 1, ..., N , µh(k) is absolutely continuous (with density still denoted
by µh(k)), is bounded and has support in B(0, C5).

Proof. Lemma 3.3(i) implies the existence of C6 > 0 (independent of h) such that

|Φk1(x)− Φk2(x)| ≤ C6|k1 − k2|h. (38)

For any 1-Lipschitz function φ : Rd → R, by (36)∫
Rd

φ(x) d[µh(k1)− µh(k2)](x) ≤
∫
Rd

|Φk1(x)− Φk2(x)|dm0 ≤ C6h|k1 − k2|.

Since supp (m0) ⊂ B(0, C), then supp (µh(k)) ⊂ B(0, C +NC6h) = B(0, C +TC6)
for any k = 1, . . . , N . For any Borel set A and k = 1, ..., N ,

µh(k)(A) = m0(Υh(A, k)) ≤ ‖m0‖∞Ld(Υh(A, k)).

Thus, lemma 3.6 yields that µh(k) is absolutely continuous with bounded density.

Now, we consider the time continuous version for µh. Denote by Φh(x, t) the
unique solution of

∂tΦh(x, t) = ᾱ[t/h](x, 0), for t ∈ (0, T ), Φh(x, 0) = x, (39)

which is nothing else than the linear interpolation of
{

Φ[t/h](x) ; t ∈ [0, T ]
}

. Anal-
ogously, let us define µh : [0, T ]→ P1 as

µh(t) := Φh(·, t)]m0, (40)

We extend to continuous time lemma 3.7. The proof being analogous is omitted.

Lemma 3.8. There exists a constant C7 > 0 (independent of h) such that:

(i) For all t1, t2 ∈ [0, T ], we have that

d1(µh(t1), µh(t2)) ≤ C7|t1 − t2|. (41)

(ii) For all t ∈ [0, T ], µh(t) is absolutely continuous (with density still denoted by
µh(t)), it is bounded and has support in B(0, C7).

We have the following convergence result.

Proposition 2. As h ↓ 0 we have that µh → µ in C([0, T ];P1).

We do not provide the proof of the above result since it is a slight variation of
the second part of the proof of theorem 4.3 in the next section. As we will see, the
argument is strongly based on the fact that the µ is transported with the optimal
controls α(x, 0) ∈ A(x, 0).
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4. The semi-discrete scheme for the deterministic MFG system. In this
section we combine the analysis done in the previous one and we study an semi-
discrete in time approximation of (4). Note that, in view of theorem 3.5, we seek
for a pair (v,m) satisfying

−∂tv(t, x) + 1
2 |Dv(t, x)|2 = F (x,m(t)), in Rd × (0, T ),

m(t) = Φ(·, t)]m0 for t ∈ [0, T ],

v(x, T ) = G(x,m(T )) for x ∈ Rd, m(0) = m0 ∈ P1,

(42)

where Φ(x, ·) is the given by (29), with α(x, ·) being a solution for the optimal
control associated with v(x, 0). This reflects the coupled nature of (42). We set

Kh =
{

(m(i))Ni=0 : m(i) ∈ P1 for all i = 0, . . . , N
}
,

and, for given h > 0, consider the following discretization of (42)
vh(x, k) = infα∈Rd

{
vh(x− hα, k + 1) + 1

2h|α|
2
}

+ hF (x,mh(k));

for x ∈ Rd, k = 0, . . . , N − 1,

mh(k) = Φk(·)]m0 for k = 1, . . . , N,

mh(0) = m0 ∈ P1, vh(x,N) = G(x,mh(N)) for x ∈ Rd.

(43)

where Φk(·) is defined by (31) with discrete control being the solution of the r.h.s.
in the first equation of (43). Our aim in this section is to analyze the existence
and uniqueness of (vh,mh) satisfying (43), as well as its convergence to the solution
(v,m) of (42). Let us first fix some notations that will be useful to prove a stability

result (see lemma 4.1 below). For m ∈ Kh set (wh[m](·, k))
N
k=0 for the solution of

w(x, k) = infα∈Rd

{
w(x− hα, k + 1) + 1

2h|α|
2
}

+ F (x,m(k));

for x ∈ Rd, k = 0, . . . , N − 1,

w(x,N) = G(x,m(N)) for x ∈ Rd.
(44)

Next, we set αk[m](·) for a measurable selection of Ah[m](·, 0), the set of optimal
controls associated with wh[m](·, 0). We also set µh[m](k) := Φk[m](·)]m(0), where,
for x ∈ Rd, Φk[m](x) is given by the solution of{

Φk+1 = Φk − hαk[m](Φk) for k = 0, . . . , N − 1,
Φ0 = x.

(45)

Note that the existence of a solution for (43) is equivalent to find a fixed point of
m ∈ Kh → µh[m] ∈ Kh. The following stability result holds true:

Lemma 4.1. Let h > 0 be fixed and mj, m in Kh such that mj(k) → m(k) in P1

as j ↑ ∞ for every k = 0, . . . , N . Then, for k = 1, . . . , N , we have that µh[mj ](k)
converges to µh[m](k) in P1.

Proof. Lemma 3.3(iii) implies that for each j there exists Aj , with Ld(Aj) = 0, such
that for x ∈ Acj , problem wh[mj ](x, 0) admits a unique solution. We denote, by Am
the respective set for wh[m](x, 0) and we set A: = ∪∞j=1Aj ∪ Am, which satisfies

Ld(A) = 0. Let us fix x ∈ Ac. We have that α[mj ](x, k) are uniformly bounded in
j and k. Therefore, up to subsequences, we obtain that α[mj ](x, k) → α(x, k), for
some α(x, k) ∈ Rd. Since wh[mj ](x, 0) → wh[m](x, 0) we obtain, by uniqueness of
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the optimal control outside Am, that α(x, k) = α[m](x, k). Now, by (36) we have
that

d1(µh[mj ](k), µh[m](k)) ≤
k−1∑
i=0

∫
Rd

h
∣∣αi[mj ](x)− αi[m](x)

∣∣m0(x)dx.

Since m0 ∈ L∞(Rd) and the controls are bounded, we conclude by Lebesgue theo-
rem.

Theorem 4.2. Given h > 0 small enough, there exists a unique solution for system
(43).

Proof. Existence: Let C5 as in lemma 3.7. Define the convex set

C = {m ∈ Kh : m(0) = m0, supp(m(k)) ∈ B(0, C5) for k = 1, ..., n},
which is a compact subset of Kh. By lemma 4.1, the map m ∈ C → µh[m] ∈ C is
continuous and the existence follows from Schauder fixed point theorem.

Uniqueness: Let (v1,m1) and (v2,m2) be solutions of (43). We denote respectively
by ᾱ1(·), ᾱ2 ∈ Ah(0)(·) for the respective measurable selections of optimal controls
associated to v1(·, 0) and v2(·, 0) and by Φ1

k(·), Φ2
k(·) the corresponding discrete

flows. First note that for every continuous ϕ : Rd × P1 → R and k = 1, ..., N , we
have the identity∫

Rd

[
ϕ(x,m1(k))− ϕ(x,m2(k))

]
d
[
m1 −m2

]
(k) = I1(ϕ) + I2(ϕ), (46)

where

I1(ϕ) :=
∫
Rd

[
ϕ(Φ1

k(x),m1(k))− ϕ(Φ2
k(x),m1(k))

]
m0(x)dx,

I2(ϕ) :=
∫
Rd

[
ϕ(Φ2

k(x),m2(k))− ϕ(Φ1
k(x),m2(k))

]
m0(x)dx.

(47)

Now, let us set the following notations,

δ1F (k) := F (Φ1
k(x),m1(k))− F (Φ2

k(x),m1(k)),
δ2F (k) := F (Φ2

k(x),m2(k))− F (Φ1
k(x),m2(k)),

δ1G(N) := G(Φ1
N (x),m1(N))−G(Φ2

N (x),m1(N)),
δ2G(N) := G(Φ2

N (x),m2(N))−G(Φ1
N (x),m2(N)).

Since for x ∈ Rd, ᾱ1(x) is the minimum for v1(x, 0), we have

v1(x, 0) =
∑N−1
k=0

(
1
2h|ᾱ

1
k(x)|2 + hF (Φ1

k(x),m1(k))
)

+G(Φ1
N (x),m1(N)),

≤
∑N−1
k=0

(
1
2h|ᾱ

2
k(x)|2 + hF (Φ2

k(x),m1(k))
)

+G(Φ2
N (x),m1(N)).

(48)
Therefore, we have the following inequality

h

N−1∑
k=0

δ1F (k) + δ1G(N) ≤ 1
2h

N−1∑
k=0

(
|ᾱ2
k(x)|2 − |ᾱ1

k(x)|2
)
. (49)

Analogously, since ᾱ2(x) is the minimum for v2(x, 0), we have

h

N−1∑
k=0

δ2F (k) + δ2G(N) ≤ 1
2h

N−1∑
k=0

(
|ᾱ1
k(x)|2 − |ᾱ2

k(x)|2
)
. (50)

Adding (49) with (50) and integrating with respect to m0 gives

h

N−1∑
k=0

∫
Rd

[δ1F (k) + δ2F (k)]m0(x)dx+

∫
Rd

[δ1G(N) + δ2G(N)]m0(x)dx ≤ 0,
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which, by (46) and (47), implies that

h

N−1∑
k=0

∫
Rd

(
F (x,m1(k))− F (x,m2(k)

)
d[m1 −m2](k)

+

∫
Rd

(
G(x,m1(N))−G(x,m2(N)

)
d[m1 −m2](N) ≤ 0.

Therefore, (H3) gives m1(·) = m2(·) which in turns yields v1(·, ·) = v2(·, ·).

Let us define the function v̂h(·, t) := vh(·, [ th ]) and m̄h(t) := Φh(·, t)]m0, where

for x ∈ Rd, Φh(x, t) is defined as in (39) with ᾱ(·) being a measurable selection
of the optimal controls associated to vh(·, 0). We write still vh, mh for v̂h and m̂h

respectively. We now prove a convergence result.

Theorem 4.3. As h ↓ 0, vh converges locally uniformly to v and mh converge to
m in C([0, T ];P1).

Proof. Lemma 3.8 and Ascoli theorem implies that mh converges in C([0, T ];P1),
up to some subsequence, to some measure m̄. Now, let us define

v∗(x, t) := lim sup
(x′,t′)→(x,t),h↓0

vh(x′, t′), v∗(x, t) := lim inf
(x′,t′)→(x,t),h↓0

vh(x′, t′).

We prove now that v∗ is a viscosity subsolution of

−∂tv(x, t) + 1
2 |Dv(x, t)|2 = F (x, m̄(t)) for (x, t) ∈ Rd × (0, T ),

v(x, T ) = G(x, m̄(t)) for x ∈ Rd. (51)

Let (x̄, t̄) ∈ Rd× (0, T ), B̄ a ball of radius r > 0 centered at (x̄, t̄) and φ ∈ C1(Rd×
(0, T )) such that (v∗ − φ)(x̄, t̄) = max(x,t)∈B̄(v∗ − φ)(x, t). Classical arguments

imply the existence of (xh, th), with (xh, th)→ (x̄, t̄) as h ↓ 0, such that

(vh − φ)(xh, th) = max
(x,t)∈B̄

(vh − φ)(x, t). (52)

Note that lemma 3.3(i) implies that we can consider the infimum in (21) over a
compact set A ⊆ Rd (independent of h). Setting nh = [th/h], for h small enough
and a ∈ A, condition (52) implies that

vh(xh − ha, th + h)− φ(xh − ha, th + h) ≤ vh(xh, th)− φ(xh, th). (53)

Letting t′h = h[th/h], by definition of vh(xh, th) = vh(xh, t
′
h), inequality (53) gives

1

h
[φ(xh, th)− φ(xh − ha, th + h)] ≤ 1

2
|a|2 + F (xh,mh(t

′
h)).

By passing to the limit in the above inequality, and the convergence of mh to m̄ in
C([0, T ];P1) we get that

−∂tφ(x̄, t̄) + 〈Dφ(x̄, t̄), a〉 − 1
2 |a|

2 ≤ F (x̄, m̄(t̄)) for all a ∈ A.

By taking the supremum with respect to a ∈ A, we get that v∗ is a viscosity sub-
solution of (51). Now we prove that v∗ is a viscosity super-solution of (51). Let
(x̂, t̂) ∈ Rd×(0, T ), B̄ a ball of radius r > 0 centered at (x̂, t̂) and φ ∈ C1(Rd×(0, T ))
such that (v∗−φ)(x̂, t̂) = min(x,t)∈B̂(v∗−φ)(x, t). There exists a sequence (xh, th),

with (xh, th)→ (x̂, t̂) as h ↓ 0, such that

(vh − φ)(xh, th) = min
(x,t)∈B̄

(vh − φ)(x, t). (54)
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Therefore for h small enough,

vh(xh, th)−φ(xh, th) ≤ vh(xh−hα̂(xh, nh), th+h)−φ(xh−hα̂(xh, nh), th+h), (55)

where we recall that α̂(x, n) is defined below (21). Letting t′h = h[th/h], by definition
of vh(xh, t

′
h), we get

1

h
[φ(xh − hα̂(xh, nh), th + h)− φ(xh, th)] ≤ − 1

2
|α̂(xh, nh)|2 − F (xh,mh(t

′
h)).

Up to subsequences, α̂(xh, nh) converge to some ā. By passing to the limit in the
above inequality we get that

F (x̂, m̄(t̂)) ≤ −∂tφ(x̂, t̂) + 〈Dφ(x̂, t̂), ā〉 − 1
2 |ā|

2
,

and by taking the supremum with respect to a we obtain the result. Finally, by a
classical comparison argument, vh converges locally uniformly to the unique viscos-
ity solution v[m̄] of (51).

In order to conclude the proof we have to show that m̄ = Φ(·, 0)]m0 = m. Given
hn ↓ 0, note that there exists a set A ⊆ Rd, with Ld(Rd\A) = 0, such that for all x ∈
A we have A(x, 0) = {α(x, ·)} and Ahn

(x, ·) = {αn(x)}, for some α(x, ·) ∈ A(0) and
αn(x) ∈ Ahn

(0). Lemma 3.3(i) gives that t ∈ [0, T ] → αn(x, t) := αn[t/h](x) ∈ A(0)

are bounded in L∞([0, T ];Rd) (in particular they are bounded in L2([0, T ];Rd)).
Thus, up to subsequence, αn(x, ·) converges weakly in L2([0, T );Rd) to some ᾱ(x, ·)
and thus its associated flow

Φn(x, ·) := x− h
∫ ·

0

αn(x, s) ds

converge uniformly to some Φ̄(x, ·). Now, since vh(x, 0)→ v(x, 0), by the uniqueness
of the optimal control for x ∈ A, we obtain that ᾱ(x, ·) = α(x, ·) and

Φ̄(x, ·) = Φ(x, ·) = x−
∫ ·

0

α(x, s)ds, for all x ∈ A.

Using that m0 has compact support, by the dominated convergence theorem, the
convergence for x ∈ A of Φn(x, ·) to Φ̄(x, ·) = Φ(x, ·) yields that for every 1-Lipschitz
ϕ : Rd → R and t ∈ [0, T ],∫

Rd

ϕ(x)d[mh(t)−m(t)](x) ≤
∫
Rd

|Φn(x, t)− Φ̄(x, t)|m0(x)dx→ 0 as h ↓ 0.

Therefore m̄ = m, which completes the proof.

5. Appendix.

Proof of lemma 3.2. Proof of (i): Since g is bounded by C by (11), we have that
g(x−hα)+ 1

2h|α|
2 is bounded by the parabolas −C+ 1

2h|α|
2 and C+ 1

2h|α|
2. Thus,

using that f is also bounded by C, equation (21) implies

w(x,N − 1) ≤ C(1 + h),

and by a recurrence argument

|wh(x, n)| ≤ C(1 + (N − n)h),
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from which the result follows.
Proof of (ii): Using expression (20) and assumption (11) we obtain

|wh(x, n)− wh(y, n)| ≤ supα∈Ah(n) |J(α;x, n)− J(α; y, n)| ,
≤ supα∈Ah(n)

{
h
∑N−1
k=n |f(Xx,n

k [α], kh)− f(Xy,n
k [α], kh)|

+ |g(Xx,n
N [α])− g(Xy,n

N [α])|} ,
≤ C(Nh+ 1)|x− y| = C(T + 1)|x− y|.

On the other hand, let x ∈ Rd fixed and n1, n2 ∈ {1, ..., N} with n1 < n2. Let

(α)N−1
k=n1

∈ Ah(n1) be optimal for J(·;x, n1) and let (Xk)Nk=n1
be its associated

state. We have

|wh(x, n1)− wh(x, n2)| ≤ |wh(x, n1)− wh(Xn2
, n2)|+ |wh(Xn2

, n2)− wh(x, n2)|,
≤ h

∑n2−1
k=n1

[
1
2 |αk|

2 + f(Xk, kh)
]

+ C(T + 1)|Xn2 − x|,
= h

∑n2−1
k=n1

[
1
2 |αk|

2 + f(Xk, kh)
]

+ C(T + 1)h|
∑n2−1
k=n1

αk|,

and the results follows the boundedness uniform on x in lemma 3.3(i).

Proof of (iii): By lemma 2.4(iv) wh(·, N) is semi-concave. Now, suppose that the
result is true for n = k+1 and call Ck+1 the semi-concavity constant of wh(·, k+1).
We have, denoting by αh(x, k) the optimal vector associated to wh(x, k),

wh(x, k) = wh(x− hαh(x, k), k + 1) + 1
2h |αh(x, k)|2 + hf(x, kh),

wh(x± y, k) ≤ wh(x− hαh(x, n)± y, k + 1) + 1
2h |αh(x, k)|2 + hf(x± y, kh).

Therefore, using the semi-concavity of wh(·, k + 1) and of f(·, kh), we easily obtain

wh(x− y, k) + wh(x+ y, k)− 2wh(x, k) ≤ Ck+1|y|2 + hC|y|2,

where C is the constant in (11). By lemma 2.4(ii) this implies the result for n = k
with a semi-concavity constant Ck ≤ Ck+1 + hC. Thus, iterating we get that for
every n, the function wk(·, n) is semi-concave with a constant Cn ≤ C(1 + Nh) =
C(T + 1).

Proof of (iv): The proof is a straightforward adaptation of [12, Proposition 5.2].

Proof of (v): The proof is a straightforward adaptation of [12, Theorem 5.3].
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