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Abstract. The notion of Wardrop equilibrium in congested networks has been

very popular in congested traffic modelling since its introduction in the early

50’s, it is also well-known that Wardrop equilibria may be obtained by some
convex minimization problem. In this paper, in the framework of Γ-convergence

theory, we analyze what happens when a cartesian network becomes very dense.
The continuous model we obtain this way is very similar to the continuous

model of optimal transport with congestion of Carlier, Jimenez and Santam-

brogio [6] except that it keeps track of the anisotropy of the network.

1. Introduction. Congested traffic equilibrium models on finite networks have re-
ceived a lot of attention since the early 50’s because of applications to road traffic
and more recently to communication networks. In this line of research, the notion
of Wardrop equilibrium plays a central role. Roughly speaking, Wardrop equilib-
rium requires that users behave rationally by choosing the shortest available paths,
taking congestion into account i.e. the fact that travel times increase with the flow.
Finding Wardrop equilibria is a fixed-point problem in nature that presents some
analogies with mean-field games theory eventhough it is purely stationary. Soon
after the work of Wardrop, it was observed by Beckmann, McGuire and Winsten
[2] that the Wardrop condition actually is the first-order condition for some some
convex minimization problem. This is a key property both from a theoretical point
and for numerical computations. Unfortunately, the minimization problem has one
(flow) variable per admissible path on the network, it may therefore quickly become
intractable for realistic road or communication networks. An alternative consists
in studying the dual problem, this dual formulation has one (time) variable per arc
but it involves the corresponding shortest travelling times between the nodes, it is
therefore nonsmooth and nonlocal. Both primal and dual formulations of Wardrop
equilibria are difficult to solve for large scale networks and it becomes natural to
investigate whether the problem somehow simplifies passing to the continuous limit
in some sense.

The aim of this paper is to study rigorously what happens to Wardrop equilibria
as the network becomes very dense. More precisely, we will consider the case of
a two-dimensional cartesian network with small arc length ε and will study the
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Γ-convergence of the functionals in the dual problem as ε goes to 0. We will then
obtain an optimization problem posed over certain continuous metrics variables.
This limit problem is the dual of a continuous problem posed over a set of probability
measures over paths which is similar to the continuous model of optimal transport
with congestion of Carlier, Jimenez and Santambrogio [6] except that it keeps track
of the anisotropy of the network. The optimality conditions for the continuous model
of optimal transport with congestion can naturally be viewed as the continuous
counterpart of Wardrop equilibria. We will first address the short-term problem in
which the transport plan i.e. the amount of mass that has to be sent from each
source to each destination is prescribed. We will also consider the long-term problem
in which only the marginals (i.e. the distributions of supply and demand) are fixed
and the transport plan is part of the unknown and has to be determined by some
additional optimality requirement. In the isotropic continuous long-term case, as
shown in Brasco, Carlier and Santambrogio [5], the Wardrop equilibrium problem
reduces to solving some nonlinear elliptic PDE, a similar approach is possible for
the anisotropic case as well but will not be developed here, we just mention that our
Γ-convergence results somehow motivate the model studied in [6], [5] as a rigorous
continuous limit of the discrete Wardrop problem.

The paper is organized as follows. In section 2, we set some notations, recall
the definition of Wardrop equilibria and its variational characterization. The limit
functional for the dual problem is identified in section 3 and a precise Γ-convergence
result is stated, its proof is detailed in section 4. In section 5, we establish optimality
conditions for the limit problem, these conditions may naturally be interpreted as
a continuous Wardrop equilibrium. Finally, in section 6, we extend the previous
analysis to the long term variant.

2. The discrete model.

2.1. Setting and definition of Wardrop equilibria. We now describe the
Wardrop equilibrium problem on a network modeled over a two-dimensional carte-
sian grid. In addition to the network itself and the corresponding set of admissible
paths, the data of the problem are the congestion functions (which relate traveling
time to the flow on each arc in a nondecreasing way) as well as the transport plan
which prescribes the amount of commuting mass between nodes. The unknown is
the flow configuration that will be determined through some equilibrium conditions
due to Wardrop [9].
Network of characteristic length ε: Given Ω a bounded domain of R2 with a
smooth boundary and ε > 0, we consider as network whose characteristic length is
ε:

Ωε := εZ2 ∩ Ω.

We shall denote by (v1, v2, v3, v4) := ((1, 0), (0, 1), (−1, 0), (0,−1)) the directions
of the network (i.e. the vectors of the canonical basis as well as their opposite)
enumerated counterclockwise. In this setting, every arc of the network is of the
form [x, x+ εvi] for some x ∈ Ωε and some i ∈ {1, ..., 4}. Arcs will therefore simply
identified to pairs (x, vi). One should think of the network as being oriented so that
[x, x+ εvi] and [x+ εvi, x] really represent two distinct arcs.
Traveling times and congestion: The mass commuting on arc (x, vi) will be
denoted by mε

i (x) and the traveling time of arc (x, vi) will be denoted by tεi (x).



FROM DISCRETE TO CONTINUOUS WARDROP EQUILIBRIA 221

Figure 1. Network with characteristic length ε.

Due to congestion, traveling time and mass are related for every arc (x, vi) by the
relation:

tεi (x) = gεi (x,m
ε
i (x)) (2.1)

where the gεi are some given nonnegative functions that depend on the arc itself but
also in a nondecreasing way (this is congestion) on the mass mε

i (x) that commutes
on (x, vi). The collection of all arc-masses mε

i (x) will be denoted mε.

Remark 2.1. In this model, we do not consider the case where some time is also spent
at the nodes x. This extension could be treated as well simply by considering some
extra arcs. We might also allow the functions gεi to take the value +∞ modelling
forbidden arcs or saturation effects but for the sake of simplicity we will only study
the case where the travelling times are finite.

Consider two neighboring nodes x and x′ with x′ = x + εvi and vj = −vi, the
time to go from x to x′ only depends only on the mass mε

i (x) that uses the arc
(x, vi) whereas the time to go from x′ to x depends only on the mass mε

j(x
′).

Transport plan: A transport plan is also given as a collection of nonnegative
masses γε(x, y), (x, y) ∈ Ωε × Ωε. For each pair (x, y) ∈ Ωε × Ωε (viewed as a
source/destination pair), γε(x, y) represents the amount of mass that has to be sent
from the source x to the target y. Of course, if all the masses γε(x, y) are zero, no
mass at all will travel along the network.
Paths: A path is a finite collection of successive nodes. A generic path σ is therefore
of the form (x0, x1, ..., xL) ∈ ΩL+1

ε where σ(0) := x0 ∈ Ωε and σ(k + 1) − σ(k) :=
xk+1 − xk ∈ ε{v1, ..., v4} for k = 0, ..., L − 1. For such a path σ(0) is the origin of
σ, εL is the (flat) length of σ and σ(L) is the terminal point of σ. We shall use
the notation (x, vi) ⊂ σ if there is a k between 0 and L − 1 such that σ(k) = x
and σ(k + 1) − σ(k) = εvi. Since commuting time on each arc is nonnegative, we
shall restrict ourselves to the Cε set of loop-free paths, this set is finite and may be
partitioned as

Cε =
⋃

(x,y)∈Ωε×Ωε

Cεx,y

where Cεx,y is the set of loop-free paths having x as origin and y as terminal point.
The mass traveling on the path σ ∈ Cε (therefore starting from the origin of σ and
stopping at the terminal point of σ) will be denoted wε(σ). The collection of all
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path-masses wε(σ) will be denoted wε. Given arc-masses mε, the travel time of a
path σ ∈ Cε is given by

τεmε(σ) :=
∑

(x,vi)∈σ

gεi (x,m
ε
i (x)).

Equilibria: To sum up, the data of the model are thus the masses γε(x, y) and the
congestion functions gεi . The unknowns are the arc-masses mε

i (x) and path-masses
wε(σ) that should be determined by some equilibrium requirements. First of all,
arc-masses and path-masses, should be nonnegative. In addition, arc-masses, path-
masses and the data γε are related by the following conditions which both express
mass conversation:

γε(x, y) :=
∑

σ∈Cε
x,y

wε(σ), ∀(x, y) ∈ Ωε × Ωε (2.2)

and

mε
i (x) =

∑
σ∈Cε : (x,vi)⊂σ

wε(σ). (2.3)

The last ingredient to define equilibria is the requirement that only shortest paths
(given the congestion pattern created by arc and path-masses) should actually be
used. This leads to the concept of Wardrop equilibirum ([9]) that is defined precisely
as follows:

Definition 2.2. A Wardrop equilibrium is a configuration of nonnegative arc-
masses mε : (x, i) 7→ (mε

i (x)) and of nonnegative path-masses wε : σ 7→ wε(σ),
that satisfy the mass conservation conditions (2.2) and (2.3) and such that for every
(x, y) ∈ Ωε × Ωε and every σ ∈ Cεx,y, if wε(σ) > 0 then

τεmε(σ) ≤ τεmε(σ′), ∀σ′ ∈ Cεx,y.

2.2. Variational characterizations of equilibria. A few years after Wardrop
introduced his equilibrium concept for congested networks, it was realized by Beck-
mann, McGuire and Winsten [2] that Wardrop equilbiria have a variational char-
acterization. More precisely, a flow configuration (wε,mε) is an equilibrium if and
only if it minimizes

∑
x∈Ωε

4∑
i=1

Gεi (x,m
ε
i (x)) where Gεi (x,m) :=

∫ m

0

gεi (x, α)dα (2.4)

subject to nonnegativity constraints and the mass conservation conditions (2.2)-
(2.3). Note that this is a convex program (since the functions gεi are nondecreasing
with respect to mass) so that existence results and numerical schemes can easily be
derived from this variational formulation. Note however that this problem uses the
whole path flow configuration wε and enumerating all such paths flows becomes
extremely costly as soon as the network becomes dense, that prevents in practice
the use of this formulation for realistic congested networks. This explains why one
may often prefer to work with the dual formulation which reads as:

inf
tε∈R4#Ωε

+

∑
x∈Ωε

4∑
i=1

Hε
i (x, tεi (x))−

∑
(x,y)∈Ωε

2

γε(x, y)T εtε(x, y) (2.5)
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where tε ∈ R4#Ωε

+ should be understood as tε = (tεi (x))(x,i)∈Ωε×{1,··· ,4}, H
ε
i (x, .) :=

(Gεi (x, .))
∗ is the Legendre Transform of Gεi (x, .) that is

Hε
i (x, t) := sup

m≥0
{mt−Gεi (x,m)}, ∀t ∈ R+ (2.6)

and T εtε is the minimal length functional:

T εtε(x, y) := min
σ∈Cε

x,y

∑
(x,vi)⊂σ

tεi (x). (2.7)

In the dual formulation (2.5) (of course again a convex program), we only have
4#Ωε = O(ε−2) variables which is much better than having one variable per path
but is still huge for small ε. Note however that the price to pay in working with
(2.5) is the term that depends on T εtε since it is nonsmooth, nonlocal and might
be complicated to optimize, it is not unrealistic however to expect that passing to
the continuous limit will actually simplify the structure because one will then be
allowed to use the theory of Hamilton-Jacobi equations. The connection between
this dual formulation and Wardrop equilibria (i.e. the minimization of (2.4) under
the constraints (2.2)-(2.3)) is that whenever (mε,wε) is a Wardrop equilbrium
then tε := (gεi (x,m

ε
i (x)) solves (2.5), in fact, solving (2.5) amounts to find the

equilibrium travelling times (and thus also the corresponding arc-masses mε
i (x) by

inverting the relation tεi (x) = gεi (x,m
ε
i (x))). We refer to the recent paper of Baillon

and Cominetti [1] for more details, references and an extension of the model to a
Markovian setting.

3. The Γ-convergence result.

3.1. Scaling and assumptions. Of course, if one wants to be able to pass to
the continuous limit, ε→ 0+ in the Wardrop equilibrium problem, some structural
assumptions have to be made on the ε-dependence of the data. The first assumption
is the convergence of the transport plans γε, namely we assume that there exists a
finite nonnegative measure γ on Ω×Ω to which γε weakly star converges in the sense
that the family of discrete measures

∑
(x,y)∈Ωε

2 γε(x, y)δ(x,y) weakly star converges
to γ:

lim
ε→0+

∑
(x,y)∈Ωε

2

γε(x, y)ϕ(x, y) =

∫
Ω×Ω

ϕdγ, ∀ϕ ∈ C(Ω× Ω). (3.1)

Our second assumption concerns the form of the congestion functions tεi that we
assume to be of the form

gεi (x,m) = εgi

(
x,
m

ε

)
, ∀ε > 0, (x, i) ∈ Ωε × {1, ..., 4} (3.2)

where gi is a given continuous, nonnegative function on Ω×R+, that is nondecreasing
in its second argument. This assumption is natural in terms of scaling, it means
that the travelling time on an arc of length ε is of order ε and depends on the flow
per unit of length i.e. m/ε.

Under assumption (3.2), the functions Gεi and Hε
i that appear in the primal and

dual variational characterizations of Wardrop equilibria are thus given by

Gεi (x,m) = ε2Gi

(
x,
m

ε

)
where Gi(x,m) :=

∫ m

0

gi(x, α)dα (3.3)

and

Hε
i (x, t) = ε2Hi

(
x,
t

ε

)
where Hi(x, .) = (Gi(x, .))

∗ (3.4)
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i.e. for every ξ ∈ R+:

Hi(x, ξ) = sup
m∈R+

{mξ −Gi(x,m)}.

Note also that the previous assumptions imply that Hi(x, .) is actually strictly
convex. In view of (2.5) and (3.4) it is natural to rescale the arc-times tε by
defining the time per unit of length or metric variables

ξε :=
tε

ε
, i.e. ξεi (x) =

tεi (x)

ε
, ∀x ∈ Ωε, ∀i ∈ {1, ..., 4} (3.5)

and then to rewrite (2.5) in terms of ξε as:

inf
ξε∈R4#Ωε

+

Jε(ξε) := Iε0(ξε)− Iε1(ξε) (3.6)

where

Iε0(ξε) := ε2
∑
x∈Ωε

4∑
i=1

Hi(x, ξ
ε
i (x)) (3.7)

and

Iε1(ξε) := ε
∑

(x,y)∈Ωε
2

γε(x, y)T εξε(x, y). (3.8)

Our last assumption is that Hi is continuous in its first argument and there exists
p > 2 and two constants 0 < λ ≤ Λ such that for every (x, ξ, i) ∈ Ω×R+×{1, ..., 4}
one has

λ(ξp − 1) ≤ Hi(x, ξ) ≤ Λ(ξp + 1). (3.9)

The growth condition (3.9) is natural if one wants to work in Lp in the continuous
limit and thus to obtain a simple convex integral term as the limit of Iε0 (recall
that by construction Hi is convex in its second argument), the requirement p > 2
is technical and less natural, it will however turn out to be crucial to pass to
the limit in the more involved nonlocal term Iε1 in (3.6) which will make use of
Morrey’s inequality as explained below. From now on, we will always assume that
assumptions (3.1), (3.2) and (3.9) are satisfied.

3.2. The limit functional. In view of the previous paragraph, it is natural to
introduce

Lp+ := {ξ = (ξ1, ..., ξ4), ξi ∈ Lp(Ω), ξi ≥ 0, i = 1, ..., 4}
as well as the integral functional

I0(ξ) :=

4∑
i=1

∫
Ω

Hi(x, ξi(x))dx, ∀ξ ∈ Lp+ (3.10)

which naturally arises as the continuous limit of Iε0 . The construction of the term
that plays the same role as Iε1 is more involved, to understand this term let us define
for every u = (u1, u2) ∈ R2:

Φ(u) := ((u · vi)+)i=1,...,4 = ((u1)+, (u2)+, (u1)−, (u2)−) (3.11)

Now, let ξε ∈ R4#Ωε

+ , (x, y) ∈ Ωε × Ωε, let σ ∈ Cεx,y, let εL(σ) be the euclidean
length of σ and slightly abusing notations let us extend ξε on each arc by letting ξεi
be constant with value ξεi (x) on the arc [x, x + εvi], let us also identify σ with the
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piecewise affine curve t ∈ [0, L(σ)] 7→ σ(t) defined by σ(t) = σk + (t− k)(σk+1−σk)
for t ∈ [k, k + 1] with k = 0, ..., L(σ)− 1 , we then have

ε
∑

(x,vi)⊂σ

ξεi (x) =

L(σ)−1∑
k=0

Φ(σk+1 − σk) · ξε(σk) =

∫ L(σ)

0

Φ(σ̇(t)) · ξε(σ(t))dt

so that

εT εξε(x, y) = inf
σ∈Cε

x,y

∫ L(σ)

0

Φ(σ̇(t)) · ξε(σ(t))dt

= inf
σ∈Cε

x,y

∫ 1

0

Φ( ˙̃σ(t)) · ξε(σ̃(t))dt

where σ̃ : [0, 1]→ Ω simply is the reparameterization of σ̃(t) = σ(L(σ)t), t ∈ [0, 1].
This strongly suggests to define for ξ = (ξ1, ..., ξ4) ∈ C(Ω,R4

+)

cξ(x, y) := inf
{∫ 1

0

Φ(σ̇(t)) · ξ(σ(t))dt
}

(3.12)

where the infimum is over the set of absolutely continuous curves σ with values in
Ω and such that σ(0) = x and σ(1) = y. Note cξ is a sort of Finsler distance which
keeps track of the anisotropy of the network but it is actually not a distance : it
is indeed not separating if ξ vanishes somewhere and it is not symmetric since Φ is
not even. Now, our aim is to extend the definition of cξ to the case where ξ is only
Lp+, to do so we proceed as in Carlier, Jimenez and Santambrogio [6] by remarking
thanks to an easy dynamic programming argument that if ξ is continuous then cξ
is actually Lipschitz and for all x and a.e. y one has

|∇ycξ(x, y)| ≤
4∑
i=1

ξi(y)

and a similar inequality gives a bound for ∇xcξ(x, y) for every y and a.e. x. Now
recall that we have assumed that p > 2 in assumption (3.9), so that W 1,p(Ω) ⊂
C0,α(Ω) with α := 1− 2/p and we deduce from Morrey’s inequality that there is a
constant C such that for every (x, y1, y2) ∈ Ω3 one has

|cξ(x, y1)− cξ(x, y2)| ≤ C‖ξ‖Lp |y1 − y2|α

and similarly, for every (x1, x2, y) ∈ Ω3 one has

|cξ(x1, y)− cξ(x2, y)| ≤ C‖ξ‖Lp |x1 − x2|α

and thus

|cξ(x1, y1)− cξ(x2, y2)| ≤ C‖ξ‖Lp(|x1 − x2|α + |y1 − y2|α).

Since cξ vanishes on the diagonal, we deduce from Arzelà-Ascoli theorem that if

(ξn)n is a sequence C(Ω,R4
+) that is bounded in Lp then the sequence cξn admits

a subsequence that converges in C(Ω× Ω). For ξ ∈ Lp+ this enables us to define

cξ(x, y) = sup {c(x, y) : c ∈ A(ξ)} ,∀(x, y) ∈ Ω× Ω (3.13)

where

A(ξ) =
{

lim
n
cξn in C(Ω× Ω) : (ξn)n ∈ C(Ω,R4

+), ξn → ξ in Lp
}
. (3.14)

For further use, let us state the following result which is a straightforward gen-
eralization of Lemmas 3.4 and 3.5 in [6]:
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Lemma 3.1. If ξ ∈ C(Ω,R4
+) then cξ = cξ. If ξ ∈ Lp+ there exists a sequence (ξn)n

in C(Ω,R4
+) such that cξn converges to cξ in C(Ω× Ω) as n→∞.

Having defined cξ when ξ is only Lp+, let us now define

I1(ξ) :=

∫
Ω×Ω

cξdγ, (3.15)

and the continuous limit (this term will be justified precisely by Γ-convergence in
the next section) of Jε by:

J(ξ) := I0(ξ)− I1(ξ) =

4∑
i=1

∫
Ω

Hi(x, ξi(x))dx−
∫

Ω×Ω

cξdγ, ∀ξ ∈ Lp+. (3.16)

3.3. The Γ-convergence result. The theory of Γ-convergence, initially due to
Ennio de Giorgi is a powerful tool to study the convergence of variational problems
(convergence of values but also of minimizers) depending on a parameter. It is
particularly well suited to study problems involving a scale parameter, as is the
case in the present paper where ε represents the network scale and to identify
discrete to continuous limits in variational problems, as we shall see in our Wardrop
equilibrium problem. We refer to the books of Dal Maso [7] and Braides [4] for the
general theory of Γ-convergence as well as for many applications.

First let us define weak Lp convergence of a discrete family ξε ∈ R4#Ωε

+ :

Definition 3.2. For ε > 0, let ξε ∈ R4#Ωε

+ and ξ ∈ Lp+, then ξε is said to weakly
converge to ξ in Lp (which we shall simply denote ξε → ξ) if the following two
conditions are satisfied:

1. There exists a constant M such that for every ε > 0, one has

‖ξε‖ε,p :=
(
ε2
∑
x∈Ωε

4∑
i=1

ξεi (x)p
)1/p

≤M, (3.17)

2. for every ϕ ∈ C(Ω,R4), one has

lim
ε→0+

ε2
∑
x∈Ωε

4∑
i=1

ϕi(x)ξεi (x) =

∫
Ω

ϕ(x) · ξ(x)dx.

Definition 3.3. For ε > 0, let F ε : R4#Ωε

+ → R∪{+∞} and F : Lp+ → R∪{+∞}
then the family of functionals (F ε)ε is said to Γ-converge (for the weak Lp topology)
to F if and only if the following two conditions are satisfied:

1. (Γ-liminf inequality) for every ξ ∈ Lp+ and every family ξε ∈ R4Ωε
+ such that

ξε → ξ one has
lim inf
ε→0+

F ε(ξε) ≥ F (ξ),

2. (Γ-limsup inequality) for every ξ ∈ Lp+, there exists a family ξε ∈ R4Ωε
+ such

that ξε → ξ and
lim sup
ε→0+

F ε(ξε) ≤ F (ξ).

Our main result whose full proof will be given in the next section, then reads

Theorem 3.4. Under assumptions (3.1), (3.2), (3.9), the family of functionals Jε

defined by (3.6) Γ-converges (for the weak Lp topology) to the functional J defined
by (3.16).
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By very classical arguments from general Γ-convergence theory, we obtain the
following convergence result :

Corollary 3.5. Under assumptions (3.1), (3.2), (3.9), one has:

min
ξε∈R4#Ωε

+

Jε(ξε)→ min
ξ∈Lp

+

J(ξ)

(the fact that infima actually are achieved being part of the statement). Moreover,
if for each ε > 0, ξε solves (3.6), then ξε → ξ where ξ is the minimizer of J over
Lp+ .

Proof. First, thanks to the estimate (4.7) that follows from Lemma 4.2 proved
below and assumption (3.9), we deduce an equi-coercivity estimate, namely that

there exists M such that for every ε and ξε ∈ R4#Ωε

+ :

Jε(ξε) ≥ λ(‖ξε‖pε,p − 1)−M‖ξε‖ε,p.

where ‖ξε‖ε,p is defined by (3.17). Not only this proves that the infimum of Jε

over R4#Ωε

+ is attained (this is a finite dimensional minimization problem with a
continuous and coercive objective function) at some ξε but also that ‖ξε‖ε,p is
uniformly bounded with respect to ε, in particular if we define for ε the R4-valued
Radon measure Mε by

〈Mε, ϕ〉 := ε2
∑
x∈Ωε

4∑
i=1

ϕi(x)ξεi (x),∀ϕ ∈ C(Ω,R4)

thanks to Hölder inequality, we have for every ε > 0 and ϕ ∈ C(Ω,R4)

| 〈Mε, ϕ〉 | ≤ C‖ϕ‖ε,p′ (3.18)

where p′ = p/(p − 1) is the conjugate exponent of p and the semi-norm ‖.‖ε,p′ is
defined in a similar way as in (3.17). Since there is a constant still denoted C such
that ‖ϕ‖ε,p′ ≤ C‖ϕ‖∞ for every ϕ ∈ C(Ω,R4), we deduce from (3.18) and Banach-
Alaoglu’s theorem that there exists a (not relabeled) subsequence Mε and M , an
R4-valued Radon measure to which Mε weakly star converges. We therefore deduce
from (3.18) that for every ϕ ∈ C(Ω,R4), we have

| 〈M,ϕ〉 | ≤ C lim
ε→0+

‖ϕ‖ε,p′ = C‖ϕ‖Lp′

which proves that in fact M admits an Lp representative that we denote ξ, of course
ξ ∈ Lp+ since componentwise nonnegativity is stable under weak limits and ξε → ξ
in the sense of definition 3.2. It remains to prove that ξ minimizes J over Lp+. First
we know from the Γ-liminf inequality that

J(ξ) ≤ lim inf
ε

Jε(ξε) = lim inf
ε→0+

min
ξε∈R4#Ωε

+

Jε.

Let then ζ ∈ Lp+, we deduce from the Γ-limsup inequality the existence, for each

ε > 0, of a ζε ∈ R4#Ωε

+ such that ζε → ζ in the sense of definition 3.2 and

lim sup
ε

Jε(ζε) ≤ J(ζ)

and since ξε minimizes Jε we thus get

J(ξ) ≤ lim inf
ε

Jε(ξε) ≤ lim sup
ε

Jε(ξε) ≤ lim sup
ε

Jε(ζε) ≤ J(ζ)
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from which we deduce that ξ minimizes J over Lp+ (and therefore the existence of
a minimizer to the limit problem) as well as

min
Lp

+

J ≤ lim inf
ε→0+

min
ξε∈R4#Ωε

+

Jε ≤ lim sup
ε→0+

min
ξε∈R4#Ωε

+

Jε ≤ J(ζ), ∀ζ ∈ Lp+

which also proves the convergence of the values of the discrete minimization prob-
lems to the value of the continuous one. Finally, we have convergence of the whole
family ξε and not only of a subsequence by the uniqueness of the minimizer ξ of J
of Lp+ (since J is strictly convex).

4. Proof of the Γ-convergence result. Recall that in all what follows, we will
always assume (3.1), (3.2), (3.9).

4.1. Γ-liminf inequality. For (small) ε > 0, let ξε ∈ R4#Ωε

+ and ξ ∈ Lp+ such that
ξε → ξ (in the sense of definition 3.2), recall that our aim is to prove that

lim inf
ε→0+

Jε(ξε) ≥ J(ξ). (4.1)

As far as the local term Iε0 is concerned, by our convexity, growth and continuity
assumptions, we easily get

Lemma 4.1. Under the previous assumptions, one has

lim inf
ε→0+

Iε0(ξε) ≥ I0(ξ). (4.2)

Proof. Let δ > 0, we claim that there exists ϕ = (ϕ1, ..., ϕ4) continuous on Ω such
that

I0(ξ) ≤ δ +
∑
i=1

∫
Ω

[ϕi(x)ξi(x)−Gi(x, ϕi(x))]dx

where we recall that Gi(x, .) is the Legendre Transform of Hi(x, .). Indeed, without
imposing continuity, this is just convex duality, now the fact that ϕi can be chosen
continuous follows from the continuity for the Lp

′
topology (p′ := p/(p−1) the con-

jugate exponent of p) of ϕ 7→
∑
i=1

∫
Ω
Gi(x, ϕi(x))dx and the density of continuous

functions in Lp
′
.

Now using Young’s inequality yields for every ε > 0, and x ∈ Ωε:

4∑
i=1

Hi(x, ξ
ε
i (x)) ≥

4∑
i=1

[ϕi(x)ξεi (x)−Gi(x, ϕi(x))]

from which we easily deduce that

lim inf
ε→0+

Iε0(ξε) ≥ I0(ξ)− δ

and since δ > 0 is arbitrary, we get the claim.

To deal with the nonlocal term, we shall need some compactness for the minimal
length terms, this will follow from the following discretization of Morrey’s inequality:

Lemma 4.2. Let θε ∈ RΩε
+ and ϕε ∈ RΩε such that

|ϕε(x)− ϕε(y)| ≤ εθε(x), for every x ∈ Ωε and every y neighbor of x (4.3)

then there is a constant C such that for every (x, y) ∈ Ωε × Ωε, one has

|ϕε(x)− ϕε(y)| ≤ C‖θε‖ε,p(|x1 − y1|+ |x2 − y2|)α
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where α := 1− 2/p and

‖θε‖ε,p =
(
ε2
∑
x∈Ωε

θε(x)p
)1/p

.

Proof. For x ∈ Ωε, divide the cell x + ε[0, 1]2 into two triangles and extend ϕε on
these triangles by linear interpolation. Still denoting ϕε this interpolation, we then
have ϕε ∈ W 1,p with ‖∇ϕε‖Lp ≤ C‖θε‖ε,p so that the desired result follows from
Morrey’s inequality.

To shorten notations, let us define for every (x, y) ∈ Ωε × Ωε:

cε(x, y) := εT εξε(x, y) = inf
σ∈Cε

x,y

∫ 1

0

Φ( ˙̃σ(t)) · ξε(σ̃(t))dt. (4.4)

By definition, if x0 ∈ Ωε and x and y are neighbors in Ωε, we have

cε(x0, x) ≤ cε(x0, y) + ε max
i=1,..,4

ξεi (y) (4.5)

we therefore deduce from Lemma 4.2 that there is a constant C such that for every
ε > 0 and every (x, y, x0, y0) ∈ Ωε

4, one has

|cε(x, y)−cε(x0, y0)| ≤ C‖ξε‖ε,p(|x−x0|α+|y−y0|α) ≤ C ′(|x−x0|α+|y−y0|α) (4.6)

where C ′ := C supε ‖ξε‖ε,p (recalling that (‖ξε‖ε,p)ε is bounded). Since cε(x, x) = 0
and Ω is bounded, this implies in particular that there is some constant M > 0 such
that

Iε1(ξε) =
∑

(x,y)∈Ωε×Ωε

cε(x, y)γε(x, y) ≤M‖ξε‖ε,p. (4.7)

The Hölder estimate (4.1) enables us to extend cε(and slightly abusing notations
we still denote by cε this extension) to the whole of Ω× Ω by setting

cε(x, y) := sup
(x0,y0)∈Ωε×Ωε

{cε(x0, y0)−C ′(|x−x0|α+|y−y0|α)}, ∀(x, y) ∈ Ω×Ω. (4.8)

By construction, the extensions cε still satisfy the uniform Hölder estimate on the
whole of Ω××Ω and since cε vanishes on the diagonal of Ωε ×Ωε, we deduce from
Arzelà-Ascoli Theorem that the family (cε)ε is precompact in C(Ω × Ω), taking a
subsequence if necessary, we may therefore assume that there is some c ∈ C(Ω×Ω)
such that

cε → c in C(Ω× Ω), and thus c(x, x) = 0, ∀x ∈ Ω (4.9)

so that thanks to assumption (3.1):

Iε1(ξε) =
∑

(x,y)∈Ωε×Ωε

cε(x, y)γε(x, y)→
∫

Ω×Ω

cdγ. (4.10)

Thanks to Lemma 4.1, to prove (4.1), it is therefore enough to prove that

c ≤ cξ on Ω× Ω. (4.11)

The rest of this paragraph will be devoted to the proof of inequality (4.11), the
strategy to prove (4.11) will consist in showing that c is a sort of subsolution in a
very weak sense of an Hamilton-Jacobi equation and this is enough to conclude by
some comparison principle, all this seems very classical except that we have to deal
with the fact that ξ is only Lp+. Let us start by remarking that, for fixed x0 ∈ Ω,
c(x0, .) ∈ W 1,p(Ω), indeed if ϕ ∈ C1

c (Ω) and i = 1 or 2, denoting by (e1, e2) the
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canonical basis of R2, choosing xε0 ∈ Ωε such that |x0 − xε0| ≤
√

2ε and using the
uniform convergence of cε(xε0, .) to c(x0, .), it is easy to see that∫

Ω

c(x0, .)∂iϕ = lim
ε→0+

ε2
∑
x∈Ωε

cε(xε0, x)
ϕ(x+ εei)− ϕ(x)

ε

= lim
ε→0+

ε2
∑
x∈Ωε

cε(xε0, x− εei)− cε(xε0, x)

ε
ϕ(x)

and thanks to (4.5), Hölder’s inequality and the fact that (‖ξε‖ε,p)ε is bounded we
obtain that ∣∣∣ ∫

Ω

c(x0, .)∂iϕ
∣∣∣ ≤ C‖ϕ‖Lp′ , ∀ϕ ∈ C1

c (Ω)

which proves that c(x0, .) ∈ W 1,p(Ω) (and by a similar argument that c(., y0) ∈
W 1,p(Ω) for every fixed y0 ∈ Ω).

Lemma 4.3. Let x0 ∈ Ω, ξ ∈ Lp+ and ϕ ∈ W 1,p(Ω) such that ϕ(x0) = 0 (which
makes sense since p > 2 so that ϕ is continuous). If for a.e. x ∈ Ω one has

∇ϕ(x) · u ≤ ξ(x) · Φ(u), ∀u ∈ R2 (4.12)

then ϕ ≤ cξ(x0, .) on Ω.

Proof. The result is obvious if ϕ ∈ C1(Ω) and ξ is continuous on Ω, indeed, in this
case, (4.12) holds pointwise, and if x ∈ Ω and σ is an absolutely continuous curve
with values in Ω connecting x0 and x, by the chain rule we have

ϕ(x) =

∫ 1

0

∇ϕ(σ(t)) · σ̇(t)dt ≤
∫ 1

0

Φ(σ̇(t)) · ξ(σ(t))dt

and taking the infimum in σ we obtain ϕ ≤ cξ(x0, .) on Ω i.e. ϕ ≤ cξ(x0, .) thanks
to Lemma 3.1. If ϕ is only W 1,p and ξ only Lp+, we first extend ϕ to a function in
W 1,p(R2) (recall that Ω is assumed to be smooth), we then extend ξ outside Ω by
setting ξ = |∇ϕ|(1, 1, 1, 1) so that if x ∈ R2 \ Ω and u ∈ S1 we have

∇ϕ(x) · u ≤ |∇ϕ(x)| = |∇ϕ(x)|(u2
1 + u2

2)

≤ |∇ϕ(x)|(|u1|+ |u2|) = ξ(x) · Φ(u)

so that by the homogenity of (4.12) in u, (4.12) continues to hold outside Ω with
the previous extension. We then consider a mollifying sequence ρn(x) = n2ρ(nx),
x ∈ R2 where ρ is a smooth nonnegative function supported on the unit ball and
such that

∫
R2 ρ = 1 and define ξn := ρn ? ξ and ϕn := ρn ? ϕ − (ρn ? ϕ)(x0). By

construction we have

∇ϕn(x) · u ≤ ξn(x) · Φ(u), ∀(x, u) ∈ R2 × R2

so that with the previous argument and the smoothness of ϕn and ξn we get ϕn ≤
cξn(x0, .), using the convergence of ϕn to ϕ we thus get

ϕ = lim supϕn ≤ lim sup cξn(x0, .) ≤ cξ(x0, .)

where the last inequality follows from the very definition of cξ as a supremum

(3.13)-(3.14) and the precompactness of cξn in C(Ω× Ω).

The last ingredient to prove c ≤ cξ and then to terminate the proof of the Γ-liminf
inequality (4.1) is given by :
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Lemma 4.4. Let x0 ∈ Ω and c be defined by (4.9), one has

1. for every w ∈ C∞c (Ω,R2), the following inequality holds∫
Ω

∇xc(x0, x) · w(x)dx ≤
∫

Ω

Φ(w(x)) · ξ(x)dx (4.13)

2. c ≤ cξ (and then, thanks to Lemma 4.1, the Γ-liminf inequality (4.1) holds).

Proof. 1. Let xε0 ∈ Ωε be such that |x0 − xε0| ≤
√

2ε so that cε(xε0, .) converges
uniformly to c(x0, .). For ϕ ∈ C1

c (Ω), i = 1, 2, and (e1, e2) the canonical basis of
R2, we already know that

Tϕ :=

∫
Ω

∂ic(x0, .) ϕ = lim
ε→0+

Tεϕ (4.14)

where

Tεϕ = ε2
∑
x∈Ωε

cε(xε0, x+ εei)− cε(xε0, x)

ε
ϕ(x).

For ϕ ∈ Cc(Ω) ∩W 1,∞(Ω), approximating ϕ uniformly by smooth and compactly
supported functions (again by convolution), it is easy to see that (4.14) also holds.
In particular (4.14) applies to the components of Φ(w) (they are nonsmooth because
of the positive part but still Lipschitz and compactly supported). We may thus write∫

Ω

∇xc(x0, .) · w =

∫
Ω

(∂1c(x0, .)((w1)+ − (w1)−) + ∂2c(x0, .)((w2)+ − (w2)−))

as the limit as ε→ 0+ of

ε2
∑
x∈Ωε

4∑
i=1

cε(xε0, x+ εvi)− cε(xε0, x)

ε
(w(x) · vi)+

now we use the inequality cε(xε0, x + εvi) − cε(xε0, x) ≤ εξεi (x) to obtain that the
previous sum is bounded from above by

ε2
∑
x∈Ωε

Φ(w(x)) · ξε(x)

passing to the limit in ε→ 0+ thus exactly gives (4.13).
2. First, using (4.13) with w = θv for v ∈ C∞c (Ω,R2) and an arbitrary scalar

function θ ∈ C∞c (Ω,R), θ ≥ 0, we deduce from the homogeneity of Φ that

∇xc(x0, x) · v(x) ≤ Φ(v(x)) · ξ(x) a.e. on Ω (4.15)

Now let x be a Lebesgue point of both ξ and ∇xc(x0, .), u ∈ S1 and choose v ∈
C∞c (Ω,R2) such that v = u in some neighbourhood of x, integrating inequality
(4.15) over Br(x) dividing by πr2 and letting r → 0+ we exactly get

∇xc(x0, x) · u ≤ Φ(u) · ξ(x) a.e. on Ω

which thanks to Lemma 4.3 gives c(x0, .) ≤ cξ(.).
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4.2. Γ-limsup inequality. Given, ξ ∈ Lp+, it remains now to prove the Γ-limsup

inequality i.e. the existence of a family ξε ∈ R4#Ωε

+ such that

ξε → ξ, and lim sup
ε→0+

Jε(ξε) ≤ J(ξ). (4.16)

The proof is much simpler than that of Γ-liminf inequality. We shall prove the
result first in the case where ξ is continuous and then treat the general case by a
density argument:

Step 1 : ξ is continuous
For ε > 0, let us define for every x ∈ Ωε and i = 1, ..., 4,

ξεi (x) :=
1

ε

∫
[x,x+εvi]

ξi =

∫ 1

0

ξi(x+ sεvi)ds

We also extend ξε in a piecewise constant way to the whole of Ω by setting ξε = ξε(x)
on the square having the neighbors of x in Ωε as vertices. Doing so, we obviously
have

‖ξε − ξ‖Lp → 0, and Iε0(ξε)→ I0(ξ) as ε→ 0+. (4.17)

Note in particular that ξε → ξ in the weak sense of definition 3.2. For ε > 0, and
(x, y) ∈ Ωε, let us define

cε(x, y) := εT εξε(x, y) = inf
σ∈Cε

x,y

∫ 1

0

Φ( ˙̃σ(t)) · ξε(σ̃(t))dt

by the same arguments as in the proof of the Γ-liminf inequality, thanks to the fact
that ξε is bounded in Lp and again to Lemma 4.2, we may extend cε to the whole of
Ω× Ω and thus obtain a bounded and equi-Hölder family still denoted cε, passing
up to a subsequence we may also assume that cε converges to some c in C(Ω×Ω).
We then have lim infε→0+ Iε1(ξε) =

∫
Ω×Ω

cdγ so that to prove (4.16) it is enough to
prove that c ≥ cξ = cξ and to see that this inequality holds it is enough to remark
that by construction for (x, y) ∈ Ωε × Ωε one has

cε(x, y) = inf
σ∈Cε

x,y

∫ 1

0

Φ( ˙̃σ(t)) · ξ(σ̃(t))dt ≥ cξ(x, y)

using the uniform convergence of cε to c we indeed obtain c ≥ cξ = cξ.
Step 2 : the general case where ξ is only Lp+
Thanks to lemma 3.1 we can find for each n, ξn ∈ C(Ω,R4

+) such that

‖ξn − ξ‖Lp + ‖cξn − cξ‖L∞ + |I0(ξn)− I0(ξ)| ≤ 1

n
(4.18)

for each ε we then construct a piecewise constant ξεn approximation of ξn as in step
1. Thanks to step 1, we deduce that for each n there is some εn > 0 (that we may
choose nonincreasing and such that εn → 0 as n → ∞) such that for 0 < ε ≤ εn
one has

‖ξεn − ξn‖Lp + |Iε0(ξεn)− I0(ξn)| ≤ 1

n
and Iε1(ξεn) ≥ I1(ξn)− 1

n
(4.19)

For ε > 0 let nε := sup{n : εn ≥ ε} and ξε := ξεnε
, by construction with (4.18) and

(4.19), we have

‖ξε − ξ‖Lp + |Iε0(ξε)− I0(ξ)| ≤ 2

nε
→ 0 as ε→ 0+ (4.20)
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as well as

Iε1(ξε) ≥ I1(ξnε
)− 1

nε
=

∫
Ω×Ω

cξnε
dγ − 1

nε
using the fact that cξnε

converges to cξ we thus get

lim inf
ε

I1(ξε) ≥ I1(ξ)

with (4.20) this proves the Γ-limsup inequality (4.16).

5. Optimality conditions and continuous Wardrop equilibria. Our aim now
is to give optimality conditions for the limit problem:

inf
ξ∈Lp

+

J(ξ) with J(ξ) :=

4∑
i=1

∫
Ω

Hi(x, ξi(x))dx−
∫

Ω×Ω

cξdγ, (5.1)

through some dual formulation that can be interpreted in terms of continuous
Wardrop equilibria i.e. that is in some sense the continuous version of the finite
dimensional optimization problem that consists in minimizing (2.4) subject to the
mass conservation conditions (2.2) and (2.3). This dual formulation will involve
probability measures on set of paths (i.e. the macroscopic version of the flows
wε(σ) of the network model of section 2.1) and will turn out to be an anisotropic
variant of the problem studied in details in Carlier, Jimenez and Santambrogio [6].
Let C := W 1,∞([0, 1],Ω), viewed as a subset of C([0, 1],R2), i.e. equipped with the
uniform topology, and slightly abusing notations let us denote by M+

1 (C) the set
of Borel probability measures Q on C([0, 1],R2) such that Q(C) = 1. Let us define
then the set of probability measures on paths that are consistent with the transport
plan γ:

Q(γ) := {Q ∈M+
1 (C) : (e0, e1)#Q = γ}

where e0 and e1 are evaluations at time 0 and 1 and (e0, e1)#Q denotes the image
measure of Q by (e0, e1). Thus Q ∈ Q(γ) means that∫

C

ϕ(σ(0), σ(1))dQ(σ) =

∫
Ω×Ω

ϕ(x, y)dγ(x, y), ∀ϕ ∈ C(R2,R).

Note that Q plays the same role as the paths-flows in the network model and the
condition Q ∈ Q(γ) is the continuous analogue of the mass conservation condition
(2.2). Let us now define the analogue of the arc flows induced by Q ∈ Q(γ); for

i = 1, .., 4 let us define the nonnegative measure on Ω, mQ
i , by∫

Ω

ϕ(x)dmQ
i (x) =

∫
C

(∫ 1

0

ϕ(σ(t))(σ̇(t) · vi)+dt
)
dQ(σ), ∀ϕ ∈ C(Ω,R).

Thus, the R4-valued measure mQ = (mQ
1 ,m

Q
2 ,m

Q
3 ,m

Q
4 ) can be defined by∫

Ω

ξ · dmQ =

∫
C

Lξ(σ)dQ(σ),∀ξ ∈ C(Ω,R4
+)

where

Lξ(σ) :=

∫ 1

0

ξ(σ(t)) · Φ(σ̇(t))dt =

∫ 1

0

4∑
i=1

ξi(σ(t))(σ̇(t) · vi)+dt =

4∑
i=1

Liξi(σ). (5.2)

Let us now recall that Hi(x, .) is the convex conjugate of Gi(x, .) where Gi(x, .) is
the primitive of the function gi(x, .) that relates the metric at x in direction vi to the
flow in this direction. The p growth assumption (3.9) on Hi then can be translated
into a similar q-growth condition on Gi for q = p/(p − 1) the conjugate exponent
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of p. In fact, we will slightly strengthen assumption (3.9) by further assuming that
gi(x, .) is continuous, everywhere positive and increasing in its second argument (so
that Gi(x, .) is strictly convex) and such there exists a and b such that b ≥ a > 0
and

amq−1 ≤ gi(x,m) ≤ b(mq−1 + 1), ∀(i, x,m) ∈ {1, .., 4} × Ω× R+, with q ∈ (1, 2).
(5.3)

Let us define then

Qq(γ) := {Q ∈ Q(γ) : mQ ∈ Lq(Ω,R4)} (5.4)

and assume
Qq(γ) 6= ∅ (5.5)

this assumption is satisfied in particular when γ is supported by finitely many points

and q < 2 (see [3]). Let Q ∈ Qq(γ) and ξ and ξ̃ be in C(Ω,R4
+), we have∫

C

|Lξ(σ)− Lξ̃(σ)|dQ(σ) ≤ ‖ξ − ξ̃‖Lp‖mQ‖Lq

which proves that if ξ ∈ Lp+ and (ξn)n is a sequence in C(Ω,R4
+) that converges in

Lp to ξ, then Lξn is a Cauchy sequence in L1(C,Q) and its limit, again denoted Lξ
does not depend on the approximating sequence (ξn)n. As in [6], this enables us to
define Lξ in an L1(C,Q) sense for every ξ ∈ Lp+ and Q ∈ Qq(γ). For every ξ ∈ Lp+
and Q ∈ Qq(γ), one can show that∫

Ω

ξ ·mQ =

∫
C

Lξ(σ)dQ(σ), cξ(σ(0), σ(1)) ≤ Lξ(σ) for Q-a.e. σ ∈ C (5.6)

we refer to [6] for a proof when ξ is only Lp+. Let ξ ∈ Lp+ and Q ∈ Qq(γ), we first
deduce from the fact that Hi(x, .) and Gi(x, .) are conjugates that

4∑
i=1

∫
Ω

Hi(x, ξi(x))dx ≥
∫

Ω

ξ(x) ·mQ(x)dx−
4∑
i=1

∫
Ω

Gi(x,m
Q
i (x))dx (5.7)

using the fact that Q ∈ Qq(γ) and (5.6), we also have∫
Ω×Ω

cξdγ =

∫
C

cξ(σ(0), σ(1))dQ(σ) ≤
∫
C

Lξ(σ)dQ(σ) =

∫
Ω

ξ ·mQ (5.8)

so that

inf
ξ∈Lp

+

J(ξ) ≥ sup
Q∈Qq(γ)

−
4∑
i=1

∫
Ω

Gi(x,m
Q
i (x))dx. (5.9)

We shall from now on call

sup
Q∈Qq(γ)

−
4∑
i=1

∫
Ω

Gi(x,m
Q
i (x))dx. (5.10)

the dual of (5.1). Let us also remark the analogy between the continuous problem
(5.10) and the finite-dimensional that consists in minimizing (2.4) subject to the
mass conservation conditions (2.2) and (2.3). The precise relations between (5.10)
and (5.1) and the connection with Wardrop-like equilibria are given by the following
properties which are quite simple extensions of the results of [6] to the anisotropic
setting:

Theorem 5.1. Under assumptions (5.3) and (5.5), we have:

1. (5.10) admits solutions,
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2. Q ∈ Qq(γ) solves (5.10) if only if∫
C

(
LξQ(σ)− cξQ(σ(0), σ(1)

)
dQ(σ) = 0 (5.11)

where ξQ := (g1(.,mQ
1 (.)), ..., g4(.,mQ

4 (.))).

3. there is no duality gap : the supremum of (5.10) equals the infimum of (5.1)
and moreover if Q solves (5.10) then ξQ solves (5.1).

Proof. We will only sketch the proof and refer to [6] for detailed proofs which can
straightforwardly be adapted to the anisotropic case.

1. Let (Qn)n be a maximizing sequence for (5.10), we may reparameterize paths
by arclength (so that euclidean length becomes the Lipschitz constant of the curve),
the corresponding measures on curves still form a maximizing sequence again de-
noted (Qn), since (mQn) is bounded in Lq, this gives a bound on

∫
C

Lip(σ)dQn(σ)
and thus thanks to Ascoli and Prokhorov’s theorems, this also gives some tightness
of (Qn), arguing as in Lemma 2.8 of [6] we find a Q ∈ M+

1 (C) to which, up to a
subsequence, (Qn) weakly star converges in M(C([0, 1],R2). We may also assume
that mQn converges weakly in Lq to some m and arguing as in Lemma 2.9 of [6] we

obtain that mQ
i ≤ mi for i = 1, ..., 4, in particular Q ∈ Qq(γ) and since Gi(x, .) is

nondecreasing and convex, we have∫
Ω

Gi(x,m
Q
i (x))dx ≤

∫
Ω

Gi(x,mi(x))dx ≤ lim inf
n

∫
Ω

Gi(x,m
Qn

i (x))dx

which proves that Q solves (5.10).
2. Assume first that Q ∈ Qq(γ) satisfies (5.11), and let Q ∈ Qq(γ), by convexity

of Gi(x, .), (5.6) and (5.11) we have

4∑
i=1

∫
Ω

Gi(x,m
Q
i (x))dx−

4∑
i=1

∫
Ω

Gi(x,m
Q
i (x))dx ≥

∫
Ω

ξQ(·mQ −mQ)

=

∫
C

LξQ(σ)dQ(σ)−
∫
C

LξQ(σ)dQ(σ)

≥
∫
C

cξQ(σ(0), σ(1))dQ(σ)−
∫
C

cξQ(σ(0), σ(1))dQ(σ)

=

∫
Ω×Ω

cξQdγ −
∫

Ω×Ω

cξQdγ = 0

so that Q solves (5.10). Now assume that Q ∈ Qq(γ) solves (5.10), let Q ∈ Qq(γ)
and ε ∈ (0, 1), dividing the inequality

4∑
i=1

∫
Ω

Gi(x, (1− ε)mQ
i (x) + εmQ

i (x))dx−
4∑
i=1

∫
Ω

Gi(x,m
Q
i (x))dx ≥ 0

by ε and letting ε→ 0+ we get∫
Ω

ξQ ·m
Q =

∫
C

LξQdQ ≤
∫

Ω

ξQ ·m
Q =

∫
C

LξQdQ, ∀Q ∈ Q
q(γ)

arguing as in Proposition 3.9 of [6] we obtain that the infimum of the right-hand
side of the previous inequality is in fact

∫
Ω×Ω

cξQdγ so that∫
C

LξQdQ =

∫
C

cξQ(σ(0), σ(1))dQ(σ).
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3. LetQ solve (5.10) then, by construction taking ξ = ξQ andm = mQ, inequality

(5.7) becomes an equality, and (5.8) as well thanks to (5.11), which proves that (5.9)
is in fact an equality and ξQ solves (5.1).

Of course, the optimality condition (5.11) for (5.10) can naturally be interpreted
in terms of Wardrop equilibria. Indeed, ξQ being the metric induced by Q we
may define continuous Wardrop equilibria as the set of Q’s in Qq(γ) such that
Q gives full mass to geodesics for the congested metric ξQ, where such geodesics
are by definition paths σ such that LξQ(σ) = cξQ(σ(0), σ(1)). Condition (5.11)

therefore exactly says that Q solves (5.10) if and only if it is a continuous Wardrop
equilibrium. In particular there exist continuous Wardrop equilibria as soon as (5.3)
and (5.5) hold.

A natural question now is whether the discrete problems corresponding to (2.4)
i.e.:

inf
mε,wε

ε2
∑
x∈Ωε

4∑
i=1

Gi

(
x,
mε
i (x)

ε

)
(5.12)

subject to the mass conservation constraints (2.2)-(2.3) converge in some sense to
the continuous problem

inf
Q∈Qq(γ)

4∑
i=1

∫
Ω

Gi(x,m
Q
i (x))dx. (5.13)

Let mε = (mε
i (x))x,i ∈ Ωε × {1, ...4} and wε = (wε(σ))σ∈Cε be a solution of the

discrete problem (5.12) and define the discrete measure over Cε:

Qε :=
∑
σ∈Cε

wε(σ)δσ

as well as

Q̃ε :=
∑
σ∈Cε

wε(σ)δσ̃

where σ̃ ∈ C denotes the constant speed reparameterization of the path σ. Since for
every i ∈ {1, ..., 4} and ξi ∈ C(Ω,R+), using definition (5.2) one has Liξi(σ) = Liξi(σ̃)

and thus also mQε

= mQ̃ε

. Let us also remark that the measure Q̃ε contains all the
information on (mε,wε).

Theorem 5.2. Under assumptions (3.1), (3.2), (3.9), (5.3) and (5.5), defining Q̃ε

as above, up to (a not relabeled) subsequence (Q̃ε)ε > 0 converges weakly to some
solution Q ∈ Qq(γ) of (5.13) in the sense that∫

C([0,1],R2)

Φ(σ)dQ̃ε(σ)→
∫
C([0,1],R2)

Φ(σ)dQ(σ) as ε→ 0+

for every Φ ∈ Cb(C([0, 1],R2),R).

Proof. We know by duality, from corollary 3.5 and theorem 5.1, that the value of
(5.12) converges to the value of (5.13) in particular, thanks to (5.3) this gives a
bound on the discrete Lq norm of mε. Arguing as in the proof of corollary 3.5 and
section 4.1, we deduce that there is some m = (m1, ...,m4) ∈ Lq+ such that up to a
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subsequence ε−1mε weakly converges in Lq to m in the sense of definition 3.2 (up
to changing p to its conjugate q) and∫

Ω

4∑
i=1

Gi(x,mi(x))dx ≤ lim inf
ε→0+

ε2
∑
x∈Ωε

4∑
i=1

Gi

(
x,
mε
i (x)

ε

)
. (5.14)

Let i ∈ {1, ..., 4} and ξi ∈ C(Ω,R+), using definition (5.2) and (2.3), rearranging
terms, one easily gets∫

Ω

ξi(x)dmQ̃ε

i (x) =
∑
σ∈Cε

wε(σ)Liξi(σ)

=
∑
x∈Ωε

(∫
[x,x+εvi]

ξi

)( ∑
σ∈Cε : [x,x+εvi]⊂σ

wε(σ)
)

=
∑
x∈Ωε

(
ξi(x) +O(ωξi(ε))

)( ∑
σ∈Cε : [x,x+εvi]⊂σ

εwε(σ)
)

= ε2
∑
x∈Ωε

ξi(x)
mε
i (x)

ε
+O(ωξi(ε))

where ωξi denotes a modulus of continuity of ξi. Since ε−1mε weakly converges in

Lq to m in the sense of definition 3.2, this shows that mQ̃ε

i weakly star converges
to m. Proceeding as in [6] (see lemmas 2.7, 2.8 and 2.9), we can find Q ∈ M+

1 (C)

such that (up to a subsequence) (Q̃ε)ε converges weakly to Q and mQ
i ≤ mi for

i = 1, ..., 4. Clearly, Q ∈ Qq(γ) and since Gi(x, .) is nondecreasing, recalling (5.14),
we have ∫

Ω

4∑
i=1

Gi(x,m
Q
i (x))dx ≤

∫
Ω

4∑
i=1

Gi(x,mi(x))dx

≤ lim inf
ε→0+

ε2
∑
x∈Ωε

4∑
i=1

Gi

(
x,
mε
i (x)

ε

)
and the desired conclusion follows from the fact that the right-hand side is the value
of the infimum in (5.13).

6. The long-term variant. Instead of prescribing a transport plan γε in the
discrete problem (2.5), we could have fixed only its marginals i.e. the distribution of
sources and of sinks (or supply and demand), respectively given by the nonnegative
numbers (µε0(x))x∈Ωε and (µε1(y))y∈Ωε that satisfy the compatibility condition∑

x∈Ωε

µε0(x) =
∑
y∈Ωε

µε1(y) > 0.

In the equilibrium problem this means that the transport plan now becomes part of
the unknown and should be determined by some additional optimality requirement,
namely that it is an optimal transport plan between the prescribed marginals for
the transport cost induced by the congested metric itself. In other words, in the
long term variant, in addition to traffic congestion we are also facing an optimal
transportation problem. We refer the reader to Villani’s book [8] for a recent account
of optimal transport theory and its numerous applications. More precisely, using
the same notations as in section 2, the definition of an equilibirium is exactly the
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same as in definition 2.2 except that one replaces the mass conservation condition
(2.2) by

µε0(x) :=
∑

σ∈Cε
x,.

wε(σ), µε1(y) :=
∑
σ∈Cε

.,y

wε(σ) (6.1)

for every (x, y) ∈ Ωε where we have denoted by Cεx,. (respectively Cε.,y) the set of
simple paths on the network that start at x (respectively end at y). It is then easy
to check that equilibria are obtained by minimizing the functional defined by (2.4)
but now subject to (6.1) and (2.3). The dual formulation then reads as the following
variant of (2.5):

inf
tε∈R4#Ωε

+

{ ∑
x∈Ωε

4∑
i=1

Hε
i (x, tεi (x))− inf

γε∈Π(µε
0,µ

ε
1)

∑
(x,y)∈Ωε

2

γε(x, y)T εtε(x, y)
}

(6.2)

where H and T εtε are defined as before by (2.6) and (2.7) and Π(µε0, µ
ε
1) denotes

the set of (discrete) transport plans between µε0 and µε1 i.e. the set of collection of
nonnegative reals (γε(x, y))(x,y)∈Ωε

2 such that∑
y∈Ωε

γε(x, y) = µε0(x),
∑
x∈Ωε

γε(x, y) = µε1(y), (x, y) ∈ Ωε × Ωε.

As a normalization, we may assume that the common mass of µε0 and µε1 is 1 and
identify them with the discrete probability measures:

µε0 :=
∑
x∈Ωε

µε0(x)δx, µ
ε
1 :=

∑
y∈Ωε

µε1(y)δy.

Thus, in (6.2) the second term in the criterion is the value of the optimal transport
problem between µε0 and µε1 for the transport cost T εtε .

Let us now assume that assumptions (3.2) and (3.9) hold and let us replace
(3.1) by the assumption that µε0 and µε1 weakly star converge to some probability
measures µ0 and µ1 on Ω:

lim
ε→0+

∑
x∈Ωε

(ϕ(x)µε0(x) + ψ(x)µε1(x)) =

∫
Ω

ϕdµ0 +

∫
Ω

ψdµ1, ∀(ϕ,ψ) ∈ C(Ω)2. (6.3)

With assumptions (3.2) and (3.9) and setting ξε := ε−1tε as previously, we may
rewrite (6.2) as:

inf
ξε∈R4#Ωε

+

F ε(ξε) := Iε0(ξε)− F ε1 (ξε) (6.4)

where Iε0 is defined by (3.7) and

F ε1 (ξε) := inf
γε∈Π(µε

0,µ
ε
1)
ε

∑
(x,y)∈Ωε

2

γε(x, y)T εξε(x, y). (6.5)

We then define the limit functional by

F (ξ) := I0(ξ)− F1(ξ), where F1(ξ) := inf
γ∈Π(µ0,µ1)

∫
Ω×Ω

cξdγ; ∀ξ ∈ Lp+ (6.6)

where, as before, I0 is defined by (3.10), cξ is defined by (3.13) and Π(µ0, µ1) is the
set of transport plans between µ0 and µ1 i.e. the set of probability measures having
µ0 and µ1 as marginals. We then have the following Γ-convergence result:
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Theorem 6.1. Under assumptions (6.3), (3.2), (3.9), the family of functionals F ε

defined by (6.4) Γ-converges (for the weak Lp topology) to the functional F defined
by (6.6).

Proof. The proof can be achieved exactly as that of Theorem 6.1, except for the
proof of the inequality

F1(ξ) ≥ lim sup
ε

F ε1 (ξε)

as soon as ξε → ξ for which we use Lemma 6.2 given below. From section 4.1, we
already know that cε := εT εξε has a subsequence that converges uniformly to some

c ≤ cξ. Now, let γ ∈ Π(µ0, µ1) be such that

F1(ξ) =

∫
Ω×Ω

cξdγ

thanks to Lemma 6.2 we may choose γε ∈ Π(µε0, µ
ε
1) that weakly star converges to

γ as ε→ 0, we therefore get

lim sup
ε

F ε1 (ξε) ≤ lim sup
ε

∑
(x,y)∈Ωε×Ωε

γε(x, y)cε(x, y)

=

∫
Ω×Ω

cdγ ≤
∫

Ω×Ω

cξdγ = F1(ξ).

Lemma 6.2. Let µ and ν be probability measures on Ω, (µn)n, (νn)n be sequences
of probability measures on Ω weakly star converging to µ and ν and let γ ∈ Π(µ, ν)
be a transport plan between µ and ν. There exists a sequence of transport plans
γn ∈ Π(µn, νn) that weakly star converges to γ.

Proof. Let us recall that the 1-Wasserstein distance between µ and µn is defined by

W1(µ, µn) := inf
θ∈Π(µ,µn)

∫
Ω×Ω

|x− x′|dθ(x, x′)

and let θ ∈ Π(µ, µn) be an optimal plan in the minimization problem above. Sim-
ilarly, let η ∈ Π(νn, ν) be an optimal plan in the problem defining W1(ν, νn).
Let us disintegrate θ as θ = µ ⊗ θx and η as η = ν ⊗ ηy and finally let γn :=∫

Ω×Ω
θx ⊗ ηydγ(x, y) i.e.∫

Ω×Ω

ϕ(x′, y′)dγn(x′, y′) =

∫
Ω×Ω×Ω×Ω

ϕ(x′, y′)dπ(x, x′, y, y′), ∀ϕ ∈ C(Ω× Ω))

where ∫
Ω×Ω×Ω×Ω

ψ(x, x′, y, y′)dπ(x, x, y, y′)

=

∫
Ω×Ω

(∫
Ω×Ω

ψ(x, x′, y, y′))dθx(x′)dηy(y′)
)
dγ(x, y), ∀ψ ∈ C(Ω

4
).
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By construction, γn belongs to Π(µn, νn) and

W1(γn, γ) ≤
∫

Ω×Ω×Ω×Ω

(|x− x′|+ |y − y′|)dπ(x, x′, y, y′)

=

∫
Ω×Ω

|x− x′|dθx(x′)dµ(x) +

∫
Ω×Ω

|y − y′|dηy(y′)dν(y)

=

∫
Ω×Ω

|x− x′|dθ(x, x′) +

∫
Ω×Ω

|y − y′|dη(y, y′)

= W1(µn, µ) +W1(νn, ν)

and we conclude thanks to the well-known fact that W1 is a distance that metrizes
the weak-star topology on the set of probability measures on Ω (see for instance
[8]).

Let us finally mention that the continuous long term problem

inf
ξ∈Lp

+

{ 4∑
i=1

∫
Ω

Hi(x, ξi(x))dx− inf
γ∈Π(µ0,µ1)

∫
Ω×Ω

cξdγ
}

(6.7)

admits a dual formulation that reads as

sup
Q∈Qq(µ0,µ1)

−
4∑
i=1

∫
Ω

Gi(x,m
Q
i (x))dx (6.8)

where

Qq(µ0, µ1) := {Q ∈M+
1 (C) : e0#Q = µ0, e1#Q = µ1, m

Q ∈ Lq}

=
⋃

γ∈Π(µ0,µ1)

Qq(γ).

Provided Qq(µ0, µ1) 6= ∅ and (5.3) holds, one can generalize theorem 5.1 to the
long-term models as follows:

• the supremum in (6.8) is achieved and coincides with the infimum of (6.7),
• Q ∈ Qq(µ0, µ1) solves (6.8) if and only if it is a long-term equilibrium : it

gives full mass to the geodesics for the congested metric ξQ generated by Q in

the sense that (5.11) holds and in addition γ := (e0, e1)#Q solves the optimal
transport problem:

inf
γ∈Π(µ0,µ1)

∫
Ω×Ω

cξQ(x, y)dγ(x, y),

• if Q solves (6.8) then ξQ solves (6.7).
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